1
|
Fei E, Chen P, Zhang Q, Zhong Y, Zhou T. Protein kinase B/Akt1 phosphorylates dysbindin-1A at serine 10 to regulate neuronal development. Neuroscience 2022; 490:66-78. [DOI: 10.1016/j.neuroscience.2022.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 01/05/2023]
|
2
|
O'Tuathaigh CMP, Desbonnet L, Payne C, Petit E, Cox R, Loftus S, Clarke G, Cryan JF, Tighe O, Wilson S, Kirby BP, Dinan TG, Waddington JL. Ethologically based behavioural and neurochemical characterisation of mice with isoform-specific loss of dysbindin-1A in the context of schizophrenia. Neurosci Lett 2020; 736:135218. [PMID: 32615248 DOI: 10.1016/j.neulet.2020.135218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 10/24/2022]
Abstract
Dysbindin-1 is implicated in several aspects of schizophrenia, including cognition and both glutamatergic and dopaminergic neurotransmission. Targeted knockout of dysbindin-1A (Dys-1A KO), the most abundant and widely expressed isoform in the brain, is associated with deficits in delay/interference-dependent working memory. Using an ethologically based approach, the following behavioural phenotypes were examined in Dys-1A KO mice: exploratory activity, social interaction, anxiety and problem-solving ability. Levels of monoamines and their metabolites were measured in striatum, hippocampus and prefrontal cortex using high-performance liquid chromatography with electrochemical detection. The ethogram of initial exploration in Dys-1A KO mice was characterised by increased rearing from a seated position; over subsequent habituation, stillness was decreased relative to wildtype. In a test of dyadic social interaction with an unfamiliar conspecific in a novel environment, female KO mice showed an increase in investigative social behaviours. Marble burying behaviour was unchanged. Using the puzzle-box test to measure general problem-solving performance, no effect of genotype was observed across nine trials of increasing complexity. Dys-1A KO demonstrated lower levels of 5-HT in ratio to its metabolite 5-HIAA in the prefrontal cortex. These studies elaborate the behavioural and neurochemical phenotype of Dys-1A KO mice, revealing subtle genotype-related differences in non-social and social exploratory behaviours and habituation of exploration in a novel environment, as well as changes in 5-HT activity in brain areas related to schizophrenia.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Medical Education Unit, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland.
| | - Lieve Desbonnet
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Psychology, National University of Ireland, Galway, Galway, Ireland
| | - Christina Payne
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emilie Petit
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rachel Cox
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Samim Loftus
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; Neurogastroenterology Laboratory, APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Neurogastroenterology Laboratory, APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - Orna Tighe
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Steve Wilson
- In Vivo Science and Delivery, GlaxoSmithKline, Stevenage, UK
| | - Brian P Kirby
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; Neurogastroenterology Laboratory, APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Waddington JL, Zhen X, O'Tuathaigh CMP. Developmental Genes and Regulatory Proteins, Domains of Cognitive Impairment in Schizophrenia Spectrum Psychosis and Implications for Antipsychotic Drug Discovery: The Example of Dysbindin-1 Isoforms and Beyond. Front Pharmacol 2020; 10:1638. [PMID: 32063853 PMCID: PMC7000454 DOI: 10.3389/fphar.2019.01638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Alongside positive and negative symptomatology, deficits in working memory, attention, selective learning processes, and executive function have been widely documented in schizophrenia spectrum psychosis. These cognitive abnormalities are strongly associated with impairment across multiple function domains and are generally treatment-resistant. The DTNBP1 (dystrobrevin-binding protein-1) gene, encoding dysbindin, is considered a risk factor for schizophrenia and is associated with variation in cognitive function in both clinical and nonclinical samples. Downregulation of DTNBP1 expression in dorsolateral prefrontal cortex and hippocampal formation of patients with schizophrenia has been suggested to serve as a primary pathophysiological process. Described as a "hub," dysbindin is an important regulatory protein that is linked with multiple complexes in the brain and is involved in a wide variety of functions implicated in neurodevelopment and neuroplasticity. The expression pattern of the various dysbindin isoforms (-1A, -1B, -1C) changes depending upon stage of brain development, tissue areas and subcellular localizations, and can involve interaction with different protein partners. We review evidence describing how sequence variation in DTNBP1 isoforms has been differentially associated with schizophrenia-associated symptoms. We discuss results linking these isoform proteins, and their interacting molecular partners, with cognitive dysfunction in schizophrenia, including evidence from drosophila through to genetic mouse models of dysbindin function. Finally, we discuss preclinical evidence investigating the antipsychotic potential of molecules that influence dysbindin expression and functionality. These studies, and other recent work that has extended this approach to other developmental regulators, may facilitate identification of novel molecular pathways leading to improved antipsychotic treatments.
Collapse
Affiliation(s)
- John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Colm M P O'Tuathaigh
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,Medical Education Unit, School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Alexander CJ, Wagner W, Copeland NG, Jenkins NA, Hammer JA. Creation of a myosin Va-TAP-tagged mouse and identification of potential myosin Va-interacting proteins in the cerebellum. Cytoskeleton (Hoboken) 2019; 75:395-409. [PMID: 29979496 DOI: 10.1002/cm.21474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022]
Abstract
The actin-based motor myosin Va transports numerous cargos, including the smooth endoplasmic reticulum (SER) in cerebellar Purkinje neurons (PNs) and melanosomes in melanocytes. Identifying proteins that interact with this myosin is key to understanding its cellular functions. Toward that end, we used recombineering to insert via homologous recombination a tandem affinity purification (TAP) tag composed of the immunoglobulin G-binding domain of protein A, a tobacco etch virus cleavage site, and a FLAG tag into the mouse MYO5A locus immediately after the initiation codon. Importantly, we provide evidence that the TAP-tagged version of myosin Va (TAP-MyoVa) functions normally in terms of SER transport in PNs and melanosome positioning in melanocytes. Given this and other evidence that TAP-MyoVa is fully functional, we purified it together with associated proteins directly from juvenile mouse cerebella and subjected the samples to mass spectroscopic analyses. As expected, known myosin Va-binding partners like dynein light chain were identified. Importantly, numerous novel interacting proteins were also tentatively identified, including guanine nucleotide-binding protein G(o) subunit alpha (Gnao1), a biomarker for schizophrenia. Consistently, an antibody to Gnao1 immunoprecipitates myosin Va, and Gnao1's localization to PN dendritic spines depends on myosin Va. The mouse model created here should facilitate the identification of novel myosin Va-binding partners, which in turn should advance our understanding of the roles played by this important myosin in vivo.
Collapse
Affiliation(s)
- Christopher J Alexander
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Wolfgang Wagner
- Center for Molecular Neurobiology (ZMNH), Department of Molecular Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Neal G Copeland
- The University of Texas MD Anderson, Department of Genetics, Cancer Center, Houston, Texas
| | - Nancy A Jenkins
- The University of Texas MD Anderson, Department of Genetics, Cancer Center, Houston, Texas
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
5
|
Walker RL, Ramaswami G, Hartl C, Mancuso N, Gandal MJ, de la Torre-Ubieta L, Pasaniuc B, Stein JL, Geschwind DH. Genetic Control of Expression and Splicing in Developing Human Brain Informs Disease Mechanisms. Cell 2019; 179:750-771.e22. [PMID: 31626773 PMCID: PMC8963725 DOI: 10.1016/j.cell.2019.09.021] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/06/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023]
Abstract
Tissue-specific regulatory regions harbor substantial genetic risk for disease. Because brain development is a critical epoch for neuropsychiatric disease susceptibility, we characterized the genetic control of the transcriptome in 201 mid-gestational human brains, identifying 7,962 expression quantitative trait loci (eQTL) and 4,635 spliceQTL (sQTL), including several thousand prenatal-specific regulatory regions. We show that significant genetic liability for neuropsychiatric disease lies within prenatal eQTL and sQTL. Integration of eQTL and sQTL with genome-wide association studies (GWAS) via transcriptome-wide association identified dozens of novel candidate risk genes, highlighting shared and stage-specific mechanisms in schizophrenia (SCZ). Gene network analysis revealed that SCZ and autism spectrum disorder (ASD) affect distinct developmental gene co-expression modules. Yet, in each disorder, common and rare genetic variation converges within modules, which in ASD implicates superficial cortical neurons. More broadly, these data, available as a web browser and our analyses, demonstrate the genetic mechanisms by which developmental events have a widespread influence on adult anatomical and behavioral phenotypes.
Collapse
Affiliation(s)
- Rebecca L Walker
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA; Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gokul Ramaswami
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Christopher Hartl
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA; Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nicholas Mancuso
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Michael J Gandal
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Luis de la Torre-Ubieta
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA; Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90024, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason L Stein
- Department of Genetics and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel H Geschwind
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA; Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Dysbindin-1 Involvement in the Etiology of Schizophrenia. Int J Mol Sci 2017; 18:ijms18102044. [PMID: 28937620 PMCID: PMC5666726 DOI: 10.3390/ijms18102044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a major psychiatric disorder that afflicts about 1% of the world’s population, falling into the top 10 medical disorders causing disability. Existing therapeutic strategies have had limited success on cognitive impairment and long-term disability and are burdened by side effects. Although new antipsychotic medications have been launched in the past decades, there has been a general lack of significant innovation. This lack of significant progress in the pharmacotherapy of schizophrenia is a reflection of the complexity and heterogeneity of the disease. To date, many susceptibility genes have been identified to be associated with schizophrenia. DTNBP1 gene, which encodes dysbindin-1, has been linked to schizophrenia in multiple populations. Studies on genetic variations show that DTNBP1 modulate prefrontal brain functions and psychiatric phenotypes. Dysbindin-1 is enriched in the dorsolateral prefrontal cortex and hippocampus, while postmortem brain studies of individuals with schizophrenia show decreased levels of dysbindin-1 mRNA and protein in these brain regions. These studies proposed a strong connection between dysbindin-1 function and the pathogenesis of disease. Dysbindin-1 protein was localized at both pre- and post-synaptic sites, where it regulates neurotransmitter release and receptors signaling. Moreover, dysbindin-1 has also been found to be involved in neuronal development. Reduced expression levels of dysbindin-1 mRNA and protein appear to be common in dysfunctional brain areas of schizophrenic patients. The present review addresses our current knowledge of dysbindin-1 with emphasis on its potential role in the schizophrenia pathology. We propose that dysbindin-1 and its signaling pathways may constitute potential therapeutic targets in the therapy of schizophrenia.
Collapse
|
7
|
Petit EI, Michalak Z, Cox R, O'Tuathaigh CMP, Clarke N, Tighe O, Talbot K, Blake D, Joel J, Shaw A, Sheardown SA, Morrison AD, Wilson S, Shapland EM, Henshall DC, Kew JN, Kirby BP, Waddington JL. Dysregulation of Specialized Delay/Interference-Dependent Working Memory Following Loss of Dysbindin-1A in Schizophrenia-Related Phenotypes. Neuropsychopharmacology 2017; 42:1349-1360. [PMID: 27986973 PMCID: PMC5437891 DOI: 10.1038/npp.2016.282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/28/2016] [Accepted: 12/11/2016] [Indexed: 01/12/2023]
Abstract
Dysbindin-1, a protein that regulates aspects of early and late brain development, has been implicated in the pathobiology of schizophrenia. As the functional roles of the three major isoforms of dysbindin-1, (A, B, and C) remain unknown, we generated a novel mutant mouse, dys-1A-/-, with selective loss of dysbindin-1A and investigated schizophrenia-related phenotypes in both males and females. Loss of dysbindin-1A resulted in heightened initial exploration and disruption in subsequent habituation to a novel environment, together with heightened anxiety-related behavior in a stressful environment. Loss of dysbindin-1A was not associated with disruption of either long-term (olfactory) memory or spontaneous alternation behavior. However, dys-1A-/- showed enhancement in delay-dependent working memory under high levels of interference relative to controls, ie, impairment in sensitivity to the disruptive effect of such interference. These findings in dys-1A-/- provide the first evidence for differential functional roles for dysbindin-1A vs dysbindin-1C isoforms among phenotypes relevant to the pathobiology of schizophrenia. Future studies should investigate putative sex differences in these phenotypic effects.
Collapse
Affiliation(s)
- Emilie I Petit
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zuzanna Michalak
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Rachel Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Medicine, University College Cork, Cork, Ireland
| | - Niamh Clarke
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Office of Research and Innovation, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Orna Tighe
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Konrad Talbot
- Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Derek Blake
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Josephine Joel
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Horizon Discovery, Cambridge, UK
| | - Alexander Shaw
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Steven A Sheardown
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Takeda Cambridge, Cambridge, UK
| | - Alastair D Morrison
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Worldwide Business Development, GlaxoSmithKline, Stevenage, UK
| | - Stephen Wilson
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, UK
| | - Ellen M Shapland
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James N Kew
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Brian P Kirby
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Ito H, Morishita R, Nagata KI. Schizophrenia susceptibility gene product dysbindin-1 regulates the homeostasis of cyclin D1. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1383-91. [PMID: 27130439 DOI: 10.1016/j.bbadis.2016.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/08/2016] [Accepted: 04/22/2016] [Indexed: 12/18/2022]
Abstract
Dysbindin-1 (dystrobrevin binding protein-1, DTNBP1) is now widely accepted as a potential schizophrenia susceptibility gene and accumulating evidence indicates its functions in the neural development. In this study, we tried to identify new binding partners for dysbindin-1 to clarify the novel function of this molecule. When consulted with BioGRID protein interaction database, cyclin D3 was found to be a possible binding partner for dysbindin-1. We then examined the interaction between various dysbindin-1 isoforms (dysbindin-1A, -1B and -1C) and all three D-type cyclins (cyclin D1, D2, and D3) by immunoprecipitation with the COS7 cell expression system, and found that dysbindin-1A preferentially interacts with cyclin D1. The mode of interaction between these molecules was considered as direct binding since recombinant dysbindin-1A and cyclin D1 formed a complex in vitro. Mapping analyses revealed that the C-terminal region of dysbindin-1A binds to the C-terminal of cyclin D1. Consistent with the results of the biochemical analyses, endogenous dysbindin-1was partially colocalized with cyclin D1 in NIH3T3 fibroblast cells and in neuronal stem and/or progenitor cells in embryonic mouse brain. While co-expression of dysbindin-1A with cyclin D1 changed the localization of the latter from the nucleus to cytosol, cyclin D1-binding partner CDK4 inhibited the dysbindin-cyclin D1 interaction. Meanwhile, depletion of endogenous dysbindin-1A increased cyclin D1 expression. These results indicate that dysbindin-1A may control the cyclin D1 function spatiotemporally and might contribute to better understanding of the pathophysiology of dysbindin-1-associated disorders.
Collapse
Affiliation(s)
- Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Rika Morishita
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan; Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
9
|
Fu C, Chen D, Chen R, Hu Q, Wang G. The Schizophrenia-Related Protein Dysbindin-1A Is Degraded and Facilitates NF-Kappa B Activity in the Nucleus. PLoS One 2015; 10:e0132639. [PMID: 26171858 PMCID: PMC4501731 DOI: 10.1371/journal.pone.0132639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/16/2015] [Indexed: 12/12/2022] Open
Abstract
Dystrobrevin-binding protein 1 (DTNBP1), a gene encoding dysbindin-1, has been identified as a susceptibility gene for schizophrenia. Functioning with partners in synapses or the cytoplasm, this gene regulates neurite outgrowth and neurotransmitter release. Loss of dysbindin-1 affects schizophrenia pathology. Dysbindin-1 is also found in the nucleus, however, the characteristics of dysbindin in the nucleus are not fully understood. Here, we found that dysbindin-1A is degraded in the nucleus via the ubiquitin-proteasome system and that amino acids 2-41 at the N-terminus are required for this process. By interacting with p65, dysbindin-1A promotes the transcriptional activity of NF-kappa B in the nucleus and positively regulates MMP-9 expression. Taken together, the data obtained in this study demonstrate that dysbindin-1A protein levels are highly regulated in the nucleus and that dysbindin-1A regulates transcription factor NF-kappa B activity to promote the expression of MMP-9 and TNF-α.
Collapse
Affiliation(s)
- Cheng Fu
- Laboratory of Molecular Neuropathology, Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences. Hefei, Anhui, China
| | - Dong Chen
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ruijie Chen
- Department of Clinical Pharmacy and Pharmacology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingsong Hu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences. Hefei, Anhui, China
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- * E-mail:
| |
Collapse
|
10
|
Soma M, Wang M, Suo S, Ishiura S. Dysbindin-1, a schizophrenia-related protein, interacts with HDAC3. Neurosci Lett 2014; 582:120-4. [DOI: 10.1016/j.neulet.2014.08.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/13/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
|
11
|
Wang H, Yuan Y, Zhang Z, Yan H, Feng Y, Li W. Dysbindin-1C is required for the survival of hilar mossy cells and the maturation of adult newborn neurons in dentate gyrus. J Biol Chem 2014; 289:29060-72. [PMID: 25157109 DOI: 10.1074/jbc.m114.590927] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DTNBP1 (dystrobrevin-binding protein 1), which encodes dysbindin-1, is one of the leading susceptibility genes for schizophrenia. Both dysbindin-1B and -1C isoforms are decreased, but the dysbindin-1A isoform is unchanged in schizophrenic hippocampal formation, suggesting dysbindin-1 isoforms may have distinct roles in schizophrenia. We found that mouse dysbindin-1C, but not dysbindin-1A, is localized in the hilar glutamatergic mossy cells of the dentate gyrus. The maturation rate of newborn neurons in sandy (sdy) mice, in which both dysbindin-1A and -1C are deleted, is significantly delayed when compared with that in wild-type mice or with that in muted (mu) mice in which dysbindin-1A is destabilized but dysbindin-1C is unaltered. Dysbindin-1C deficiency leads to a decrease in mossy cells, which causes the delayed maturation of newborn neurons. This suggests that dysbindin-1C, rather than dysbindin-1A, regulates adult hippocampal neurogenesis in a non-cell autonomous manner.
Collapse
Affiliation(s)
- Hao Wang
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the University of Chinese Academy of Sciences, Beijing 100039
| | - Yefeng Yuan
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the University of Chinese Academy of Sciences, Beijing 100039
| | - Zhao Zhang
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the University of Chinese Academy of Sciences, Beijing 100039
| | - Hui Yan
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the Department of Histology and Embryology, Shanxi Medical University, Taiyuan 030001, and
| | - Yaqin Feng
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the Department of Histology and Embryology, Shanxi Medical University, Taiyuan 030001, and
| | - Wei Li
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China
| |
Collapse
|
12
|
Mullin AP, Gokhale A, Moreno-De-Luca A, Sanyal S, Waddington JL, Faundez V. Neurodevelopmental disorders: mechanisms and boundary definitions from genomes, interactomes and proteomes. Transl Psychiatry 2013; 3:e329. [PMID: 24301647 PMCID: PMC4030327 DOI: 10.1038/tp.2013.108] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/22/2013] [Indexed: 02/08/2023] Open
Abstract
Neurodevelopmental disorders such as intellectual disability, autism spectrum disorder and schizophrenia lack precise boundaries in their clinical definitions, epidemiology, genetics and protein-protein interactomes. This calls into question the appropriateness of current categorical disease concepts. Recently, there has been a rising tide to reformulate neurodevelopmental nosological entities from biology upward. To facilitate this developing trend, we propose that identification of unique proteomic signatures that can be strongly associated with patient's risk alleles and proteome-interactome-guided exploration of patient genomes could define biological mechanisms necessary to reformulate disorder definitions.
Collapse
Affiliation(s)
- A P Mullin
- Department of Cell Biology, Emory University School of Medicine, Center for Social Translational Neuroscience, Emory University, Atlanta, GA, USA
| | - A Gokhale
- Department of Cell Biology, Emory University School of Medicine, Center for Social Translational Neuroscience, Emory University, Atlanta, GA, USA
| | - A Moreno-De-Luca
- Autism and Developmental Medicine Institute, Genomic Medicine Institute, Geisinger Health System, Danville, PA, USA
| | - S Sanyal
- Department of Cell Biology, Emory University School of Medicine, Center for Social Translational Neuroscience, Emory University, Atlanta, GA, USA,Biogen-Idec, 14 Cambridge Center, Cambridge, MA, USA
| | - J L Waddington
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - V Faundez
- Department of Cell Biology, Emory University School of Medicine, Center for Social Translational Neuroscience, Emory University, Atlanta, GA, USA,Center for Social Translational Neuroscience, Emory University, Atlanta, GA, USA,Department of Cell Biology, Emory University School of Medicine, Center for Social Translational Neuroscience, Emory University, Atlanta, GA 30322, USA. E-mail:
| |
Collapse
|
13
|
|
14
|
Two cellular protein kinases, DNA-PK and PKA, phosphorylate the adenoviral L4-33K protein and have opposite effects on L1 alternative RNA splicing. PLoS One 2012; 7:e31871. [PMID: 22363758 PMCID: PMC3283702 DOI: 10.1371/journal.pone.0031871] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/13/2012] [Indexed: 01/21/2023] Open
Abstract
Accumulation of the complex set of alternatively processed mRNA from the adenovirus major late transcription unit (MLTU) is subjected to a temporal regulation involving both changes in poly (A) site choice and alternative 3′ splice site usage. We have previously shown that the adenovirus L4-33K protein functions as an alternative splicing factor involved in activating the shift from L1-52,55K to L1-IIIa mRNA. Here we show that L4-33K specifically associates with the catalytic subunit of the DNA-dependent protein kinase (DNA-PK) in uninfected and adenovirus-infected nuclear extracts. Further, we show that L4-33K is highly phosphorylated by DNA-PK in vitro in a double stranded DNA-independent manner. Importantly, DNA-PK deficient cells show an enhanced production of the L1-IIIa mRNA suggesting an inhibitory role of DNA-PK on the temporal switch in L1 alternative RNA splicing. Moreover, we show that L4-33K also is phosphorylated by protein kinase A (PKA), and that PKA has an enhancer effect on L4-33K-stimulated L1-IIIa splicing. Hence, we demonstrate that these kinases have opposite effects on L4-33K function; DNA-PK as an inhibitor and PKA as an activator of L1-IIIa mRNA splicing. Taken together, this is the first report identifying protein kinases that phosphorylate L4-33K and to suggest novel regulatory roles for DNA-PK and PKA in adenovirus alternative RNA splicing.
Collapse
|
15
|
Schizophrenia susceptibility gene dysbindin regulates glutamatergic and dopaminergic functions via distinctive mechanisms in Drosophila. Proc Natl Acad Sci U S A 2011; 108:18831-6. [PMID: 22049342 DOI: 10.1073/pnas.1114569108] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dysfunction of multiple neurotransmitter systems is a striking pathophysiological feature of many mental disorders, schizophrenia in particular, but delineating the underlying mechanisms has been challenging. Here we show that manipulation of a single schizophrenia susceptibility gene, dysbindin, is capable of regulating both glutamatergic and dopaminergic functions through two independent mechanisms, consequently leading to two categories of clinically relevant behavioral phenotypes. Dysbindin has been reported to affect glutamatergic and dopaminergic functions as well as a range of clinically relevant behaviors in vertebrates and invertebrates but has been thought to have a mainly neuronal origin. We find that reduced expression of Drosophila dysbindin (Ddysb) in presynaptic neurons significantly suppresses glutamatergic synaptic transmission and that this glutamatergic defect is responsible for impaired memory. However, only the reduced expression of Ddysb in glial cells is the cause of hyperdopaminergic activities that lead to abnormal locomotion and altered mating orientation. This effect is attributable to the altered expression of a dopamine metabolic enzyme, Ebony, in glial cells. Thus, Ddysb regulates glutamatergic transmission through its neuronal function and regulates dopamine metabolism by regulating Ebony expression in glial cells.
Collapse
|
16
|
Mullin AP, Gokhale A, Larimore J, Faundez V. Cell biology of the BLOC-1 complex subunit dysbindin, a schizophrenia susceptibility gene. Mol Neurobiol 2011; 44:53-64. [PMID: 21520000 PMCID: PMC3321231 DOI: 10.1007/s12035-011-8183-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/12/2011] [Indexed: 11/28/2022]
Abstract
There is growing interest in the biology of dysbindin and its genetic locus (DTNBP1) due to genetic variants associated with an increased risk of schizophrenia. Reduced levels of dysbindin mRNA and protein in the hippocampal formation of schizophrenia patients further support involvement of this locus in disease risk. Here, we discuss phylogenetically conserved dysbindin molecular interactions that define its contribution to the assembly of the biogenesis of lysosome-related organelles complex-1 (BLOC-1). We explore fundamental cellular processes where dysbindin and the dysbindin-containing BLOC-1 complex are implicated. We propose that cellular, tissue, and system neurological phenotypes from dysbindin deficiencies in model genetic organisms, and likely individuals affected with schizophrenia, emerge from abnormalities in few core cellular mechanisms controlled by BLOC-1-dysbindin-containing complex rather than from defects in dysbindin itself.
Collapse
Affiliation(s)
- Ariana P Mullin
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
17
|
Ghiani CA, Dell'Angelica EC. Dysbindin-containing complexes and their proposed functions in brain: from zero to (too) many in a decade. ASN Neuro 2011; 3:e00058. [PMID: 21504412 PMCID: PMC3155195 DOI: 10.1042/an20110010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 02/07/2023] Open
Abstract
Dysbindin (also known as dysbindin-1 or dystrobrevin-binding protein 1) was identified 10 years ago as a ubiquitously expressed protein of unknown function. In the following years, the protein and its encoding gene, DTNBP1, have become the focus of intensive research owing to genetic and histopathological evidence suggesting a potential role in the pathogenesis of schizophrenia. In this review, we discuss published results demonstrating that dysbindin function is required for normal physiology of the mammalian central nervous system. In tissues other than brain and in non-neuronal cell types, the protein has been characterized as a stable component of a multi-subunit complex, named BLOC-1 (biogenesis of lysosome-related organelles complex-1), which has been implicated in intracellular protein trafficking and the biogenesis of specialized organelles of the endosomal-lysosomal system. In the brain, however, dysbindin has been proposed to associate into multiple complexes with alternative binding partners, and to play a surprisingly wide variety of functions including transcriptional regulation, neurite and dendritic spine formation, synaptic vesicle biogenesis and exocytosis, and trafficking of glutamate and dopamine receptors. This puzzling array of molecular and functional properties ascribed to the dysbindin protein from brain underscores the need of further research aimed at ascertaining its biological significance in health and disease.
Collapse
Key Words
- biogenesis of lysosome-related organelles complex-1 (bloc-1)
- dtnbp1
- dysbindin
- dystrobrevin-binding protein
- schizophrenia
- ap-3, adaptor protein-3
- bloc, biogenesis of lysosome-related organelles complex
- coip, co-immunoprecipitation
- hek-293 cells, human embryonic kidney cells
- hps, hermansky–pudlak syndrome
- jnk, c-jun n-terminal kinase
- ms/ms, tandem mass spectrometry
- rnai, rna interference
- shrna, short-hairpin rna
- sirna, small-interfering rna
- wash, wiskott–aldrich syndrome protein and scar homologue
- vamp-7, vesicle-associated membrane protein 7
- wave, wasp (wiskott–aldrich syndrome protein) verprolin homologous
- y2h, yeast two-hybrid
Collapse
Affiliation(s)
- Cristina A Ghiani
- *Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
- †Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
| | - Esteban C Dell'Angelica
- *Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
- ‡Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
| |
Collapse
|
18
|
Domschke K, Lawford B, Young R, Voisey J, Morris CP, Roehrs T, Hohoff C, Birosova E, Arolt V, Baune BT. Dysbindin (DTNBP1)--a role in psychotic depression? J Psychiatr Res 2011; 45:588-95. [PMID: 20951386 DOI: 10.1016/j.jpsychires.2010.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/10/2010] [Accepted: 09/22/2010] [Indexed: 01/20/2023]
Abstract
Previous studies yielded evidence for dysbindin (DTNBP1) to impact the pathogenesis of schizophrenia on the one hand and affective disorders such as bipolar or major depressive disorder (MDD) on the other. Thus, in the present study we investigated whether DTNBP1 variation was associated with psychotic depression as a severe clinical manifestation of MDD possibly constituting an overlapping phenotype between affective disorders and schizophrenia. A sample of 243 Caucasian inpatients with MDD (SCID-I) was genotyped for 12 SNPs spanning 92% of the DTNBP1 gene region. Differences in DTNBP1 genotype distributions across diagnostic subgroups of psychotic (N = 131) vs. non-psychotic depression were estimated by Pearson Chi(2) test and logistic regression analyses adjusted for age, gender, Beck Depression Inventory (BDI) and the Global Assessment of Functioning Scale (GAF). Overall, patients with psychotic depression presented with higher BDI and lower GAF scores expressing a higher severity of the illness as compared to depressed patients without psychotic features. Four DTNBP1 SNPs, particularly rs1997679 and rs9370822, and the corresponding haplotypes, respectively, were found to be significantly associated with the risk of psychotic depression in an allele-dose fashion. In summary, the present results provide preliminary support for dysbindin (DTNBP1) gene variation, particularly SNPs rs1997679 and rs9370822, to be associated with the clinical phenotype of psychotic depression suggesting a possible neurobiological mechanism for an intermediate trait on the continuum between affective disorders and schizophrenia.
Collapse
Affiliation(s)
- Katharina Domschke
- Department of Psychiatry, University of Muenster, Albert-Schweitzer-Strasse 11, D-48143 Muenster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fatjó-Vilas M, Papiol S, Estrada G, Bombín I, Peralta V, Rosa A, Parellada M, Miret S, Martín M, Lázaro L, Campanera S, Muñoz MJ, Lera-Miguel S, Arias B, Navarro ME, Castro-Fornieles J, Cuesta MJ, Arango C, Fañanás L. Dysbindin-1 gene contributes differentially to early- and adult-onset forms of functional psychosis. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:322-33. [PMID: 21305691 DOI: 10.1002/ajmg.b.31166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 12/02/2010] [Indexed: 12/11/2022]
Abstract
Dysbindin-1 is a relatively ubiquitous protein in the brain which is involved in the modulation of synaptic homeostasis. The dysbindin-1 gene (DTNBP1) has been associated with schizophrenia and bipolar disorder diagnoses. However, its contribution to the severity of the clinical and neurocognitive expression of these disorders remains controversial. We aimed to explore the association between DTNBP1 and the phenotypes which are more directly linked with the underlying biology, such as age at onset and neurocognitive impairment. The present family sample comprised 894 Caucasian individuals: 268 patients affected by functional psychosis [58% with illness onset before 18 years, mean age at onset (SD): 14.71 (2.10)], 483 parents and 143 siblings. Ten DTNBP1 single nucleotide polymorphisms were genotyped in all individuals and their transmission disequilibrium was tested in relation to: (i) the risk for psychosis; (ii) patients' age at onset; and (iii) familial neurocognitive performance (including IQ estimation and executive functioning). In early-onset families a 5-marker haplotype encompassing exons 2-4 and the surrounding introns was significantly over-transmitted to cases, while in adult-onset families two haplotypes corresponding to the region between introns 4 and 7 were over-transmitted to cases. Estimated IQ was associated with the rs760666 marker in the whole sample, whereas a significant association between executive functioning and the rs2619522 marker appeared in early-onset families. Our findings confirm the role of the dysbindin-1 gene in the risk for functional psychosis and show a differential haplotypic risk pattern in families with early as opposed to adult onset in the affected offspring.
Collapse
Affiliation(s)
- Mar Fatjó-Vilas
- Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fei E, Ma X, Zhu C, Xue T, Yan J, Xu Y, Zhou J, Wang G. Nucleocytoplasmic shuttling of dysbindin-1, a schizophrenia-related protein, regulates synapsin I expression. J Biol Chem 2010; 285:38630-40. [PMID: 20921223 PMCID: PMC2992295 DOI: 10.1074/jbc.m110.107912] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 09/23/2010] [Indexed: 01/29/2023] Open
Abstract
Dysbindin-1 is a 50-kDa coiled-coil-containing protein encoded by the gene DTNBP1 (dystrobrevin-binding protein 1), a candidate genetic factor for schizophrenia. Genetic variations in this gene confer a susceptibility to schizophrenia through a decreased expression of dysbindin-1. It was reported that dysbindin-1 regulates the expression of presynaptic proteins and the release of neurotransmitters. However, the precise functions of dysbindin-1 are largely unknown. Here, we show that dysbindin-1 is a novel nucleocytoplasmic shuttling protein and translocated to the nucleus upon treatment with leptomycin B, an inhibitor of exportin-1/CRM1-mediated nuclear export. Dysbindin-1 harbors a functional nuclear export signal necessary for its nuclear export, and the nucleocytoplasmic shuttling of dysbindin-1 affects its regulation of synapsin I expression. In brains of sandy mice, a dysbindin-1-null strain that displays abnormal behaviors related to schizophrenia, the protein and mRNA levels of synapsin I are decreased. These findings demonstrate that the nucleocytoplasmic shuttling of dysbindin-1 regulates synapsin I expression and thus may be involved in the pathogenesis of schizophrenia.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/genetics
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Brain/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cytoplasm/genetics
- Cytoplasm/metabolism
- Dysbindin
- Dystrophin-Associated Proteins
- Fatty Acids, Unsaturated/pharmacology
- Gene Expression Regulation
- HEK293 Cells
- Humans
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Karyopherins/metabolism
- Mice
- Mice, Mutant Strains
- Presynaptic Terminals/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Schizophrenia/genetics
- Schizophrenia/metabolism
- Synapsins/biosynthesis
- Synapsins/genetics
- Exportin 1 Protein
Collapse
Affiliation(s)
- Erkang Fei
- From the Laboratory of Molecular Neuropathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Xiaochuan Ma
- From the Laboratory of Molecular Neuropathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Cuiqing Zhu
- the State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ting Xue
- From the Laboratory of Molecular Neuropathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Jie Yan
- the State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuxia Xu
- the State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiangning Zhou
- From the Laboratory of Molecular Neuropathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Guanghui Wang
- From the Laboratory of Molecular Neuropathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| |
Collapse
|
21
|
Mead CLR, Kuzyk MA, Moradian A, Wilson GM, Holt RA, Morin GB. Cytosolic protein interactions of the schizophrenia susceptibility gene dysbindin. J Neurochem 2010; 113:1491-503. [PMID: 20236384 DOI: 10.1111/j.1471-4159.2010.06690.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Using immunoprecipitation, mass spectrometry, and western blot analysis we investigated cytosolic protein interactions of the schizophrenia susceptibility gene dysbindin in mammalian cells. We identified novel interactions with members of the exocyst, dynactin and chaperonin containing T-complex protein complexes, and we confirmed interactions reported previously with all members of the biogenesis of lysosome-related organelles complex-1 and the adaptor-related protein complex 3. We report interactions between dysbindin and the exocyst and dynactin complex that confirm a link between two important schizophrenia susceptibility genes: dysbindin and disrupted-in-schizophrenia-1. To expand upon this network of interacting proteins we also investigated protein interactions for members of the exocyst and dynactin complexes in mammalian cells. Our results are consistent with the notion that impairment of aspects of the synaptic vesicle life cycle may be a pathogenic mechanism in schizophrenia.
Collapse
Affiliation(s)
- Carri-Lyn R Mead
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Hosokawa T, Saito T, Asada A, Fukunaga K, Hisanaga SI. Quantitative measurement of in vivo phosphorylation states of Cdk5 activator p35 by Phos-tag SDS-PAGE. Mol Cell Proteomics 2010; 9:1133-43. [PMID: 20097924 DOI: 10.1074/mcp.m900578-mcp200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Phosphorylation is a major post-translational modification widely used in the regulation of many cellular processes. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase activated by activation subunit p35. Cdk5-p35 regulates various neuronal activities such as neuronal migration, spine formation, synaptic activity, and cell death. The kinase activity of Cdk5 is regulated by proteolysis of p35: proteasomal degradation causes down-regulation of Cdk5, whereas cleavage of p35 by calpain causes overactivation of Cdk5. Phosphorylation of p35 determines the proteolytic pathway. We have previously identified Ser(8) and Thr(138) as major phosphorylation sites using metabolic labeling of cultured cells followed by two-dimensional phosphopeptide mapping and phosphospecific antibodies. However, these approaches cannot determine the extent of p35 phosphorylation in vivo. Here we report the use of Phos-tag SDS-PAGE to reveal the phosphorylation states of p35 in neuronal culture and brain. Using Phos-tag acrylamide, the electrophoretic mobility of phosphorylated p35 was delayed because it is trapped at Phos-tag sites. We found a novel phosphorylation site at Ser(91), which was phosphorylated by Ca(2+)-calmodulin-dependent protein kinase II in vitro. We constructed phosphorylation-dependent banding profiles of p35 and Ala substitution mutants at phosphorylation sites co-expressed with Cdk5 in COS-7 cells. Using the standard banding profiles, we assigned respective bands of endogenous p35 with combinations of phosphorylation states and quantified Ser(8), Ser(91), and Thr(138) phosphorylation. The highest level of p35 phosphorylation was observed in embryonic brain; Ser(8) was phosphorylated in all p35 molecules, whereas Ser(91) was phosphorylated in 60% and Thr(138) was phosphorylated in approximately 12% of p35 molecules. These are the first quantitative and site-specific measurements of phosphorylation of p35, demonstrating the usefulness of Phos-tag SDS-PAGE for analysis of phosphorylation states of in vivo proteins.
Collapse
Affiliation(s)
- Tomohisa Hosokawa
- Department of Biological Sciences, Graduate School of Science and Technology, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| | | | | | | | | |
Collapse
|
23
|
Tang J, LeGros RP, Louneva N, Yeh L, Cohen JW, Hahn CG, Blake DJ, Arnold SE, Talbot K. Dysbindin-1 in dorsolateral prefrontal cortex of schizophrenia cases is reduced in an isoform-specific manner unrelated to dysbindin-1 mRNA expression. Hum Mol Genet 2009; 18:3851-63. [PMID: 19617633 DOI: 10.1093/hmg/ddp329] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DTNBP1 (dystrobrevin binding protein 1) remains a top candidate gene in schizophrenia. Reduced expression of this gene and of its encoded protein, dysbindin-1, have been reported in the brains of schizophrenia cases. It has not been established, however, if the protein reductions encompass all dysbindin-1 isoforms or if they are associated with decreased DTNBP1 gene expression. Using a matched pairs design in which each of 28 Caucasian schizophrenia cases was matched in age and sex to a normal Caucasian control, Western blotting of whole-tissue lysates of dorsolateral prefrontal cortex (DLPFC) revealed significant reductions in dysbindin-1C (but not in dysbindin-1A or -1B) in schizophrenia (P = 0.022). These reductions occurred without any significant change in levels of the encoding transcript in the same tissue samples and in the absence of the only DTNBP1 risk haplotype for schizophrenia reported in the USA. Indeed, no significant correlations were found between case-control differences in any dysbindin-1 isoform and the case-control differences in its encoding mRNA. Consequently, the mean 60% decrease in dysbindin-1C observed in 71% of our case-control pairs appears to reflect abnormalities in mRNA translation and/or processes promoting dysbindin-1C degradation (e.g. oxidative stress, phosphorylation and/or ubiquitination). Given the predominantly post-synaptic localization of dysbindin-1C and known post-synaptic effects of dysbindin-1 reductions in the rodent equivalent of the DLPFC, the present findings suggest that decreased dysbindin-1C in the DLPFC may contribute to the cognitive deficits of schizophrenia by promoting NMDA receptor hypofunction in fast-spiking interneurons.
Collapse
Affiliation(s)
- Junxia Tang
- Center for Neurobiology and Behavior in the Department of Psychiatry, University of Pennsylvania, Philadelphia, 19104-3403, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dell'Angelica EC. AP-3-dependent trafficking and disease: the first decade. Curr Opin Cell Biol 2009; 21:552-9. [PMID: 19497727 DOI: 10.1016/j.ceb.2009.04.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 04/28/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
The adaptor protein (AP)-3 complex defines a pathway for the intracellular trafficking of membrane-associated proteins in most eukaryotic cells. Ten years ago, genetic defects in AP-3 were linked to a human Mendelian disease, named Hermansky-Pudlak syndrome, characterized by abnormal biogenesis and function of lysosome-related organelles such as melanosomes and platelet dense granules. During recent years, research on this trafficking pathway has significantly expanded its horizons to include evolutionarily divergent eukaryotic models and to embrace functional genomics and proteomics approaches. These studies have brought into focus ideas about the specific roles of this pathway in protein trafficking and organelle biogenesis within the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Esteban C Dell'Angelica
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7088, USA.
| |
Collapse
|