1
|
Niland S, Eble JA. Decoding the MMP14 Integrin Link: Key Player in the Secretome Landscape. Matrix Biol 2025:S0945-053X(25)00010-1. [PMID: 39828138 DOI: 10.1016/j.matbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion. Integrins serve as mechanosensors that mediate the contact of cells with the scaffold of the extracellular matrix and are significantly involved in the precise positioning and activity control of the membrane-bound collagenase MMP14. As a secretome proteinase, MMP14 influences and modifies the secretome itself. While integrins and MT-MMPs are membrane bound, but can be released and are therefore border crossers between the cell surface and the secretome, the extracellular matrix is not constitutively cell-bound, but its binding to integrins and other cell receptors is a stringently regulated process. To understand the mutual interactions in detail, we first summarize the structure and function of MMP14 and how it is regulated at the enzymatic and cellular level. In particular, the mutual interactions between integrins and MMP14 include the proteolytic cleavage of integrins themselves by MMP14. We then review the biochemical, cell biological and physiological effects of MMP14 on the composition and associated functions in the tumor secretome when either bound to the cell membrane, or located on extracellular microvesicles, or as a proteolytically shed non-membrane-bound ectodomain. Novel methods of proteomics, including the analysis of extravesicular vesicles, and new methods for the quantification of MMP14 will provide new research and diagnostic tools. The proteolytic modification of the tumor secretome, especially by MMP14, may bring an additional aspect to tumor secretome studies and will have an impact on the diagnosis and most likely also on the therapy of cancer patients.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
2
|
Safwat SM, Aboonq MS, El Tohamy M, Mojaddidi M, Al-Qahtani SAM, Zakari MO, ElGendy AA, Hussein AM. New Insight into the Possible Roles of L-Carnitine in a Rat Model of Multiple Sclerosis. Brain Sci 2023; 14:23. [PMID: 38248238 PMCID: PMC10813446 DOI: 10.3390/brainsci14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE We investigated the effect of L-carnitine (LC) on cuprizone (Cup) demyelinating rat model and its possible underlying mechanisms. METHODS Thirty male Sprague-Dawley (SD) rats were randomly allocated to three groups: the normal control group; the Cup group, in which Cup was administrated at a dose of 450 mg/kg per day orally via gastric gavage for 5 weeks; and the Cup + LC group, which received the same dose of Cup as the Cup group, except that the rats were treated additionally with LC 100 mg/kg/day orally for 5 weeks. The nerve conduction (NCV) in isolated sciatic nerves was measured; then, the sciatic nerves were isolated for H&E staining and electron microscope examination. The expression of myelin basic protein (MBP), IL-1β, p53, iNOS, and NF-KB by immunohistochemistry was detected in the isolated nerves. A PCR assay was also performed to detect the expression of antioxidant genes Nrf2 and HO-1. In addition, the level of IL-17 was measured by ELISA. RESULTS There was a significant reduction in NCV in the Cup group compared to normal rats (p < 0.001), which was significantly improved in the LC group (p < 0.001). EM and histopathological examination revealed significant demyelination and deterioration of the sciatic nerve fibers, with significant improvement in the LC group. The level of IL-17 as well as the expression of IL-1β, p53, iNOS, and NF-KB were significantly increased, with significant reduction expression of MBP in the sciatic nerves (p < 0.01), and LC treatment significantly improved the studied parameters (p < 0.01). CONCLUSION The current study demonstrates a neuroprotective effect of LC in a Cup-induced demyelinating rat model. This effect might be due to its anti-inflammatory and antioxidant actions.
Collapse
Affiliation(s)
- Sally M. Safwat
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.M.S.); (M.E.T.); (A.A.E.)
| | - Moutasem Salih Aboonq
- Department of Medical Physiology, College of Medicine, Taibah University, KSA, Medina 42353, Saudi Arabia; (M.S.A.); (M.M.); (S.A.M.A.-Q.); (M.O.Z.)
| | - Mahmoud El Tohamy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.M.S.); (M.E.T.); (A.A.E.)
| | - Moaz Mojaddidi
- Department of Medical Physiology, College of Medicine, Taibah University, KSA, Medina 42353, Saudi Arabia; (M.S.A.); (M.M.); (S.A.M.A.-Q.); (M.O.Z.)
| | - Saeed Awad M. Al-Qahtani
- Department of Medical Physiology, College of Medicine, Taibah University, KSA, Medina 42353, Saudi Arabia; (M.S.A.); (M.M.); (S.A.M.A.-Q.); (M.O.Z.)
| | - Madaniah Omar Zakari
- Department of Medical Physiology, College of Medicine, Taibah University, KSA, Medina 42353, Saudi Arabia; (M.S.A.); (M.M.); (S.A.M.A.-Q.); (M.O.Z.)
| | - Ahmed A. ElGendy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.M.S.); (M.E.T.); (A.A.E.)
- Department of Medical Physiology, College of Medicine, Taibah University, KSA, Medina 42353, Saudi Arabia; (M.S.A.); (M.M.); (S.A.M.A.-Q.); (M.O.Z.)
| | - Abdelaziz M. Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.M.S.); (M.E.T.); (A.A.E.)
| |
Collapse
|
3
|
Safwat SM, El Tohamy M, Aboonq MS, Alrehaili A, Assinnari AA, Bahashwan AS, ElGendy AA, Hussein AM. Vanillic Acid Ameliorates Demyelination in a Cuprizone-Induced Multiple Sclerosis Rat Model: Possible Underlying Mechanisms. Brain Sci 2023; 14:12. [PMID: 38248227 PMCID: PMC10813517 DOI: 10.3390/brainsci14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE To investigate the effect of vanillic acid (VA) on a Cuprizone (Cup) demyelinating rat model and the mechanisms behind such effect. METHODS Thirty adult male Sprague Dawley (SD) rats were randomly divided into three groups: control, Cuprizone, and VA groups. Cuprizone was administrated at a dose of 450 mg/kg per day orally via gastric gavage for 5 weeks. The nerve conduction velocity (NCV) was studied in an isolated sciatic nerve, and then the sciatic nerve was isolated for histopathological examination, electron microscope examination, immunohistochemical staining, and biochemical and PCR assay. The level of IL17 was detected using ELISA, while the antioxidant genes Nrf2, HO-1 expression at the level of mRNA, expression of the myelin basic protein (MBP), interferon-gamma factor (INF)-γ and tumor necrosis factor (TNF)-α, and apoptotic marker (caspase-3) were measured using immunohistochemistry in the sciatic nerve. RESULTS There was a significant reduction in NCV in Cup compared to normal rats (p < 0.001), which was markedly improved in the VA group (p < 0.001). EM and histopathological examination revealed significant demyelination and deterioration of the sciatic nerve fibers with significant improvement in the VA group. The level of IL17 as well as the expression of INF-γ and caspase-3 were significantly increased with a significant reduction in the expression of MBP, Nrf2, and HO-1 in the sciatic nerve (p < 0.01), and VA treatment significantly improved the studied parameters (p < 0.01). CONCLUSION The current study demonstrated a neuroprotective effect for VA against the Cup-induced demyelinating rat model. This effect might be precipitated by the inhibition of inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Sally M. Safwat
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.M.S.); (M.E.T.); (A.A.E.)
| | - Mahmoud El Tohamy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.M.S.); (M.E.T.); (A.A.E.)
| | - Moutasem Salih Aboonq
- Department of Medical Physiology, College of Medicine, Taibah University, KSA, Madinah 42353, Saudi Arabia; (M.S.A.); (A.A.); (A.A.A.); (A.S.B.)
| | - Amaal Alrehaili
- Department of Medical Physiology, College of Medicine, Taibah University, KSA, Madinah 42353, Saudi Arabia; (M.S.A.); (A.A.); (A.A.A.); (A.S.B.)
| | - Ahmad A. Assinnari
- Department of Medical Physiology, College of Medicine, Taibah University, KSA, Madinah 42353, Saudi Arabia; (M.S.A.); (A.A.); (A.A.A.); (A.S.B.)
| | - Abdulrahman S. Bahashwan
- Department of Medical Physiology, College of Medicine, Taibah University, KSA, Madinah 42353, Saudi Arabia; (M.S.A.); (A.A.); (A.A.A.); (A.S.B.)
| | - Ahmed A. ElGendy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.M.S.); (M.E.T.); (A.A.E.)
- Department of Medical Physiology, College of Medicine, Taibah University, KSA, Madinah 42353, Saudi Arabia; (M.S.A.); (A.A.); (A.A.A.); (A.S.B.)
| | - Abdelaziz M. Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.M.S.); (M.E.T.); (A.A.E.)
| |
Collapse
|
4
|
Onwuha‐Ekpete L, Fields GB. Application of a triple‐helical peptide inhibitor of
MMP
‐2/
MMP
‐9 to examine T‐cell activation in experimental autoimmune encephalomyelitis. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lillian Onwuha‐Ekpete
- The Institute for Human Health & Disease Intervention (I‐HEALTH) Florida Atlantic University Jupiter Florida USA
| | - Gregg B. Fields
- The Institute for Human Health & Disease Intervention (I‐HEALTH) Florida Atlantic University Jupiter Florida USA
- Department of Chemistry The Scripps Research Institute/Scripps Florida Jupiter Florida USA
| |
Collapse
|
5
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
6
|
He Q, Chen B, Chen S, Zhang M, Duan L, Feng X, Chen J, Zhou L, Chen L, Duan Y. MBP-activated autoimmunity plays a role in arsenic-induced peripheral neuropathy and the potential protective effect of mecobalamin. ENVIRONMENTAL TOXICOLOGY 2021; 36:1243-1253. [PMID: 33739591 DOI: 10.1002/tox.23122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Intake excessive arsenic (As) is related to the occurrence of peripheral neuropathy. However, both the underlying mechanism and the preventive approach remain largely unknown. In the present study, As treatment significantly decreased the mechanical withdrawal threshold and increased the titer of anti-myelin basic protein antibody in rats, accompanied with damaged BNB. The levels of inflammatory cytokines and proteolytic enzymes were also significantly upregulated. However, administration of MeCbl in As-treated rats significantly reversed the decline in hindfoot mechanical withdrawal threshold, as well as BNB failure and sciatic nerve inflammation. Repeated As treatment in athymic nude mice indicated that sciatic nerve inflammation and mechanical hyperalgesia were T cell-dependent. These data implicated that MBP-activated autoimmunity and the related neuroinflammation probably contributed to As-induced mechanical hyperalgesia and MeCbl exerted a protective role probably via maintenance the integrity of BNB and inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Qican He
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Bingzhi Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shaoyi Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Muyang Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lidan Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiangling Feng
- Experimental Center for Preventive Medicine, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jihua Chen
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lezhou Zhou
- Central Laboratory, Occupational Disease Prevention and Control Hospital of Hunan Province, Changsha, China
| | - Lv Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
7
|
Bruschi F, Gruden-Movesijan A, Pinto B, Ilic N, Sofronic-Milosavlјevic L. Trichinella spiralis excretory-secretory products downregulate MMP-9 in Dark Agouti rats affected by experimental autoimmune encephalomyelitis. Exp Parasitol 2021; 225:108112. [PMID: 33964315 DOI: 10.1016/j.exppara.2021.108112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/01/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs), are implicated in the pathogenesis of multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). Our aim was to investigate whether amelioration of EAE in Dark Agouti (DA) rats, induced by Trichinella spiralis muscle larvae excretory-secretory products (ES L1), could be related to the level and activity of gelatinases, MMP-9 and MMP-2. Serum levels of MMP-9, MMP-2, NGAL/MMP-9, TIMP-1, and cytokines, evaluated by gel-zymography or ELISA, as well as gelatinases and TIMP-1 expression in the spinal cord (SC), were determined in: i) EAE induced, ii) ES L1-treated EAE induced animals. Milder clinical signs in ES L1-treated EAE induced DA rats were accompanied with lower serum levels of MMP-9 and NGAL/MMP-9 complex. However, the correlation between the severity of EAE and the level of serum MMP-9 was found only in the peak of the disease, with MMP-9/TIMP-1 ratio higher in EAE animals without ES L1 treatment. Lower expression of MMP-9 in SC of ES L1-treated, EAE induced rats, correlated with the reduced number of SC infiltrating cells. In SC infiltrates, in the effector and the recovery phase, production of anti-inflammatory cytokines IL-4 and IL-10 was higher in animals treated with ES L1 prior to EAE induction, compared to untreated EAE animals. Reduced expression of MMP-9 in SC tissue, which correlated with the reduced number of infiltrating cells, might be ascribed to regulatory mechanisms, among which is IL-10.
Collapse
Affiliation(s)
- Fabrizio Bruschi
- Department of Translational Research, N.T.M.S., Medical School, Universita di Pisa, Pisa, Italy.
| | - Alisa Gruden-Movesijan
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - Barbara Pinto
- Department of Translational Research, N.T.M.S., Medical School, Universita di Pisa, Pisa, Italy
| | - Natasa Ilic
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | | |
Collapse
|
8
|
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci 2020; 21:E9739. [PMID: 33419373 PMCID: PMC7767220 DOI: 10.3390/ijms21249739] [Citation(s) in RCA: 738] [Impact Index Per Article: 147.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases that have the capacity to degrade almost every component of the ECM. The degradation of the ECM is of great importance, since it is related to embryonic development and angiogenesis. It is also involved in cell repair and the remodeling of tissues. When the expression of MMPs is altered, it can generate the abnormal degradation of the ECM. This is the initial cause of the development of chronic degenerative diseases and vascular complications generated by diabetes. In addition, this process has an association with neurodegeneration and cancer progression. Within the ECM, the tissue inhibitors of MMPs (TIMPs) inhibit the proteolytic activity of MMPs. TIMPs are important regulators of ECM turnover, tissue remodeling, and cellular behavior. Therefore, TIMPs (similar to MMPs) modulate angiogenesis, cell proliferation, and apoptosis. An interruption in the balance between MMPs and TIMPs has been implicated in the pathophysiology and progression of several diseases. This review focuses on the participation of both MMPs (e.g., MMP-2 and MMP-9) and TIMPs (e.g., TIMP-1 and TIMP-3) in physiological processes and on how their abnormal regulation is associated with human diseases. The inclusion of current strategies and mechanisms of MMP inhibition in the development of new therapies targeting MMPs was also considered.
Collapse
Affiliation(s)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| | | | | | | | | | | | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| |
Collapse
|
9
|
Abdel-Maged AES, Gad AM, Rashed LA, Azab SS, Mohamed EA, Awad AS. Repurposing of Secukinumab as Neuroprotective in Cuprizone-Induced Multiple Sclerosis Experimental Model via Inhibition of Oxidative, Inflammatory, and Neurodegenerative Signaling. Mol Neurobiol 2020; 57:3291-3306. [PMID: 32514862 DOI: 10.1007/s12035-020-01972-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, and neurodegenerative autoimmune disease. MS is a devastating disorder that is characterized by cognitive and motor deficits. Cuprizone-induced demyelination is the most widely experimental model used for MS. Cuprizone is a copper chelator that is well characterized by microgliosis and astrogliosis and is reproducible for demyelination and remyelination. Secukinumab (SEC) is a fully human monoclonal anti-human antibody of the IgG1/kappa isotype that selectively targets IL-17A. Expression of IL-17 is associated with MS. Also, IL-17 stimulates microglia and astrocytes resulting in progression of MS through chemokine production and neutrophil recruitment. This study aimed to investigate the neuroprotective effects of SEC on cuprizone-induced demyelination with examining the underlying mechanisms. Locomotor activity, short-term spatial memory function, staining by Luxol Fast Blue, myelin basic protein, gliasosis, inflammatory, and oxidative-stress markers were assessed to evaluate neuroprotective, anti-inflammatory and antioxidant effects. Moreover, the safety profile of SEC was evaluated. The present study concludes the efficacy of SEC in Cup-induced demyelination experimental model. Interestingly, SEC had neuroprotective and antioxidant effects besides its anti-inflammatory effect in the studied experimental model of MS. Graphical abstract.
Collapse
Affiliation(s)
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Laila Ahmed Rashed
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Eman A Mohamed
- Departmentof Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Azza S Awad
- Departmentof Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
10
|
Gorter RP, Baron W. Matrix metalloproteinases shape the oligodendrocyte (niche) during development and upon demyelination. Neurosci Lett 2020; 729:134980. [PMID: 32315713 DOI: 10.1016/j.neulet.2020.134980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The oligodendrocyte lineage cell is crucial to proper brain function. During central nervous system development, oligodendrocyte progenitor cells (OPCs) migrate and proliferate to populate the entire brain and spinal cord, and subsequently differentiate into mature oligodendrocytes that wrap neuronal axons in an insulating myelin layer. When damage occurs to the myelin sheath, OPCs are activated and recruited to the demyelinated site, where they differentiate into oligodendrocytes that remyelinate the denuded axons. The process of OPC attraction and differentiation is influenced by a multitude of factors from the cell's niche. Matrix metalloproteinases (MMPs) are powerful and versatile enzymes that do not only degrade extracellular matrix proteins, but also cleave cell surface receptors, growth factors, signaling molecules, proteases and other precursor proteins, leading to their activation or degradation. MMPs are markedly upregulated during brain development and upon demyelinating injury, where their broad functions influence the behavior of neural progenitor cells (NPCs), OPCs and oligodendrocytes. In this review, we focus on the role of MMPs in (re)myelination. We will start out in the developing brain with describing the effects of MMPs on NPCs, OPCs and eventually oligodendrocytes. Then, we will outline their functions in oligodendrocyte process extension and developmental myelination. Finally, we will review their potential role in demyelination, describe their significance in remyelination and discuss the evidence for a role of MMPs in remyelination failure, focusing on multiple sclerosis. In conclusion, MMPs shape the oligodendrocyte (niche) both during development and upon demyelination, and thus are important players in directing the fate and behavior of oligodendrocyte lineage cells throughout their life cycle.
Collapse
Affiliation(s)
- Rianne P Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
11
|
de Jong JM, Wang P, Oomkens M, Baron W. Remodeling of the interstitial extracellular matrix in white matter multiple sclerosis lesions: Implications for remyelination (failure). J Neurosci Res 2020; 98:1370-1397. [PMID: 31965607 DOI: 10.1002/jnr.24582] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) provides protection, rigidity, and structure toward cells. It consists, among others, of a wide variety of glycoproteins and proteoglycans, which act together to produce a complex and dynamic environment, most relevant in transmembrane events. In the brain, the ECM occupies a notable proportion of its volume and maintains the homeostasis of central nervous system (CNS). In addition, remodeling of the ECM, that is transient changes in ECM proteins regulated by matrix metalloproteinases (MMPs), is an important process that modulates cell behavior upon injury, thereby facilitating recovery. Failure of ECM remodeling plays an important role in the pathogenesis of multiple sclerosis (MS), a neurodegenerative demyelinating disease of the CNS with an inflammatory response against protective myelin sheaths that surround axons. Remyelination of denuded axons improves the neuropathological conditions of MS, but this regeneration process fails over time, leading to chronic disease progression. In this review, we uncover abnormal ECM remodeling in MS lesions by discussing ECM remodeling in experimental demyelination models, that is when remyelination is successful, and compare alterations in ECM components to the ECM composition and MMP expression in the parenchyma of demyelinated MS lesions, that is when remyelination fails. Inter- and intralesional differences in ECM remodeling in the distinct white matter MS lesions are discussed in terms of consequences for oligodendrocyte behavior and remyelination (failure). Hence, the review will aid to understand how abnormal ECM remodeling contributes to remyelination failure in MS lesions and assists in developing therapeutic strategies to promote remyelination.
Collapse
Affiliation(s)
- Jody M de Jong
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peng Wang
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michelle Oomkens
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Tobore TO. Towards a comprehensive etiopathogenetic and pathophysiological theory of multiple sclerosis. Int J Neurosci 2019; 130:279-300. [PMID: 31588832 DOI: 10.1080/00207454.2019.1677648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Multiple sclerosis (MS) is a neurodegenerative disease caused by dysfunction of the immune system that affects the central nervous system (CNS). It is characterized by demyelination, chronic inflammation, neuronal and oligodendrocyte loss and reactive astrogliosis. It can result in physical disability and acute neurological and cognitive problems. Despite the gains in knowledge of immunology, cell biology, and genetics in the last five decades, the ultimate etiology or specific elements that trigger MS remain unknown. The objective of this review is to propose a theoretical basis for MS etiopathogenesis.Methods: Search was done by accessing PubMed/Medline, EBSCO, and PsycINFO databases. The search string used was "(multiple sclerosis* OR EAE) AND (pathophysiology* OR etiopathogenesis)". The electronic databases were searched for titles or abstracts containing these terms in all published articles between January 1, 1960, and June 30, 2019. The search was filtered down to 362 articles which were included in this review.Results: A framework to better understand the etiopathogenesis and pathophysiology of MS can be derived from four essential factors; mitochondria dysfunction (MtD) & oxidative stress (OS), vitamin D (VD), sex hormones and thyroid hormones. These factors play a direct role in MS etiopathogenesis and have a modulatory effect on many other factors involved in the disease.Conclusions: For better MS prevention and treatment outcomes, efforts should be geared towards treating thyroid problems, sex hormone alterations, VD deficiency, sleep problems and melatonin alterations. MS patients should be encouraged to engage in activities that boost total antioxidant capacity (TAC) including diet and regular exercise and discouraged from activities that promote OS including smoking and alcohol consumption.
Collapse
|
13
|
Tobore TO. On elucidation of the role of mitochondria dysfunction and oxidative stress in multiple sclerosis. ACTA ACUST UNITED AC 2019. [DOI: 10.1111/ncn3.12335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Chopra S, Overall CM, Dufour A. Matrix metalloproteinases in the CNS: interferons get nervous. Cell Mol Life Sci 2019; 76:3083-3095. [PMID: 31165203 PMCID: PMC11105576 DOI: 10.1007/s00018-019-03171-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) have been investigated in context of chronic inflammatory diseases and demonstrated to degrade multiple components of the extracellular matrix (ECM). However, following several disappointing MMP clinical trials, recent studies have demonstrated unexpected novel functions of MMPs in viral infections and autoimmune inflammatory diseases in unanticipated locations. Thus, MMPs play additional functions in inflammation than just ECM degradation. They can regulate the activity of chemokines and cytokines of the immune response by precise proteolytic processing resulting in activation or inactivation of signaling pathways. MMPs have been demonstrated to cleave multiple substrates of the central nervous systems (CNS) and contribute to promoting and dampening diseases of the CNS. Initially, believed to be solely promoting pathologies, more than 10 MMPs to date have been shown to have protective functions. Here, we present some of the beneficial and destructive roles of MMPs in CNS pathologies and discuss strategies for the use of MMP inhibitors.
Collapse
Affiliation(s)
- Sameeksha Chopra
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Christopher M Overall
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada
| | - Antoine Dufour
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
15
|
Fedonin GG, Eroshkin A, Cieplak P, Matveev EV, Ponomarev GV, Gelfand MS, Ratnikov BI, Kazanov MD. Predictive models of protease specificity based on quantitative protease-activity profiling data. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140253. [PMID: 31330204 DOI: 10.1016/j.bbapap.2019.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
Bioinformatics-based prediction of protease substrates can help to elucidate regulatory proteolytic pathways that control a broad range of biological processes such as apoptosis and blood coagulation. The majority of published predictive models are position weight matrices (PWM) reflecting specificity of proteases toward target sequence. These models are typically derived from experimental data on positions of hydrolyzed peptide bonds and show a reasonable predictive power. New emerging techniques that not only register the cleavage position but also measure catalytic efficiency of proteolysis are expected to improve the quality of predictions or at least substantially reduce the number of tested substrates required for confident predictions. The main goal of this study was to develop new prediction models based on such data and to estimate the performance of the constructed models. We used data on catalytic efficiency of proteolysis measured for eight major human matrix metalloproteinases to construct predictive models of protease specificity using a variety of regression analysis techniques. The obtained results suggest that efficiency-based (quantitative) models show a comparable performance with conventional PWM-based algorithms, while less training data are required. The derived list of candidate cleavage sites in human secreted proteins may serve as a starting point for experimental analysis.
Collapse
Affiliation(s)
- Gennady G Fedonin
- Central Research Institute of Epidemiology, Moscow 111123, Russia; A.A.Kharkevich Institute of Information Transmission Problems, Moscow 127051, Russia; Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Alexey Eroshkin
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Piotr Cieplak
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Gennady V Ponomarev
- A.A.Kharkevich Institute of Information Transmission Problems, Moscow 127051, Russia
| | - Mikhail S Gelfand
- A.A.Kharkevich Institute of Information Transmission Problems, Moscow 127051, Russia; Skolkovo Institute of Science and Technology, Moscow 121205, Russia; National Research University Higher School of Economics, Moscow 101000, Russia
| | - Boris I Ratnikov
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marat D Kazanov
- A.A.Kharkevich Institute of Information Transmission Problems, Moscow 127051, Russia; Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117997, Russia.
| |
Collapse
|
16
|
Ugarte-Berzal E, Berghmans N, Boon L, Martens E, Vandooren J, Cauwe B, Thijs G, Proost P, Van Damme J, Opdenakker G. Gelatinase B/matrix metalloproteinase-9 is a phase-specific effector molecule, independent from Fas, in experimental autoimmune encephalomyelitis. PLoS One 2018; 13:e0197944. [PMID: 30273366 PMCID: PMC6166937 DOI: 10.1371/journal.pone.0197944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/13/2018] [Indexed: 12/24/2022] Open
Abstract
Gelatinase B/matrix metalloproteinase-9 (MMP-9) triggers multiple sclerosis (MS) and the animal model of experimental autoimmune encephalomyelitis (EAE) by the breakdown of the blood-brain barrier. Interestingly, MMP-9 is beneficial in systemic autoimmunity caused by Fas-deficiency. Fas-deficient (faslpr) and Fas-ligand-deficient mice are protected against EAE. We here investigated the interaction between Fas and MMP-9 in the setting of induction of EAE and compared short- and long-term effects. We provoked EAE with myelin oligodendrocyte glycoprotein (MOG) peptide and compared EAE development in four genotypes (wild-type (WT), single knockout mmp-9-/-, faslpr, and mmp-9-/-/faslpr) and monitored leukocytes, cytokines and chemokines as immunological parameters. As expected, faslpr mice were resistant against EAE induction, whereas MMP-9 single knockout mice were not. In the double mmp-9-/-/ faslpr mice the effects on disease scores pointed to independent rather than interrelated disease mechanisms. On a short term, after EAE induction leukocytes infiltrated into the brain and cytokine and chemokine levels were significantly higher in all the four genotypes studied, even in the faslpr and mmp-9-/-/faslpr, which did not develop clinical disease. The levels of MMP-9 but not of MMP-2 were increased in the brain and in the peripheral organs after EAE induction. After 40 days all the animals recovered and did not show signs of EAE. However, the absence of MMP-9 in the remission phase suggested a protective role of MMP-9 in the late phase of the disease, because single mmp-9-/- mice presented a delayed remission in comparison with WT animals suggesting a phase-dependent role of MMP-9 in the disease. Nevertheless, the levels of some cytokines and chemokines remained higher than in control animals even 100 days after EAE induction, attesting to a prolonged state of immune activation. We thus yielded new insights and useful markers to monitor this activated immune status. Furthermore, MMP-9 but not MMP-2 levels remained increased in the brains and, to a higher extend, in the spleens of the WT mice even during the remission phase, which is in line with the role of MMP-9 as a useful marker and a protective factor for EAE in the remission phase.
Collapse
Affiliation(s)
- Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Immunobiology, University of Leuven, KU Leuven, Belgium
| | - Nele Berghmans
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Molecular Immunology, University of Leuven, KU Leuven, Belgium
| | - Lise Boon
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Immunobiology, University of Leuven, KU Leuven, Belgium
| | - Erik Martens
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Immunobiology, University of Leuven, KU Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Immunobiology, University of Leuven, KU Leuven, Belgium
| | - Bénédicte Cauwe
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Immunobiology, University of Leuven, KU Leuven, Belgium
| | - Greet Thijs
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Immunobiology, University of Leuven, KU Leuven, Belgium
| | - Paul Proost
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Molecular Immunology, University of Leuven, KU Leuven, Belgium
| | - Jo Van Damme
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Molecular Immunology, University of Leuven, KU Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Immunobiology, University of Leuven, KU Leuven, Belgium
- * E-mail:
| |
Collapse
|
17
|
Thomas L, Pasquini LA. Galectin-3-Mediated Glial Crosstalk Drives Oligodendrocyte Differentiation and (Re)myelination. Front Cell Neurosci 2018; 12:297. [PMID: 30258354 PMCID: PMC6143789 DOI: 10.3389/fncel.2018.00297] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
Abstract
Galectin-3 (Gal-3) is the only chimeric protein in the galectin family. Gal-3 structure comprises unusual tandem repeats of proline and glycine-rich short stretches bound to a carbohydrate-recognition domain (CRD). The present review summarizes Gal-3 functions in the extracellular and intracellular space, its regulation and its internalization and secretion, with a focus on the current knowledge of Gal-3 role in central nervous system (CNS) health and disease, particularly oligodendrocyte (OLG) differentiation, myelination and remyelination in experimental models of multiple sclerosis (MS). During myelination, microglia-expressed Gal-3 promotes OLG differentiation by binding glycoconjugates present only on the cell surface of OLG precursor cells (OPC). During remyelination, microglia-expressed Gal-3 favors an M2 microglial phenotype, hence fostering myelin debris phagocytosis through TREM-2b phagocytic receptor and OLG differentiation. Gal-3 is necessary for myelin integrity and function, as evidenced by myelin ultrastructural and behavioral studies from LGALS3-/- mice. Mechanistically, Gal-3 enhances actin assembly and reduces Erk 1/2 activation, leading to early OLG branching. Gal-3 later induces Akt activation and increases MBP expression, promoting gelsolin release and actin disassembly and thus regulating OLG final differentiation. Altogether, findings indicate that Gal-3 mediates the glial crosstalk driving OLG differentiation and (re)myelination and may be regarded as a target in the design of future therapies for a variety of demyelinating diseases.
Collapse
Affiliation(s)
- Laura Thomas
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Chemistry and Biological Physicochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Laura Andrea Pasquini
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Chemistry and Biological Physicochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
18
|
Wang SS, Zhang Z, Zhu TB, Chu SF, He WB, Chen NH. Myelin injury in the central nervous system and Alzheimer's disease. Brain Res Bull 2018; 140:162-168. [PMID: 29730417 DOI: 10.1016/j.brainresbull.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
Myelin is a membrane wrapped around the axon of the nerve cell, which is composed of the mature oligodendrocytes. The role of myelin is to insulate and prevent the nerve electrical impulses from the axon of the neurons to the axons of the other neurons, which is essential for the proper functioning of the nervous system. Minor changes in myelin thickness could lead to substantial changes in conduction speed and may thus alter neural circuit function. Demyelination is the myelin damage, which characterized by the loss of nerve sheath and the relative fatigue of the neuronal sheath and axon. Studies have shown that myelin injury may be closely related to neurodegenerative diseases and may be an early diagnostic criteria and therapeutic target. Thus this review summarizes the recent result of pathologic effect and signal pathways of myelin injury in neurodegenerative diseases, especially the Alzheimer's disease to provide new and effective therapeutic targets.
Collapse
Affiliation(s)
- Sha-Sha Wang
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tian-Bi Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wen-Bin He
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Nai-Hong Chen
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
19
|
Remacle AG, Dolkas J, Angert M, Hullugundi SK, Chernov AV, Jones RCW, Shubayev VI, Strongin AY. A sensitive and selective ELISA methodology quantifies a demyelination marker in experimental and clinical samples. J Immunol Methods 2018; 455:80-87. [PMID: 29428829 PMCID: PMC5886741 DOI: 10.1016/j.jim.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/05/2018] [Indexed: 12/29/2022]
Abstract
Sciatic nerve chronic constriction injury (CCI) in rodents produces nerve demyelination via proteolysis of myelin basic protein (MBP), the major component of myelin sheath. Proteolysis releases the cryptic MBP epitope, a demyelination marker, which is hidden in the native MBP fold. It has never been established if the proteolytic release of this cryptic MBP autoantigen stimulates the post-injury increase in the respective circulating autoantibodies. To measure these autoantibodies, we developed the ELISA that employed the cryptic 84-104 MBP sequence (MBP84-104) as bait. This allowed us, for the first time, to quantify the circulating anti-MBP84-104 autoantibodies in rat serum post-CCI. The circulating IgM (but not IgG) autoantibodies were detectable as soon as day 7 post-CCI. The IgM autoantibody level continually increased between days 7 and 28 post-injury. Using the rat serum samples, we established that the ELISA intra-assay (precision) and inter-assay (repeatability) variability parameters were 2.87% and 4.58%, respectively. We also demonstrated the ELISA specificity by recording the autoantibodies to the liberated MBP84-104 epitope alone, but not to intact MBP in which the 84-104 region is hidden. Because the 84-104 sequence is conserved among mammals, we tested if the ELISA was applicable to detect demyelination and quantify the respective autoantibodies in humans. Our limited pilot study that involved 16 female multiple sclerosis and fibromyalgia syndrome patients demonstrated that the ELISA was efficient in measuring both the circulating IgG- and IgM-type autoantibodies in patients exhibiting demyelination. We believe that the ELISA measurements of the circulating autoantibodies against the pathogenic MBP84-104 peptide may facilitate the identification of demyelination in both experimental and clinical settings. In clinic, these measurements may assist neurologists to recognize patients with painful neuropathy and demyelinating diseases, and as a result, to personalize their treatment regimens.
Collapse
Affiliation(s)
- Albert G Remacle
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Mila Angert
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Swathi K Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Andrei V Chernov
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - R Carter W Jones
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; Center for Pain Medicine, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA.
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Remacle AG, Cieplak P, Nam DH, Shiryaev SA, Ge X, Strongin AY. Selective function-blocking monoclonal human antibody highlights the important role of membrane type-1 matrix metalloproteinase (MT1-MMP) in metastasis. Oncotarget 2018; 8:2781-2799. [PMID: 27835863 PMCID: PMC5356841 DOI: 10.18632/oncotarget.13157] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/13/2016] [Indexed: 02/05/2023] Open
Abstract
The invasion-promoting MT1-MMP is a cell surface-associated collagenase with a plethora of critical cellular functions. There is a consensus that MT1-MMP is a key protease in aberrant pericellular proteolysis in migrating cancer cells and, accordingly, a promising drug target. Because of high homology in the MMP family and a limited success in the design of selective small-molecule inhibitors, it became evident that the inhibitor specificity is required for selective and successful MT1-MMP therapies. Using the human Fab antibody library (over 1.25×109 individual variants) that exhibited the extended, 23-27 residue long, VH CDR-H3 segments, we isolated a panel of the inhibitory antibody fragments, from which the 3A2 Fab outperformed others as a specific and potent, low nanomolar range, inhibitor of MT1-MMP. Here, we report the in-depth characterization of the 3A2 antibody. Our multiple in vitro and cell-based tests and assays, and extensive structural modeling of the antibody/protease interactions suggest that the antibody epitope involves the residues proximal to the protease catalytic site and that, in contrast with tissue inhibitor-2 of MMPs (TIMP-2), the 3A2 Fab inactivates the protease functionality by binding to the catalytic domain outside the active site cavity. In agreement with the studies in metastasis by others, our animal studies in acute pulmonary melanoma metastasis support a key role of MT1-MMP in metastatic process. Conversely, the selective anti-MT1-MMP monotherapy significantly alleviated melanoma metastatic burden. It is likely that further affinity maturation of the 3A2 Fab will result in the lead inhibitor and a proof-of-concept for MT1-MMP targeting in metastatic cancers.
Collapse
Affiliation(s)
- Albert G Remacle
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Piotr Cieplak
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92512, USA
| | - Sergey A Shiryaev
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92512, USA
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Cieplak P, Strongin AY. Matrix metalloproteinases - From the cleavage data to the prediction tools and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1952-1963. [PMID: 28347746 DOI: 10.1016/j.bbamcr.2017.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 11/29/2022]
Abstract
Understanding the physiological role of any protease requires identification of both its cleavage substrates and their relative cleavage efficacy as compared with other substrates and other proteinases. Our review manuscript is focused on the cleavage preferences of the individual matrix metalloproteinases (MMPs) and the cleavage similarity and distinction that exist in the human MMP family. The recent in-depth analysis of MMPs by us and many others greatly increased knowledge of the MMP biology and structural-functional relationships among this protease family members. A better knowledge of cleavage preferences of MMPs has led us to the development of the prediction tools that are now capable of the high throughput reliable prediction and ranking the MMP cleavage sites in the peptide sequences in silico. Our software unifies and consolidates volumes of the pre-existing data. Now this prediction-ranking in silico tool is ready to be used by others. The software we developed may facilitate both the identification of the novel proteolytic regulatory pathways and the discovery of the previously uncharacterized substrates of the individual MMPs. Because now the MMP research may be based on the mathematical probability parameters rather than on either random luck or common sense alone, the researchers armed with this novel in silico tool will be better equipped to fine-tune or, at least, to sharply focus their wet chemistry experiments. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Piotr Cieplak
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Alex Y Strongin
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Conant K, Daniele S, Bozzelli PL, Abdi T, Edwards A, Szklarczyk A, Olchefske I, Ottenheimer D, Maguire-Zeiss K. Matrix metalloproteinase activity stimulates N-cadherin shedding and the soluble N-cadherin ectodomain promotes classical microglial activation. J Neuroinflammation 2017; 14:56. [PMID: 28302163 PMCID: PMC5356362 DOI: 10.1186/s12974-017-0827-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a family of enzymes that are typically released from intracellular stores to act on specific extracellular substrates. MMP expression and activity can be increased in a neuronal activity-dependent manner, and further increased in response to tissue injury. MMP substrates include cell adhesion molecules (CAMs) that are abundantly expressed in the brain and well positioned for membrane proximal cleavage. Importantly, CAM integrity is important to synaptic structure and axon-myelin interactions, and shed ectodomains may themselves influence cellular function. METHODS In the present study, we have examined proteolysis of N-cadherin (N-cdh) by MMP-7, a family member that has been implicated in disorders including HIV dementia, multiple sclerosis, and major depression. With in vitro digest assays, we tested N-cdh cleavage by increasing concentrations of recombinant enzyme. We also tested MMP-7 for its potential to stimulate N-cdh shedding from cultured neural cells. Since select CAM ectodomains may interact with cell surface receptors that are expressed on microglial cells, we subsequently tested the N-cdh ectodomain for its ability to stimulate activation of this cell type as determined by nuclear translocation of NF-κB, Iba-1 expression, and TNF-α release. RESULTS We observed that soluble N-cdh increased Iba-1 levels in microglial lysates, and also increased microglial release of the cytokine TNF-α. Effects were associated with increased NF-κB immunoreactivity in microglial nuclei and diminished by an inhibitor of the toll-like receptor adaptor protein, MyD88. CONCLUSIONS Together, these in vitro results suggest that soluble N-cdh may represent a novel effector of microglial activation, and that disorders with increased MMP levels may stimulate a cycle in which the products of excess proteolysis further exacerbate microglial-mediated tissue injury. Additional in vivo studies are warranted to address this issue.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - Stefano Daniele
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - P. Lorenzo Bozzelli
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - Tsion Abdi
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - Amanda Edwards
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | | | - India Olchefske
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - David Ottenheimer
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - Kathleen Maguire-Zeiss
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| |
Collapse
|
23
|
Matsye P, Zheng L, Si Y, Kim S, Luo W, Crossman DK, Bratcher PE, King PH. HuR promotes the molecular signature and phenotype of activated microglia: Implications for amyotrophic lateral sclerosis and other neurodegenerative diseases. Glia 2017; 65:945-963. [PMID: 28300326 DOI: 10.1002/glia.23137] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 12/25/2022]
Abstract
In neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), chronic activation of microglia contributes to disease progression. Activated microglia produce cytokines, chemokines, and other factors that normally serve to clear infection or damaged tissue either directly or through the recruitment of other immune cells. The molecular program driving this phenotype is classically linked to the transcription factor NF-κB and characterized by the upregulation of proinflammatory factors such as IL-1β, TNF-α, and IL-6. Here, we investigated the role of HuR, an RNA-binding protein that regulates gene expression through posttranscriptional pathways, on the molecular and cellular phenotypes of activated microglia. We performed RNA sequencing of HuR-silenced microglia and found significant attenuation of lipopolysaccharide-induced IL-1β and TNF-α inflammatory pathways and other factors that promote microglial migration and invasion. RNA kinetics and luciferase reporter studies suggested that the attenuation was related to altered promoter activity rather than a change in RNA stability. HuR-silenced microglia showed reduced migration, invasion, and chemotactic properties but maintained viability. MMP-12, a target exquisitely sensitive to HuR knockdown, participates in the migration/invasion phenotype. HuR is abundantly detected in the cytoplasmic compartment of activated microglia from ALS spinal cords consistent with its increased activity. Microglia from ALS-associated mutant SOD1 mice demonstrated higher migration/invasion properties which can be blocked with HuR inhibition. These findings underscore an important role for HuR in sculpting the molecular signature and phenotype of activated microglia, and as a possible therapeutic target in ALS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Prachi Matsye
- Department of Neurology, University of Alabama, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Lei Zheng
- Department of Neurology, University of Alabama, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Ying Si
- Department of Neurology, University of Alabama, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Soojin Kim
- Department of Neurology, University of Alabama, Birmingham, Alabama
| | - Wenyi Luo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - David K Crossman
- Department of Genetics, University of Alabama, Birmingham, Alabama
| | - Preston E Bratcher
- Department of Pediatrics, Division of Pediatric Pulmonary Medicine, National Jewish Health, Denver, Colorado
| | - Peter H King
- Department of Neurology, University of Alabama, Birmingham, Alabama.,Department of Genetics, University of Alabama, Birmingham, Alabama.,Department of Pediatrics, Division of Pediatric Pulmonary Medicine, National Jewish Health, Denver, Colorado.,Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| |
Collapse
|
24
|
Hong S, Remacle AG, Shiryaev SA, Choi W, Hullugundi SK, Dolkas J, Angert M, Nishihara T, Yaksh TL, Strongin AY, Shubayev VI. Reciprocal relationship between membrane type 1 matrix metalloproteinase and the algesic peptides of myelin basic protein contributes to chronic neuropathic pain. Brain Behav Immun 2017; 60:282-292. [PMID: 27833045 PMCID: PMC5214638 DOI: 10.1016/j.bbi.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
Myelin basic protein (MBP) is an auto-antigen able to induce intractable pain from innocuous mechanical stimulation (mechanical allodynia). The mechanisms provoking this algesic MBP activity remain obscure. Our present study demonstrates that membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) releases the algesic MBP peptides from the damaged myelin, which then reciprocally enhance the expression of MT1-MMP in nerve to sustain a state of allodynia. Specifically, MT1-MMP expression and activity in rat sciatic nerve gradually increased starting at day 3 after chronic constriction injury (CCI). Inhibition of the MT1-MMP activity by intraneural injection of the function-blocking human DX2400 monoclonal antibody at day 3 post-CCI reduced mechanical allodynia and neuropathological signs of Wallerian degeneration, including axon demyelination, degeneration, edema and formation of myelin ovoids. Consistent with its role in allodynia, the MT1-MMP proteolysis of MBP generated the MBP69-86-containing epitope sequences in vitro. In agreement, the DX2400 therapy reduced the release of the MBP69-86 epitope in CCI nerve. Finally, intraneural injection of the algesic MBP69-86 and control MBP2-18 peptides differentially induced MT1-MMP and MMP-2 expression in the nerve. With these data we offer a novel, self-sustaining mechanism of persistent allodynia via the positive feedback loop between MT1-MMP and the algesic MBP peptides. Accordingly, short-term inhibition of MT1-MMP activity presents a feasible pharmacological approach to intervene in this molecular circuit and the development of neuropathic pain.
Collapse
Affiliation(s)
- Sanghyun Hong
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA; Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, South Korea
| | - Albert G Remacle
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sergei A Shiryaev
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Wonjun Choi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA; Department of Anesthesiology and Pain Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, South Korea
| | - Swathi K Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Mila Angert
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Tasuku Nishihara
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Alex Y Strongin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
25
|
Xu J, Zhu D, Shan J, Fan Y. Changes of gene expression in T lymphocytes following Golli‑MBP gene RNA interference. Mol Med Rep 2016; 14:4575-4580. [PMID: 27748888 PMCID: PMC5102009 DOI: 10.3892/mmr.2016.5850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/26/2016] [Indexed: 01/12/2023] Open
Abstract
The major cell types expressing Golli in the immune system are the T-lineage cells. The aim of the current study was to investigate the changes of gene expression in T lymphocytes subsequent to downregulation of the Golli-myelin basic protein (MBP) gene. RNA interference technology was used to suppress the expression of Golli-MBP in Jurkat cells and DNA microarray techniques were applied to investigate the alterations of gene expression profiles. The results indicated that there were 387 differentially expressed genes. In the Golli-MBP knockdown Jurkat cells, the expression of 108 genes was enhanced, 279 genes were suppressed. Gene ontology analysis identified differentially expressed genes involved in several biological progresses, including cell adhesion and immune responses. Pathway analysis demonstrated that the majority of the differentially expressed genes (23.3%) were involved in cytokine-cytokine receptor interaction. Subsequent to Golli-MBP knockdown, the mechanisms that changed the biological characteristics of Jurkat cells were complex, involving numerous types of functional proteins, and metabolic and signaling pathways. However, further experiments are required to confirm these results.
Collapse
Affiliation(s)
- Juanyong Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dandan Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jing Shan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuan Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
26
|
Gągało I, Rusiecka I, Kocić I. Tyrosine Kinase Inhibitor as a new Therapy for Ischemic Stroke and other Neurologic Diseases: is there any Hope for a Better Outcome? Curr Neuropharmacol 2016; 13:836-44. [PMID: 26630962 PMCID: PMC4759323 DOI: 10.2174/1570159x13666150518235504] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/09/2015] [Accepted: 05/12/2015] [Indexed: 01/24/2023] Open
Abstract
The relevance of tyrosine kinase inhibitors (TKIs) in the treatment of malignancies has
been already defined. Aberrant activation of tyrosine kinase signaling pathways has been causally
linked not only to cancers but also to other non-oncological diseases. This review concentrates on the
novel plausible usage of this group of drugs in neurological disorders, such as ischemic brain stroke,
subarachnoid hemorrhage, Alzheimer’s disease, multiple sclerosis. The drugs considered here are
representatives of both receptor and non-receptor TKIs. Among them imatinib and masitinib have the
broadest spectrum of therapeutic usage. Both drugs are effective in ischemic brain stroke and multiple
sclerosis, but only imatinib produces a therapeutic effect in subarachnoid hemorrhage. Masitinib and
dasatinib reduce the symptoms of Alzheimer’s disease. In the case of multiple sclerosis several TKIs are useful, including
apart from imatinib and masitinib, also sunitinib, sorafenib, lestaurtinib. Furthermore, the possible molecular targets for
the drugs are described in connection with the underlying pathophysiological mechanisms in the diseases in question. The
most frequent target for the TKIs is PDGFR which plays a pivotal role particularly in ischemic brain stroke and
subarachnoid hemorrhage. The collected data indicates that TKIs are very promising candidates for new therapeutic
interventions in neurological diseases.
Collapse
Affiliation(s)
| | | | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdansk, Debowa 23, 80-204, Gdansk, Poland.
| |
Collapse
|
27
|
Li N, Li X, Li L, Zhang P, Qiao M, Zhao Q, Song L, Yu Z. Original Research: The expression of MMP2 and MMP9 in the hippocampus and cerebral cortex of newborn mice under maternal lead exposure. Exp Biol Med (Maywood) 2016; 241:1811-8. [PMID: 27190262 DOI: 10.1177/1535370216647808] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/30/2016] [Indexed: 11/15/2022] Open
Abstract
The current study focused on the MMP2 and MMP9 expression in cerebral cortex and hippocampus of newborn mice under maternal lead exposure. Lead exposure was initiated from gestation to weaning. Lead acetate was dissolved in deionized water with concentration of 0.1, 0.2, and 0.5% and was absorbed through daily drinking. On day 21 after birth, lead in blood and tissue levels was examined by Graphite Furnace Atomic Absorption Spectrum (GFAAS). The protein expressions of MMP2 and MMP9 in hippocampus and cerebral cortex tissues were tested by western blotting and immunohistochemistry. Compared to the control group, blood, cerebral cortex, and hippocampus lead levels of newborn mice in 0.1, 0.2, and 0.5% lead exposure groups were markedly high (P < 0.05), and mice within the 0.2 and 0.5% lead exposure groups performed much worse than that of the control group in Water Maze test (P < 0.05). Compared with the control group, MMP2 and MMP9 expressions in hippocampus were up-regulated in the lead exposure groups (P < 0.05), and the MMP2 and MMP9 expressions in cerebral cortex were also higher (P < 0.05). The increased expression of MMP2 and MMP9 in the hippocampus and cerebral cortex may lead to the neurotoxicity in the context of maternal lead exposure.
Collapse
Affiliation(s)
- Ning Li
- Food Science and Technology College, Henan Agriculture University, Zhengzhou 450002, China
| | - Xing Li
- Public Health College of Zhengzhou University, Zhengzhou 450001, China
| | - Li Li
- Food Science and Technology College, Henan Agriculture University, Zhengzhou 450002, China
| | - Pingan Zhang
- Food Science and Technology College, Henan Agriculture University, Zhengzhou 450002, China
| | - Mingwu Qiao
- Food Science and Technology College, Henan Agriculture University, Zhengzhou 450002, China
| | - Qiuyan Zhao
- Food Science and Technology College, Henan Agriculture University, Zhengzhou 450002, China
| | - Lianjun Song
- Food Science and Technology College, Henan Agriculture University, Zhengzhou 450002, China
| | - Zengli Yu
- Public Health College of Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
28
|
Hoyos HC, Marder M, Ulrich R, Gudi V, Stangel M, Rabinovich GA, Pasquini LA, Pasquini JM. The Role of Galectin-3: From Oligodendroglial Differentiation and Myelination to Demyelination and Remyelination Processes in a Cuprizone-Induced Demyelination Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:311-332. [DOI: 10.1007/978-3-319-40764-7_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Itoh K, Maki T, Lok J, Arai K. Mechanisms of cell-cell interaction in oligodendrogenesis and remyelination after stroke. Brain Res 2015; 1623:135-49. [PMID: 25960351 PMCID: PMC4569526 DOI: 10.1016/j.brainres.2015.04.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 12/20/2022]
Abstract
White matter damage is a clinically important aspect of several central nervous system diseases, including stroke. Cerebral white matter primarily consists of axonal bundles ensheathed with myelin secreted by mature oligodendrocytes, which play an important role in neurotransmission between different areas of gray matter. During the acute phase of stroke, damage to oligodendrocytes leads to white matter dysfunction through the loss of myelin. On the contrary, during the chronic phase, white matter components promote an environment, which is favorable for neural repair, vascular remodeling, and remyelination. For effective remyelination to take place, oligodendrocyte precursor cells (OPCs) play critical roles by proliferating and differentiating into mature oligodendrocytes, which help to decrease the burden of axonal injury. Notably, other types of cells contribute to these OPC responses under the ischemic conditions. This mini-review summarizes the non-cell autonomous mechanisms in oligodendrogenesis and remyelination after white matter damage, focusing on how OPCs receive support from their neighboring cells. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Kanako Itoh
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
30
|
Kukreja M, Shiryaev SA, Cieplak P, Muranaka N, Routenberg DA, Chernov AV, Kumar S, Remacle AG, Smith JW, Kozlov IA, Strongin AY. High-Throughput Multiplexed Peptide-Centric Profiling Illustrates Both Substrate Cleavage Redundancy and Specificity in the MMP Family. ACTA ACUST UNITED AC 2015; 22:1122-33. [PMID: 26256476 DOI: 10.1016/j.chembiol.2015.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/18/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
Matrix metalloproteinases (MMPs) play incompletely understood roles in health and disease. Knowing the MMP cleavage preferences is essential for a better understanding of the MMP functions and design of selective inhibitors. To elucidate the cleavage preferences of MMPs, we employed a high-throughput multiplexed peptide-centric profiling technology involving the cleavage of 18,583 peptides by 18 proteinases from the main sub-groups of the MMP family. Our results enabled comparison of the MMP substrates on a global scale, leading to the most efficient and selective substrates. The data validated the accuracy of our cleavage prediction software. This software allows us and others to locate, with nearly 100% accuracy, the MMP cleavage sites in the peptide sequences. In addition to increasing our understanding of both the selectivity and the redundancy of the MMP family, our study generated a roadmap for the subsequent MMP structural-functional studies and efficient substrate and inhibitor design.
Collapse
Affiliation(s)
| | - Sergey A Shiryaev
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Piotr Cieplak
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | - Andrei V Chernov
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sonu Kumar
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Albert G Remacle
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey W Smith
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Igor A Kozlov
- Prognosys Biosciences Inc., San Diego, CA 92121, USA
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
31
|
Kumar S, Ratnikov BI, Kazanov MD, Smith JW, Cieplak P. CleavPredict: A Platform for Reasoning about Matrix Metalloproteinases Proteolytic Events. PLoS One 2015; 10:e0127877. [PMID: 25996941 PMCID: PMC4440711 DOI: 10.1371/journal.pone.0127877] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
CleavPredict (http://cleavpredict.sanfordburnham.org) is a Web server for substrate cleavage prediction for matrix metalloproteinases (MMPs). It is intended as a computational platform aiding the scientific community in reasoning about proteolytic events. CleavPredict offers in silico prediction of cleavage sites specific for 11 human MMPs. The prediction method employs the MMP specific position weight matrices (PWMs) derived from statistical analysis of high-throughput phage display experimental results. To augment the substrate cleavage prediction process, CleavPredict provides information about the structural features of potential cleavage sites that influence proteolysis. These include: secondary structure, disordered regions, transmembrane domains, and solvent accessibility. The server also provides information about subcellular location, co-localization, and co-expression of proteinase and potential substrates, along with experimentally determined positions of single nucleotide polymorphism (SNP), and posttranslational modification (PTM) sites in substrates. All this information will provide the user with perspectives in reasoning about proteolytic events. CleavPredict is freely accessible, and there is no login required.
Collapse
Affiliation(s)
- Sonu Kumar
- Sanford Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Boris I. Ratnikov
- Sanford Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Marat D. Kazanov
- Institute for Information Transmission Problems, Russian Academy of Science, Moscow, Russia
| | - Jeffrey W. Smith
- Sanford Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Piotr Cieplak
- Sanford Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Azizi G, Goudarzvand M, Afraei S, Sedaghat R, Mirshafiey A. Therapeutic effects of dasatinib in mouse model of multiple sclerosis. Immunopharmacol Immunotoxicol 2015; 37:287-94. [PMID: 25975582 DOI: 10.3109/08923973.2015.1028074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Experimental autoimmune encephalomyelitis (EAE) is a mouse model for multiple sclerosis (MS). EAE is mainly mediated by adaptive and innate immune responses that lead to an inflammatory demyelination and axonal damage. Dasatinib (Sprycel) is a selective protein tyrosine kinase inhibitor with immunomodulatory properties that abrogates multiple signal transduction pathways in immune cells. In the present research, our aim was to test the therapeutic efficacy of dasatinib in experimental model of MS. METHODS We performed EAE induction in female C57BL/6 mice by myelin oligodendrocyte glycoprotein(35-55) (MOG(35-55)) in Complete Freund's Adjuvant (CFA) emulsion, and used dasatinib for the treatment of EAE. During the course of study, clinical evaluation was assessed, and on day 21 post-immunization blood samples were taken from the heart of mice for tumor necrosis factor-alpha (TNF-α), nitric oxide (NO) and antioxidants capacity evaluation. The mice were sacrificed and brains and cerebellums of mice were removed for histological analysis. Also for in vitro analysis, we used C6 astrocytoma cell line to evaluate the inhibitory effects of dasatinib in cell proliferation and matrix metalloproteinase-2 (MMP-2) activity. RESULTS Our findings demonstrated that dasatinib had beneficial effects on EAE by lower incidence, attenuation in the severity and a delay in the onset of disease. The serum level of NO and TNF-α in dasatinib treated mice was significantly lower than control mice. In vitro, dasatinib inhibited cell proliferation and MMP-2 activity. CONCLUSION Dasatinib with its potential therapeutic effects and immunomodulatory properties may be recommended, after additional necessary tests and trials, for the treatment of MS.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences , Karaj , Iran
| | | | | | | | | |
Collapse
|
33
|
Itoh Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol 2015; 44-46:207-23. [PMID: 25794647 DOI: 10.1016/j.matbio.2015.03.004] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/22/2022]
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) form a subgroup of the matrix metalloproteinase (MMP) family, and there are 6 MT-MMPs in humans. MT-MMPs are further sub-classified into type I transmembrane-type (MT1, -MT2-, MT3- and MT5-MMPs) and glycosylphosphatidylinositol (GPI)-anchored type (MT4- and MT6-MMPs). In either case MT-MMPs are tethered to the plasma membrane, and this cell surface expression provides those enzymes with unique functionalities affecting various cellular behaviours. Among the 6 MT-MMPs, MT1-MMP is the most investigated enzyme and many of its roles and regulations have been revealed to date, but the potential roles and regulatory mechanisms of other MT-MMPs are gradually getting clearer as well. Further investigations of MT-MMPs are likely to reveal novel pathophysiological mechanisms and potential therapeutic strategies for different diseases in the future.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK.
| |
Collapse
|
34
|
Nischwitz S, Wolf C, Andlauer TFM, Czamara D, Zettl UK, Rieckmann P, Buck D, Ising M, Bettecken T, Mueller-Myhsok B, Weber F. MS susceptibility is not affected by single nucleotide polymorphisms in the MMP9 gene. J Neuroimmunol 2015; 279:46-9. [PMID: 25670000 DOI: 10.1016/j.jneuroim.2015.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
Abstract
Matrix metalloproteinase 9 (MMP9) plays an important role in the pathogenesis of multiple sclerosis (MS). However, the impact of genetic variants affecting MMP9 on MS susceptibility is still in debate. We could not detect an association of MMP9 SNPs with MS on a genome-wide significance level by SNP genotyping, followed by imputation of SNPs within a region stretching 2Mbp up- and down-stream of MMP9. Rs6073751, located within WFDC2, was found associated with MS most strongly. Rs3918242, associated with MS according to previous reports, showed nominal significance only. Meta-analysis of our own and published data did not confirm this effect.
Collapse
Affiliation(s)
- S Nischwitz
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | - C Wolf
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - T F M Andlauer
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - D Czamara
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - U K Zettl
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - P Rieckmann
- Department of Neurology, Sozialstiftung Bamberg, Buger Straße 80, 96049 Bamberg, Germany
| | - D Buck
- Department of Neurology, TU München, Ismaninger Str. 22, 81675 München, Germany
| | - M Ising
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - T Bettecken
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - B Mueller-Myhsok
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - F Weber
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| |
Collapse
|
35
|
Ciccarelli O, Barkhof F, Bodini B, Stefano ND, Golay X, Nicolay K, Pelletier D, Pouwels PJW, Smith SA, Wheeler-Kingshott CAM, Stankoff B, Yousry T, Miller DH. Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurol 2014; 13:807-22. [DOI: 10.1016/s1474-4422(14)70101-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Mirshafiey A, Ghalamfarsa G, Asghari B, Azizi G. Receptor Tyrosine Kinase and Tyrosine Kinase Inhibitors: New Hope for Success in Multiple Sclerosis Therapy. INNOVATIONS IN CLINICAL NEUROSCIENCE 2014; 11:23-36. [PMID: 25337443 PMCID: PMC4204472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication and their function as relay points for signaling pathways. They have a key role in numerous processes that control cellular proliferation and differentiation, regulate cell growth and cellular metabolism, and promote cell survival and apoptosis. Recently, the role of RTKs including TCR, FLT-3, c-Kit, c-Fms, PDGFR, ephrin, neurotrophin receptor, and TAM receptor in autoimmune disorder, especially rheumatoid arthritis and multiple sclerosis has been suggested. In multiple sclerosis pathogenesis, RTKs and their tyrosine kinase enzymes are selective important targets for tyrosine kinase inhibitor (TKI) agents. TKIs, compete with the ATP binding site of the catalytic domain of several tyrosine kinases, and act as small molecules that have a favorable safety profile in disease treatment. Up to now, the efficacy of TKIs in numerous animal models of MS has been demonstrated, but application of these drugs in human diseases should be tested in future clinical trials.
Collapse
Affiliation(s)
- Abbas Mirshafiey
- Dr. Mirshafiey is from the Departmant of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Dr. Ghalamfarsa is from Cellular & Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Dr. Asghari is from Antimicrobial Resistance Research Center, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran; Dr. Azizi is from Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Ghasem Ghalamfarsa
- Dr. Mirshafiey is from the Departmant of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Dr. Ghalamfarsa is from Cellular & Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Dr. Asghari is from Antimicrobial Resistance Research Center, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran; Dr. Azizi is from Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Babak Asghari
- Dr. Mirshafiey is from the Departmant of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Dr. Ghalamfarsa is from Cellular & Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Dr. Asghari is from Antimicrobial Resistance Research Center, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran; Dr. Azizi is from Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Dr. Mirshafiey is from the Departmant of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Dr. Ghalamfarsa is from Cellular & Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Dr. Asghari is from Antimicrobial Resistance Research Center, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran; Dr. Azizi is from Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
37
|
Boulanger JJ, Messier C. From precursors to myelinating oligodendrocytes: contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience 2014; 269:343-66. [PMID: 24721734 DOI: 10.1016/j.neuroscience.2014.03.063] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
Abstract
Oligodendrocyte precursor cells (OPC) are glial cells that metamorphose into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. In this review, we summarize the interwoven factors and cascades that promote the activation, recruitment and differentiation of OPCs into myelinating oligodendrocytes in the adult brain based mostly on results found in the study of demyelinating diseases. The goal of the review was to draw a complete picture of the transformation of OPCs into mature oligodendrocytes to facilitate the study of this transformation in both the normal and diseased adult brain.
Collapse
Affiliation(s)
| | - C Messier
- School of Psychology, University of Ottawa, Canada.
| |
Collapse
|
38
|
Mirshafiey A, Asghari B, Ghalamfarsa G, Jadidi-Niaragh F, Azizi G. The significance of matrix metalloproteinases in the immunopathogenesis and treatment of multiple sclerosis. Sultan Qaboos Univ Med J 2014; 14:e13-25. [PMID: 24516744 DOI: 10.12816/0003332] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 06/28/2013] [Accepted: 09/19/2013] [Indexed: 11/27/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). The major pathological outcomes of the disease are the loss of blood-brain barrier (BBB) integrity and the development of reactive astrogliosis and MS plaque. For the disease to occur, the non-resident cells must enter into the immune-privileged CNS through a breach in the relatively impermeable BBB. It has been demonstrated that matrix metalloproteinases (MMPs) play an important role in the immunopathogenesis of MS, in part through the disruption of the BBB and the recruitment of inflammatory cells into the CNS. Moreover, MMPs can also enhance the cleavage of myelin basic protein (MBP) and the demyelination process. Regarding the growing data on the roles of MMPs and their tissue inhibitors (TIMPs) in the pathogenesis of MS, this review discusses the role of different types of MMPs, including MMP-2, -3, -7, -9, -12 and -25, in the immunopathogenesis and treatment of MS.
Collapse
Affiliation(s)
- Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Asghari
- Antimicrobial Resistance Research Center, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ghasem Ghalamfarsa
- Cellular & Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
39
|
Liang H, Guan D, Gao A, Yin Y, Jing M, Yang L, Ma W, Hu E, Zhang X. Human amniotic epithelial stem cells inhibit microglia activation through downregulation of tumor necrosis factor-α, interleukin-1β and matrix metalloproteinase-12 in vitro and in a rat model of intracerebral hemorrhage. Cytotherapy 2014; 16:523-34. [PMID: 24424266 DOI: 10.1016/j.jcyt.2013.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 10/20/2013] [Accepted: 11/08/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS The molecular mechanisms by which stem cell transplantation improves functional recovery after intracerebral hemorrhage (ICH) are not well understood. Accumulating evidence suggests that microglia cells are activated shortly after ICH and that this activation contributes to secondary ICH-induced brain injury. We studied the effect of human amniotic epithelial stem cells (HAESCs) on microglia activation. METHODS To study the effect of HAESCs in vitro, we used thrombin to activate the microglia cells. Twenty-four hours after thrombin treatment, the levels of tumor necrosis factor-α and interleukin-1β were measured by enzyme-linked immunosorbent assay. In vivo, the HAESCs were transplanted into the rat striatum 1 day after collagenase-induced ICH. The expression levels of matrix metalloproteinase (MMP)-12 and microglia infiltration in the peri-hematoma tissues were determined 7 days after ICH through the use of reverse transcriptase-polymerase chain reaction and immunohistochemical analysis, respectively. RESULTS Thrombin-activated microglia expression of tumor necrosis factor-α, interleukin-1β and MMP-12 was significantly reduced through contact-dependent and paracrine mechanisms when the HAESCs were co-cultured with microglia cells. After transplantation of HAESCs in rat brains, the expression levels of MMP-12 and microglia infiltration in the peri-hematoma tissues were significantly reduced. CONCLUSIONS Our observations suggest that microglia activation could be inhibited by HAESCs both in vitro and in vivo, which may be an important mechanism by which the transplantation of HAESCs reduces brain edema and ameliorates the neurologic deficits after ICH. Therefore, we hypothesize that methods for suppressing the activation of microglia and reducing the inflammatory response can be used for designing effective treatment strategies for ICH.
Collapse
Affiliation(s)
- Hongsheng Liang
- Key Laboratory of Neurosurgery, College of Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Dong Guan
- Department of Neurosurgery, Qingdao Hiser Medical Group, Qingdao, People's Republic of China
| | - Aili Gao
- School of Life Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yibo Yin
- Key Laboratory of Neurosurgery, College of Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Meng Jing
- Key Laboratory of Neurosurgery, College of Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Lin Yang
- Key Laboratory of Neurosurgery, College of Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Wei Ma
- Key Laboratory of Neurosurgery, College of Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Enxi Hu
- Key Laboratory of Neurosurgery, College of Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Xiangtong Zhang
- Key Laboratory of Neurosurgery, College of Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
40
|
Baranger K, Rivera S, Liechti FD, Grandgirard D, Bigas J, Seco J, Tarrago T, Leib SL, Khrestchatisky M. Endogenous and synthetic MMP inhibitors in CNS physiopathology. PROGRESS IN BRAIN RESEARCH 2014; 214:313-51. [DOI: 10.1016/b978-0-444-63486-3.00014-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Shiryaev SA, Remacle AG, Golubkov VS, Ingvarsen S, Porse A, Behrendt N, Cieplak P, Strongin AY. A monoclonal antibody interferes with TIMP-2 binding and incapacitates the MMP-2-activating function of multifunctional, pro-tumorigenic MMP-14/MT1-MMP. Oncogenesis 2013; 2:e80. [PMID: 24296749 PMCID: PMC3940861 DOI: 10.1038/oncsis.2013.44] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/29/2013] [Indexed: 01/01/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and, especially membrane type 1 (MT1)-MMP/MMP-14, are promising drug targets in malignancies. In contrast with multiple small-molecule and protein pan-inhibitors of MT1–MMP cleavage activity, the murine 9E8 monoclonal antibody targets the MMP-2-activating function of cellular MT1–MMP alone, rather than the general proteolytic activity and the pro-migratory function of MT1–MMP. Furthermore, the antibody does not interact in any detectable manner with other members of the membrane type (MT)-MMP family. The mechanism of this selectivity remained unknown. Using mutagenesis, binding and activity assays, and modeling in silico, we have demonstrated that the 9E8 antibody recognizes the MT-loop structure, an eight residue insertion that is specific for MT–MMPs and that is distant from the MT1–MMP active site. The binding of the 9E8 antibody to the MT-loop, however, prevents tissue inhibitor of metalloproteinases-2 (TIMP-2) association with MT1–MMP. As a result, the 9E8 antibody incapacitates the TIMP-2-dependent MMP-2-activating function alone rather than the general enzymatic activity of human MT1–MMP. The specific function of the 9E8 antibody we determined directly supports an essential, albeit paradoxical, role of the protein inhibitor (TIMP-2) in MMP-2 activation via a unique membrane-tethered mechanism. In this mechanism, the formation of a tri-molecular MT1–MMPTIMP-2MMP-2 complex is required for both the capture of the soluble MMP-2 proenzyme by cells and then its well-controlled conversion into the mature MMP-2 enzyme. In sum, understanding of the structural requirements for the 9E8 antibody specificity may pave the way for the focused design of the inhibitory antibodies against other individual MMPs.
Collapse
Affiliation(s)
- S A Shiryaev
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Javaid MA, Abdallah MN, Ahmed AS, Sheikh Z. Matrix metalloproteinases and their pathological upregulation in multiple sclerosis: an overview. Acta Neurol Belg 2013; 113:381-90. [PMID: 24002649 DOI: 10.1007/s13760-013-0239-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/24/2013] [Indexed: 01/17/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of extracellular proteases associated with extracellular matrix remodeling. They are involved in many physiological and reparative processes. MMPs can break down all extracellular constituents; therefore, their expression is very tightly regulated and their abnormal activity or over production has been linked to many diseases including multiple sclerosis (MS) which is a leading cause of non-traumatic disability in young adults in North America. Recently many studies, both in animals and humans, have been conducted to better elucidate the underlying causes, mechanisms and pathophysiology of MS. In this review, we discuss the potential role of pathological upregulation of MMPs in MS and future challenges which if properly addressed might help in development of potential cure for this disease.
Collapse
Affiliation(s)
- Mohammad A Javaid
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada,
| | | | | | | |
Collapse
|
43
|
Phipps HW, Longo LM, Blaber SI, Blaber M, VanLandingham JW. Kallikrein-related peptidase 6: A biomarker for traumatic brain injury in the rat. Brain Inj 2013; 27:1698-706. [DOI: 10.3109/02699052.2013.823563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Weaver-Mikaere L, Gunn AJ, Bennet L, Mitchell MD, Fraser M. Inhibition of matrix metalloproteinases-2/-9 transiently reduces pre-oligodendrocyte loss during lipopolysaccharide- but not tumour necrosis factor-alpha-induced inflammation in fetal ovine glial culture. Dev Neurosci 2013; 35:461-73. [PMID: 24193164 DOI: 10.1159/000354862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022] Open
Abstract
To determine whether increased matrix metalloproteinase (MMP) proteolytic activity plays a pathological role in infection/inflammation-induced preterm brain injury, primary cultures of preterm (day 90 of gestation; term 145 days) fetal ovine mixed glia were exposed to 24-96 h of lipopolysaccharide (LPS, 1 μg/ml) or tumour necrosis factor-α (TNF-α, 100 ng/ml). MMP-2 mRNA levels were significantly increased after TNF-α (96 h) and LPS exposure (48 and 96 h), and MMP-9 mRNA levels were significantly increased at 48 and 96 h after TNF-α. On zymography, the active form of secreted MMP-2 was significantly increased 24 h after LPS, but not TNF-α. Both active and latent forms of MMP-9 gelatinolytic activity were significantly increased by TNF-α (96 h) and LPS (72 and 96 h). On reverse zymography, inhibitory activity of TIMP-1 but not TIMP-2 was significantly increased by TNF-α and LPS. SB-3CT-mediated MMP-2 and MMP-9 inhibition transiently reduced LPS-induced oligodendrocyte cell death but had no effect during TNF-α exposure. Collectively, these observations suggest a limited, transient effect of MMPs on immature white matter damage associated with infection but not TNF-α-mediated inflammation.
Collapse
|
45
|
Kubrycht J, Sigler K, Souček P, Hudeček J. Structures composing protein domains. Biochimie 2013; 95:1511-24. [DOI: 10.1016/j.biochi.2013.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/02/2013] [Indexed: 12/21/2022]
|
46
|
Remacle AG, Shiryaev SA, Golubkov VS, Freskos JN, Brown MA, Karwa AS, Naik AD, Howard CP, Sympson CJ, Strongin AY. Non-destructive and selective imaging of the functionally active, pro-invasive membrane type-1 matrix metalloproteinase (MT1-MMP) enzyme in cancer cells. J Biol Chem 2013; 288:20568-80. [PMID: 23733191 DOI: 10.1074/jbc.m113.471508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Proteolytic activity of cell surface-associated MT1-matrix metalloproteinase (MMP) (MMP-14) is directly related to cell migration, invasion, and metastasis. MT1-MMP is regulated as a proteinase by activation and conversion of the latent proenzyme into the active enzyme, and also via inhibition by tissue inhibitors of MMPs (TIMPs) and self-proteolysis. MT1-MMP is also regulated as a membrane protein through its internalization and recycling. Routine immunohistochemistry, flow cytometry, reverse transcription-PCR, and immunoblotting methodologies do not allow quantitative imaging and assessment of the cell-surface levels of the active, TIMP-free MT1-MMP enzyme. Here, we developed a fluorescent reporter prototype that targets the cellular active MT1-MMP enzyme alone. The reporter (MP-3653) represents a liposome tagged with a fluorochrome and functionalized with a PEG chain spacer linked to an inhibitory hydroxamate warhead. Our studies using the MP-3653 reporter and its inactive derivative demonstrated that MP-3653 can be efficiently used not only to visualize the trafficking of MT1-MMP through the cell compartment, but also to quantify the femtomolar range amounts of the cell surface-associated active MT1-MMP enzyme in multiple cancer cell types, including breast carcinoma, fibrosarcoma, and melanoma. Thus, the levels of the naturally expressed, fully functional, active cellular MT1-MMP enzyme are roughly equal to 1 × 10(5) molecules/cell, whereas these levels are in a 1 × 10(6) range in the cells with the enforced MT1-MMP expression. We suggest that the reporter we developed will contribute to the laboratory studies of MT1-MMP and then, ultimately, to the design of novel, more efficient prognostic approaches and personalized cancer therapies.
Collapse
Affiliation(s)
- Albert G Remacle
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Azzam S, Broadwater L, Li S, Freeman EJ, McDonough J, Gregory RB. A SELDI mass spectrometry study of experimental autoimmune encephalomyelitis: sample preparation, reproducibility, and differential protein expression patterns. Proteome Sci 2013; 11:19. [PMID: 23635033 PMCID: PMC3682907 DOI: 10.1186/1477-5956-11-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/25/2013] [Indexed: 12/21/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Results Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein isoform 8 (MBP8) (14.2 kDa) levels were lower in EAE samples with advanced disease relative to controls, while an MBP fragment (12. 4kDa), likely due to calpain digestion, was increased in EAE relative to controls. The appearance of MBP in mitochondrially enriched fractions is due to tissue freezing and storage, as MBP was not found associated with mitochondria obtained from fresh tissue. Conclusions SELDI mass spectrometry can be employed to explore the proteome of a complex tissue (brain) and obtain protein profiles of differentially expressed proteins from protein fractions. Appropriate homogenization protocols and protein fractionation using anion exchange beads can be employed to reduce sample complexity without introducing significant additional variation into the SELDI mass spectra beyond that inherent in the SELDI- MS method itself. SELDI-MS coupled with principal component analysis and hierarchical cluster analysis provides protein patterns that can clearly distinguish the disease state from controls. However, identification of individual differentially expressed proteins requires a separate purification of the proteins of interest by polyacrylamide electrophoresis prior to trypsin digestion and peptide mass fingerprint analysis, and unambiguous identification of differentially expressed proteins can be difficult if protein bands consist of several proteins with similar molecular weights.
Collapse
Affiliation(s)
- Sausan Azzam
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Machado GF, Melo GD, Souza MS, Machado AA, Migliolo DS, Moraes OC, Nunes CM, Ribeiro ES. Zymographic patterns of MMP-2 and MMP-9 in the CSF and cerebellum of dogs with subacute distemper leukoencephalitis. Vet Immunol Immunopathol 2013; 154:68-74. [PMID: 23639293 PMCID: PMC7127742 DOI: 10.1016/j.vetimm.2013.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 03/31/2013] [Accepted: 04/07/2013] [Indexed: 11/02/2022]
Abstract
Distemper leukoencephalitis is a disease caused by the canine distemper virus (CDV) infection. It is a demyelinating disease affecting mainly the white matter of the cerebellum and areas adjacent to the fourth ventricle; the enzymes of the matrix metalloproteinases (MMPs) group, especially MMP-2 and MMP-9 have a key role in the myelin basic protein fragmentation and in demyelination, as well as in leukocyte traffic into the nervous milieu. To evaluate the involvement of MMPs during subacute distemper leukoencephalitis, we measured the levels of MMP-2 and MMP-9 by zymography in the cerebrospinal fluid (CSF) and in the cerebellum of 14 dogs naturally infected with CDV and 10 uninfected dogs. The infected dogs presented high levels of pro-MMP-2 in the CSF and elevated levels of pro-MMP-2 and pro-MMP-9 in the cerebellar tissue. Active MMP-2 was detected in the CSF of some infected dogs. As active MMP-2 and MMP-9 are required for cellular migration across the blood-brain barrier and any interference between MMPs and their inhibitors may result in an amplification of demyelination, this study gives additional support to the involvement of MMPs during subacute distemper leukoencephalitis and suggests that MMP-2 and MMP-9 may take part in the brain inflammatory changes of this disease.
Collapse
Affiliation(s)
- Gisele F Machado
- Department of Animal Clinics, Surgery and Reproduction, College of Veterinary Medicine, UNESP - Univ. Estadual Paulista, Araçatuba, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ijichi K, Brown GD, Moore CS, Lee JP, Winokur PN, Pagarigan R, Snyder EY, Bongarzone ER, Crocker SJ. MMP-3 mediates psychosine-induced globoid cell formation: implications for leukodystrophy pathology. Glia 2013; 61:765-77. [PMID: 23404611 DOI: 10.1002/glia.22471] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/31/2012] [Indexed: 01/03/2023]
Abstract
Globoid cell leukodystrophy (GLD) or Krabbe disease, is a fatal demyelinating disease attributed to mutations in the galactocerebrosidase (GALC) gene. Loss of function mutations in GALC result in accumulation of the glycolipid intermediate, galactosylsphingosine (psychosine). Due to the cytotoxicity of psychosine, it has been hypothesized that accumulated psychosine underlie the pathophysiology of GLD. However, the cellular mechanisms of GLD pathophysiology remain unclear. Globoid cells, multinucleated microglia/macrophages in the central nervous system (CNS), are a defining characteristic of GLD. Here we report that exposure of primary glial cultures to psychosine induces the expression and the production of matrix metalloproteinase (MMP)-3 that mediated a morphological transformation of microglia into a multinucleated globoid cell type. Additionally, psychosine-induced globoid cell formation from microglia was prevented by either genetic ablation or chemical inhibition of MMP-3. These effects are microglia-specific as peripheral macrophages exposed to psychosine did not become activated or express increased levels of MMP-3. In the brain from twitcher mice, a murine model of human GLD, elevated MMP-3 expression relative to wild-type littermates was contemporaneous with disease onset and further increased with disease progression. Further, bone marrow transplantation (BMT), currently the only therapeutically beneficial treatment for GLD, did not mitigate the elevated expression of MMP-3 in twitcher mice. Hence, elevated expression of MMP-3 in GLD may promote microglial responses to psychosine that may represent an important pathophysiological process in this disease and its treatment.
Collapse
Affiliation(s)
- Kumiko Ijichi
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06510, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Alameddine HS. Matrix metalloproteinases in skeletal muscles: Friends or foes? Neurobiol Dis 2012; 48:508-18. [DOI: 10.1016/j.nbd.2012.07.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/28/2012] [Accepted: 07/25/2012] [Indexed: 12/13/2022] Open
|