1
|
Cheng HC, Huang PH, Lai FJ, Jan MS, Chen YL, Chen SY, Chen WL, Hsu CK, Huang W, Hsu LJ. Loss of fragile WWOX gene leads to senescence escape and genome instability. Cell Mol Life Sci 2023; 80:338. [PMID: 37897534 PMCID: PMC10613160 DOI: 10.1007/s00018-023-04950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/12/2023] [Accepted: 09/04/2023] [Indexed: 10/30/2023]
Abstract
Induction of DNA damage response (DDR) to ensure accurate duplication of genetic information is crucial for maintaining genome integrity during DNA replication. Cellular senescence is a DDR mechanism that prevents the proliferation of cells with damaged DNA to avoid mitotic anomalies and inheritance of the damage over cell generations. Human WWOX gene resides within a common fragile site FRA16D that is preferentially prone to form breaks on metaphase chromosome upon replication stress. We report here that primary Wwox knockout (Wwox-/-) mouse embryonic fibroblasts (MEFs) and WWOX-knockdown human dermal fibroblasts failed to undergo replication-induced cellular senescence after multiple passages in vitro. Strikingly, by greater than 20 passages, accelerated cell cycle progression and increased apoptosis occurred in these late-passage Wwox-/- MEFs. These cells exhibited γH2AX upregulation and microsatellite instability, indicating massive accumulation of nuclear DNA lesions. Ultraviolet radiation-induced premature senescence was also blocked by WWOX knockdown in human HEK293T cells. Mechanistically, overproduction of cytosolic reactive oxygen species caused p16Ink4a promoter hypermethylation, aberrant p53/p21Cip1/Waf1 signaling axis and accelerated p27Kip1 protein degradation, thereby leading to the failure of senescence induction in Wwox-deficient cells after serial passage in culture. We determined that significantly reduced protein stability or loss-of-function A135P/V213G mutations in the DNA-binding domain of p53 caused defective induction of p21Cip1/Waf1 in late-passage Wwox-/- MEFs. Treatment of N-acetyl-L-cysteine prevented downregulation of cyclin-dependent kinase inhibitors and induced senescence in Wwox-/- MEFs. Our findings support an important role for fragile WWOX gene in inducing cellular senescence for maintaining genome integrity during DDR through alleviating oxidative stress.
Collapse
Affiliation(s)
- Hui-Ching Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Po-Hsien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chi Mei Medical Center, Tainan, 71004, Taiwan.
- Center for General Education, Southern Taiwan University of Science and Technology, Tainan, 71005, Taiwan.
| | - Ming-Shiou Jan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Yi-Lin Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Szu-Ying Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wan-Li Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Chao-Kai Hsu
- Department of Dermatology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Li-Jin Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Research Center for Medical Laboratory Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
2
|
MEOX2 Regulates the Growth and Survival of Glioblastoma Stem Cells by Modulating Genes of the Glycolytic Pathway and Response to Hypoxia. Cancers (Basel) 2022; 14:cancers14092304. [PMID: 35565433 PMCID: PMC9099809 DOI: 10.3390/cancers14092304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Glioblastoma is the most common incurable primary brain tumor in adults, typically leading to death within 15 months of diagnosis. Although there is an ongoing debate in the scientific community about the precise cellular origin of this tumor, glioblastoma stem cells (GSCs), which are able to self-renew, yield a full tumor mass, and determine chemo- and radio-resistance, are recognized to have a pivotal role. Our research aims to understand the role of the mesenchyme homeobox 2 (MEOX2) transcription factor in GSCs where it is strongly and specifically expressed. We have found that MEOX2 is indeed important for the survival of these cells. In fact, when we reduce its expression in two different GSC lines, they undergo a massive death accompanied by the inhibition of key genes of the glycolytic metabolism, the main source of energy for these cells. Our results reveal a novel function for MEOX2 in glioblastoma and suggest a mechanism through which GSCs may survive even in unfavorable conditions. Abstract The most widely accepted hypothesis for the development of glioblastoma suggests that glioblastoma stem-like cells (GSCs) are crucially involved in tumor initiation and recurrence as well as in the occurrence of chemo- and radio-resistance. Mesenchyme homeobox 2 (MEOX2) is a transcription factor overexpressed in glioblastoma, whose expression is negatively correlated with patient survival. Starting from our observation that MEOX2 expression is strongly enhanced in six GSC lines, we performed shRNA-mediated knock-down experiments in two different GSC lines and found that MEOX2 depletion resulted in the inhibition of cell growth and sphere-forming ability and an increase in apoptotic cell death. By a deep transcriptome analysis, we identified a core group of genes modulated in response to MEOX2 knock-down. Among these genes, the repressed ones are largely enriched in genes involved in the hypoxic response and glycolytic pathway, two strictly related pathways that contribute to the resistance of high-grade gliomas to therapies. An in silico study of the regulatory regions of genes differentially expressed by MEOX2 knock-down revealed that they mainly consisted of GC-rich regions enriched for Sp1 and Klf4 binding motifs, two main regulators of metabolism in glioblastoma. Our results show, for the first time, the involvement of MEOX2 in the regulation of genes of GSC metabolism, which is essential for the survival and growth of these cells.
Collapse
|
3
|
Peralta-Arrieta I, Trejo-Villegas OA, Armas-López L, Ceja-Rangel HA, Ordóñez-Luna MDC, Pineda-Villegas P, González-López MA, Ortiz-Quintero B, Mendoza-Milla C, Zatarain-Barrón ZL, Arrieta O, Zúñiga J, Ávila-Moreno F. Failure to EGFR-TKI-based therapy and tumoural progression are promoted by MEOX2/GLI1-mediated epigenetic regulation of EGFR in the human lung cancer. Eur J Cancer 2021; 160:189-205. [PMID: 34844838 DOI: 10.1016/j.ejca.2021.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/26/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Mesenchyme homeobox-2 (MEOX2)-mediated regulation of glioma-associated oncogene-1 (GLI1) has been associated with poor overall survival, conferring chemoresistance in lung cancer. However, the role of MEOX2/GLI1 in resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs)-based therapy remains unexplored in human lung cancer. METHODS Functional assays using genetic silencing strategy by short hairpin RNAs, as well as cytotoxic (tetrazolium dye MTT) and clonogenic assays, were performed to evaluate MEOX2/GLI1-induced malignancy capacity in lung cancer cells. Further analysis performed includes western blot, qPCR and ChIP-qPCR assays to identify whether MEOX2/GLI1 promote EGFR/AKT/ERK activation, as well as EGFR overexpression through epigenetic mechanisms. Finally, preclinical tumour progression in vivo and progression-free disease interval analyses in patients treated with EGFR-TKI were included. RESULTS Overexpressed MEOX2/GLI1 in both EGFR wild-type and EGFR/KRAS-mutated lung cancer cells were detected and involved in the activation/expression of EGFR/AKT/ERK biomarkers. In addition, MEOX2/GLI1 was shown to be involved in the increased proliferation of tumour cells and resistance capacity to cisplatin, EGFR-TKIs (erlotinib and AZD9291 'osimertinib'), AZD8542-SMO, and AZD6244-MEKK1/2. In addition, we identified that MEOX2/GLI1 promote lung tumour cells progression in vivo and are clinically associated with poorer progression-free disease intervals. Finally, both MEOX2 and GLI1 were detected to be epigenetically involved in EGFR expression by reducing both repressive markers polycomb-EZH2 and histone H3K27me3, but, particularly, increasing an activated histone profile H3K27Ac/H3K4me3 at EGFR-gene enhancer-promoter sequences that probably representing a novel EGFR-TKI-based therapy resistance mechanism. CONCLUSION MEOX2/GLI1 promote resistance to cisplatin and EGFR-TKI-based therapy in lung cancer cells, modulating EGFR/AKT/ERK signalling pathway activation, as well as inducing an aberrant epigenetic modulation of the EGFR-gene expression in human lung cancer.
Collapse
Affiliation(s)
- Irlanda Peralta-Arrieta
- Universidad Nacional Autónoma de México (UNAM), Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores (FES) Iztacala, Tlalnepantla de Baz, 54090, Estado de México, Mexico.
| | - Octavio A Trejo-Villegas
- Universidad Nacional Autónoma de México (UNAM), Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores (FES) Iztacala, Tlalnepantla de Baz, 54090, Estado de México, Mexico.
| | - Leonel Armas-López
- Universidad Nacional Autónoma de México (UNAM), Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores (FES) Iztacala, Tlalnepantla de Baz, 54090, Estado de México, Mexico.
| | - Hugo A Ceja-Rangel
- Universidad Nacional Autónoma de México (UNAM), Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores (FES) Iztacala, Tlalnepantla de Baz, 54090, Estado de México, Mexico.
| | - María Del Carmen Ordóñez-Luna
- Universidad Nacional Autónoma de México (UNAM), Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores (FES) Iztacala, Tlalnepantla de Baz, 54090, Estado de México, Mexico.
| | - Priscila Pineda-Villegas
- Universidad Nacional Autónoma de México (UNAM), Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores (FES) Iztacala, Tlalnepantla de Baz, 54090, Estado de México, Mexico.
| | - Marco A González-López
- Unidad Funcional de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, 14080, Ciudad de México, Mexico.
| | - Blanca Ortiz-Quintero
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calz de Tlalpan, 14080, Ciudad de México, Mexico.
| | - Criselda Mendoza-Milla
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calz de Tlalpan, 14080, Ciudad de México, Mexico.
| | - Zyanya L Zatarain-Barrón
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Ciudad de México, Mexico.
| | - Oscar Arrieta
- Unidad Funcional de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, 14080, Ciudad de México, Mexico.
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calz de Tlalpan, 14080, Ciudad de México, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Ciudad de México, Mexico.
| | - Federico Ávila-Moreno
- Universidad Nacional Autónoma de México (UNAM), Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores (FES) Iztacala, Tlalnepantla de Baz, 54090, Estado de México, Mexico; Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calz de Tlalpan, 14080, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Tyler EJ, Gutierrez del Arroyo A, Hughes BK, Wallis R, Garbe JC, Stampfer MR, Koh J, Lowe R, Philpott MP, Bishop CL. Early growth response 2 (EGR2) is a novel regulator of the senescence programme. Aging Cell 2021; 20:e13318. [PMID: 33547862 PMCID: PMC7963333 DOI: 10.1111/acel.13318] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Senescence, a state of stable growth arrest, plays an important role in ageing and age-related diseases in vivo. Although the INK4/ARF locus is known to be essential for senescence programmes, the key regulators driving p16 and ARF transcription remain largely underexplored. Using siRNA screening for modulators of the p16/pRB and ARF/p53/p21 pathways in deeply senescent human mammary epithelial cells (DS HMECs) and fibroblasts (DS HMFs), we identified EGR2 as a novel regulator of senescence. EGR2 expression is up-regulated during senescence, and its ablation by siRNA in DS HMECs and HMFs transiently reverses the senescent phenotype. We demonstrate that EGR2 activates the ARF and p16 promoters and directly binds to both the ARF and p16 promoters. Loss of EGR2 down-regulates p16 levels and increases the pool of p16- p21- 'reversed' cells in the population. Moreover, EGR2 overexpression is sufficient to induce senescence. Our data suggest that EGR2 is a direct transcriptional activator of the p16/pRB and ARF/p53/p21 pathways in senescence and a novel marker of senescence.
Collapse
Affiliation(s)
- Eleanor J. Tyler
- Blizard InstituteBarts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Ana Gutierrez del Arroyo
- Translational Medicine & TherapeuticsWilliam Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Bethany K. Hughes
- Blizard InstituteBarts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Ryan Wallis
- Blizard InstituteBarts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - James C. Garbe
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Martha R. Stampfer
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Jim Koh
- Division of General SurgeryDepartment of SurgeryUCSFSan FranciscoCaliforniaUSA
| | - Robert Lowe
- Blizard InstituteBarts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Michael P. Philpott
- Blizard InstituteBarts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Cleo L. Bishop
- Blizard InstituteBarts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| |
Collapse
|
5
|
Voisin J, Farina F, Naphade S, Fontaine M, Tshilenge K, Galicia Aguirre C, Lopez‐Ramirez A, Dancourt J, Ginisty A, Sasidharan Nair S, Lakshika Madushani K, Zhang N, Lejeune F, Verny M, Campisi J, Ellerby LM, Neri C. FOXO3 targets are reprogrammed as Huntington's disease neural cells and striatal neurons face senescence with p16 INK4a increase. Aging Cell 2020; 19:e13226. [PMID: 33156570 PMCID: PMC7681055 DOI: 10.1111/acel.13226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 06/26/2020] [Accepted: 07/26/2020] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases (ND) have been linked to the critical process in aging—cellular senescence. However, the temporal dynamics of cellular senescence in ND conditions is unresolved. Here, we show senescence features develop in human Huntington's disease (HD) neural stem cells (NSCs) and medium spiny neurons (MSNs), including the increase of p16INK4a, a key inducer of cellular senescence. We found that HD NSCs reprogram the transcriptional targets of FOXO3, a major cell survival factor able to repress cell senescence, antagonizing p16INK4a expression via the FOXO3 repression of the transcriptional modulator ETS2. Additionally, p16INK4a promotes cellular senescence features in human HD NSCs and MSNs. These findings suggest that cellular senescence may develop during neuronal differentiation in HD and that the FOXO3‐ETS2‐p16INK4a axis may be part of molecular responses aimed at mitigating this phenomenon. Our studies identify neuronal differentiation with accelerated aging of neural progenitors and neurons as an alteration that could be linked to NDs.
Collapse
Affiliation(s)
- Jessica Voisin
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | - Francesca Farina
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | | | - Morgane Fontaine
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | | | | | | | - Julia Dancourt
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | - Aurélie Ginisty
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | - Satish Sasidharan Nair
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | | | | | - François‐Xavier Lejeune
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | - Marc Verny
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | - Judith Campisi
- Buck Institute for Research on Aging Novato CA USA
- Lawrence Berkeley National Laboratory Berkeley CA USA
| | | | - Christian Neri
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| |
Collapse
|
6
|
DNA Methylation Changes in Human Papillomavirus-Driven Head and Neck Cancers. Cells 2020; 9:cells9061359. [PMID: 32486347 PMCID: PMC7348958 DOI: 10.3390/cells9061359] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Disruption of DNA methylation patterns is one of the hallmarks of cancer. Similar to other cancer types, human papillomavirus (HPV)-driven head and neck cancer (HNC) also reveals alterations in its methylation profile. The intrinsic ability of HPV oncoproteins E6 and E7 to interfere with DNA methyltransferase activity contributes to these methylation changes. There are many genes that have been reported to be differentially methylated in HPV-driven HNC. Some of these genes are involved in major cellular pathways, indicating that DNA methylation, at least in certain instances, may contribute to the development and progression of HPV-driven HNC. Furthermore, the HPV genome itself becomes a target of the cellular DNA methylation machinery. Some of these methylation changes appearing in the viral long control region (LCR) may contribute to uncontrolled oncoprotein expression, leading to carcinogenesis. Consistent with these observations, demethylation therapy appears to have significant effects on HPV-driven HNC. This review article comprehensively summarizes DNA methylation changes and their diagnostic and therapeutic indications in HPV-driven HNC.
Collapse
|
7
|
HMGA Genes and Proteins in Development and Evolution. Int J Mol Sci 2020; 21:ijms21020654. [PMID: 31963852 PMCID: PMC7013770 DOI: 10.3390/ijms21020654] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
HMGA (high mobility group A) (HMGA1 and HMGA2) are small non-histone proteins that can bind DNA and modify chromatin state, thus modulating the accessibility of regulatory factors to the DNA and contributing to the overall panorama of gene expression tuning. In general, they are abundantly expressed during embryogenesis, but are downregulated in the adult differentiated tissues. In the present review, we summarize some aspects of their role during development, also dealing with relevant studies that have shed light on their functioning in cell biology and with emerging possible involvement of HMGA1 and HMGA2 in evolutionary biology.
Collapse
|
8
|
Zhang Y, Hyle J, Wright S, Shao Y, Zhao X, Zhang H, Li C. A cis-element within the ARF locus mediates repression of p16INK4A expression via long-range chromatin interactions. Proc Natl Acad Sci U S A 2019; 116:26644-26652. [PMID: 31818950 PMCID: PMC6936709 DOI: 10.1073/pnas.1909720116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Loss of function of CDKN2A/B, also known as INK4/ARF [encoding p16INK4A, p15INK4B, and p14ARF (mouse p19Arf)], confers susceptibility to cancers, whereas its up-regulation during organismal aging provokes cellular senescence and tissue degenerative disorders. To better understand the transcriptional regulation of p16INK4A, a CRISPR screen targeting open, noncoding chromatin regions adjacent to p16INK4A was performed in a human p16INK4A-P2A-mCherry reporter cell line. We identified a repressive element located in the 3' region adjacent to the ARF promoter that controls p16INK4A expression via long-distance chromatin interactions. Coinfection of lentiviral dCas9-KRAB with selected single-guide RNAs against the repressive element abrogated the ARF/p16INK4A chromatin contacts, thus reactivating p16INK4A expression. Genetic CRISPR screening identified candidate transcription factors inhibiting p16INK4A regulation, including ZNF217, which was confirmed to bind the ARF/p16INK4A interaction loop. In summary, direct physical interactions between p16INK4A and ARF genes provide mechanistic insights into their cross-regulation.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Ying Shao
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Xujie Zhao
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Hui Zhang
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, People’s Republic of China
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| |
Collapse
|
9
|
Tachon G, Masliantsev K, Rivet P, Petropoulos C, Godet J, Milin S, Wager M, Guichet PO, Karayan-Tapon L. Prognostic significance of MEOX2 in gliomas. Mod Pathol 2019; 32:774-786. [PMID: 30659268 DOI: 10.1038/s41379-018-0192-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/08/2023]
Abstract
Gliomas are the most common malignant primary tumors in the central nervous system and have variable predictive clinical courses. Glioblastoma, the most aggressive form of glioma, is a complex disease with unsatisfactory therapeutic solutions and a very poor prognosis. Some processes at stake in gliomagenesis have been discovered but little is known about the role of homeobox genes, even though they are highly expressed in gliomas, particularly in glioblastoma. Among them, the transcription factor Mesenchyme Homeobox 2 (MEOX2) had previously been associated with malignant progression and clinical prognosis in lung cancer and hepatocarcinoma but never studied in glioma. The aim of our study was to investigate the clinical significance of MEOX2 in gliomas. We assessed the expression of MEOX2 according to IDH1/2 molecular profile and patient survival among three different public datasets: The Cancer Genome Atlas (TCGA), The Chinese Glioma Genome Atlas (CGGA) and the US National Cancer Institute Repository for Molecular Brain Neoplasia Data (Rembrandt). We then evaluated the prognostic significance of MEOX2 protein expression on 112 glioma clinical samples including; 56 IDH1 wildtype glioblastomas, 7 IDH1 wild-type lower grade gliomas, 49 IDH1 mutated lower grade gliomas. Survival rates were estimated by the Kaplan-Meier method followed by uni/multivariate analyses. We demonstrated that MEOX2 was one of the transcription factors most closely associated with overall survival in glioma. Moreover, MEOX2 expression was associated with IDH1/2 wildtype molecular subtype and was significantly correlated with overall survival of all gliomas and, more interestingly, in lower grade glioma. To conclude, our results may be the first to provide insight into the clinical significance of MEOX2 in gliomas, which is a factor closely related to patient outcome. MEOX2 could constitute an interesting prognostic biomarker, especially for lower grade glioma.
Collapse
Affiliation(s)
- Gaelle Tachon
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, F-86073, France.,Université de Poitiers, F-86073, Poitiers, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86022, France
| | - Konstantin Masliantsev
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, F-86073, France.,Université de Poitiers, F-86073, Poitiers, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86022, France
| | - Pierre Rivet
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86022, France
| | - Christos Petropoulos
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, F-86073, France.,Université de Poitiers, F-86073, Poitiers, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86022, France
| | - Julie Godet
- CHU de Poitiers, Service d'Anatomo-Cytopathologie, Poitiers, F-86021, France
| | - Serge Milin
- CHU de Poitiers, Service d'Anatomo-Cytopathologie, Poitiers, F-86021, France
| | - Michel Wager
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, F-86073, France.,Université de Poitiers, F-86073, Poitiers, France.,CHU de Poitiers, Service de Neurochirurgie, Poitiers, F-86021, France
| | - Pierre-Olivier Guichet
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, F-86073, France. .,Université de Poitiers, F-86073, Poitiers, France. .,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86022, France.
| | - Lucie Karayan-Tapon
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, F-86073, France. .,Université de Poitiers, F-86073, Poitiers, France. .,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86022, France.
| |
Collapse
|
10
|
Adrados I, Larrasa-Alonso J, Galarreta A, López-Antona I, Menéndez C, Abad M, Gil J, Moreno-Bueno G, Palmero I. The homeoprotein SIX1 controls cellular senescence through the regulation of p16INK4A and differentiation-related genes. Oncogene 2015; 35:3485-94. [PMID: 26500063 DOI: 10.1038/onc.2015.408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/04/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022]
Abstract
Cellular senescence is an antiproliferative response with essential functions in tumor suppression and tissue homeostasis. Here we show that SIX1, a member of the SIX family of homeobox transcriptional factors, is a novel repressor of senescence. Our data show that SIX1 is specifically downregulated in fibroblasts upon oncogenic stress and other pro-senescence stimuli, as well as in senescent skin premalignant lesions. Silencing of SIX1 in human fibroblasts suffices to trigger senescence, which is mediated by p16INK4A and lacks a canonical senescence-associated secretory phenotype. Interestingly, SIX1-associated senescence is further characterized by the expression of a set of development and differentiation-related genes that significantly overlap with genes associated with SIX1 in organogenesis or human tumors, and show coincident regulation in oncogene-induced senescence. Mechanistically, we show that gene regulation by SIX1 during senescence is mediated, at least in part, by cooperation with Polycomb repressive complexes. In summary, our results identify SIX1, a key development regulator altered in human tumors, as a critical repressor of cellular senescence, providing a novel connection between senescence, differentiation and tumorigenesis.
Collapse
Affiliation(s)
- I Adrados
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - J Larrasa-Alonso
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - A Galarreta
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - I López-Antona
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - C Menéndez
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - M Abad
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - J Gil
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London, UK
| | - G Moreno-Bueno
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.,Departamento de Bioquímica, UAM, IdiPAZ (Instituto de Investigación Sanitaria La Paz) and Fundación MD Anderson Internacional, Madrid, Spain
| | - I Palmero
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| |
Collapse
|
11
|
Hilton C, Karpe F, Pinnick KE. Role of developmental transcription factors in white, brown and beige adipose tissues. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:686-96. [PMID: 25668679 DOI: 10.1016/j.bbalip.2015.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/08/2015] [Accepted: 02/03/2015] [Indexed: 02/06/2023]
Abstract
In this review we discuss the role of developmental transcription factors in adipose tissue biology with a focus on how these developmental genes may contribute to regional variation in adipose tissue distribution and function. Regional, depot-specific, differences in lipid handling and signalling (lipolysis, lipid storage and adipokine/lipokine signalling) are important determinants of metabolic health. At a cellular level, preadipocytes removed from their original depot and cultured in vitro retain depot-specific functional properties, implying that these are intrinsic to the cells and not a function of their environment in situ. High throughput screening has identified a number of developmental transcription factors involved in embryological development, including members of the Homeobox and T-Box gene families, that are strongly differentially expressed between regional white adipose tissue depots and also between brown and white adipose tissue. However, the significance of depot-specific developmental signatures remains unclear. Developmental transcription factors determine body patterning during embryogenesis. The divergent developmental origins of regional adipose tissue depots may explain their differing functional characteristics. There is evidence from human genetics that developmental genes determine adipose tissue distribution: in GWAS studies a number of developmental genes have been identified as being correlated with anthropometric measures of adiposity and fat distribution. Additionally, compelling functional studies have recently implicated developmental genes in both white adipogenesis and the so-called 'browning' of white adipose tissue. Understanding the genetic and developmental pathways in adipose tissue may help uncover novel ways to intervene with the function of adipose tissue in order to promote health.
Collapse
Affiliation(s)
- Catriona Hilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, OUH Trust, Churchill Hospital, Oxford, UK
| | - Katherine E Pinnick
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Ávila-Moreno F, Armas-López L, Álvarez-Moran AM, López-Bujanda Z, Ortiz-Quintero B, Hidalgo-Miranda A, Urrea-Ramírez F, Rivera-Rosales RM, Vázquez-Manríquez E, Peña-Mirabal E, Morales-Gómez J, Vázquez-Minero JC, Téllez-Becerra JL, Ramírez-Mendoza R, Ávalos-Bracho A, de Alba EG, Vázquez-Santillán K, Maldonado-Lagunas V, Santillán-Doherty P, Piña-Sánchez P, Zúñiga-Ramos J. Overexpression of MEOX2 and TWIST1 is associated with H3K27me3 levels and determines lung cancer chemoresistance and prognosis. PLoS One 2014; 9:e114104. [PMID: 25460568 PMCID: PMC4252097 DOI: 10.1371/journal.pone.0114104] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/29/2014] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the leading cause of death from malignant diseases worldwide, with the non-small cell (NSCLC) subtype accounting for the majority of cases. NSCLC is characterized by frequent genomic imbalances and copy number variations (CNVs), but the epigenetic aberrations that are associated with clinical prognosis and therapeutic failure remain not completely identify. In the present study, a total of 55 lung cancer patients were included and we conducted genomic and genetic expression analyses, immunohistochemical protein detection, DNA methylation and chromatin immunoprecipitation assays to obtain genetic and epigenetic profiles associated to prognosis and chemoresponse of NSCLC patients. Finally, siRNA transfection-mediated genetic silencing and cisplatinum cellular cytotoxicity assays in NSCLC cell lines A-427 and INER-37 were assessed to describe chemoresistance mechanisms involved. Our results identified high frequencies of CNVs (66–51% of cases) in the 7p22.3–p21.1 and 7p15.3–p15.2 cytogenetic regions. However, overexpression of genes, such as MEOX2, HDAC9, TWIST1 and AhR, at 7p21.2–p21.1 locus occurred despite the absence of CNVs and little changes in DNA methylation. In contrast, the promoter sequences of MEOX2 and TWIST1 displayed significantly lower/decrease in the repressive histone mark H3K27me3 and increased in the active histone mark H3K4me3 levels. Finally these results correlate with poor survival in NSCLC patients and cellular chemoresistance to oncologic drugs in NSCLC cell lines in a MEOX2 and TWIST1 overexpression dependent-manner. In conclusion, we report for the first time that MEOX2 participates in chemoresistance irrespective of high CNV, but it is significantly dependent upon H3K27me3 enrichment probably associated with aggressiveness and chemotherapy failure in NSCLC patients, however additional clinical studies must be performed to confirm our findings as new probable clinical markers in NSCLC patients.
Collapse
Affiliation(s)
- Federico Ávila-Moreno
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES)-Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics Laboratory 12, Tlalnepantla, Mexico State, Mexico; Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City, Mexico
| | - Leonel Armas-López
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES)-Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics Laboratory 12, Tlalnepantla, Mexico State, Mexico
| | | | - Zoila López-Bujanda
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES)-Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics Laboratory 12, Tlalnepantla, Mexico State, Mexico; Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City, Mexico; Johns Hopkins University, Medical Institutions, Maryland, Baltimore, United States of America
| | | | | | | | | | | | - Erika Peña-Mirabal
- Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City, Mexico
| | - José Morales-Gómez
- Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City, Mexico
| | | | | | - Roberto Ramírez-Mendoza
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES)-Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics Laboratory 12, Tlalnepantla, Mexico State, Mexico
| | | | | | | | | | | | - Patricia Piña-Sánchez
- Unidad de Investigación Médica en Enfermedades Oncológicas (UIMEO), Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional (CMN), Siglo XXI, México City, México
| | | |
Collapse
|
13
|
Martin N, Beach D, Gil J. Ageing as developmental decay: insights from p16INK4a. Trends Mol Med 2014; 20:667-74. [DOI: 10.1016/j.molmed.2014.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/07/2014] [Accepted: 09/09/2014] [Indexed: 01/03/2023]
|
14
|
Martin N, Raguz S, Dharmalingam G, Gil J. Co-regulation of senescence-associated genes by oncogenic homeobox proteins and polycomb repressive complexes. Cell Cycle 2014; 12:2194-9. [PMID: 24067365 DOI: 10.4161/cc.25331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is a stable cell cycle arrest that can be induced by stresses such as telomere shortening, oncogene activation or DNA damage. Senescence is a potent anticancer barrier that needs to be circumvented during tumorigenesis. The cell cycle regulator p16(INK4a) is a key effector upregulated during senescence. Polycomb repressive complexes (PRCs) play a crucial role in silencing the INK4/ARF locus, which encodes for p16(INK4a), but the mechanisms by which PRCs are recruited to this locus as well as to other targets remain poorly understood. Recently we discovered the ability of the homeobox proteins HLX1 (H2.0-like homeobox 1) and HOXA9 (Homeobox A9) to bypass senescence. We showed that HLX1 and HOXA9 recruit PRCs to repress INK4a, which constitutes a key mechanism explaining their effects on senescence. Here we provide evidence for the regulation of additional senescence-associated PRC target genes by HLX1 and HOXA9. As both HLX1 and HOXA9 are oncogenes implicated in leukemogenesis, we discuss the implications that the collaboration between Homeobox proteins and PRCs has for senescence and cancer.
Collapse
Affiliation(s)
- Nadine Martin
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, London, UK
| | | | | | | |
Collapse
|
15
|
Zynda E, Jackson MW, Bhattacharya P, Kandel ES. ETV1 positively regulates transcription of tumor suppressor ARF. Cancer Biol Ther 2013; 14:1167-73. [PMID: 24157551 DOI: 10.4161/cbt.26883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ETV1 (ETS variant 1) is a transcription factor from the ETS family and an oncogene in several types of human malignancies. Paradoxically, a predicted inactivating mutation in ETV1 was previously found in a clone of HT1080 cells with reduced activity of p53. We report that elevated expression of ETV1 makes p53-null tumor cells hypersensitive to restoration of said tumor suppressor. Furthermore, elevated levels of either wild-type ETV1 or its truncated derivative, dETV1, which mimics the product of an oncogenic rearrangement in certain tumors, results in increased expression of mRNA for p14ARF, a known activator of p53. Accordingly, expression of a luciferase reporter, which is driven by a putative ARF promoter, was elevated by concomitant expression of either ETV1 or dETV1. Our observations point to yet another example of a tumor suppressor gene being activated by a potentially oncogenic signal. A better understanding of the mechanisms that allow a cell to bypass such safeguards is needed in order to predict and prevent the development of an oncogene-tolerant state during cancer evolution.
Collapse
Affiliation(s)
- Evan Zynda
- Department of Cell Stress Biology; Roswell Park Cancer Institute; Buffalo, NY USA
| | - Mark W Jackson
- Department of Pathology; Case Western Reserve University; Cleveland, OH USA
| | - Partho Bhattacharya
- Department of Cell Stress Biology; Roswell Park Cancer Institute; Buffalo, NY USA
| | - Eugene S Kandel
- Department of Cell Stress Biology; Roswell Park Cancer Institute; Buffalo, NY USA
| |
Collapse
|
16
|
Abstract
p16(INK4a), located on chromosome 9p21.3, is lost among a cluster of neighboring tumor suppressor genes. Although it is classically known for its capacity to inhibit cyclin-dependent kinase (CDK) activity, p16(INK4a) is not just a one-trick pony. Long-term p16(INK4a) expression pushes cells to enter senescence, an irreversible cell-cycle arrest that precludes the growth of would-be cancer cells but also contributes to cellular aging. Importantly, loss of p16(INK4a) is one of the most frequent events in human tumors and allows precancerous lesions to bypass senescence. Therefore, precise regulation of p16(INK4a) is essential to tissue homeostasis, maintaining a coordinated balance between tumor suppression and aging. This review outlines the molecular pathways critical for proper p16(INK4a) regulation and emphasizes the indispensable functions of p16(INK4a) in cancer, aging, and human physiology that make this gene special.
Collapse
Affiliation(s)
- Kyle M LaPak
- Biomedical Research Tower, Rm 586, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210.
| | | |
Collapse
|
17
|
Han J, Mistriotis P, Lei P, Wang D, Liu S, Andreadis ST. Nanog reverses the effects of organismal aging on mesenchymal stem cell proliferation and myogenic differentiation potential. Stem Cells 2013; 30:2746-59. [PMID: 22949105 DOI: 10.1002/stem.1223] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 08/05/2012] [Indexed: 12/15/2022]
Abstract
Although the therapeutic potential of mesenchymal stem cells (MSCs) is widely accepted, loss of cell function due to donor aging or culture senescence are major limiting factors hampering their clinical application. Our laboratory recently showed that MSCs originating from older donors suffer from limited proliferative capacity and significantly reduced myogenic differentiation potential. This is a major concern, as the patients most likely to suffer from cardiovascular disease are elderly. Here we tested the hypothesis that a single pluripotency-associated transcription factor, namely Nanog, may reverse the proliferation and differentiation potential of bone marrow-derived MSC (BM-MSC) from adult donors. Microarray analysis showed that adult (a)BM-MSC expressing Nanog clustered close to Nanog-expressing neonatal cells. Nanog markedly upregulated genes involved in cell cycle, DNA replication, and DNA damage repair and enhanced the proliferation rate and clonogenic capacity of aBM-MSC. Notably, Nanog reversed the myogenic differentiation potential and restored the contractile function of aBM-MSC to a similar level as that of neonatal (n)BM-MSC. The effect of Nanog on contractility was mediated--at least in part--through activation of the TGF-β pathway by diffusible factors secreted in the conditioned medium of Nanog-expressing BM-MSC. Overall, our results suggest that Nanog may be used to overcome the effects of organismal aging on aBM-MSC, thereby increasing the potential of MSC from aged donors for cellular therapy and tissue regeneration.
Collapse
Affiliation(s)
- Juhee Han
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, New York 14260-4200, USA
| | | | | | | | | | | |
Collapse
|
18
|
miRNAs involved in the generation, maintenance, and differentiation of pluripotent cells. J Mol Med (Berl) 2012; 90:747-52. [PMID: 22684238 DOI: 10.1007/s00109-012-0922-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/04/2012] [Accepted: 05/24/2012] [Indexed: 12/24/2022]
Abstract
With the groundbreaking work of Takahashi and Yamanaka, induced pluripotent stem cells (iPSCs) have taken the stage of international stem cell research as a novel source of pluripotent cells and an alternative to embryonic stem cells (ESCs). Apart from their enormous potential as a starting source for the generation of patient-specific cell therapy products, iPSCs also highlight the power of artificially modulating transcriptional networks to induce dramatic changes of cell specification. Since small non-coding RNAs play important roles in the modulation and fine-tuning of transcriptional networks, microRNAs also exhibit important functions in directing cell fate decisions. In this review, we will discuss the role of microRNAs in pluripotent stem cells and their impact on the induction of pluripotency during reprogramming of somatic cells.
Collapse
|
19
|
Smith LL, Yeung J, Zeisig BB, Popov N, Huijbers I, Barnes J, Wilson AJ, Taskesen E, Delwel R, Gil J, Van Lohuizen M, So CWE. Functional crosstalk between Bmi1 and MLL/Hoxa9 axis in establishment of normal hematopoietic and leukemic stem cells. Cell Stem Cell 2012; 8:649-62. [PMID: 21624810 DOI: 10.1016/j.stem.2011.05.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 01/07/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
Abstract
Bmi1 is required for efficient self-renewal of hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs). In this study, we investigated whether leukemia-associated fusion proteins, which differ in their ability to activate Hox expression, could initiate leukemia in the absence of Bmi1. AML1-ETO and PLZF-RARα, which do not activate Hox, triggered senescence in Bmi1(-/-) cells. In contrast, MLL-AF9, which drives expression of Hoxa7 and Hoxa9, readily transformed Bmi1(-/-) cells. MLL-AF9 could not initiate leukemia in Bmi1(-/-)Hoxa9(-/-) mice, which have further compromised HSC functions. But either gene could restore the ability of MLL-AF9 to establish LSCs in the double null background. As reported for Bmi1, Hoxa9 regulates expression of p16(Ink4a)/p19(ARF) locus and could overcome senescence induced by AML1-ETO. Together, these results reveal an important functional interplay between MLL/Hox and Bmi1 in regulating cellular senescence for LSC development, suggesting that a synergistic targeting of both molecules is required to eradicate a broader spectrum of LSCs.
Collapse
Affiliation(s)
- Lan-Lan Smith
- Leukaemia and Stem Cell Biology Lab, Department of Haematological Medicine, King's College London, London SE5 9NU, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Douville JM, Cheung DYC, Herbert KL, Moffatt T, Wigle JT. Mechanisms of MEOX1 and MEOX2 regulation of the cyclin dependent kinase inhibitors p21 and p16 in vascular endothelial cells. PLoS One 2011; 6:e29099. [PMID: 22206000 PMCID: PMC3243699 DOI: 10.1371/journal.pone.0029099] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/21/2011] [Indexed: 12/31/2022] Open
Abstract
Senescence, the state of permanent cell cycle arrest, has been associated
with endothelial cell dysfunction and atherosclerosis. The cyclin dependent
kinase inhibitors p21CIP1/WAF1 and p16INK4a govern the
G1/S cell cycle checkpoint and are essential for determining whether
a cell enters into an arrested state. The homeodomain transcription factor
MEOX2 is an important regulator of vascular cell proliferation and is a direct
transcriptional activator of both p21CIP1/WAF1 and p16INK4a.
MEOX1 and MEOX2 have been shown to be partially functionally redundant during
development, suggesting that they regulate similar target genes in
vivo. We compared the ability of MEOX1 and MEOX2 to activate p21CIP1/WAF1
and p16INK4a expression and induce endothelial cell cycle arrest.
Our results demonstrate for the first time that MEOX1 regulates the MEOX2
target genes p21CIP1/WAF1 and p16INK4a. In addition,
increased expression of either of the MEOX homeodomain transcription factors
leads to cell cycle arrest and endothelial cell senescence. Furthermore, we
show that the mechanism of transcriptional activation of these cyclin dependent
kinase inhibitor genes by MEOX1 and MEOX2 is distinct. MEOX1 and MEOX2 activate
p16INK4a in a DNA binding dependent manner, whereas they induce
p21CIP1/WAF1 in a DNA binding independent manner.
Collapse
Affiliation(s)
- Josette M. Douville
- Institute of Cardiovascular Sciences,
St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical
Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David Y. C. Cheung
- Institute of Cardiovascular Sciences,
St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Krista L. Herbert
- Institute of Cardiovascular Sciences,
St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Teri Moffatt
- Institute of Cardiovascular Sciences,
St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Jeffrey T. Wigle
- Institute of Cardiovascular Sciences,
St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical
Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
21
|
Lanigan F, Geraghty JG, Bracken AP. Transcriptional regulation of cellular senescence. Oncogene 2011; 30:2901-11. [PMID: 21383691 DOI: 10.1038/onc.2011.34] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cellular senescence is an irreversible arrest of proliferation. It is activated when a cell encounters stress such as DNA damage, telomere shortening or oncogene activation. Like apoptosis, it impedes tumour progression and acts as a barrier that pre-neoplastic cells must overcome during their evolution toward the full tumourigenic state. This review focuses on the role of transcriptional regulators in the control of cellular senescence, explores how their function is perturbed in cancer and discusses the potential to harness this knowledge for future cancer therapies.
Collapse
Affiliation(s)
- F Lanigan
- Smurfit Genetics Department, The Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
22
|
Characteristics of highly polymorphic segmental copy-number variations observed in Japanese by BAC-array-CGH. J Biomed Biotechnol 2011; 2011:820472. [PMID: 21197411 PMCID: PMC3010704 DOI: 10.1155/2011/820472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/17/2010] [Accepted: 10/01/2010] [Indexed: 11/25/2022] Open
Abstract
Segmental copy-number variations (CNVs) may contribute to genetic variation in humans. Reports
of the existence and characteristics of CNVs in a large Japanese cohort are quite limited. We report the data from a large Japanese population.
We conducted population screening for 213 unrelated Japanese individuals using comparative genomic hybridization based on a bacterial artificial
chromosome microarray (BAC-aCGH). We summarize the data by focusing on highly polymorphic CNVs in ≥5.0% of the individual,
since they may be informative for demonstrating the relationships between genotypes and their phenotypes. We found a total of 680 CNVs at 16
different BAC-regions in the genome. The majority of the polymorphic CNVs presented on BAC-clones that overlapped with regions of segmental
duplication, and the majority of the polymorphic CNVs observed in this population had been previously reported in other publications.
Some of the CNVs contained genes which might be related to phenotypic heterogeneity among individuals.
Collapse
|
23
|
Bishop CL, Bergin AMH, Fessart D, Borgdorff V, Hatzimasoura E, Garbe JC, Stampfer MR, Koh J, Beach DH. Primary cilium-dependent and -independent Hedgehog signaling inhibits p16(INK4A). Mol Cell 2010; 40:533-47. [PMID: 21095584 DOI: 10.1016/j.molcel.2010.10.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 06/09/2010] [Accepted: 08/27/2010] [Indexed: 01/24/2023]
Abstract
In a genome-wide siRNA analysis of p16(INK4a) (p16) modulators, we identify the Hedgehog (Hh) pathway component SUFU and formally demonstrate that Hh signaling promotes mitogenesis by suppression of p16. A fragment of the Hh-responsive GLI2 transcription factor directly binds and inhibits the p16 promoter and senescence is associated with the loss of nuclear GLI2. Hh components partially reside in the primary cilium (PC), and the small fraction of cells in mass culture that elaborate a PC have the lowest expression of p16. Suppression of p16 is effected by both PC-dependent and -independent routes, and ablation of p16 renders cells insensitive to an Hh inhibitor and increases PC formation. These results directly link a well-established developmental mitogenic pathway with a key tumor suppressor and contribute to the molecular understanding of replicative senescence, Hh-mediated oncogenesis, and potentially the role of p16 in aging.
Collapse
Affiliation(s)
- Cleo L Bishop
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London E1 2AT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Regulation of the expression and activity of the antiangiogenic homeobox gene GAX/MEOX2 by ZEB2 and microRNA-221. Mol Cell Biol 2010; 30:3902-13. [PMID: 20516212 DOI: 10.1128/mcb.01237-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tumors secrete proangiogenic factors to induce the ingrowth of blood vessels from the stroma. These peptides bind to cell surface receptors on vascular endothelial cells (ECs), triggering signaling cascades that activate and repress batteries of downstream genes responsible for the angiogenic phenotype. To determine if microRNAs (miRNAs) affect regulation of the EC phenotype by GAX, a homeobox gene and negative transcriptional regulator of the angiogenic phenotype, we tested the effect of miR-221 on GAX expression. miR-221 strongly upregulated GAX, suggesting that miR-221 downregulates a repressor of GAX. We next expressed miR-221 in ECs and identified ZEB2, a modulator of the epithelial-mesenchymal transition, as being strongly downregulated by miR-221. Using miR-221 expression constructs and an inhibitor, we determined that ZEB2 is upregulated by serum and downregulates GAX, while the expression of miR-221 upregulates GAX and downregulates ZEB2. A mutant miR-221 fails to downregulate ZEB2 or upregulate GAX. Finally, using chromatin immunoprecipitation, we identified two ZEB2 binding sites that modulate the ability of ZEB2 to downregulate GAX promoter activity. We conclude that miR-221 upregulates GAX primarily through its ability to downregulate the expression of ZEB2. These observations suggest a strategy for inhibiting angiogenesis by either recapitulating miR-221 expression or inhibiting ZEB2 activation.
Collapse
|