1
|
Rock AQ, Srivastava M. Totipotency and high plasticity in an embryo with a stereotyped, invariant cleavage program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637942. [PMID: 39990477 PMCID: PMC11844520 DOI: 10.1101/2025.02.12.637942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Animal embryos begin as totipotent zygotes, which undergo cell divisions and produce progeny with restricted fate potentials over time. However, the timing of when totipotency is lost and the processes through which embryonic cells acquire fates vary across species. Embryos with invariant cleavage programs, e.g. of nematodes and spiralians, tend to show early restriction of blastomere potency and limited robustness to perturbation, particularly after asymmetric cleavages have occurred. In contrast, embryos with variant cleavage programs, e.g. of vertebrates, tend to specify fates later in development and correspondingly show higher plasticity at early stages. Here, we investigate the embryos of the acoel Hofstenia miamia , which represents an understudied phylum (Xenacoelomorpha) that is distantly related to well-studied developmental systems. Given the invariant 'duet' cleavage program observed in H. miamia embryos, we found unexpected robustness in this species. Isolated 4-cell stage macromeres, the products of an asymmetric, fate specifying cleavage, were totipotent, forming whole organisms upon isolation. Notably, these isolated macromeres produced pharyngeal and neuronal tissues, which they do not produce during normal development. This assay is highly reproducible and can be done at high throughput in H. miamia , making this species an ideal system to investigate the causes of totipotency after specification. Photoconversion-based lineage tracing revealed that rescued cell types are not merely replaced by neoblasts, the adult pluripotent stem cells in H. miamia , suggesting that the macromere's totipotency is the result of changes in the fate potentials of early embryonic cells. Remarkably, all blastomeres at the 8-cell stage were capable of reprogramming their fates in embryo reconstitution assays. By assembling different subsets of 8-cell stage blastomeres, none of which are totipotent on their own, we determined that a minimal unit of two blastomeres, one macromere that produces gut and neoblasts and one micromere that is specified to produce muscle and epidermis, was sufficient to develop into a hatchling worm. Future studies of this system could identify the precise mechanisms that can enable tremendous plasticity, including post-zygotic totipotency, in an embryo with well-defined cellular lineages.
Collapse
|
2
|
Duan Y, Segev T, Veksler-Lublinsky I, Ambros V, Srivastava M. Identification and developmental profiling of microRNAs in the acoel worm Hofstenia miamia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626237. [PMID: 39677803 PMCID: PMC11642771 DOI: 10.1101/2024.12.01.626237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The acoel worm Hofstenia miamia (H. miamia) has recently emerged as a model organism for studying whole-body regeneration and embryonic development. Previous studies suggest that post-transcriptional mechanisms likely play important roles in whole-body regeneration. Here, we establish a resource for studying H. miamia microRNA-mediated gene regulation, a major aspect of post-transcriptional control in animals. Using small RNA-sequencing samples spanning key developmental stages, we annotated H. miamia microRNAs. Our analysis uncovered a total of 1,050 microRNA loci, including 479 high-confidence loci based on structural and read abundance criteria. Comparison of microRNA seed sequences with those in other bilaterian species revealed that H. miamia encodes the majority of known conserved bilaterian microRNA families and that several microRNA families previously reported only in protostomes or deuterostomes likely have ancient bilaterian origins. We profiled the expression dynamics of the H. miamia miRNAs across embryonic and post-embryonic development. We observed that the let-7 and mir-125 microRNAs are unconventionally enriched at early embryonic stages. To generate hypotheses for miRNA function, we annotated the 3' UTRs of H. miamia protein-coding genes and performed miRNA target site predictions. Focusing on genes that are known to function in the wound response, posterior patterning, and neural differentiation in H. miamia , we found that these processes may be under substantial miRNA regulation. Notably, we found that miRNAs in MIR-7 and MIR-9 families which have target sites in the posterior genes fz-1 , wnt-3 , and sp5 are indeed expressed in the anterior of the animal, consistent with a repressive effect on their corresponding target genes. Our annotation offers candidate miRNAs for further functional investigation, providing a resource for future studies of post-transcriptional control during development and regeneration.
Collapse
|
3
|
Montagne J, Preza M, Koziol U. Stem cell proliferation and differentiation during larval metamorphosis of the model tapeworm Hymenolepis microstoma. Front Cell Infect Microbiol 2023; 13:1286190. [PMID: 37908761 PMCID: PMC10614006 DOI: 10.3389/fcimb.2023.1286190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Background Tapeworm larvae cause important diseases in humans and domestic animals. During infection, the first larval stage undergoes a metamorphosis where tissues are formed de novo from a population of stem cells called germinative cells. This process is difficult to study for human pathogens, as these larvae are infectious and difficult to obtain in the laboratory. Methods In this work, we analyzed cell proliferation and differentiation during larval metamorphosis in the model tapeworm Hymenolepis microstoma, by in vivo labelling of proliferating cells with the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU), tracing their differentiation with a suite of specific molecular markers for different cell types. Results Proliferating cells are very abundant and fast-cycling during early metamorphosis: the total number of cells duplicates every ten hours, and the length of G2 is only 75 minutes. New tegumental, muscle and nerve cells differentiate from this pool of proliferating germinative cells, and these processes are very fast, as differentiation markers for neurons and muscle cells appear within 24 hours after exiting the cell cycle, and fusion of new cells to the tegumental syncytium can be detected after only 4 hours. Tegumental and muscle cells appear from early stages of metamorphosis (24 to 48 hours post-infection); in contrast, most markers for differentiating neurons appear later, and the detection of synapsin and neuropeptides correlates with scolex retraction. Finally, we identified populations of proliferating cells that express conserved genes associated with neuronal progenitors and precursors, suggesting the existence of tissue-specific lineages among germinative cells. Discussion These results provide for the first time a comprehensive view of the development of new tissues during tapeworm larval metamorphosis, providing a framework for similar studies in human and veterinary pathogens.
Collapse
Affiliation(s)
| | | | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Evolutionary Adaptations of Parasitic Flatworms to Different Oxygen Tensions. Antioxidants (Basel) 2022; 11:antiox11061102. [PMID: 35739999 PMCID: PMC9220675 DOI: 10.3390/antiox11061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022] Open
Abstract
During the evolution of the Earth, the increase in the atmospheric concentration of oxygen gave rise to the development of organisms with aerobic metabolism, which utilized this molecule as the ultimate electron acceptor, whereas other organisms maintained an anaerobic metabolism. Platyhelminthes exhibit both aerobic and anaerobic metabolism depending on the availability of oxygen in their environment and/or due to differential oxygen tensions during certain stages of their life cycle. As these organisms do not have a circulatory system, gas exchange occurs by the passive diffusion through their body wall. Consequently, the flatworms developed several adaptations related to the oxygen gradient that is established between the aerobic tegument and the cellular parenchyma that is mostly anaerobic. Because of the aerobic metabolism, hydrogen peroxide (H2O2) is produced in abundance. Catalase usually scavenges H2O2 in mammals; however, this enzyme is absent in parasitic platyhelminths. Thus, the architecture of the antioxidant systems is different, depending primarily on the superoxide dismutase, glutathione peroxidase, and peroxiredoxin enzymes represented mainly in the tegument. Here, we discuss the adaptations that parasitic flatworms have developed to be able to transit from the different metabolic conditions to those they are exposed to during their life cycle.
Collapse
|
5
|
Rinkevich B, Ballarin L, Martinez P, Somorjai I, Ben‐Hamo O, Borisenko I, Berezikov E, Ereskovsky A, Gazave E, Khnykin D, Manni L, Petukhova O, Rosner A, Röttinger E, Spagnuolo A, Sugni M, Tiozzo S, Hobmayer B. A pan-metazoan concept for adult stem cells: the wobbling Penrose landscape. Biol Rev Camb Philos Soc 2022; 97:299-325. [PMID: 34617397 PMCID: PMC9292022 DOI: 10.1111/brv.12801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Loriano Ballarin
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Pedro Martinez
- Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaAv. Diagonal 643Barcelona08028Spain
- Institut Català de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys 23Barcelona08010Spain
| | - Ildiko Somorjai
- School of BiologyUniversity of St AndrewsSt Andrews, FifeKY16 9ST, ScotlandUK
| | - Oshrat Ben‐Hamo
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Ilya Borisenko
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon UniversityJardin du Pharo, 58 Boulevard Charles LivonMarseille13007France
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesUlitsa Vavilova, 26Moscow119334Russia
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques MonodParisF‐75006France
| | - Denis Khnykin
- Department of PathologyOslo University HospitalBygg 19, Gaustad Sykehus, Sognsvannsveien 21Oslo0188Norway
| | - Lucia Manni
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Olga Petukhova
- Collection of Vertebrate Cell CulturesInstitute of Cytology, Russian Academy of SciencesTikhoretsky Ave. 4St. Petersburg194064Russia
| | - Amalia Rosner
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN)Nice06107France
- Université Côte d'Azur, Federative Research Institute – Marine Resources (IFR MARRES)28 Avenue de ValroseNice06103France
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| | - Michela Sugni
- Department of Environmental Science and Policy (ESP)Università degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV)06234 Villefranche‐sur‐MerVillefranche sur MerCedexFrance
| | - Bert Hobmayer
- Institute of Zoology and Center for Molecular Biosciences, University of InnsbruckTechnikerstrInnsbruck256020Austria
| |
Collapse
|
6
|
Egger B. Studying Xenacoelomorpha WBR Using Isodiametra pulchra. Methods Mol Biol 2022; 2450:245-261. [PMID: 35359312 PMCID: PMC9761510 DOI: 10.1007/978-1-0716-2172-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Xenacoelomorpha are a phylogenetically and biologically interesting, but severely understudied group of worm-like animals. Among them, the acoel Isodiametra pulchra has been shown to be amenable to experimental work, including the study of stem cells and regeneration. The animal is capable of regenerating the posterior part of the body, but not its head. Here, methods such as nucleic acid extractions, in situ hybridisation, RNA interference, antibody and cytochemical stainings, and the general handling of the animals are presented.
Collapse
Affiliation(s)
- Bernhard Egger
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
7
|
Atherton S, Jondelius U. Phylogenetic assessment and systematic revision of the acoel family Isodiametridae. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Isodiametridae is a large family of Acoela with 22 nominal genera and nearly 100 species. Unfortunately, systematics of Isodiametridae, as it stands, is highly problematic. Genera frequently have been proposed without reference to an explicit phylogenetic hypothesis, such that the current classification system holds little or no predictive power. Many taxa do not fit with the family diagnosis, and it is increasingly difficult to determine in which taxon a new species should be described. Herein, we reconstruct the phylogenetic relationships of Acoela with a focus on Isodiametridae using both previously published and new ribosomal and mitochondrial sequence data. Our dataset comprises sequences from 45 species representing 16 of the 22 isodiametrid genera. Our results recovered a well-supported Isodiametridae, but provided further evidence that the family and several genera within require revision. We have updated the classification system of Isodiametridae to be consistent with its phylogeny, including the transference of Otocelis to Otocelididae, Postaphanostoma and Faerlea to Mecynostomidae and Alluna to Actinoposthiidae. Six other genera are placed in synonymy. We review the morphological taxonomy and provide an identification key of the genera in the revised family.
Collapse
Affiliation(s)
- Sarah Atherton
- Department of Zoology, Naturhistoriska riksmuseet, Stockholm, Sweden
| | - Ulf Jondelius
- Department of Zoology, Naturhistoriska riksmuseet, Stockholm, Sweden
- Department of Zoology, Systematics and Evolution, Stockholm Universitet, Stockholm, Sweden
| |
Collapse
|
8
|
Schadt T, Prantl V, Grosbusch AL, Bertemes P, Egger B. Regeneration of the flatworm Prosthiostomum siphunculus (Polycladida, Platyhelminthes). Cell Tissue Res 2020; 383:1025-1041. [PMID: 33159580 PMCID: PMC7960593 DOI: 10.1007/s00441-020-03302-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/14/2020] [Indexed: 01/07/2023]
Abstract
Fueled by the discovery of head regeneration in triclads (planarians) two and a half centuries ago, flatworms have been the focus of regeneration research. But not all flatworms can regenerate equally well and to obtain a better picture of the characteristics and evolution of regeneration in flatworms other than planarians, the regeneration capacity and stem cell dynamics during regeneration in the flatworm order Polycladida are studied. Here, we show that as long as the brain remained at least partially intact, the polyclad Prosthiostomum siphunculus was able to regenerate submarginal eyes, cerebral eyes, pharynx, intestine and sucker. In the complete absence of the brain only wound closure was observed but no regeneration of missing organs. Amputated parts of the brain could not be regenerated. The overall regeneration capacity of P. siphunculus is a good fit for category III after a recently established system, in which most polyclads are currently classified. Intact animals showed proliferating cells in front of the brain which is an exception compared with most of the other free-living flatworms that have been observed so far. Proliferating cells could be found within the regeneration blastema, similar to all other flatworm taxa except triclads. No proliferation was observed in epidermis and pharynx. In pulse-chase experiments, the chased cells were found in all regenerated tissues and thereby shown to differentiate and migrate to replace the structures lost upon amputation.
Collapse
Affiliation(s)
- Tamara Schadt
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Veronika Prantl
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Alexandra L Grosbusch
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Philip Bertemes
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Bernhard Egger
- Research Unit Evolutionary and Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Kashima M, Agata K, Shibata N. What is the role of PIWI family proteins in adult pluripotent stem cells? Insights from asexually reproducing animals, planarians. Dev Growth Differ 2020; 62:407-422. [PMID: 32621324 DOI: 10.1111/dgd.12688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/26/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Planarians have a remarkable regenerative ability owing to their adult pluripotent stem cells (aPSCs), which are called "neoblasts." Planarians maintain a considerable number of neoblasts throughout their adulthood to supply differentiated cells for the maintenance of tissue homeostasis and asexual reproduction (fission followed by regeneration). Thus, planarians serve as a good model to study the regulatory mechanisms of in vivo aPSCs. In asexually reproducing invertebrates, such as sponge, Hydra, and planaria, piwi family genes are the markers most commonly expressed in aPSCs. While piwi family genes are known as guardians against transposable elements in the germline cells of animals that only sexually propagate, their functions in the aPSC system have remained elusive. In this review, we introduce recent knowledge on the PIWI family proteins in the aPSC system in planarians and other organisms and discuss how PIWI family proteins contribute to the regulation of the aPSC system.
Collapse
Affiliation(s)
- Makoto Kashima
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara Chuo Ku, Japan
| | - Kiyokazu Agata
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Norito Shibata
- Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College, Tsuyama-City, Japan
| |
Collapse
|
10
|
Hulett RE, Potter D, Srivastava M. Neural architecture and regeneration in the acoel Hofstenia miamia. Proc Biol Sci 2020; 287:20201198. [PMID: 32693729 PMCID: PMC7423668 DOI: 10.1098/rspb.2020.1198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The origin of bilateral symmetry, a major transition in animal evolution, coincided with the evolution of organized nervous systems that show regionalization along major body axes. Studies of Xenacoelomorpha, the likely outgroup lineage to all other animals with bilateral symmetry, can inform the evolutionary history of animal nervous systems. Here, we characterized the neural anatomy of the acoel Hofstenia miamia. Our analysis of transcriptomic data uncovered orthologues of enzymes for all major neurotransmitter synthesis pathways. Expression patterns of these enzymes revealed the presence of a nerve net and an anterior condensation of neural cells. The anterior condensation was layered, containing several cell types with distinct molecular identities organized in spatially distinct territories. Using these anterior cell types and structures as landmarks, we obtained a detailed timeline for regeneration of the H. miamia nervous system, showing that the anterior condensation is restored by eight days after amputation. Our work detailing neural anatomy in H. miamia will enable mechanistic studies of neural cell type diversity and regeneration and provide insight into the evolution of these processes.
Collapse
Affiliation(s)
- Ryan E Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Deirdre Potter
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
11
|
Fields C, Levin M. Does regeneration recapitulate phylogeny? Planaria as a model of body-axis specification in ancestral eumetazoa. Commun Integr Biol 2020; 13:27-38. [PMID: 32128026 PMCID: PMC7039665 DOI: 10.1080/19420889.2020.1729601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/31/2022] Open
Abstract
Metazoan body plans combine well-defined primary, secondary, and in many bilaterians, tertiary body axes with structural asymmetries at multiple scales. Despite decades of study, how axis-defining symmetries and system-defining asymmetries co-emerge during both evolution and development remain open questions. Regeneration studies in asexual planaria have demonstrated an array of viable forms with symmetrized and, in some cases, duplicated body axes. We suggest that such forms may point toward an ancestral eumetazoan form with characteristics of both cnidarians and placazoa.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
12
|
Bertemes P, Grosbusch AL, Egger B. No head regeneration here: regeneration capacity and stem cell dynamics of Theama mediterranea (Polycladida, Platyhelminthes). Cell Tissue Res 2019; 379:301-321. [PMID: 31511984 DOI: 10.1007/s00441-019-03094-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Research on the regeneration potential of flatworms (Platyhelminthes) has been mainly undertaken with planarians (Tricladida), where most species can regenerate a head and no proliferation takes place in the blastema, i.e. the early undifferentiated regenerative tissue. Only few studies are available for an early-branching group within the Platyhelminthes, the Polycladida. Head regeneration in polyclads is not possible, with a single exception from a study performed more than 100 years ago: Cestoplana was reported to be able to regenerate a head if cut a short distance behind the brain. Here, we show that 'Cestoplana' was misdetermined and most likely was the small interstitial polyclad Theama mediterranea. We revisited regeneration capacity and dynamics of T. mediterranea with live observations and stainings of musculature, nervous system, and proliferating and differentiating stem cells. In our experiments, after transversal amputation, only animals retaining more than half of the brain could fully restore the head including the brain. If completely removed, the brain was never found to regenerate to any extent. Different from planarians, but comparable to other free-living flatworms we detected cell proliferation within the posterior regeneration blastema in T. mediterranea. Similar to other free-living flatworms, proliferation did not occur within, but only outside, the differentiating organ primordia. Our results strongly imply that brain regeneration in the absence of the latter is not possible in any polyclad studied so far. Also, it appears that proliferation of stem cells within the regeneration blastema is a plesiomorphy in flatworms and that planarians are derived in this character.
Collapse
Affiliation(s)
- Philip Bertemes
- Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Alexandra L Grosbusch
- Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Bernhard Egger
- Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| |
Collapse
|
13
|
|
14
|
De Miguel-Bonet MDM, Ahad S, Hartenstein V. Role of neoblasts in the patterned postembryonic growth of the platyhelminth Macrostomum lignano. NEUROGENESIS 2018; 5:e14699441-e14699449. [PMID: 30083565 DOI: 10.1080/23262133.2018.1469944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 03/29/2018] [Accepted: 04/20/2018] [Indexed: 10/17/2022]
Abstract
Neoblasts are motile pluripotent stem cells unique to the flatworm phyla Platyhelminthes and Acoela. The role of neoblasts in tissue regeneration has received much attention in recent studies. Here we review data pertinent to the structure and embryonic origin of these stem cells, and their participation in normal cell turnover. Next, we present data proving that neoblasts also account for the addition of cells during postembryonic growth. Bromodeoxyuridine (BrdU) pulse chase experiments demonstrate that the incorporation of neoblast-derived cells into the different tissues of the juvenile worm follows a stereotyped pattern, whereby cells within the parenchymal layer (muscle, gland) incorporate new cells most rapidly, followed by the epidermal domain surrounding the mouth, dorsal epidermis, and, lastly, the nervous system.
Collapse
Affiliation(s)
| | - Sally Ahad
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Marinov GK, Kundaje A. ChIP-ping the branches of the tree: functional genomics and the evolution of eukaryotic gene regulation. Brief Funct Genomics 2018; 17:116-137. [PMID: 29529131 PMCID: PMC5889016 DOI: 10.1093/bfgp/ely004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advances in the methods for detecting protein-DNA interactions have played a key role in determining the directions of research into the mechanisms of transcriptional regulation. The most recent major technological transformation happened a decade ago, with the move from using tiling arrays [chromatin immunoprecipitation (ChIP)-on-Chip] to high-throughput sequencing (ChIP-seq) as a readout for ChIP assays. In addition to the numerous other ways in which it is superior to arrays, by eliminating the need to design and manufacture them, sequencing also opened the door to carrying out comparative analyses of genome-wide transcription factor occupancy across species and studying chromatin biology in previously less accessible model and nonmodel organisms, thus allowing us to understand the evolution and diversity of regulatory mechanisms in unprecedented detail. Here, we review the biological insights obtained from such studies in recent years and discuss anticipated future developments in the field.
Collapse
Affiliation(s)
- Georgi K Marinov
- Corresponding author: Georgi K. Marinov, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. E-mail:
| | | |
Collapse
|
16
|
An Y, Kawaguchi A, Zhao C, Toyoda A, Sharifi-Zarchi A, Mousavi SA, Bagherzadeh R, Inoue T, Ogino H, Fujiyama A, Chitsaz H, Baharvand H, Agata K. Draft genome of Dugesia japonica provides insights into conserved regulatory elements of the brain restriction gene nou-darake in planarians. ZOOLOGICAL LETTERS 2018; 4:24. [PMID: 30181897 PMCID: PMC6114478 DOI: 10.1186/s40851-018-0102-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/03/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Planarians are non-parasitic Platyhelminthes (flatworms) famous for their regeneration ability and for having a well-organized brain. Dugesia japonica is a typical planarian species that is widely distributed in the East Asia. Extensive cellular and molecular experimental methods have been developed to identify the functions of thousands of genes in this species, making this planarian a good experimental model for regeneration biology and neurobiology. However, no genome-level information is available for D. japonica, and few gene regulatory networks have been identified thus far. RESULTS To obtain whole-genome information on this species and to study its gene regulatory networks, we extracted genomic DNA from 200 planarians derived from a laboratory-bred asexual clonal strain, and sequenced 476 Gb of data by second-generation sequencing. Kmer frequency graphing and fosmid sequence analysis indicated a complex genome that would be difficult to assemble using second-generation sequencing short reads. To address this challenge, we developed a new assembly strategy and improved the de novo genome assembly, producing a 1.56 Gb genome sequence (DjGenome ver1.0, including 202,925 scaffolds and N50 length 27,741 bp) that covers 99.4% of all 19,543 genes in the assembled transcriptome, although the genome is fragmented as 80% of the genome consists of repeated sequences (genomic frequency ≥ 2). By genome comparison between two planarian genera, we identified conserved non-coding elements (CNEs), which are indicative of gene regulatory elements. Transgenic experiments using Xenopus laevis indicated that one of the CNEs in the Djndk gene may be a regulatory element, suggesting that the regulation of the ndk gene and the brain formation mechanism may be conserved between vertebrates and invertebrates. CONCLUSION This draft genome and CNE analysis will contribute to resolving gene regulatory networks in planarians. The genome database is available at: http://www.planarian.jp.
Collapse
Affiliation(s)
- Yang An
- Department of Biophysics, Kyoto University, Kyoto, Japan
- Present address: Immolife-biotech Co., Ltd., Nanjing, China
| | - Akane Kawaguchi
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
- Present address: Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Chen Zhao
- School of Pharmacy, Fudan University, Shanghai, China
- Present address: Immolife-biotech Co., Ltd., Nanjing, China
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Ali Sharifi-Zarchi
- Department of Computer Science, Colorado State University, Fort Collins, USA
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Seyed Ahmad Mousavi
- Department of Computer Science, Colorado State University, Fort Collins, USA
| | - Reza Bagherzadeh
- Department of Biophysics, Kyoto University, Kyoto, Japan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
- Present address: Department of Life Science, Gakushuin University, Tokyo, Japan
| | - Takeshi Inoue
- Department of Biophysics, Kyoto University, Kyoto, Japan
- Present address: Department of Life Science, Gakushuin University, Tokyo, Japan
| | - Hajime Ogino
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
- Present address: Amphibian Research Center, Hiroshima University, Higashi-hiroshima, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Hamidreza Chitsaz
- Department of Computer Science, Colorado State University, Fort Collins, USA
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Kiyokazu Agata
- Department of Biophysics, Kyoto University, Kyoto, Japan
- Present address: Department of Life Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
17
|
The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae. Sci Rep 2017; 7:1847. [PMID: 28500313 PMCID: PMC5431833 DOI: 10.1038/s41598-017-01608-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/31/2017] [Indexed: 11/28/2022] Open
Abstract
Acoels are small, ubiquitous - but understudied - marine worms with a very simple body plan. Their internal phylogeny is still not fully resolved, and the position of their proposed phylum Xenacoelomorpha remains debated. Here we describe mitochondrial genome sequences from the acoels Paratomella rubra and Isodiametra pulchra, and the complete mitochondrial genome of the acoel Archaphanostoma ylvae. The P. rubra and A. ylvae sequences are typical for metazoans in size and gene content. The larger I. pulchra mitochondrial genome contains both ribosomal genes, 21 tRNAs, but only 11 protein-coding genes. We find evidence suggesting a duplicated sequence in the I. pulchra mitochondrial genome. The P. rubra, I. pulchra and A. ylvae mitochondria have a unique genome organisation in comparison to other metazoan mitochondrial genomes. We found a large degree of protein-coding gene and tRNA overlap with little non-coding sequence in the compact P. rubra genome. Conversely, the A. ylvae and I. pulchra genomes have many long non-coding sequences between genes, likely driving genome size expansion in the latter. Phylogenetic trees inferred from mitochondrial genes retrieve Xenacoelomorpha as an early branching taxon in the deuterostomes. Sequence divergence analysis between P. rubra sampled in England and Spain indicates cryptic diversity.
Collapse
|
18
|
Barnes DE, Hwang H, Ono K, Lu H, Ono S. Molecular evolution of troponin I and a role of its N-terminal extension in nematode locomotion. Cytoskeleton (Hoboken) 2016; 73:117-30. [PMID: 26849746 DOI: 10.1002/cm.21281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 01/29/2023]
Abstract
The troponin complex, composed of troponin T (TnT), troponin I (TnI), and troponin C (TnC), is the major calcium-dependent regulator of muscle contraction, which is present widely in both vertebrates and invertebrates. Little is known about evolutionary aspects of troponin in the animal kingdom. Using a combination of data mining and functional analysis of TnI, we report evidence that an N-terminal extension of TnI is present in most of bilaterian animals as a functionally important domain. Troponin components have been reported in species in most of representative bilaterian phyla. Comparison of TnI sequences shows that the core domains are conserved in all examined TnIs, and that N- and C-terminal extensions are variable among isoforms and species. In particular, N-terminal extensions are present in all protostome TnIs and chordate cardiac TnIs but lost in a subset of chordate TnIs including vertebrate skeletal-muscle isoforms. Transgenic rescue experiments in Caenorhabditis elegans striated muscle show that the N-terminal extension of TnI (UNC-27) is required for coordinated worm locomotion but not in sarcomere assembly and single muscle-contractility kinetics. These results suggest that N-terminal extensions of TnIs are retained from a TnI ancestor as a functional domain.
Collapse
Affiliation(s)
- Dawn E Barnes
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia
| | - Hyundoo Hwang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia.,School of Engineering and Sciences, Technológico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Kanako Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia.,Interdisciplinary Program of Bioengineering, Georgia Institute of Technology, Atlanta, Georgia.,The Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia
| |
Collapse
|
19
|
Koziol U. Evolutionary developmental biology (evo-devo) of cestodes. Exp Parasitol 2016; 180:84-100. [PMID: 27939766 DOI: 10.1016/j.exppara.2016.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022]
Abstract
Cestodes (tapeworms) have complex adaptations to their obligatory parasitic life-style. Among these adaptations, they show many evolutionary innovations in their development, including complex life-cycles with multiple hosts and life-stages, several independent origins of asexual reproduction, and the evolution of segmentation as a mean to generate massive reproductive output. Therefore, cestodes offer many opportunities for the investigation of the evolutionary origins of developmental novelties (evo-devo). However, cestodes have not been exploited as major models for evo-devo research due to the considerable technical difficulties involved in their study. In this review, a panoramic view is given of classical aspects, methods and hypothesis of cestode development, together with recent advances in phylogenetics, genomics, culture methods, and comparative analysis of cestode gene expression. Together with the availability of powerful models for related free-living flatworms, these developments should encourage the incorporation of these fascinating parasites into the first-line of evo-devo research.
Collapse
Affiliation(s)
- Uriel Koziol
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Uruguay.
| |
Collapse
|
20
|
Gammoudi M, Salvenmoser W, Tekaya S, Egger B. Ultrastructure of the ovary and oogenesis in the flatwormProsthiostomum siphunculus(Polycladida, Cotylea). Cell Biol Int 2016; 40:1174-1186. [DOI: 10.1002/cbin.10657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/13/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Mehrez Gammoudi
- Université de Tunis El manar, Faculté des Sciences de Tunis; UR11ES12 Biologie de la reproduction et du Développement animal; 2092 El Manar Tunis Tunisia
| | - Willi Salvenmoser
- Research Unit Evolutionary Developmental Biology; Institute of Zoology; University of Innsbruck; Technikerstr. 25 6020 Innsbruck Austria
| | - Saïda Tekaya
- Université de Tunis El manar, Faculté des Sciences de Tunis; UR11ES12 Biologie de la reproduction et du Développement animal; 2092 El Manar Tunis Tunisia
| | - Bernhard Egger
- Research Unit Evolutionary Developmental Biology; Institute of Zoology; University of Innsbruck; Technikerstr. 25 6020 Innsbruck Austria
| |
Collapse
|
21
|
Gehrke AR, Srivastava M. Neoblasts and the evolution of whole-body regeneration. Curr Opin Genet Dev 2016; 40:131-137. [PMID: 27498025 DOI: 10.1016/j.gde.2016.07.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/02/2016] [Accepted: 07/13/2016] [Indexed: 11/26/2022]
Abstract
The molecular mechanisms underlying whole-body regeneration are best understood in the planarian flatworm Schmidtea mediterranea, where a heterogeneous population of somatic stem cells called neoblasts provides new tissue for regeneration of essentially any missing body part. Studies on Schmidtea have provided a detailed description of neoblasts and their role in regeneration, but comparatively little is known about the evolutionary history of these cells and their underlying developmental programs. Acoels, an understudied group of aquatic worms that are also capable of extensive whole-body regeneration, have arisen as an attractive group to study the evolution of regenerative processes due to their phylogenetically distant position relative to flatworms. Here, we review the phylogenetic distribution of neoblast cells and compare their anatomical locations, transcriptional profiles, and roles during regeneration in flatworms and acoels to understand the evolution of whole-body regeneration. While the general role of neoblasts appears conserved in species separated by 550 million years of evolution, the extrinsic inputs they receive during regeneration can vary, making the distinction between homology and convergence of mechanism unclear. A more detailed understanding of the precise mechanisms behind whole-body regeneration in diverse phyla is necessary to understand the evolutionary history of this powerful process.
Collapse
Affiliation(s)
- Andrew R Gehrke
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
22
|
Ramm SA. Exploring the sexual diversity of flatworms: Ecology, evolution, and the molecular biology of reproduction. Mol Reprod Dev 2016; 84:120-131. [PMID: 27292123 DOI: 10.1002/mrd.22669] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
Flatworms exhibit huge diversity in their reproductive biology, making this group an excellent model system for exploring how differences among species in reproductive ecology are reflected in the physiological and molecular details of how reproduction is achieved. In this review, I consider five key "lifestyle choices" (i.e., alternative evolutionary/developmental outcomes) that collectively encompass much of flatworm sexual diversity, beginning with the decisions: (i) whether to be free-living or parasitic; (ii) whether to reproduce asexually or sexually; and (iii) whether to be gonochoristic (separate-sexed) or hermaphroditic. I then examine two further decisions involving hermaphroditism: (iv) outcrossing versus selfing and (v) the balance of investment into the male versus the female sex function (sex allocation). Collectively, these lifestyle choices set the basic rules for how reproduction occurs, but as I emphasize in the second part of the review, the reproductive biology of flatworms is also greatly impacted by the near-pervasive and powerful pressure of sexual selection, together with the related phenomena of sperm competition and sexual conflict. Exactly how this plays out, however, is strongly affected by the particular combination of reproductive strategies adopted by each species. Mol. Reprod. Dev. 84: 120-131, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven A Ramm
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
23
|
Lengerer B, Hennebert E, Flammang P, Salvenmoser W, Ladurner P. Adhesive organ regeneration in Macrostomum lignano. BMC DEVELOPMENTAL BIOLOGY 2016; 16:20. [PMID: 27255153 PMCID: PMC4890501 DOI: 10.1186/s12861-016-0121-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/23/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Flatworms possess pluripotent stem cells that can give rise to all cell types, which allows them to restore lost body parts after injury or amputation. This makes flatworms excellent model systems for studying regeneration. In this study, we present the adhesive organs of a marine flatworm as a simple model system for organ regeneration. Macrostomum lignano has approximately 130 adhesive organs at the ventral side of its tail plate. One adhesive organ consists of three interacting cells: one adhesive gland cell, one releasing gland cell, and one modified epidermal cell, called an anchor cell. However, no specific markers for these cell types were available to study the regeneration of adhesive organs. RESULTS We tested 15 commercially available lectins for their ability to label adhesive organs and found one lectin (peanut agglutinin) to be specific to adhesive gland cells. We visualized the morphology of regenerating adhesive organs using lectin- and antibody staining as well as transmission electron microscopy. Our findings indicate that the two gland cells differentiate earlier than the connected anchor cells. Using EdU/lectin staining of partially amputated adhesive organs, we showed that their regeneration can proceed in two ways. First, adhesive gland cell bodies are able to survive partial amputation and reconnect with newly formed anchor cells. Second, adhesive gland cell bodies are cleared away, and the entire adhesive organ is build anew. CONCLUSION Our results provide the first insights into adhesive organ regeneration and describe ten new markers for differentiated cells and tissues in M. lignano. The position of adhesive organ cells within the blastema and their chronological differentiation have been shown for the first time. M. lignano can regenerate adhesive organs de novo but also replace individual anchor cells in an injured organ. Our findings contribute to a better understanding of organogenesis in flatworms and enable further molecular investigations of cell-fate decisions during regeneration.
Collapse
Affiliation(s)
- Birgit Lengerer
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria
| | - Elise Hennebert
- Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000, Mons, Belgium
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000, Mons, Belgium
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000, Mons, Belgium
| | - Willi Salvenmoser
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria.
| |
Collapse
|
24
|
Abstract
The evolution of multicellular animals has been attributed to many kinds of selective advantage; here I suggest that the evolution of somatic cells to feed and protect the germline was central to the appearance of animals. This would have been driven by selection for extreme anisogamy--the evolution of sperm and egg. Evidence is adduced from the germline stem cells of simple animals (defining germline as any cell that normally produces the next generation via the sexual process) and from the control circuitry ubiquitous in animal germlines. With the soma and its elaboration came animal development, as we understand it.
Collapse
Affiliation(s)
- Hugh R Woodland
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
25
|
Gammoudi M, Salvenmoser W, Harrath AH, Tekaya S, Egger B. Ultrastructure of spermatogenesis and mature spermatozoa in the flatworm
Prosthiostomum siphunculus
(Polycladida, Cotylea). Cell Biol Int 2015; 40:277-88. [DOI: 10.1002/cbin.10562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/01/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Mehrez Gammoudi
- Université de Tunis El‐ManarFaculté des Sciences de TunisUR11ES12 Biologie de la Reproduction et du Développement AnimalTunis2092Tunisie
| | - Willi Salvenmoser
- Research Unit Evolutionary Developmental Biology, Institute of ZoologyUniversity of InnsbruckTechnikerstr. 25Innsbruck6020Austria
| | - Abdel Halim Harrath
- Department of Zoology, College of ScienceKing Saud UniversityP.O. Box 2455RiyadhSaudi Arabia
| | - Saïda Tekaya
- Université de Tunis El‐ManarFaculté des Sciences de TunisUR11ES12 Biologie de la Reproduction et du Développement AnimalTunis2092Tunisie
| | - Bernhard Egger
- Research Unit Evolutionary Developmental Biology, Institute of ZoologyUniversity of InnsbruckTechnikerstr. 25Innsbruck6020Austria
| |
Collapse
|
26
|
Haszprunar G. Review of data for a morphological look on Xenacoelomorpha (Bilateria incertae sedis). ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0249-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Zhou X, Battistoni G, El Demerdash O, Gurtowski J, Wunderer J, Falciatori I, Ladurner P, Schatz MC, Hannon GJ, Wasik KA. Dual functions of Macpiwi1 in transposon silencing and stem cell maintenance in the flatworm Macrostomum lignano. RNA (NEW YORK, N.Y.) 2015; 21:1885-97. [PMID: 26323280 PMCID: PMC4604429 DOI: 10.1261/rna.052456.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
PIWI proteins and piRNA pathways are essential for transposon silencing and some aspects of gene regulation during animal germline development. In contrast to most animal species, some flatworms also express PIWIs and piRNAs in somatic stem cells, where they are required for tissue renewal and regeneration. Here, we have identified and characterized piRNAs and PIWI proteins in the emerging model flatworm Macrostomum lignano. We found that M. lignano encodes at least three PIWI proteins. One of these, Macpiwi1, acts as a key component of the canonical piRNA pathway in the germline and in somatic stem cells. Knockdown of Macpiwi1 dramatically reduces piRNA levels, derepresses transposons, and severely impacts stem cell maintenance. Knockdown of the piRNA biogenesis factor Macvasa caused an even greater reduction in piRNA levels with a corresponding increase in transposons. Yet, in Macvasa knockdown animals, we detected no major impact on stem cell self-renewal. These results may suggest stem cell maintenance functions of PIWI proteins in flatworms that are distinguishable from their impact on transposons and that might function independently of what are considered canonical piRNA populations.
Collapse
Affiliation(s)
- Xin Zhou
- Cold Spring Harbor Laboratory and Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, New York 11794, USA
| | - Giorgia Battistoni
- Cold Spring Harbor Laboratory and Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Osama El Demerdash
- Cold Spring Harbor Laboratory and Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - James Gurtowski
- Cold Spring Harbor Laboratory and Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Julia Wunderer
- University of Innsbruck, Institute of Zoology and CMBI, A-6020 Innsbruck, Austria
| | - Ilaria Falciatori
- Cold Spring Harbor Laboratory and Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Peter Ladurner
- University of Innsbruck, Institute of Zoology and CMBI, A-6020 Innsbruck, Austria
| | - Michael C Schatz
- Cold Spring Harbor Laboratory and Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Gregory J Hannon
- Cold Spring Harbor Laboratory and Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Kaja A Wasik
- Cold Spring Harbor Laboratory and Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
28
|
Wasik K, Gurtowski J, Zhou X, Ramos OM, Delás MJ, Battistoni G, El Demerdash O, Falciatori I, Vizoso DB, Smith AD, Ladurner P, Schärer L, McCombie WR, Hannon GJ, Schatz M. Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano. Proc Natl Acad Sci U S A 2015; 112:12462-7. [PMID: 26392545 PMCID: PMC4603488 DOI: 10.1073/pnas.1516718112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The free-living flatworm, Macrostomum lignano has an impressive regenerative capacity. Following injury, it can regenerate almost an entirely new organism because of the presence of an abundant somatic stem cell population, the neoblasts. This set of unique properties makes many flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell-fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of M. lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ∼75% of its sequence being comprised of simple repeats and transposon sequences. This has made high-quality assembly from Illumina reads alone impossible (N50=222 bp). We therefore generated 130× coverage by long sequencing reads from the Pacific Biosciences platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene-expression patterns during regeneration, examining pathways important to stem cell function.
Collapse
Affiliation(s)
- Kaja Wasik
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - James Gurtowski
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Xin Zhou
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; Molecular and Cellular Biology Graduate Program, Stony Brook University, NY 11794
| | - Olivia Mendivil Ramos
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - M Joaquina Delás
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Giorgia Battistoni
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Osama El Demerdash
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ilaria Falciatori
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Dita B Vizoso
- Department of Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Andrew D Smith
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Peter Ladurner
- Department of Evolutionary Biology, Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Lukas Schärer
- Department of Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - W Richard McCombie
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Gregory J Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom;
| | - Michael Schatz
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724;
| |
Collapse
|
29
|
Cooper C, Clode PL, Thomson DP, Stat M. A Flatworm from the GenusWaminoa(Acoela: Convolutidae) Associated with Bleached Corals in Western Australia. Zoolog Sci 2015; 32:465-73. [DOI: 10.2108/zs140245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T, Guiry MD, Kirk PM. A higher level classification of all living organisms. PLoS One 2015; 10:e0119248. [PMID: 25923521 PMCID: PMC4418965 DOI: 10.1371/journal.pone.0119248] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 01/25/2015] [Indexed: 12/28/2022] Open
Abstract
We present a consensus classification of life to embrace the more than 1.6 million species already provided by more than 3,000 taxonomists' expert opinions in a unified and coherent, hierarchically ranked system known as the Catalogue of Life (CoL). The intent of this collaborative effort is to provide a hierarchical classification serving not only the needs of the CoL's database providers but also the diverse public-domain user community, most of whom are familiar with the Linnaean conceptual system of ordering taxon relationships. This classification is neither phylogenetic nor evolutionary but instead represents a consensus view that accommodates taxonomic choices and practical compromises among diverse expert opinions, public usages, and conflicting evidence about the boundaries between taxa and the ranks of major taxa, including kingdoms. Certain key issues, some not fully resolved, are addressed in particular. Beyond its immediate use as a management tool for the CoL and ITIS (Integrated Taxonomic Information System), it is immediately valuable as a reference for taxonomic and biodiversity research, as a tool for societal communication, and as a classificatory "backbone" for biodiversity databases, museum collections, libraries, and textbooks. Such a modern comprehensive hierarchy has not previously existed at this level of specificity.
Collapse
Affiliation(s)
- Michael A. Ruggiero
- Integrated Taxonomic Information System, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, United States of America
| | - Dennis P. Gordon
- National Institute of Water & Atmospheric Research, Wellington, New Zealand
| | - Thomas M. Orrell
- Integrated Taxonomic Information System, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, United States of America
| | | | - Thierry Bourgoin
- Institut Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 MNHN-CNRS-UPMC-EPHE, Sorbonne Universités, Museum National d'Histoire Naturelle, 57, rue Cuvier, CP 50, F-75005, Paris, France
| | - Richard C. Brusca
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | | | - Michael D. Guiry
- The AlgaeBase Foundation & Irish Seaweed Research Group, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Paul M. Kirk
- Mycology Section, Royal Botanic Gardens, Kew, London, United Kingdom
| |
Collapse
|
31
|
Egger B, Lapraz F, Tomiczek B, Müller S, Dessimoz C, Girstmair J, Škunca N, Rawlinson KA, Cameron CB, Beli E, Todaro MA, Gammoudi M, Noreña C, Telford MJ. A transcriptomic-phylogenomic analysis of the evolutionary relationships of flatworms. Curr Biol 2015; 25:1347-53. [PMID: 25866392 PMCID: PMC4446793 DOI: 10.1016/j.cub.2015.03.034] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/27/2015] [Accepted: 03/19/2015] [Indexed: 02/05/2023]
Abstract
The interrelationships of the flatworms (phylum Platyhelminthes) are poorly resolved despite decades of morphological and molecular phylogenetic studies [1, 2]. The earliest-branching clades (Catenulida, Macrostomorpha, and Polycladida) share spiral cleavage and entolecithal eggs with other lophotrochozoans. Lecithoepitheliata have primitive spiral cleavage but derived ectolecithal eggs. Other orders (Rhabdocoela, Proseriata, Tricladida and relatives, and Bothrioplanida) all have derived ectolecithal eggs but have uncertain affinities to one another. The orders of parasitic Neodermata emerge from an uncertain position from within these ectolecithal classes. To tackle these problems, we have sequenced transcriptomes from 18 flatworms and 5 other metazoan groups. The addition of published data produces an alignment of >107,000 amino acids with less than 28% missing data from 27 flatworm taxa in 11 orders covering all major clades. Our phylogenetic analyses show that Platyhelminthes consist of the two clades Catenulida and Rhabditophora. Within Rhabditophora, we show the earliest-emerging branch is Macrostomorpha, not Polycladida. We show Lecithoepitheliata are not members of Neoophora but are sister group of Polycladida, implying independent origins of the ectolecithal eggs found in Lecithoepitheliata and Neoophora. We resolve Rhabdocoela as the most basally branching euneoophoran taxon. Tricladida, Bothrioplanida, and Neodermata constitute a group that appears to have lost both spiral cleavage and centrosomes. We identify Bothrioplanida as the long-sought closest free-living sister group of the parasitic Neodermata. Among parasitic orders, we show that Cestoda are closer to Trematoda than to Monogenea, rejecting the concept of the Cercomeromorpha. Our results have important implications for understanding the evolution of this major phylum. Phylogenomics provide insights into the interrelationships of Platyhelminthes Macrostomorpha are the basalmost rhabditophorans Polycladida are sister group of Lecithoepitheliata/Prorhynchida Bothrioplanida are the free-living sister group of Neodermata
Collapse
Affiliation(s)
- Bernhard Egger
- Department Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK; Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - François Lapraz
- Department Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Bartłomiej Tomiczek
- Department Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Steven Müller
- Department Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Christophe Dessimoz
- Department Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK; Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
| | - Johannes Girstmair
- Department Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Nives Škunca
- ETH Zurich, Department of Computer Science, Universitätsstrasse 19, 8092 Zurich, Switzerland
| | - Kate A Rawlinson
- Department Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Christopher B Cameron
- Université de Montréal, Département de Sciences Biologiques, Pavillon Marie-Victorin, CP 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Elena Beli
- Université de Montréal, Département de Sciences Biologiques, Pavillon Marie-Victorin, CP 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada; Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | - M Antonio Todaro
- Università degli Studi di Modena e Reggio Emilia, Via Campi 213/d, 41100 Modena, Italy
| | - Mehrez Gammoudi
- Université Tunis El-Manar Campus Universitaire, 2092 Tunis, Tunisia
| | - Carolina Noreña
- Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Maximilian J Telford
- Department Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
32
|
Biscotti MA, Canapa A, Forconi M, Barucca M. HoxandParaHoxgenes: A review on molluscs. Genesis 2014; 52:935-45. [DOI: 10.1002/dvg.22839] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente; Università Politecnica delle Marche; Ancona Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente; Università Politecnica delle Marche; Ancona Italy
| | - Mariko Forconi
- Dipartimento di Scienze della Vita e dell'Ambiente; Università Politecnica delle Marche; Ancona Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente; Università Politecnica delle Marche; Ancona Italy
| |
Collapse
|
33
|
Girstmair J, Schnegg R, Telford MJ, Egger B. Cellular dynamics during regeneration of the flatworm Monocelis sp. (Proseriata, Platyhelminthes). EvoDevo 2014; 5:37. [PMID: 25908954 PMCID: PMC4407785 DOI: 10.1186/2041-9139-5-37] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/16/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Proseriates (Proseriata, Platyhelminthes) are free-living, mostly marine, flatworms measuring at most a few millimetres. In common with many flatworms, they are known to be capable of regeneration; however, few studies have been done on the details of regeneration in proseriates, and none cover cellular dynamics. We have tested the regeneration capacity of the proseriate Monocelis sp. by pre-pharyngeal amputation and provide the first comprehensive picture of the F-actin musculature, serotonergic nervous system and proliferating cells (S-phase in pulse and pulse-chase experiments and mitoses) in control animals and in regenerates. RESULTS F-actin staining revealed a strong body wall, pharynx and dorsoventral musculature, while labelling of the serotonergic nervous system showed an orthogonal pattern and a well developed subepidermal plexus. Proliferating cells were distributed in two broad lateral bands along the anteroposterior axis and their anterior extension was delimited by the brain. No proliferating cells were detected in the pharynx or epidermis. Monocelis sp. was able to regenerate the pharynx and adhesive organs at the tip of the tail plate within 2 or 3 days of amputation, and genital organs within 8 to 10 days. Posterior pieces were not able to regenerate a head. The posterior regeneration blastema was found to be a centre of cell proliferation, whereas within the pharynx primordium, little or no proliferation was detected. The pharynx regenerated outside of the blastema and was largely, but not solely formed by cells that were proliferating at the time of amputation. CONCLUSIONS Our findings suggest that proliferating cells or their offspring migrated to the place of organ differentiation and then stopped proliferating at that site. This mode of rebuilding organs resembles the mode of regeneration of the genital organs in another flatworm, Macrostomum lignano. Pharynx regeneration resembles embryonic development in Monocelis fusca and hints at the vertically directed pharynx being plesiomorphic in proseriates. Proliferation within the regeneration blastema has been detected in anterior and posterior blastemas of other flatworms, but is notably missing in triclads. The phylogenetic relationships of the flatworms studied indicate that proliferation within the blastema is the plesiomorphic condition in Platyhelminthes.
Collapse
Affiliation(s)
- Johannes Girstmair
- Research Unit of Evolutionary Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria ; Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, WC1E 6BT London, UK
| | - Raimund Schnegg
- Research Unit of Evolutionary Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria ; Research Unit of Ecotoxicology, Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Maximilian J Telford
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, WC1E 6BT London, UK
| | - Bernhard Egger
- Research Unit of Evolutionary Developmental Biology, Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria ; Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, WC1E 6BT London, UK
| |
Collapse
|
34
|
Bailly X, Laguerre L, Correc G, Dupont S, Kurth T, Pfannkuchen A, Entzeroth R, Probert I, Vinogradov S, Lechauve C, Garet-Delmas MJ, Reichert H, Hartenstein V. The chimerical and multifaceted marine acoel Symsagittifera roscoffensis: from photosymbiosis to brain regeneration. Front Microbiol 2014; 5:498. [PMID: 25324833 PMCID: PMC4183113 DOI: 10.3389/fmicb.2014.00498] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/04/2014] [Indexed: 02/05/2023] Open
Abstract
A remarkable example of biological engineering is the capability of some marine animals to take advantage of photosynthesis by hosting symbiotic algae. This capacity, referred to as photosymbiosis, is based on structural and functional complexes that involve two distantly unrelated organisms. These stable photosymbiotic associations between metazoans and photosynthetic protists play fundamental roles in marine ecology as exemplified by reef communities and their vulnerability to global changes threats. Here we introduce a photosymbiotic tidal acoel flatworm, Symsagittifera roscoffensis, and its obligatory green algal photosymbiont, Tetraselmis convolutae (Lack of the algal partner invariably results in acoel lethality emphasizing the mandatory nature of the photosymbiotic algae for the animal's survival). Together they form a composite photosymbiotic unit, which can be reared in controlled conditions that provide easy access to key life-cycle events ranging from early embryogenesis through the induction of photosymbiosis in aposymbiotic juveniles to the emergence of a functional "solar-powered" mature stage. Since it is possible to grow both algae and host under precisely controlled culture conditions, it is now possible to design a range of new experimental protocols that address the mechanisms and evolution of photosymbiosis. S. roscoffensis thus represents an emerging model system with experimental advantages that complement those of other photosymbiotic species, in particular corals. The basal taxonomic position of S. roscoffensis (and acoels in general) also makes it a relevant model for evolutionary studies of development, stem cell biology and regeneration. Finally, it's autotrophic lifestyle and lack of calcification make S. roscoffensis a favorable system to study the role of symbiosis in the response of marine organisms to climate change (e.g., ocean warming and acidification). In this article we summarize the state of knowledge of the biology of S. roscoffensis and its algal partner from studies dating back over a century, and provide an overview of ongoing research efforts that take advantage of this unique system.
Collapse
Affiliation(s)
- Xavier Bailly
- Université Pierre et Marie Curie -CNRS, FR2424, Functional Exploration in Marine Model Organisms - Centre de Ressources Biologiques Marines, Station Biologique de Roscoff Roscoff, France
| | - Laurent Laguerre
- Université Pierre et Marie Curie -CNRS, FR2424, Functional Exploration in Marine Model Organisms - Centre de Ressources Biologiques Marines, Station Biologique de Roscoff Roscoff, France
| | - Gaëlle Correc
- Université Pierre et Marie Curie -CNRS, UMR 7139, Marine Plants and Biomolecules, Station Biologique de Roscoff Roscoff, France
| | - Sam Dupont
- Department of Biological and Environmental Sciences, The Sven Lovén Centre for Marine Sciences - Kristineberg, University of Gothenburg - Fiskebäckskil Sweden
| | - Thomas Kurth
- TU Dresden, DFG-Research Center for Regenerative Therapies Dresden Dresden, Germany
| | - Anja Pfannkuchen
- TU Dresden, DFG-Research Center for Regenerative Therapies Dresden Dresden, Germany
| | - Rolf Entzeroth
- Institute of Zoology, Technical University Dresden Dresden, Germany
| | - Ian Probert
- Université Pierre et Marie Curie -CNRS, FR2424, RCC (Roscoff Culture Collection) - Centre de Ressources Biologiques Marines, Station Biologique de Roscoff Roscoff, France
| | - Serge Vinogradov
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine Detroit, France
| | - Christophe Lechauve
- INSERM, UMR S 968, CNRS/Université Pierre et Marie Curie - Institut de la Vision/Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts Paris, France
| | - Marie-José Garet-Delmas
- CNRS UMR 7144 and Université Pierre and Marie Curie, EPEP - Evolution of Protists and Pelagic Ecosystems, Station Biologique de Roscoff Roscoff, France
| | | | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, CA, USA
| |
Collapse
|
35
|
Børve A, Hejnol A. Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha). Front Zool 2014; 11:50. [PMID: 25024737 PMCID: PMC4094782 DOI: 10.1186/1742-9994-11-50] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/03/2014] [Indexed: 11/17/2022] Open
Abstract
Introduction Nemertodermatida is the sister group of the Acoela, which together form the Acoelomorpha, a taxon that comprises bilaterally symmetric, small aquatic worms. While there are several descriptions of the embryology of acoel species, descriptions of nemertodermatid development are scarce. To be able to reconstruct the ground pattern of the Acoelomorpha it is crucial to gain more information about the development of several nemertodermatid species. Here we describe the development of the nemertodermatid Meara stichopi using light and fluorescent microscopic methods. Results We have collected Meara stichopi during several seasons and reconstruct the complex annual reproductive cycle dependent on the sea cucumber Parastichopus tremulus. Using common fluorescent markers for musculature (BODIPY FL-phallacidin) and neurons (antibodies against FMRFamide, serotonin, tyrosinated-tubulin) and live imaging techniques, we followed embryogenesis which takes approximately 9–10 weeks. The cleavage pattern is stereotypic up to the 16-cell stage. Ring- and longitudinal musculature start to develop during week 6, followed by the formation of the basiepidermal nervous system. The juvenile is hatching without mouth opening and has a basiepidermal nerve net with two dorsal neurite bundles and an anterior condensation. Conclusions The development of Meara stichopi differs from the development of Acoela in that it is less stereotypic and does not follow the typical acoel duet cleavage program. During late development Meara stichopi does not show a temporal anterior to posterior gradient during muscle and nervous system formation.
Collapse
Affiliation(s)
- Aina Børve
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| |
Collapse
|
36
|
Wey-Fabrizius AR, Podsiadlowski L, Herlyn H, Hankeln T. Platyzoan mitochondrial genomes. Mol Phylogenet Evol 2013; 69:365-75. [DOI: 10.1016/j.ympev.2012.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/16/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
|
37
|
Perea-Atienza E, Botta M, Salvenmoser W, Gschwentner R, Egger B, Kristof A, Martinez P, Achatz JG. Posterior regeneration in Isodiametra pulchra (Acoela, Acoelomorpha). Front Zool 2013; 10:64. [PMID: 24160844 PMCID: PMC3816570 DOI: 10.1186/1742-9994-10-64] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/17/2013] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Regeneration is a widespread phenomenon in the animal kingdom, but the capacity to restore damaged or missing tissue varies greatly between different phyla and even within the same phylum. However, the distantly related Acoelomorpha and Platyhelminthes share a strikingly similar stem-cell system and regenerative capacity. Therefore, comparing the underlying mechanisms in these two phyla paves the way for an increased understanding of the evolution of this developmental process.To date, Isodiametra pulchra is the most promising candidate as a model for the Acoelomorpha, as it reproduces steadily under laboratory conditions and is amenable to various techniques, including the silencing of gene expression by RNAi. In order to provide an essential framework for future studies, we report the succession of regeneration events via the use of cytochemical, histological and microscopy techniques, and specify the total number of cells in adult individuals. RESULTS Isodiametra pulchra is not capable of regenerating a new head, but completely restores all posterior structures within 10 days. Following amputation, the wound closes via the contraction of local muscle fibres and an extension of the dorsal epidermis. Subsequently, stem cells and differentiating cells invade the wound area and form a loosely delimited blastema. After two days, the posterior end is re-patterned with the male (and occasionally the female) genital primordium being apparent. Successively, these primordia differentiate into complete copulatory organs. The size of the body and also of the male and female copulatory organs, as well as the distance between the copulatory organs, progressively increase and by nine days copulation is possible. Adult individuals with an average length of 670 μm consist of approximately 8100 cells. CONCLUSION Isodiametra pulchra regenerates through a combination of morphallactic and epimorphic processes. Existing structures are "re-modelled" and provide a framework onto which newly differentiating cells are added. Growth proceeds through the intercalary addition of structures, mirroring the embryonic and post-embryonic development of various organ systems. The suitability of Isodiametra pulchra for laboratory techniques, the fact that its transcriptome and genome data will soon be available, as well as its small size and low number of cells, make it a prime candidate subject for research into the cellular mechanisms that underlie regeneration in acoelomorphs.
Collapse
Affiliation(s)
- Elena Perea-Atienza
- Department of Genetics, University of Barcelona, Av. Diagonal 643, edifici annex, planta 2a, 08028 Barcelona, Spain
| | - Maria Botta
- Department of Evolutionary Developmental Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Willi Salvenmoser
- Department of Evolutionary Developmental Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Robert Gschwentner
- Department of Evolutionary Developmental Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Bernhard Egger
- Department of Evolutionary Developmental Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Alen Kristof
- Department of Integrative Zoology, University of Vienna, Althanstrasse 14, UZA 1, 1090 Vienna, Austria
| | - Pedro Martinez
- Department of Genetics, University of Barcelona, Av. Diagonal 643, edifici annex, planta 2a, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Johannes Georg Achatz
- Department of Genetics, University of Barcelona, Av. Diagonal 643, edifici annex, planta 2a, 08028 Barcelona, Spain
- Department of Evolutionary Developmental Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| |
Collapse
|
38
|
Lapraz F, Rawlinson KA, Girstmair J, Tomiczek B, Berger J, Jékely G, Telford MJ, Egger B. Put a tiger in your tank: the polyclad flatworm Maritigrella crozieri as a proposed model for evo-devo. EvoDevo 2013; 4:29. [PMID: 24107307 PMCID: PMC4124852 DOI: 10.1186/2041-9139-4-29] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/14/2013] [Indexed: 12/02/2022] Open
Abstract
Polyclad flatworms are an early branching clade within the rhabditophoran Platyhelminthes. They provide an interesting system with which to explore the evolution of development within Platyhelminthes and amongst Spiralia (Lophotrochozoa). Unlike most other flatworms, polyclads undergo spiral cleavage (similar to that seen in some other spiralian taxa), they are the only free-living flatworms where development via a larval stage occurs, and they are the only flatworms in which embryos can be reared outside of their protective egg case, enabling embryonic manipulations. Past work has focused on comparing early cleavage patterns and larval anatomy between polyclads and other spiralians. We have selected Maritigrella crozieri, the tiger flatworm, as a suitable polyclad species for developmental studies, because it is abundant and large in size compared to other species. These characteristics have facilitated the generation of a transcriptome from embryonic and larval material and are enabling us to develop methods for gene expression analysis and immunofluorescence techniques. Here we give an overview of M. crozieri and its development, we highlight the advantages and current limitations of this animal as a potential evo-devo model and discuss current lines of research.
Collapse
Affiliation(s)
- François Lapraz
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Rossi A, Ross EJ, Jack A, Sánchez Alvarado A. Molecular cloning and characterization of SL3: a stem cell-specific SL RNA from the planarian Schmidtea mediterranea. Gene 2013; 533:156-67. [PMID: 24120894 DOI: 10.1016/j.gene.2013.09.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/26/2013] [Accepted: 09/26/2013] [Indexed: 01/03/2023]
Abstract
Spliced leader (SL) trans-splicing is a biological phenomenon, common among many metazoan taxa, consisting in the transfer of a short leader sequence from a small SL RNA to the 5' end of a subset of pre-mRNAs. While knowledge of the biochemical mechanisms driving this process has accumulated over the years, the functional consequences of such post-transcriptional event at the organismal level remain unclear. In addition, the fact that functional analyses have been undertaken mainly in trypanosomes and nematodes leaves a somehow fragmented picture of the possible biological significance and evolution of SL trans-splicing in eukaryotes. Here, we analyzed the spatial expression of SL RNAs in the planarian flatworm Schmidtea mediterranea, with the goal of identifying novel developmental paradigms for the study of trans-splicing in metazoans. Besides the previously identified SL1 and SL2, S. mediterranea expresses a third SL RNA described here as SL3. While, SL1 and SL2 are collectively expressed in a broad range of planarian cell types, SL3 is highly enriched in a subset of the planarian stem cells engaged in regenerative responses. Our findings provide new opportunities to study how trans-splicing may regulate the phenotype of a cell.
Collapse
Affiliation(s)
- Alessandro Rossi
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA.
| | | | | | | |
Collapse
|
40
|
Weigert A, Helm C, Hausen H, Zakrzewski AC, Bleidorn C. Expression pattern of Piwi-like genes in adult Myzostoma cirriferum (Annelida). Dev Genes Evol 2013; 223:329-34. [PMID: 23609434 DOI: 10.1007/s00427-013-0444-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
Piwi-like genes are a subgroup of Argonaute genes which participate as gene regulators by gene silencing. In most bilaterians, such as mouse, human, insects, and zebrafish, their expression is mostly limited to gonadal stem cells. But there are some striking exceptions to this pattern; flatworms and acoels also express Piwi-like genes in somatic stem cells, due to their unique replacement system. Annelid species like Capitella teleta and Platynereis dumerilii express these genes in cells of the posterior growth zone as well as in gonadal stem cells. To investigate the expression pattern of Piwi-like genes in another annelid, we established in situ hybridization for adult Myzostoma cirriferum. Piwi-like gene transcripts recovered in an mRNA-seq library of pooled adult stages of M. cirriferum were expanded using RACE PCR, cloned and sequenced. ML analysis confirmed the identity of both transcripts as part of the Piwi1-like or Piwi2-like subfamily of Argonaute proteins. The results of in situ hybridization studies show that the expression of both Piwi-like genes, Mc-Piwi1 and Mc-Piwi2, is clearly located only in gonadal stem cells, and as such we did not find any evidence for the existence of a posterior growth zone nor expression in somatic stem cells.
Collapse
Affiliation(s)
- Anne Weigert
- Molecular Evolution and Animal Systematics, Institute of Biology, University of Leipzig, Germany.
| | | | | | | | | |
Collapse
|
41
|
Hochegger H, Hégarat N, Pereira-Leal JB. Aurora at the pole and equator: overlapping functions of Aurora kinases in the mitotic spindle. Open Biol 2013; 3:120185. [PMID: 23516109 PMCID: PMC3718339 DOI: 10.1098/rsob.120185] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The correct assembly and timely disassembly of the mitotic spindle is crucial for the propagation of the genome during cell division. Aurora kinases play a central role in orchestrating bipolar spindle establishment, chromosome alignment and segregation. In most eukaryotes, ranging from amoebas to humans, Aurora activity appears to be required both at the spindle pole and the kinetochore, and these activities are often split between two different Aurora paralogues, termed Aurora A and B. Polar and equatorial functions of Aurora kinases have generally been considered separately, with Aurora A being mostly involved in centrosome dynamics, whereas Aurora B coordinates kinetochore attachment and cytokinesis. However, double inactivation of both Aurora A and B results in a dramatic synergy that abolishes chromosome segregation. This suggests that these two activities jointly coordinate mitotic progression. Accordingly, recent evidence suggests that Aurora A and B work together in both spindle assembly in metaphase and disassembly in anaphase. Here, we provide an outlook on these shared functions of the Auroras, discuss the evolution of this family of mitotic kinases and speculate why Aurora kinase activity may be required at both ends of the spindle microtubules.
Collapse
Affiliation(s)
- Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, UK.
| | | | | |
Collapse
|
42
|
The muscular system of Nemertoderma westbladi and Meara stichopi (Nemertodermatida, Acoelomorpha). ZOOMORPHOLOGY 2013. [DOI: 10.1007/s00435-013-0191-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Chiodin M, Børve A, Berezikov E, Ladurner P, Martinez P, Hejnol A. Mesodermal gene expression in the acoel Isodiametra pulchra indicates a low number of mesodermal cell types and the endomesodermal origin of the gonads. PLoS One 2013; 8:e55499. [PMID: 23405161 PMCID: PMC3566195 DOI: 10.1371/journal.pone.0055499] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 12/23/2012] [Indexed: 01/23/2023] Open
Abstract
Acoelomorphs are bilaterally symmetric small marine worms that lack a coelom and possess a digestive system with a single opening. Two alternative phylogenetic positions of this group within the animal tree are currently debated. In one view, Acoelomorpha is the sister group to all remaining Bilateria and as such, is a morphologically simple stepping stone in bilaterian evolution. In the other, the group is a lineage within the Deuterostomia, and therefore, has derived a simple morphology from a more complex ancestor. Acoels and the closely related Nemertodermatida and Xenoturbellida, which together form the Acoelomorpha, possess a very limited number of cell types. To further investigate the diversity and origin of mesodermal cell types we describe the expression pattern of 12 orthologs of bilaterian mesodermal markers including Six1/2, Twist, FoxC, GATA4/5/6, in the acoel Isodiametra pulchra. All the genes are expressed in stem cells (neoblasts), gonads, and at least subsets of the acoel musculature. Most are expressed in endomesodermal compartments of I. pulchra developing embryos similar to what has been described in cnidarians. Our molecular evidence indicates a very limited number of mesodermal cell types and suggests an endomesodermal origin of the gonads and the stem cell system. We discuss our results in light of the two prevailing phylogenetic positions of Acoelomorpha.
Collapse
Affiliation(s)
- Marta Chiodin
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
| | - Aina Børve
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Peter Ladurner
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Pedro Martinez
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
44
|
Solana J. Closing the circle of germline and stem cells: the Primordial Stem Cell hypothesis. EvoDevo 2013; 4:2. [PMID: 23294912 PMCID: PMC3599645 DOI: 10.1186/2041-9139-4-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/04/2012] [Indexed: 01/14/2023] Open
Abstract
Background Germline determination is believed to occur by either preformation or epigenesis. Animals that undergo germ cell specification by preformation have a continuous germline. However, animals with germline determination by epigenesis have a discontinuous germline, with somatic cells intercalated. This vision is contrary to August Weismann’s Germ Plasm Theory and has led to several controversies. Recent data from metazoans as diverse as planarians, annelids and sea urchins reveal the presence of pluripotent stem cell populations that express germ plasm components, despite being considered to be somatic. These data also show that germ plasm is continuous in some of these animals, despite their discontinuous germline. Presentation of the hypothesis Here, based on recent molecular data on germ plasm components, I revise the germline concept. I introduce the concept of primordial stem cells, which are evolutionarily conserved stem cells that carry germ plasm components from the zygote to the germ cells. These cells, delineated by the classic concept of the Weismann barrier, can contribute to different extents to somatic tissues or be present in a rudimentary state. The primordial stem cells are a part of the germline that can drive asexual reproduction. Testing the hypothesis Molecular information on the expression of germ plasm components is needed during early development of non-classic model organisms, with special attention to those capable of undergoing asexual reproduction and regeneration. The cell lineage of germ plasm component-containing cells will also shed light on their position with respect to the Weismann barrier. This information will help in understanding the germline and its associated stem cells across metazoan phylogeny. Implications of the hypothesis This revision of the germline concept explains the extensive similarities observed among stem cells and germline cells in a wide variety of animals, and predicts the expression of germ plasm components in many others. The life history of these animals can be simply explained by changes in the extent of self-renewal, proliferation and developmental potential of the primordial stem cells. The inclusion of the primordial stem cells as a part of the germline, therefore, solves many controversies and provides a continuous germline, just as originally envisaged by August Weismann.
Collapse
Affiliation(s)
- Jordi Solana
- Laboratory of Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
45
|
Achatz JG, Chiodin M, Salvenmoser W, Tyler S, Martinez P. The Acoela: on their kind and kinships, especially with nemertodermatids and xenoturbellids (Bilateria incertae sedis). ORG DIVERS EVOL 2012; 13:267-286. [PMID: 24098090 PMCID: PMC3789126 DOI: 10.1007/s13127-012-0112-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acoels are among the simplest worms and therefore have often been pivotal in discussions of the origin of the Bilateria. Initially thought primitive because of their “planula-like” morphology, including their lumenless digestive system, they were subsequently dismissed by many morphologists as a specialized clade of the Platyhelminthes. However, since molecular phylogenies placed them outside the Platyhelminthes and outside all other phyla at the base of the Bilateria, they became the focus of renewed debate and research. We review what is currently known of acoels, including information regarding their morphology, development, systematics, and phylogenetic relationships, and put some of these topics in a historical perspective to show how the application of new methods contributed to the progress in understanding these animals. Taking all available data into consideration, clear-cut conclusions cannot be made; however, in our view it becomes successively clearer that acoelomorphs are a “basal” but “divergent” branch of the Bilateria.
Collapse
Affiliation(s)
- Johannes G. Achatz
- Department of Genetics, University of Barcelona, Av. Diagonal, edifici annex, planta 2a, 08028 Barcelona, Spain
- Department of Evolutionary Developmental Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Marta Chiodin
- Department of Genetics, University of Barcelona, Av. Diagonal, edifici annex, planta 2a, 08028 Barcelona, Spain
| | - Willi Salvenmoser
- Department of Evolutionary Developmental Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Seth Tyler
- School of Biology and Ecology, University of Maine, 5751 Murray Hall, Orono, ME 04469 USA
| | - Pedro Martinez
- Department of Genetics, University of Barcelona, Av. Diagonal, edifici annex, planta 2a, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
46
|
Moroz LL. Phylogenomics meets neuroscience: how many times might complex brains have evolved? ACTA BIOLOGICA HUNGARICA 2012; 63 Suppl 2:3-19. [PMID: 22776469 DOI: 10.1556/abiol.63.2012.suppl.2.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The origin of complex centralized brains is one of the major evolutionary transitions in the history of animals. Monophyly (i.e. presence of a centralized nervous system in urbilateria) vs polyphyly (i.e. multiple origins by parallel centralization of nervous systems within several lineages) are two historically conflicting scenarios to explain such transitions. However, recent phylogenomic and cladistic analysis suggests that complex brains may have independently evolved at least 9 times within different animal lineages. Indeed, even within the phylum Mollusca cephalization might have occurred at least 5 times. Emerging molecular data further suggest that at the genomic level such transitions might have been achieved by changes in expression of just a few transcriptional factors - not surprising since such events might happen multiple times over 700 million years of animal evolution. Both cladistic and genomic analyses also imply that neurons themselves evolved more than once. Ancestral polarized secretory cells were likely involved in coordination of ciliated locomotion in early animals, and these cells can be considered as evolutionary precursors of neurons within different lineages. Under this scenario, the origins of neurons can be linked to adaptations to stress/injury factors in the form of integrated regeneration-type cellular response with secretory signaling peptides as early neurotransmitters. To further reconstruct the parallel evolution of nervous systems genomic approaches are essential to probe enigmatic neurons of basal metazoans, selected lophotrochozoans (e.g. phoronids, brachiopods) and deuterostomes.
Collapse
Affiliation(s)
- L L Moroz
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd. St. Augustine Florida 32080, USA.
| |
Collapse
|
47
|
Nishimura O, Hirao Y, Tarui H, Agata K. Comparative transcriptome analysis between planarian Dugesia japonica and other platyhelminth species. BMC Genomics 2012; 13:289. [PMID: 22747887 PMCID: PMC3507646 DOI: 10.1186/1471-2164-13-289] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 06/04/2012] [Indexed: 11/10/2022] Open
Abstract
Background Planarians are considered to be among the extant animals close to one of the earliest groups of organisms that acquired a central nervous system (CNS) during evolution. Planarians have a bilobed brain with nine lateral branches from which a variety of external signals are projected into different portions of the main lobes. Various interneurons process different signals to regulate behavior and learning/memory. Furthermore, planarians have robust regenerative ability and are attracting attention as a new model organism for the study of regeneration. Here we conducted large-scale EST analysis of the head region of the planarian Dugesia japonica to construct a database of the head-region transcriptome, and then performed comparative analyses among related species. Results A total of 54,752 high-quality EST reads were obtained from a head library of the planarian Dugesia japonica, and 13,167 unigene sequences were produced by de novo assembly. A new method devised here revealed that proteins related to metabolism and defense mechanisms have high flexibility of amino-acid substitutions within the planarian family. Eight-two CNS-development genes were found in the planarian (cf. C. elegans 3; chicken 129). Comparative analysis revealed that 91% of the planarian CNS-development genes could be mapped onto the schistosome genome, but one-third of these shared genes were not expressed in the schistosome. Conclusions We constructed a database that is a useful resource for comparative planarian transcriptome studies. Analysis comparing homologous genes between two planarian species showed that the potential of genes is important for accumulation of amino-acid substitutions. The presence of many CNS-development genes in our database supports the notion that the planarian has a fundamental brain with regard to evolution and development at not only the morphological/functional, but also the genomic, level. In addition, our results indicate that the planarian CNS-development genes already existed before the divergence of planarians and schistosomes from their common ancestor.
Collapse
Affiliation(s)
- Osamu Nishimura
- Department of Biophysics and Global COE Program, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
48
|
Dirks U, Gruber-Vodicka HR, Leisch N, Bulgheresi S, Egger B, Ladurner P, Ott JA. Bacterial symbiosis maintenance in the asexually reproducing and regenerating flatworm Paracatenula galateia. PLoS One 2012; 7:e34709. [PMID: 22509347 PMCID: PMC3317999 DOI: 10.1371/journal.pone.0034709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/05/2012] [Indexed: 12/14/2022] Open
Abstract
Bacteriocytes set the stage for some of the most intimate interactions between animal and bacterial cells. In all bacteriocyte possessing systems studied so far, de novo formation of bacteriocytes occurs only once in the host development, at the time of symbiosis establishment. Here, we present the free-living symbiotic flatworm Paracatenula galateia and its intracellular, sulfur-oxidizing bacteria as a system with previously undescribed strategies of bacteriocyte formation and bacterial symbiont transmission. Using thymidine analogue S-phase labeling and immunohistochemistry, we show that all somatic cells in adult worms - including bacteriocytes - originate exclusively from aposymbiotic stem cells (neoblasts). The continued bacteriocyte formation from aposymbiotic stem cells in adult animals represents a previously undescribed strategy of symbiosis maintenance and makes P. galateia a unique system to study bacteriocyte differentiation and development. We also provide morphological and immunohistochemical evidence that P. galateia reproduces by asexual fragmentation and regeneration (paratomy) and, thereby, vertically transmits numerous symbiont-containing bacteriocytes to its asexual progeny. Our data support the earlier reported hypothesis that the symbiont population is subjected to reduced bottleneck effects. This would justify both the codiversification between Paracatenula hosts and their Candidatus Riegeria symbionts, and the slow evolutionary rates observed for several symbiont genes.
Collapse
Affiliation(s)
- Ulrich Dirks
- Department of Marine Biology, University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
49
|
Martín-Durán JM, Egger B. Developmental diversity in free-living flatworms. EvoDevo 2012; 3:7. [PMID: 22429930 PMCID: PMC3379954 DOI: 10.1186/2041-9139-3-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/19/2012] [Indexed: 11/20/2022] Open
Abstract
Flatworm embryology has attracted attention since the early beginnings of comparative evolutionary biology. Considered for a long time the most basal bilaterians, the Platyhelminthes (excluding Acoelomorpha) are now robustly placed within the Spiralia. Despite having lost their relevance to explain the transition from radially to bilaterally symmetrical animals, the study of flatworm embryology is still of great importance to understand the diversification of bilaterians and of developmental mechanisms. Flatworms are acoelomate organisms generally with a simple centralized nervous system, a blind gut, and lacking a circulatory organ, a skeleton and a respiratory system other than the epidermis. Regeneration and asexual reproduction, based on a totipotent neoblast stem cell system, are broadly present among different groups of flatworms. While some more basally branching groups - such as polyclad flatworms - retain the ancestral quartet spiral cleavage pattern, most flatworms have significantly diverged from this pattern and exhibit unique strategies to specify the common adult body plan. Most free-living flatworms (i.e. Platyhelminthes excluding the parasitic Neodermata) are directly developing, whereas in polyclads, also indirect developers with an intermediate free-living larval stage and subsequent metamorphosis are found. A comparative study of developmental diversity may help understanding major questions in evolutionary biology, such as the evolution of cleavage patterns, gastrulation and axial specification, the evolution of larval types, and the diversification and specialization of organ systems. In this review, we present a thorough overview of the embryonic development of the different groups of free-living (turbellarian) platyhelminths, including the Catenulida, Macrostomorpha, Polycladida, Lecithoepitheliata, Proseriata, Bothrioplanida, Rhabdocoela, Fecampiida, Prolecithophora and Tricladida, and discuss their main features under a consensus phylogeny of the phylum.
Collapse
Affiliation(s)
- José María Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
- Departament de Genética, Universitat de Barcelona, Avda. Diagonal 643, E-08028 Barcelona, Spain
| | - Bernhard Egger
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower St, London WC1E 6BT, UK
- University of Innsbruck, Institute of Zoology, Technikerstr. 25, 6020 Innsbruck, Austria
| |
Collapse
|
50
|
Adami ML, Damborenea C, Ronderos JR. An allatotropin-like neuropeptide in Mesostoma ehrenbergii (Rhabdocoela, Platyhelminthes). ZOOMORPHOLOGY 2012. [DOI: 10.1007/s00435-012-0146-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|