1
|
Batool A, Kopp I, Kubeil M, Bachmann M, Andrews PC, Stephan H. Targeted bismuth-based materials for cancer. Dalton Trans 2025; 54:5614-5639. [PMID: 40040450 DOI: 10.1039/d5dt00163c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The use of bismuth and its compounds in biomedicine has developed rapidly in recent years. Due to their unique properties, there are great opportunities for the development of new non-invasive strategies for the early diagnosis and effective treatment of cancers. This perspective highlights key fabrication methods to generate well-defined and clinically relevant bismuth materials of varying characteristics. On the one hand, this opens up a wide range of possibilities for unimodal and multimodal imaging. On the other hand, effective treatment strategies, which are increasingly based on combinatorial therapies, are given a great deal of attention. One of the biggest challenges remains the selective tumour targeting, whether active or passive. Here we present an overview on new developments of bismuth based materials moving forward from a simple enrichment at the tumour site via uptake by the mononuclear phagocytic system (MPS) to a more active tumour specific targeting via covalent modification with tumour-seeking molecules based on either small or antibody-derived molecules.
Collapse
Affiliation(s)
- Amna Batool
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Ina Kopp
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| |
Collapse
|
2
|
Miederer M, Benešová-Schäfer M, Mamat C, Kästner D, Pretze M, Michler E, Brogsitter C, Kotzerke J, Kopka K, Scheinberg DA, McDevitt MR. Alpha-Emitting Radionuclides: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:76. [PMID: 38256909 PMCID: PMC10821197 DOI: 10.3390/ph17010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The use of radionuclides for targeted endoradiotherapy is a rapidly growing field in oncology. In particular, the focus on the biological effects of different radiation qualities is an important factor in understanding and implementing new therapies. Together with the combined approach of imaging and therapy, therapeutic nuclear medicine has recently made great progress. A particular area of research is the use of alpha-emitting radionuclides, which have unique physical properties associated with outstanding advantages, e.g., for single tumor cell targeting. Here, recent results and open questions regarding the production of alpha-emitting isotopes as well as their chemical combination with carrier molecules and clinical experience from compassionate use reports and clinical trials are discussed.
Collapse
Affiliation(s)
- Matthias Miederer
- Department of Translational Imaging in Oncology, National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Constantin Mamat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - David Kästner
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Marc Pretze
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Enrico Michler
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Claudia Brogsitter
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Jörg Kotzerke
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - David A. Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA;
| | - Michael R. McDevitt
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
3
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
4
|
Kim GB, Kim S, Hwang YH, Kim S, Lee I, Kim SA, Goo J, Yang Y, Jeong C, Nam GH, Kim IS. Harnessing Oncolytic Extracellular Vesicles for Tumor Cell-Preferential Cytoplasmic Delivery of Misfolded Proteins for Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300527. [PMID: 37226374 DOI: 10.1002/smll.202300527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/12/2023] [Indexed: 05/26/2023]
Abstract
In this study, extracellular vesicles (EVs) are reimagined as more than just a cellular waste disposal system and are repurposed for cancer immunotherapy. Potent oncolytic EVs (bRSVF-EVs) loaded with misfolded proteins (MPs) are engineered, which are typically considered cellular debris. By impairing lysosomal function using bafilomycin A1 and expressing the respiratory syncytial virus F protein, a viral fusogen, MPs are successfully loaded into the EVs expressing RSVF. bRSVF-EVs preferentially transplant a xenogeneic antigen onto cancer cell membranes in a nucleolin-dependent manner, triggering an innate immune response. Furthermore, bRSVF-EV-mediated direct delivery of MPs into the cancer cell cytoplasm initiates endoplasmic reticulum stress and immunogenic cell death (ICD). This mechanism of action leads to substantial antitumor immune responses in murine tumor models. Importantly, when combined with PD-1 blockade, bRSVF-EV treatment elicits robust antitumor immunity, resulting in prolonged survival and complete remission in some cases. Overall, the findings demonstrate that utilizing tumor-targeting oncolytic EVs for direct cytoplasmic delivery of MPs to induce ICD in cancer cells represents a promising approach for enhancing durable antitumor immunity.
Collapse
Affiliation(s)
- Gi Beom Kim
- SHIFTBIO.INC, Seoul, 02751, Republic of Korea
| | | | - Yeong Ha Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seohyun Kim
- SHIFTBIO.INC, Seoul, 02751, Republic of Korea
| | - Inkyu Lee
- SHIFTBIO.INC, Seoul, 02751, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Seong A Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jiyoung Goo
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, 02447, Republic of Korea
| | - Yoosoo Yang
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Cherlhyun Jeong
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, 02447, Republic of Korea
| | - Gi-Hoon Nam
- SHIFTBIO.INC, Seoul, 02751, Republic of Korea
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - In-San Kim
- SHIFTBIO.INC, Seoul, 02751, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| |
Collapse
|
5
|
Thongchot S, Aksonnam K, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Nucleolin‑based targeting strategies in cancer treatment: Focus on cancer immunotherapy (Review). Int J Mol Med 2023; 52:81. [PMID: 37477132 PMCID: PMC10555485 DOI: 10.3892/ijmm.2023.5284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
The benefits of treating several types of cancers using immunotherapy have recently been established. The overexpression of nucleolin (NCL) in a number of types of cancer provides an attractive antigen target for the development of novel anticancer immunotherapeutic treatments. NCL is a multifunctional protein abundantly distributed in the nucleus, cytoplasm and cell membrane. It influences carcinogenesis, and the proliferation, survival and metastasis of cancer cells, leading to cancer progression. Additionally, the meta‑analysis of total and cytoplasmic NCL overexpression indicates a poor prognosis of patients with breast cancer. The AS1411 aptamers currently appear to have therapeutic action in the phase II clinical trial. The authors' research group has recently explored the anticancer function of NCL through the activation of T cells by dendritic cell‑based immunotherapy. The present review describes and discusses the mechanisms through which the multiple functions of NCL can participate in the progression of cancer. In addition, the studies that define the utility of NCL‑dependent anticancer therapies are summarized, with specific focus being paid to cancer immunotherapeutic approaches.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Krittaya Aksonnam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| |
Collapse
|
6
|
A carbon monoxide releasing metal organic framework nanoplatform for synergistic treatment of triple-negative breast tumors. J Nanobiotechnology 2022; 20:494. [PMID: 36424645 PMCID: PMC9685850 DOI: 10.1186/s12951-022-01704-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Carbon monoxide (CO) is an important signaling molecule participating in multiple biological functions. Previous studies have confirmed the valuable roles of CO in cancer therapies. If the CO concentration and distribution can be controlled in tumors, new cancer therapeutic strategy may be developed to benefit the patient survival. RESULTS In this study, a UiO-67 type metal-organic framework (MOF) nanoplatform was produced with cobalt and ruthenium ions incorporated into its structure (Co/Ru-UiO-67). Co/Ru-UiO-67 had a size range of 70-90 nm and maintained the porous structure, with cobalt and ruthenium distributed uniformly inside. Co/Ru-UiO-67 was able to catalyze carbon dioxide into CO upon light irradiation in an efficient manner with a catalysis speed of 5.6 nmol/min per 1 mg Co/Ru-UiO-67. Due to abnormal metabolic properties of tumor cells, tumor microenvironment usually contains abundant amount of CO2. Co/Ru-UiO-67 can transform tumor CO2 into CO at both cellular level and living tissues, which consequently interacts with relevant signaling pathways (e.g. Notch-1, MMPs etc.) to adjust tumor microenvironment. With proper PEGylation (pyrene-polyacrylic acid-polyethylene glycol, Py-PAA-PEG) and attachment of a tumor-homing peptide (F3), functionalized Co/Ru-UiO-67 could accumulate strongly in triple-negative MDA-MB-231 breast tumors, witnessed by positron emission tomography (PET) imaging after the addition of radioactive zirconium-89 (89Zr) into Co-UiO-67. When applied in vivo, Co/Ru-UiO-67 could alter the local hypoxic condition of MDA-MB-231 tumors, and work synergistically with tirapazamine (TPZ). CONCLUSION This nanoscale UiO-67 MOF platform can further our understanding of CO functions while produce CO in a controllable manner during cancer therapeutic administration.
Collapse
|
7
|
Franchi S, Di Marco V, Tosato M. Bismuth chelation for targeted alpha therapy: Current state of the art. Nucl Med Biol 2022; 114-115:168-188. [PMID: 35753940 DOI: 10.1016/j.nucmedbio.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/22/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022]
Abstract
Current interest in the α-emitting bismuth radionuclides, bismuth-212 (212Bi) and bismuth-213 (213Bi), stems from their great potential for targeted alpha therapy (TAT), an expanding and promising approach for the treatment of micrometastatic disease and the eradication of single malignant cells. To selectively deliver their emission to the cancer cells, these radiometals must be firmly coordinated by a bifunctional chelator (BFC) attached to a tumour-seeking vector. This review provides a comprehensive overview of the current state-of-the-art chelating agents for bismuth radioisotopes. Several aspects are reported, from their 'cold' chelation chemistry (thermodynamic, kinetic, and structural properties) and radiolabelling investigations to the preclinical and clinical studies performed with a variety of bioconjugates. The aim of this review is to provide both a guide for the rational design of novel optimal platforms for the chelation of these attractive α-emitters and emphasize the prospects of the most encouraging chelating agents proposed so far.
Collapse
Affiliation(s)
- Sara Franchi
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Marianna Tosato
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
8
|
Castillo Seoane D, De Saint-Hubert M, Ahenkorah S, Saldarriaga Vargas C, Ooms M, Struelens L, Koole M. Gamma counting protocols for the accurate quantification of 225Ac and 213Bi without the need for a secular equilibrium between parent and gamma-emitting daughter. EJNMMI Radiopharm Chem 2022; 7:28. [PMID: 36274098 PMCID: PMC9588853 DOI: 10.1186/s41181-022-00174-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Quantification of actinium-225 through gamma counter measurements, when there is no secular equilibrium between actinium-225 and its gamma emitting daughters bismuth-213 and/or francium-221, can provide valuable information regarding the possible relocation of recoiled daughters such that related radiotoxicity effects can be evaluated. This study proposes a multiple time-point protocol using the bismuth-213 photopeak with measurements before secular equilibrium between actinium-225 and bismuth-213, and a single time-point protocol using both the francium-221 and bismuth-213 photopeak while assuming secular equilibrium between actinium-225 and francium-221 but not between bismuth-213 and actinium-225. RESULTS Good agreement (i.e. 3% accuracy) was obtained when relying on a multiple time-points measurement of bismuth-213 to quantify both actinium-225 and excess of bismuth-213. Following scatter correction, actinium-225 can be accurately quantified using the francium-221 in a single time-point measurement within 3% of accuracy. The analysis performed on the stability data of [225Ac]Ac-DEPA and [225Ac]Ac-DOTA complexes, before secular equilibrium between bismuth-213 and actinium-225 was formed, revealed considerable amounts of unbound bismuth-213 (i.e. more than 90%) after 24 h of the radiolabeling most likely due to the recoiled daughter effect. CONCLUSION Both protocols were able to accurately estimate 225Ac-activities provided the francium-221 energy window was corrected for the down scatter of the higher-energy gamma-emissions by bismuth-213. This could prove beneficial to study the recoiled daughter effect and redistribution of free bismuth-213 by monitoring the accumulation or clearance of bismuth-213 in different tissues during biodistribution studies or in patient samples during clinical studies. On the other hand, the single gamma counter measurement protocol, although required a 30 min waiting time, is more time and cost efficient and therefore more appropriate for standardized quality control procedures of 225Ac-labeled radiopharmaceuticals.
Collapse
Affiliation(s)
- Dayana Castillo Seoane
- Unit of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven (KUL), Louvain, Belgium.
- Research Unit in Dosimetric Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.
| | - Marijke De Saint-Hubert
- Research Unit in Dosimetric Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Stephen Ahenkorah
- NURA Research Group, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
- Unit of Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven (KUL), Louvain, Belgium
| | - Clarita Saldarriaga Vargas
- Research Unit in Dosimetric Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Medical Imaging, Laboratory for In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Maarten Ooms
- NURA Research Group, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Lara Struelens
- Research Unit in Dosimetric Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Michel Koole
- Unit of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven (KUL), Louvain, Belgium
| |
Collapse
|
9
|
Abstract
Theranostic applications with radio-isotopes currently are rapidly progressing and expand nuclear medicine application in clinical routine. Alpha emitting isotopes, in particular, have long been hypothesized to achieve relevant advances for the treatment of malignancies. Here, an overview of their properties and the knowledge of radiobiology is reviewed in view of clinical translation. Clinical evidence of radiopharmaceuticals based on alpha emitters is summarized with a focus on recent developments for treatment of metastasized castration resistant prostate cancer.
Collapse
Affiliation(s)
- Matthias Miederer
- Department of Nuclear Medicine, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
10
|
Ahenkorah S, Cassells I, Deroose CM, Cardinaels T, Burgoyne AR, Bormans G, Ooms M, Cleeren F. Bismuth-213 for Targeted Radionuclide Therapy: From Atom to Bedside. Pharmaceutics 2021; 13:599. [PMID: 33919391 PMCID: PMC8143329 DOI: 10.3390/pharmaceutics13050599] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/17/2022] Open
Abstract
In contrast to external high energy photon or proton therapy, targeted radionuclide therapy (TRNT) is a systemic cancer treatment allowing targeted irradiation of a primary tumor and all its metastases, resulting in less collateral damage to normal tissues. The α-emitting radionuclide bismuth-213 (213Bi) has interesting properties and can be considered as a magic bullet for TRNT. The benefits and drawbacks of targeted alpha therapy with 213Bi are discussed in this review, covering the entire chain from radionuclide production to bedside. First, the radionuclide properties and production of 225Ac and its daughter 213Bi are discussed, followed by the fundamental chemical properties of bismuth. Next, an overview of available acyclic and macrocyclic bifunctional chelators for bismuth and general considerations for designing a 213Bi-radiopharmaceutical are provided. Finally, we provide an overview of preclinical and clinical studies involving 213Bi-radiopharmaceuticals, as well as the future perspectives of this promising cancer treatment option.
Collapse
Affiliation(s)
- Stephen Ahenkorah
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium; (S.A.); (I.C.); (T.C.); (A.R.B.)
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium;
| | - Irwin Cassells
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium; (S.A.); (I.C.); (T.C.); (A.R.B.)
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium;
| | - Christophe M. Deroose
- Nuclear Medicine Unit, University Hospitals Leuven, 3000 Leuven, Belgium;
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, 3000 Leuven, Belgium
| | - Thomas Cardinaels
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium; (S.A.); (I.C.); (T.C.); (A.R.B.)
- Department of Chemistry, University of Leuven, 3001 Leuven, Belgium
| | - Andrew R. Burgoyne
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium; (S.A.); (I.C.); (T.C.); (A.R.B.)
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium;
| | - Maarten Ooms
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium; (S.A.); (I.C.); (T.C.); (A.R.B.)
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
11
|
Abstract
Tumor-homing peptides are widely used for improving tumor selectivity of anticancer drugs and imaging agents. The goal is to increase tumor uptake and reduce accumulation at nontarget sites. Here, we describe current approaches for tumor-homing peptide identification and validation, and provide comprehensive overview of classes of tumor-homing peptides undergoing preclinical and clinical development. We focus on unique mechanistic features and applications of a recently discovered class of tumor-homing peptides, tumor-penetrating C-end Rule (CendR) peptides, that can be used for tissue penetrative targeting of extravascular tumor tissue. Finally, we discuss unanswered questions and future directions in the field of development of peptide-guided smart drugs and imaging agents.
Collapse
|
12
|
Castillo Seoane D, de Saint-Hubert M, Crabbe M, Struelens L, Koole M. Targeted alpha therapy: a critical review of translational dosimetry research with emphasis on actinium-225. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:265-277. [PMID: 32441067 DOI: 10.23736/s1824-4785.20.03266-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review provides a general overview of the current achievements and challenges in translational dosimetry for targeted alpha therapy (TAT). The concept of targeted radionuclide therapy (TRNT) is described with an overview of its clinical applicability and the added value of TAT is discussed. For TAT, we focused on actinium-225 (225Ac) as an example for alpha particle emitting radionuclides and their features, such as limited range within tissue and high linear energy transfer, which make alpha particle emissions more effective in targeted killing of tumour cells compared to beta radiation. Starting with the state-of-the-art dosimetry for TRNT and TAT, we then describe the challenges that still need to be met in order to move to a personalized dosimetry approach for TAT. Specifically for 225Ac, we discuss the recoiled daughter effect which may provoke significant damage to healthy tissue or organs and should be considered. Next, a broad overview is given of the pre-clinical research on 225Ac-TAT with an extensive description of tools which are only available in a pre-clinical setting and their added value. In addition, we review the preclinical biodistribution and dosimetry studies that have been performed on TAT-agents and more specifically of 225Ac and its multiple progeny, and describe their potential role to better characterize the pharmacokinetic (PK) profile of TAT-agents and to optimize the use of theranostic approaches for dosimetry. Finally, we discuss the support pre-clinical studies may provide in understanding dose-effect relationships, linking radiation dose quantities to biological endpoints and even moving away from macro- to microdosimetry. As such, the translation of pre-clinical findings may provide valuable information and new approaches for improved clinical dosimetry, thus paving the way to personalized TAT.
Collapse
Affiliation(s)
- Dayana Castillo Seoane
- Unit of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven (KUL), Leuven, Belgium - .,Research Unit in Dosimetric Applications, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium -
| | - Marijke de Saint-Hubert
- Research Unit in Dosimetric Applications, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Melissa Crabbe
- Research Unit in Dosimetric Applications, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Lara Struelens
- Research Unit in Dosimetric Applications, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Michel Koole
- Unit of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven (KUL), Leuven, Belgium
| |
Collapse
|
13
|
Tafreshi NK, Doligalski ML, Tichacek CJ, Pandya DN, Budzevich MM, El-Haddad G, Khushalani NI, Moros EG, McLaughlin ML, Wadas TJ, Morse DL. Development of Targeted Alpha Particle Therapy for Solid Tumors. Molecules 2019; 24:molecules24234314. [PMID: 31779154 PMCID: PMC6930656 DOI: 10.3390/molecules24234314] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Targeted alpha-particle therapy (TAT) aims to selectively deliver radionuclides emitting α-particles (cytotoxic payload) to tumors by chelation to monoclonal antibodies, peptides or small molecules that recognize tumor-associated antigens or cell-surface receptors. Because of the high linear energy transfer (LET) and short range of alpha (α) particles in tissue, cancer cells can be significantly damaged while causing minimal toxicity to surrounding healthy cells. Recent clinical studies have demonstrated the remarkable efficacy of TAT in the treatment of metastatic, castration-resistant prostate cancer. In this comprehensive review, we discuss the current consensus regarding the properties of the α-particle-emitting radionuclides that are potentially relevant for use in the clinic; the TAT-mediated mechanisms responsible for cell death; the different classes of targeting moieties and radiometal chelators available for TAT development; current approaches to calculating radiation dosimetry for TATs; and lead optimization via medicinal chemistry to improve the TAT radiopharmaceutical properties. We have also summarized the use of TATs in pre-clinical and clinical studies to date.
Collapse
Affiliation(s)
- Narges K. Tafreshi
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
| | - Michael L. Doligalski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
| | - Christopher J. Tichacek
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
| | - Darpan N. Pandya
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (D.N.P.); (T.J.W.)
| | - Mikalai M. Budzevich
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Ghassan El-Haddad
- Depts. of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Nikhil I. Khushalani
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Eduardo G. Moros
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Physics, University of South Florida, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Mark L. McLaughlin
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, WV & Modulation Therapeutics Inc., 64 Medical Center Drive, Morgantown, WV 26506, USA;
| | - Thaddeus J. Wadas
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (D.N.P.); (T.J.W.)
| | - David L. Morse
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
- Department of Physics, University of South Florida, Tampa, FL 33612, USA
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-745-8948; Fax: +1-813-745-8375
| |
Collapse
|
14
|
Romano S, Fonseca N, Simões S, Gonçalves J, Moreira JN. Nucleolin-based targeting strategies for cancer therapy: from targeted drug delivery to cytotoxic ligands. Drug Discov Today 2019; 24:1985-2001. [PMID: 31271738 DOI: 10.1016/j.drudis.2019.06.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/08/2019] [Accepted: 06/26/2019] [Indexed: 01/10/2023]
Abstract
Cancer is currently the second leading cause of death worldwide and current therapeutic approaches remain ineffective in several cases. Therefore, there is a need to develop more efficacious therapeutic agents, especially for subtypes of cancer lacking targeted therapies. Limited drug penetration into tumors impairs the efficacy of therapies targeting cancer cells. One of the strategies to overcome this problem is targeting the more accessible tumor vasculature via molecules such as nucleolin, which is expressed at the surface of cancer and angiogenic endothelial cells, thus enabling a dual cellular targeting strategy. In this review, we present and discuss nucleolin-based targeting strategies that have been developed for cancer therapy, with a special focus on recent antibody-based approaches.
Collapse
Affiliation(s)
- Sofia Romano
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Nuno Fonseca
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; TREAT U, SA, Parque Industrial de Taveiro, Lote 44, 3045-508 Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548 Portugal
| | - João Gonçalves
- iMed. ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548 Portugal.
| |
Collapse
|
15
|
Alpha-Emitters and Targeted Alpha Therapy in Oncology: from Basic Science to Clinical Investigations. Target Oncol 2019; 13:189-203. [PMID: 29423595 DOI: 10.1007/s11523-018-0550-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alpha-emitters are radionuclides that decay through the emission of high linear energy transfer α-particles and possess favorable pharmacologic profiles for cancer treatment. When coupled with monoclonal antibodies, peptides, small molecules, or nanoparticles, the excellent cytotoxic capability of α-particle emissions has generated a strong interest in exploring targeted α-therapy in the pre-clinical setting and more recently in clinical trials in oncology. Multiple obstacles have been overcome by researchers and clinicians to accelerate the development of targeted α-therapies, especially with the recent improvement in isotope production and purification, but also with the development of innovative strategies for optimized targeting. Numerous studies have demonstrated the in vitro and in vivo efficacy of the targeted α-therapy. Radium-223 (223Ra) dichloride (Xofigo®) is the first α-emitter to have received FDA approval for the treatment of prostate cancer with metastatic bone lesions. There is a significant increase in the number of clinical trials in oncology using several radionuclides such as Actinium-225 (225Ac), Bismuth-213 (213Bi), Lead-212 (212Pb), Astatine (211At) or Radium-223 (223Ra) assessing their safety and preliminary activity. This review will cover their therapeutic application as well as summarize the investigations that provide the foundation for further clinical development.
Collapse
|
16
|
Tafreshi NK, Tichacek CJ, Pandya DN, Doligalski ML, Budzevich MM, Kil H, Bhatt NB, Kock ND, Messina JL, Ruiz EE, Delva NC, Weaver A, Gibbons WR, Boulware DC, Khushalani NI, El-Haddad G, Triozzi PL, Moros EG, McLaughlin ML, Wadas TJ, Morse DL. Melanocortin 1 Receptor-Targeted α-Particle Therapy for Metastatic Uveal Melanoma. J Nucl Med 2019; 60:1124-1133. [PMID: 30733316 DOI: 10.2967/jnumed.118.217240] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/20/2018] [Indexed: 02/03/2023] Open
Abstract
New effective therapies are greatly needed for metastatic uveal melanoma, which has a very poor prognosis with a median survival of less than 1 y. The melanocortin 1 receptor (MC1R) is expressed in 94% of uveal melanoma metastases, and a MC1R-specific ligand (MC1RL) with high affinity and selectivity for MC1R was previously developed. Methods: The 225Ac-DOTA-MC1RL conjugate was synthesized in high radiochemical yield and purity and was tested in vitro for biostability and for MC1R-specific cytotoxicity in uveal melanoma cells, and the lanthanum-DOTA-MC1RL analog was tested for binding affinity. Non-tumor-bearing BALB/c mice were tested for maximum tolerated dose and biodistribution. Severe combined immunodeficient mice bearing uveal melanoma tumors or engineered MC1R-positive and -negative tumors were studied for biodistribution and efficacy. Radiation dosimetry was calculated using mouse biodistribution data and blood clearance kinetics from Sprague-Dawley rat data. Results: High biostability, MC1R-specific cytotoxicity, and high binding affinity were observed. Limiting toxicities were not observed at even the highest administered activities. Pharmacokinetics and biodistribution studies revealed rapid blood clearance (<15 min), renal and hepatobillary excretion, MC1R-specific tumor uptake, and minimal retention in other normal tissues. Radiation dosimetry calculations determined pharmacokinetics parameters and absorbed α-emission dosages from 225Ac and its daughters. Efficacy studies demonstrated significantly prolonged survival and decreased metastasis burden after a single administration of 225Ac-DOTA-MC1RL in treated mice relative to controls. Conclusion: These results suggest significant potential for the clinical translation of 225Ac-DOTA-MC1RL as a novel therapy for metastatic uveal melanoma.
Collapse
Affiliation(s)
- Narges K Tafreshi
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Christopher J Tichacek
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Physics, University of South Florida, Tampa, Florida
| | - Darpan N Pandya
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Michael L Doligalski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mikalai M Budzevich
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - HyunJoo Kil
- Department of Pharmaceutical Sciences, Health Sciences Center, West Virginia University, and Modulation Therapeutics Inc., Morgantown, West Virginia
| | - Nikunj B Bhatt
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Nancy D Kock
- Section on Comparative Medicine, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Jane L Messina
- Departments of Anatomic Pathology and Cutaneous Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Dermatology, University of South Florida, Tampa, Florida.,Department of Oncologic Sciences, University of South Florida, Tampa, Florida
| | - Epifanio E Ruiz
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nella C Delva
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Adam Weaver
- Division of Research Integrity and Compliance, University of South Florida, Tampa, Florida
| | - William R Gibbons
- Division of Research Integrity and Compliance, University of South Florida, Tampa, Florida
| | - David C Boulware
- Biostatistics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nikhil I Khushalani
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ghassan El-Haddad
- Departments of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida; and
| | - Pierre L Triozzi
- Department of Hematology and Oncology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Eduardo G Moros
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Physics, University of South Florida, Tampa, Florida.,Department of Oncologic Sciences, University of South Florida, Tampa, Florida
| | - Mark L McLaughlin
- Department of Pharmaceutical Sciences, Health Sciences Center, West Virginia University, and Modulation Therapeutics Inc., Morgantown, West Virginia
| | - Thaddeus J Wadas
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - David L Morse
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida .,Department of Physics, University of South Florida, Tampa, Florida.,Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Oncologic Sciences, University of South Florida, Tampa, Florida
| |
Collapse
|
17
|
Abstract
Radiometals possess an exceptional breadth of decay properties and have been applied to medicine with great success for several decades. The majority of current clinical use involves diagnostic procedures, which use either positron-emission tomography (PET) or single-photon imaging to detect anatomic abnormalities that are difficult to visualize using conventional imaging techniques (e.g., MRI and X-ray). The potential of therapeutic radiometals has more recently been realized and relies on ionizing radiation to induce irreversible DNA damage, resulting in cell death. In both cases, radiopharmaceutical development has been largely geared toward the field of oncology; thus, selective tumor targeting is often essential for efficacious drug use. To this end, the rational design of four-component radiopharmaceuticals has become popularized. This Review introduces fundamental concepts of drug design and applications, with particular emphasis on bifunctional chelators (BFCs), which ensure secure consolidation of the radiometal and targeting vector and are integral for optimal drug performance. Also presented are detailed accounts of production, chelation chemistry, and biological use of selected main group and rare earth radiometals.
Collapse
Affiliation(s)
- Thomas I Kostelnik
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
18
|
Simón-Gracia L, Hunt H, Teesalu T. Peritoneal Carcinomatosis Targeting with Tumor Homing Peptides. Molecules 2018; 23:molecules23051190. [PMID: 29772690 PMCID: PMC6100015 DOI: 10.3390/molecules23051190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
Over recent decades multiple therapeutic approaches have been explored for improved management of peritoneally disseminated malignancies—a grim condition known as peritoneal carcinomatosis (PC). Intraperitoneal (IP) administration can be used to achieve elevated local concentration and extended half-life of the drugs in the peritoneal cavity to improve their anticancer efficacy. However, IP-administered chemotherapeutics have a short residence time in the IP space, and are not tumor selective. An increasing body of work suggests that functionalization of drugs and nanoparticles with targeting peptides increases their peritoneal retention and provides a robust and specific tumor binding and penetration that translates into improved therapeutic response. Here we review the progress in affinity targeting of intraperitoneal anticancer compounds, imaging agents and nanoparticles with tumor-homing peptides. We review classes of tumor-homing peptides relevant for PC targeting, payloads for peptide-guided precision delivery, applications for targeted compounds, and the effects of nanoformulation of drugs and imaging agents on affinity-based tumor delivery.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia.
| | - Hedi Hunt
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia.
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia.
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
- Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
19
|
Romano S, Moura V, Simões S, Moreira JN, Gonçalves J. Anticancer activity and antibody-dependent cell-mediated cytotoxicity of novel anti-nucleolin antibodies. Sci Rep 2018; 8:7450. [PMID: 29748553 PMCID: PMC5945777 DOI: 10.1038/s41598-018-25816-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/09/2018] [Indexed: 01/09/2023] Open
Abstract
Nucleolin arises as a relevant target for cancer therapy, as it is overexpressed at the surface of cancer and angiogenic endothelial cells thus enabling a dual cellular targeting strategy. Immunotherapeutic strategies, albeit of proven therapeutic relevance, have been scarcely explored against this target. Therefore, this work aimed at engineering an anti-nucleolin VHH-based antibody capable of triggering anticancer immune responses. Herein, anti-nucleolin VHHs have been generated upon grafting F3 peptide-derived nucleolin-binding sequences onto a VHH CDR1 or CDR3. One of these nucleolin-binding CDR3-grafted VHH was subsequently fused to a human IgG1 Fc region, enabling a significant antibody-dependent cell-mediated cytotoxicity (ADCC). The generated anti-nucleolin VHH revealed increased binding and antiproliferative effects against cancer cells, relative to the parental VHH, while the VHH-Fc counterpart presented increased cytotoxicity relative to the corresponding VHH. This VHH-Fc also triggered an ADCC effect, in the nanomolar range, against a nucleolin-overexpressing cancer cell line. This effect was evidenced by a 2 or 1.7-fold increase of cell death, in the presence of PBMCs, relative to the parental VHH-Fc or the VHH counterpart, respectively. Overall, these formats represent the first anti-nucleolin VHHs and the first anti-nucleolin antibody with ADCC activity that have been successfully developed.
Collapse
Affiliation(s)
- Sofia Romano
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - Vera Moura
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
- TREAT U, SA, Parque Industrial de Taveiro, Lote 44, 3045-508, Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
- FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.
- FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | - João Gonçalves
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
20
|
Gregório AC, Lacerda M, Figueiredo P, Simões S, Dias S, Moreira JN. Meeting the needs of breast cancer: A nucleolin's perspective. Crit Rev Oncol Hematol 2018; 125:89-101. [PMID: 29650282 DOI: 10.1016/j.critrevonc.2018.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
A major challenge in the management of breast cancer disease has been the development of metastases. Finding new molecular targets and the design of targeted therapeutic approaches to improve the overall survival and quality of life of these patients is, therefore, of great importance. Nucleolin, which is overexpressed in cancer cells and tumor-associated blood vessels, have been implicated in various processes supporting tumorigenesis and angiogenesis. Additionally, its overexpression has been demonstrated in a variety of human neoplasias as an unfavorable prognostic factor, associated with a high risk of relapse and low overall survival. Hence, nucleolin has emerged as a relevant target for therapeutic intervention in cancer malignancy, including breast cancer. This review focus on the contribution of nucleolin for cancer disease and on the development of therapeutic strategies targeting this protein. In this respect, it also provides a critical analysis about the potential and pitfalls of nanomedicine for cancer therapy.
Collapse
Affiliation(s)
- Ana C Gregório
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Manuela Lacerda
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
| | - Paulo Figueiredo
- IPOFG-EPE - Portuguese Institute of Oncology Francisco Gentil, 3000-075 Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; FFUC - Faculty of Pharmacy, Pólo das Ciências da Saúde, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Sérgio Dias
- IMM - Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - João Nuno Moreira
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; FFUC - Faculty of Pharmacy, Pólo das Ciências da Saúde, University of Coimbra, 3000-354 Coimbra, Portugal.
| |
Collapse
|
21
|
Ohta S, Hiramoto S, Amano Y, Emoto S, Yamaguchi H, Ishigami H, Kitayama J, Ito T. Intraperitoneal Delivery of Cisplatin via a Hyaluronan-Based Nanogel/in Situ Cross-Linkable Hydrogel Hybrid System for Peritoneal Dissemination of Gastric Cancer. Mol Pharm 2017; 14:3105-3113. [DOI: 10.1021/acs.molpharmaceut.7b00349] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Seiichi Ohta
- Center for Disease
Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shota Hiramoto
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuki Amano
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shigenobu Emoto
- Department of Surgical
Oncology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hironori Yamaguchi
- Department of Gastrointestinal Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hironori Ishigami
- Department of Surgical
Oncology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Joji Kitayama
- Department of Gastrointestinal Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Taichi Ito
- Center for Disease
Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
22
|
Lu L, Qi H, Zhu J, Sun WX, Zhang B, Tang CY, Cheng Q. Vascular-homing peptides for cancer therapy. Biomed Pharmacother 2017; 92:187-195. [PMID: 28544932 DOI: 10.1016/j.biopha.2017.05.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022] Open
Abstract
In the past 30 years, a variety of phage libraries have been extensively utilized to identify and develop tumor homing peptides (THPs). THPs specifically bind to tumor cells or elements of the tumor microenvironment while no or low affinity to normal cells. In this regard, the efficacy of therapeutic agents in cancer therapy can be enhanced by targeting strategies based on coupling with THPs that recognize receptors expressed by tumor cells or tumor vasculature. Especially, vascular-homing peptides, targeting tumor vasculature, have their receptors expressed on or around the blood vessel including pro-angiogenic factors, metalloproteinase, integrins, fibrin-fibronectin complexes, etc. This review briefly summarizes recent studies on identification and therapeutic applications of vascular-homing peptides targeting common angiogenic markers or with unknown vascular targets in some certain types of cancers. These newly discovered vascular-homing peptides are promising candidates which could provide novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Lan Lu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China; Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, PR China.
| | - Huan Qi
- School of Life Science and Engineering, Southwest University of Science and Technology, PR China
| | - Jie Zhu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China
| | - Wen Xia Sun
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China
| | - Bin Zhang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China
| | - Chun Yan Tang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China
| | - Qiang Cheng
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China.
| |
Collapse
|
23
|
Tang Q, Wang Y, Huang R, You Q, Wang G, Chen Y, Jiang Z, Liu Z, Yu L, Muhammad S, Wang X. Preparation of anti-tumor nanoparticle and its inhibition to peritoneal dissemination of colon cancer. PLoS One 2014; 9:e98455. [PMID: 24896096 PMCID: PMC4045714 DOI: 10.1371/journal.pone.0098455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 05/04/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU) is one of the most classic chemotherapy drugs. Nanoparticle drug delivery vehicles offer superiority over target effect enhancement and abatement of side effects. Little is known however as to the specific effect of nanoparticle on peritoneal dissemination of colon cancer. The aim of this study is to prepare one NPs (nanoparticles) loaded with 5-FU and investigate the characteristic of NPs and the role of it in peritoneal metastasis nodules formation of human colon cancer. METHODOLOGY/PRINCIPAL FINDINGS Prepared the NPs (nanoparticles) loaded with 5-FU (5-Fluorouracil) by PEG-PLGA with the method of double emulsion. Then evaluate the characteristics of the NPs by scanning electron microscopy, analyzing the particle diameter distribution and determining the loading efficiency. Detect the release features of NPs in vitro and in vivo. Nude mice with peritoneal metastases were treated with 5-FU solution or 5-FU-NPs through peritoneal cavity. Count the nodules on peritoneum and mesenterium and survey the size of them. We got NPs with average-diameter of 310 nm. In vitro release test shows NPs can release equably for 5 days with release rate of 99.2%. In vivo, NPs group can keep higher plasma concentration of 5-FU longer than it in solution group. The number of peritoneal dissemination nodule below 1 mm in 5-FU-sol group(17.3 ± 3.5) and 5-FU-NP group(15.2 ± 3.2) is less than control group(27.2 ± 4.7)(P<0.05). The total number of nodules in 5-FU-NP group(28.7 ± 4.2) is significantly smaller than in 5-FU-sol group(37.7 ± 6.3) (P<0.05). CONCLUSIONS/SIGNIFICANCE The novel anti-tumor nanoparticles loaded with 5-FU by PEG-PLGA can release maintain 5 days and have inhibitory action to peritoneal dissemination of colon cancer in mice.
Collapse
Affiliation(s)
- Qingchao Tang
- Department of Colorectal Cancer Surgery, Cancer Center, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yihui Wang
- Department of Colorectal Surgery, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Rui Huang
- Department of Colorectal Cancer Surgery, Cancer Center, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qi You
- Department of Colorectal Surgery, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guiyu Wang
- Department of Colorectal Cancer Surgery, Cancer Center, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yinggang Chen
- Department of Colorectal Cancer Surgery, Cancer Center, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zheng Jiang
- Department of Colorectal Cancer Surgery, Cancer Center, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zheng Liu
- Department of Colorectal Cancer Surgery, Cancer Center, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lei Yu
- Department of Colorectal Cancer Surgery, Cancer Center, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shan Muhammad
- Department of Colorectal Cancer Surgery, Cancer Center, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xishan Wang
- Department of Colorectal Cancer Surgery, Cancer Center, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- * E-mail:
| |
Collapse
|
24
|
Abstract
α-particle-emitting radionuclides are highly cytotoxic and are thus promising candidates for use in targeted radioimmunotherapy of cancer. Due to their high linear energy transfer (LET) combined with a short path length in tissue, α-particles cause severe DNA double-strand breaks that are repaired inaccurately and finally trigger cell death. For radioimmunotherapy, α-emitters such as 225Ac, 211At, 212Bi/212Pb, 213Bi and 227Th are coupled to antibodies via appropriate chelating agents. The α-emitter immunoconjugates preferably target proteins that are overexpressed or exclusively expressed on cancer cells. Application of α-emitter immunoconjugates seems particularly promising in treatment of disseminated cancer cells and small tumor cell clusters that are released during the resection of a primary tumor. α-emitter immunoconjugates have been successfully administered in numerous experimental studies for therapy of ovarian, colon, gastric, blood, breast and bladder cancer. Initial clinical trials evaluating α-emitter immunoconjugates in terms of toxicity and therapeutic efficacy have also shown positive results in patients with melanoma, ovarian cancer, acute myeloid lymphoma and glioma. The present problems in terms of availability of therapeutically effiective α-emitters will presumably be solved by use of alternative production routes and installation of additional production facilities in the near future. Therefore, clinical establishment of targeted α-emitter radioimmunotherapy as one part of a multimodal concept for therapy of cancer is a promising, middle-term concept.
Collapse
Affiliation(s)
- Christof Seidl
- Technische Universität München, Department of Nuclear Medicine, Ismaninger Strasse 22, 81675 Munich, Germany
| |
Collapse
|
25
|
Wise JF, Berkova Z, Mathur R, Zhu H, Braun FK, Tao RH, Sabichi AL, Ao X, Maeng H, Samaniego F. Nucleolin inhibits Fas ligand binding and suppresses Fas-mediated apoptosis in vivo via a surface nucleolin-Fas complex. Blood 2013; 121:4729-39. [PMID: 23599269 PMCID: PMC3674671 DOI: 10.1182/blood-2012-12-471094] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/10/2013] [Indexed: 12/16/2022] Open
Abstract
Resistance to Fas-mediated apoptosis is associated with poor cancer outcomes and chemoresistance. To elucidate potential mechanisms of defective Fas signaling, we screened primary lymphoma cell extracts for Fas-associated proteins that would have the potential to regulate Fas signaling. An activation-resistant Fas complex selectively included nucleolin. We confirmed the presence of nucleolin-Fas complexes in B-cell lymphoma cells and primary tissues, and the absence of such complexes in B-lymphocytes from healthy donors. RNA-binding domain 4 and the glycine/arginine-rich domain of nucleolin were essential for its association with Fas. Nucleolin colocalized with Fas on the surface of B-cell lymphoma cells. Nucleolin knockdown sensitized BJAB cells to Fas ligand (FasL)-induced and Fas agonistic antibody-induced apoptosis through enhanced binding, suggesting that nucleolin blocks the FasL-Fas interaction. Mice transfected with nucleolin were protected from the lethal effects of agonistic anti-mouse Fas antibody (Jo2) and had lower rates of hepatocyte apoptosis, compared with vector and a non-Fas-binding mutant of nucleolin. Our results show that cell surface nucleolin binds Fas, inhibits ligand binding, and thus prevents induction of Fas-mediated apoptosis in B-cell lymphomas and may serve as a new therapeutic target.
Collapse
Affiliation(s)
- Jillian F Wise
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Birmpas C, Briand JP, Courty J, Katsoris P. The pseudopeptide HB-19 binds to cell surface nucleolin and inhibits angiogenesis. Vasc Cell 2012; 4:21. [PMID: 23265284 PMCID: PMC3606460 DOI: 10.1186/2045-824x-4-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/30/2012] [Indexed: 12/31/2022] Open
Abstract
Background Nucleolin is a protein over-expressed on the surface of tumor and endothelial cells. Recent studies have underlined the involvement of cell surface nucleolin in tumor growth and angiogenesis. This cell surface molecule serves as a receptor for various ligands implicated in pathophysiological processes such as growth factors, cell adhesion molecules like integrins, selectins or laminin-1, lipoproteins and viruses (HIV and coxsackie B). HB-19 is a synthetic multimeric pseudopeptide that binds cell surface expressed nucleolin and inhibits both tumor growth and angiogenesis. Methodology/principal findings In the present work, we further investigated the biological actions of pseudopeptide HB-19 on HUVECs. In a previous work, we have shown that HB-19 inhibits the in vivo angiogenesis on the chicken embryo CAM assay. We now provide evidence that HB-19 inhibits the in vitro adhesion, migration and proliferation of HUVECs without inducing their apoptosis. The above biological actions seem to be regulated by SRC, ERK1/2, AKT and FAK kinases as we found that HB-19 inhibits their activation in HUVECs. Matrix metalloproteinases (MMPs) play crucial roles in tumor growth and angiogenesis, so we investigated the effect of HB-19 on the expression of MMP-2 and we found that HB-19 downregulates MMP-2 in HUVECs. Finally, down regulation of nucleolin using siRNA confirmed the implication of nucleolin in the biological actions of these peptides. Conclusions/significance Taken together, these results indicate that HB-19 could constitute an interesting tool for tumor therapy strategy, targeting cell surface nucleolin.
Collapse
|
27
|
Targeted nanoparticulate drug-delivery systems for treatment of solid tumors: a review. Ther Deliv 2012; 1:713-34. [PMID: 22833959 DOI: 10.4155/tde.10.47] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Technological advancements in the field of biomaterials, polymer chemistry and drug-delivery techniques have aided the development of a number of new drug-delivery systems for targeting to solid tumors. Numerous research groups have explored the possibility of utilizing tumor-specific drug-delivery systems using nanoparticles. In this review we have attempted to highlight the achievements of some research groups actively involved in nanoparticulate drug delivery systems. The manuscript presents an in-depth discussion for nanoparticle systems such as micelles, liposomes, dendrimers, nanoemulsion, solid lipid nanoparticles and carbon fullerenes as chemotherapeutic options. The review reiterates the importance of the basic fundamentals of targeted drug delivery using nanoparticles and the influence of physiological parameters on their efficacy.
Collapse
|
28
|
Enhanced efficacy of combined 213Bi-DTPA-F3 and paclitaxel therapy of peritoneal carcinomatosis is mediated by enhanced induction of apoptosis and G2/M phase arrest. Eur J Nucl Med Mol Imaging 2012; 39:1886-97. [PMID: 22872310 DOI: 10.1007/s00259-012-2203-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Targeted therapy with α-particle emitting radionuclides is a promising new option in cancer therapy. Stable conjugates of the vascular tumour-homing peptide F3 with the α-emitter (213)Bi specifically target tumour cells. The aim of our study was to determine efficacy of combined (213)Bi-diethylenetriaminepentaacetic acid (DTPA)-F3 and paclitaxel treatment compared to treatment with either (213)Bi-DTPA-F3 or paclitaxel both in vitro and in vivo. METHODS Cytotoxicity of treatment with (213)Bi-DTPA-F3 and paclitaxel, alone or in combination, was assayed towards OVCAR-3 cells using the alamarBlue assay, the clonogenic assay and flow cytometric analyses of the mode of cell death and cell cycle arrest. Therapeutic efficacy of the different treatment options was assayed after repeated treatment of mice bearing intraperitoneal OVCAR-3 xenograft tumours. Therapy monitoring was performed by bioluminescence imaging and histopathologic analysis. RESULTS Treatment of OVCAR-3 cells in vitro with combined (213)Bi-DTPA-F3 and paclitaxel resulted in enhanced cytotoxicity, induction of apoptosis and G2/M phase arrest compared to treatment with either (213)Bi-DTPA-F3 or paclitaxel. Accordingly, i.p. xenograft OVCAR-3 tumours showed the best response following repeated (six times) combined therapy with (213)Bi-DTPA-F3 (1.85 MBq) and paclitaxel (120 μg) as demonstrated by bioluminescence imaging and histopathologic investigation of tumour spread on the mesentery of the small and large intestine. Moreover, mean survival of xenograft mice that received combined therapy with (213)Bi-DTPA-F3 and paclitaxel was significantly superior to mice treated with either (213)Bi-DTPA-F3 or paclitaxel alone. CONCLUSION Combined treatment with (213)Bi-DTPA-F3 and paclitaxel significantly increased mean survival of mice with peritoneal carcinomatosis of ovarian origin, thus favouring future therapeutic application.
Collapse
|
29
|
High molecular mass radioimmunoconjugates are promising for intraperitoneal α-emitter immunotherapy due to prolonged retention in the peritoneum. Nucl Med Biol 2012; 39:617-27. [DOI: 10.1016/j.nucmedbio.2011.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/14/2011] [Accepted: 12/05/2011] [Indexed: 11/23/2022]
|
30
|
Cornelissen B, Waller A, Target C, Kersemans V, Smart S, Vallis KA. 111In-BnDTPA-F3: an Auger electron-emitting radiotherapeutic agent that targets nucleolin. EJNMMI Res 2012; 2:9. [PMID: 22348532 PMCID: PMC3298710 DOI: 10.1186/2191-219x-2-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/20/2012] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The F3 peptide (KDEPQRRSARLSAKPAPPKPEPKPKKAPAKK), a fragment of the human high mobility group protein 2, binds nucleolin. Nucleolin is expressed in the nuclei of normal cells but is also expressed on the membrane of some cancer cells. The goal was to investigate the use of 111In-labeled F3 peptide for Auger electron-targeted radiotherapy. METHODS F3 was labeled with fluorescein isothiocyanate (FITC) for confocal microscopy and conjugated to p-SCN-benzyl-diethylenetriaminepentaacetic acid (BnDTPA) for labeling with 111In to form 111In-BnDTPA-F3. MDA-MB-231-H2N (231-H2N) human breast cancer cells were exposed to 111In-BnDTPA-F3 and used in cell fractionation, γH2AX immunostaining (a marker of DNA double-strand breaks), and clonogenic assays. In vivo, biodistribution studies of 111In-BnDTPA-F3 were performed in 231-H2N xenograft-bearing mice. In tumor growth delay studies, 111In-BnDTPA-F3 (3 μg, 6 MBq/μg) was administered intravenously to 231-H2N xenograft-bearing mice once weekly for 3 weeks. RESULTS Membrane-binding of FITC-F3 was observed in 231-H2N cells, and there was co-localization of FITC-F3 with nucleolin in the nuclei. After exposure of 231-H2N cells to 111In-BnDTPA-F3 for 2 h, 1.7% of 111In added to the medium was membrane-bound. Of the bound 111In, 15% was internalized, and of this, 37% was localized in the nucleus. Exposure of 231-H2N cells to 111In-BnDTPA-F3 (1 μM, 6 MBq/μg) resulted in a dose-dependent increase in γH2AX foci and in a significant reduction of clonogenic survival compared to untreated cells or cells exposed to unlabeled BnDTPA-F3 (46 ± 4.1%, 100 ± 1.8%, and 132 ± 7.7%, respectively). In vivo, tumor uptake of 111In-BnDTPA-F3 (3 μg, 6 MBq/μg) at 3-h post-injection was 1% of the injected dose per gram (%ID/g), and muscle uptake was 0.5%ID/g. In tumor growth delay studies, tumor growth rate was reduced 19-fold compared to untreated or unlabeled BnDTPA-F3-treated mice (p = 0.023). CONCLUSION 111In-BnDTPA-F3 is internalized into 231-H2N cells and translocates to the nucleus. 111In-BnDTPA-F3 has a potent cytotoxic effect in vitro and an anti-tumor effect in mice bearing 231-H2N xenografts despite modest total tumor accumulation.
Collapse
Affiliation(s)
- Bart Cornelissen
- Department of Oncology, Cancer Research UK/Medical Research Council Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Andrew Waller
- Department of Oncology, Cancer Research UK/Medical Research Council Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Carol Target
- Department of Oncology, Cancer Research UK/Medical Research Council Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Veerle Kersemans
- Department of Oncology, Cancer Research UK/Medical Research Council Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Sean Smart
- Department of Oncology, Cancer Research UK/Medical Research Council Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Katherine A Vallis
- Department of Oncology, Cancer Research UK/Medical Research Council Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
31
|
Essler M, Gärtner FC, Neff F, Blechert B, Senekowitsch-Schmidtke R, Bruchertseifer F, Morgenstern A, Seidl C. Therapeutic efficacy and toxicity of 225Ac-labelled vs. 213Bi-labelled tumour-homing peptides in a preclinical mouse model of peritoneal carcinomatosis. Eur J Nucl Med Mol Imaging 2012; 39:602-12. [DOI: 10.1007/s00259-011-2023-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022]
|
32
|
Prickett WM, Van Rite BD, Resasco DE, Harrison RG. Vascular targeted single-walled carbon nanotubes for near-infrared light therapy of cancer. NANOTECHNOLOGY 2011; 22:455101. [PMID: 21993223 DOI: 10.1088/0957-4484/22/45/455101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A new approach for targeting carbon nanotubes to the tumor vasculature was tested using human endothelial cells and MCF-7 breast cancer cells in vitro. Single-walled carbon nanotubes were functionalized with the F3 peptide using a polyethylene glycol linker to target nucleolin, a protein found on the surface of endothelial cells in the vasculature of solid tumors. Confocal microscopy and Raman analysis confirmed that the conjugate was internalized by actively dividing endothelial cells. Dividing endothelial cells were used to mimic these cells in the tumor vasculature. Incubation with the conjugate for 8 h or more caused significant cell death in both actively dividing endothelial cells and MCF-7 breast cancer cells, an effect that is hypothesized to be due to the massive uptake of the conjugate. This targeted cell killing was further enhanced when coupled with near-infrared laser treatment. For confluent (non-dividing) endothelial cells, no cytotoxic effect was seen for incubation alone or incubation coupled with laser treatment. These results are promising and warrant further studies using this conjugate for cancer treatment in vivo.
Collapse
Affiliation(s)
- Whitney M Prickett
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 East Boyd, Room T-335, Norman, OK 73019, USA
| | | | | | | |
Collapse
|
33
|
Bhojani MS, Ranga R, Luker GD, Rehemtulla A, Ross BD, Van Dort ME. Synthesis and investigation of a radioiodinated F3 peptide analog as a SPECT tumor imaging radioligand. PLoS One 2011; 6:e22418. [PMID: 21811604 PMCID: PMC3139646 DOI: 10.1371/journal.pone.0022418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/22/2011] [Indexed: 01/13/2023] Open
Abstract
A radioiodinated derivative of the tumor-homing F3 peptide, (N-(2-{3-[125I]Iodobenzoyl}aminoethyl)maleimide-F3Cys peptide, [125I]IBMF3 was developed for investigation as a SPECT tumor imaging radioligand. For this purpose, we custom synthesized a modified F3 peptide analog (F3Cys) incorporating a C-terminal cysteine residue for site-specific attachment of a radioiodinated maleimide conjugating group. Initial proof-of-concept Fluorescence studies conducted with AlexaFluor 532 C5 maleimide-labeled F3Cys showed distinct membrane and nuclear localization of F3Cys in MDA-MB-435 cells. Additionally, F3Cys conjugated with NIR fluorochrome AlexaFluor 647 C2 maleimide demonstrated high tumor specific uptake in melanoma cancer MDA-MB-435 and lung cancer A549 xenografts in nude mice whereas a similarly labeled control peptide did not show any tumor uptake. These results were also confirmed by ex vivo tissue analysis. No-carrier-added [125I]IBMF3 was synthesized by a radioiododestannylation approach in 73% overall radiochemical yield. In vitro cell uptake studies conducted with [125I]IBMF3 displayed a 5-fold increase in its cell uptake at 4 h when compared to controls. SPECT imaging studies with [125I]IBMF3 in tumor bearing nude mice showed clear visualization of MDA-MB-435 xenografts on systemic administration. These studies demonstrate a potential utility of F3 peptide-based radioligands for tumor imaging with PET or SPECT techniques.
Collapse
Affiliation(s)
- Mahaveer S. Bhojani
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rajesh Ranga
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gary D. Luker
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brian D. Ross
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marcian E. Van Dort
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
34
|
Destouches D, Page N, Hamma-Kourbali Y, Machi V, Chaloin O, Frechault S, Birmpas C, Katsoris P, Beyrath J, Albanese P, Maurer M, Carpentier G, Strub JM, Van Dorsselaer A, Muller S, Bagnard D, Briand JP, Courty J. A simple approach to cancer therapy afforded by multivalent pseudopeptides that target cell-surface nucleoproteins. Cancer Res 2011; 71:3296-305. [PMID: 21415166 DOI: 10.1158/0008-5472.can-10-3459] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies have implicated the involvement of cell surface forms of nucleolin in tumor growth. In this study, we investigated whether a synthetic ligand of cell-surface nucleolin known as N6L could exert antitumor activity. We found that N6L inhibits the anchorage-dependent and independent growth of tumor cell lines and that it also hampers angiogenesis. Additionally, we found that N6L is a proapoptotic molecule that increases Annexin V staining and caspase-3/7 activity in vitro and DNA fragmentation in vivo. Through affinity isolation experiments and mass-spectrometry analysis, we also identified nucleophosmin as a new N6L target. Notably, in mouse xenograft models, N6L administration inhibited human tumor growth. Biodistribution studies carried out in tumor-bearing mice indicated that following administration N6L rapidly localizes to tumor tissue, consistent with its observed antitumor effects. Our findings define N6L as a novel anticancer drug candidate warranting further investigation.
Collapse
|
35
|
Wild D, Frischknecht M, Zhang H, Morgenstern A, Bruchertseifer F, Boisclair J, Provencher-Bolliger A, Reubi JC, Maecke HR. Alpha- versus Beta-Particle Radiopeptide Therapy in a Human Prostate Cancer Model (213Bi-DOTA-PESIN and 213Bi-AMBA versus177Lu-DOTA-PESIN). Cancer Res 2011; 71:1009-18. [DOI: 10.1158/0008-5472.can-10-1186] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Bäck T, Jacobsson L. The alpha-camera: a quantitative digital autoradiography technique using a charge-coupled device for ex vivo high-resolution bioimaging of alpha-particles. J Nucl Med 2010; 51:1616-23. [PMID: 20847171 DOI: 10.2967/jnumed.110.077578] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Bioconjugates used in internal radiotherapy exhibit heterogeneous distributions in organs and tumors, implying a risk of nonuniform dose distribution in therapeutic applications using α-particle emitters. Tools are required that provide data on the activity distribution for estimation of absorbed dose on a suborgan level. The α-camera is a quantitative imaging technique developed to detect α-particles in tissues ex vivo. The aim of this study was to evaluate the characteristics of this imaging system and to exemplify its potential use in the development of α-radioimmunotherapy. METHODS The α-camera combines autoradiography with a scintillating technique and optical registration by a charge-coupled device (CCD). The imaging system characteristics were evaluated by measurements of linearity, uniformity, and spatial resolution. The technique was applied for quantitative imaging of (211)At activity distribution in cryosections of tumors, kidney, and whole body. Intratumoral activity distributions of tumor-specific (211)At-MX35-F(ab')(2) were studied at various times after injection. The postinjection activity distributions in the renal cortex and whole kidneys were compared for (211)At-F(ab')(2) and (211)At-IgG trastuzumab. RESULTS Quantitative analysis of α-camera images demonstrated that the pixel intensity increased linearly with activity in the imaged specimen. The spatial resolution was 35 ± 11 μm (mean ± SD) and the uniformity better than 2%. Kidney cryosections revealed a higher cortex-to-whole kidney ratio for (211)At-F(ab')(2) than for (211)At-IgG (1.38 ± 0.03 and 0.77 ± 0.04, respectively) at 2 h after injection. Nonuniform intratumoral activity distributions were found for tumor-specific (211)At-MX35-F(ab')(2) at 10 min and 7 h after injection; after 21 h, the distribution was more uniform. CONCLUSION The characteristics of the α-camera are promising, suggesting that this bioimaging system can assist the development, evaluation, and refinement of future targeted radiotherapy approaches using α-emitters. The α-camera provides quantitative data on the activity distribution in tissues on a near-cellular scale and can therefore be used for small-scale dosimetry, improving the prediction of biologic outcomes with α-particles with short path length and high linear energy transfer.
Collapse
Affiliation(s)
- Tom Bäck
- Department of Radiation Physics, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | | |
Collapse
|
37
|
Aptamers for Targeted Drug Delivery. Pharmaceuticals (Basel) 2010; 3:1761-1778. [PMID: 27713328 PMCID: PMC4033951 DOI: 10.3390/ph3061761] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/19/2010] [Accepted: 05/26/2010] [Indexed: 12/20/2022] Open
Abstract
Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX). SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.
Collapse
|
38
|
Abstract
The various types of cells that comprise the tumor mass all carry molecular markers that are not expressed or are expressed at much lower levels in normal cells. These differentially expressed molecules can be used as docking sites to concentrate drug conjugates and nanoparticles at tumors. Specific markers in tumor vessels are particularly well suited for targeting because molecules at the surface of blood vessels are readily accessible to circulating compounds. The increased concentration of a drug in the site of disease made possible by targeted delivery can be used to increase efficacy, reduce side effects, or achieve some of both. We review the recent advances in this delivery approach with a focus on the use of molecular markers of tumor vasculature as the primary target and nanoparticles as the delivery vehicle.
Collapse
Affiliation(s)
- Erkki Ruoslahti
- Vascular Mapping Center, Sanford-Burnham Medical Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | |
Collapse
|
39
|
Bajaj G, Yeo Y. Drug delivery systems for intraperitoneal therapy. Pharm Res 2010; 27:735-8. [PMID: 20198409 DOI: 10.1007/s11095-009-0031-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 12/04/2009] [Indexed: 02/01/2023]
Abstract
Disorders associated with the peritoneal cavity include peritoneal adhesions and intraperitoneal (IP) malignancies. To prevent peritoneal adhesions, physical barrier devices are used to prevent organs from contacting other structures in the abdomen and forming adhesions, or pharmacological agents that interfere with adhesion formation are administered intraperitoneally. IP malignancies are other disorders confined to the peritoneal cavity, which are treated by combination of surgical removal and chemotherapy of the residual tumor. IP drug delivery helps in the regional therapy of these disorders by providing relatively high concentration and longer half-life of a drug in the peritoneal cavity. Various studies suggest that IP delivery of anti-neoplastic agents is a promising approach for malignancies in the peritoneal cavity compared to the systemic administration. However, IP drug delivery faces several challenges, such as premature clearance of a small molecular weight drug from the peritoneal cavity, lack of target specificity, and poor drug penetration into the target tissues. Previous studies have proposed the use of micro/nanoparticles and/or hydrogel-based systems for prolonging the drug residence time in the peritoneal cavity. This commentary discusses the currently used IP drug delivery systems either clinically or experimentally and the remaining challenges in IP drug delivery for future development.
Collapse
Affiliation(s)
- Gaurav Bajaj
- Department of Industrial and Physical Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | | |
Collapse
|