1
|
Hill DJ, Hill TG. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front Endocrinol (Lausanne) 2024; 15:1456629. [PMID: 39377073 PMCID: PMC11456468 DOI: 10.3389/fendo.2024.1456629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Fetal and neonatal development is a critical period for the establishment of the future metabolic health and disease risk of an individual. Both maternal undernutrition and overnutrition can result in abnormal fetal organ development resulting in inappropriate birth size, child and adult obesity, and increased risk of Type 2 diabetes and cardiovascular diseases. Inappropriate adaptive changes to the maternal pancreas, placental function, and the development of the fetal pancreas in response to nutritional stress during pregnancy are major contributors to a risk trajectory in the offspring. This interconnected maternal-placental-fetal metabolic axis is driven by endocrine signals in response to the availability of nutritional metabolites and can result in cellular stress and premature aging in fetal tissues and the inappropriate expression of key genes involved in metabolic control as a result of long-lasting epigenetic changes. Such changes result is insufficient pancreatic beta-cell mass and function, reduced insulin sensitivity in target tissues such as liver and white adipose and altered development of hypothalamic satiety centres and in basal glucocorticoid levels. Whilst interventions in the obese mother such as dieting and increased exercise, or treatment with insulin or metformin in mothers who develop gestational diabetes, can improve metabolic control and reduce the risk of a large-for-gestational age infant, their effectiveness in changing the adverse metabolic trajectory in the child is as yet unclear.
Collapse
Affiliation(s)
- David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON, Canada
| | - Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Dos Reis Araujo T, Alves BL, Dos Santos LMB, Gonçalves LM, Carneiro EM. Association between protein undernutrition and diabetes: Molecular implications in the reduction of insulin secretion. Rev Endocr Metab Disord 2024; 25:259-278. [PMID: 38048021 DOI: 10.1007/s11154-023-09856-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Undernutrition is still a recurring nutritional problem in low and middle-income countries. It is directly associated with the social and economic sphere, but it can also negatively impact the health of the population. In this sense, it is believed that undernourished individuals may be more susceptible to the development of non-communicable diseases, such as diabetes mellitus, throughout life. This hypothesis was postulated and confirmed until today by several studies that demonstrate that experimental models submitted to protein undernutrition present alterations in glycemic homeostasis linked, in part, to the reduction of insulin secretion. Therefore, understanding the changes that lead to a reduction in the secretion of this hormone is essential to prevent the development of diabetes in undernourished individuals. This narrative review aims to describe the main molecular changes already characterized in pancreatic β cells that will contribute to the reduction of insulin secretion in protein undernutrition. So, it will provide new perspectives and targets for postulation and action of therapeutic strategies to improve glycemic homeostasis during this nutritional deficiency.
Collapse
Affiliation(s)
- Thiago Dos Reis Araujo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil
| | - Bruna Lourençoni Alves
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil
| | - Lohanna Monali Barreto Dos Santos
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil
| | - Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Everardo Magalhães Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil.
| |
Collapse
|
3
|
Obadimu AA, Adebayo OL, Tugbobo-Amisu AO, Fagbohunka BS, Adenuga GA. Effect of Selenium and Zinc Supplementation on Reproductive Organs Following Postnatal Protein Malnutrition. Biol Trace Elem Res 2024; 202:1126-1139. [PMID: 37393387 DOI: 10.1007/s12011-023-03751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Protein diets are required for the normal development of the reproductive system and their inadequacy or deficiency might have hazardous functional complications during maturational and developmental stages. The study was carried out to evaluate the effect of selenium (Se) and zinc (Zn) supplementation on the male and female reproductive organs of rats with postnatal protein malnutrition. Male and female weanling rats were randomly assigned to six groups respectively. The adequate protein diet rats were fed with 16% casein diet while the protein malnourished diet (PMD) rats were fed with 5% casein diet. After the 8th week of feeding, Se (sodium selenite; Na2SeO3) and Zn (zinc sulfate; ZnSO4·7H2O) were supplemented for 3 weeks. The growth curve of body weights, lipid profile, testosterone and progesterone level, Na+-K+-ATPase activity, oxidative stress, and antioxidant status were evaluated. The results showed that PMD reduced the body weights of male and female rats. It also reduced the activities of catalase and glutathione peroxidase in the testes, but reductions in superoxide dismutase and glutathione-S-transferase activities, glutathione, vitamins C and E, testosterone, and progesterone levels were observed in both the testes and ovaries. Furthermore, PMD increased the nitric oxide level in both organs and altered the plasma lipid profiles in both sexes. Se and Zn supplementation, however, restored almost all the alterations observed in all the parameters analyzed. In conclusion, Se and Zn supplementation protects the male and female reproductive organs of rats against postnatal protein malnutrition.
Collapse
Affiliation(s)
- Adedayo Adedeji Obadimu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu, Ogun State, Nigeria
| | - Olusegun Lateef Adebayo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, P.M.B. 230, Nigeria.
| | - Adesewa Omolara Tugbobo-Amisu
- Department of Food Technology,, Federal Institute of Industrial Research Oshodi (FIIRO), Lagos, Lagos State, Nigeria
| | - Bamidele Sanya Fagbohunka
- Department of Biochemistry, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu, Ogun State, Nigeria
| | - Gbenga Adebola Adenuga
- Department of Biochemistry, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu, Ogun State, Nigeria
| |
Collapse
|
4
|
Mohammed S, Qadri SSYH, Molangiri A, Basak S, Rajkumar H. Gestational low dietary protein induces intrauterine inflammation and alters the programming of adiposity & insulin sensitivity in the adult offspring. J Nutr Biochem 2023; 116:109330. [PMID: 36967094 DOI: 10.1016/j.jnutbio.2023.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/08/2023]
Abstract
Malnutrition associated with low dietary protein can induce gestational inflammation and sets a long-lasting metabolic impact on the offspring even after replenishment. The work investigated whether a low-protein diet (LPD) during pregnancy and lactation induces intrauterine inflammation and predisposes offspring to adiposity and insulin resistance in their adult life. Female Golden Syrian hamsters were fed LPD (10.0% energy from protein) or a control diet (CD, 20.0 % energy from protein) from preconception until lactation. All pups were switched to CD after lactation and continued until the end. Maternal LPD increased intrauterine inflammation by enhancing neutrophil infiltration, amniotic hsCRP, oxidative stress, and mRNA expression of NFκβ, IL8, COX2, and TGFβ in the chorioamniotic membrane (P<.05). The prepregnancy body weight, placental, and fetal weights, serum AST and ALT were decreased, while blood platelets, lymphocytes, insulin, and HDL were significantly increased in LPD-fed dams (P<.05). A postnatal switch to an adequate protein could not prevent hyperlipidemia in the 6-months LPD/CD offspring. The lipid profile and liver functions were restored over 10 months of protein feeding but failed to normalize fasting glucose and body fat accumulation compared to CD/CD. LPD/CD showed elevated GLUT4 expression & activated pIRS1 in the skeletal muscle and increased expression of IL6, IL1β, and p65-NFκB proteins in the liver (P<.05). In conclusion, present data suggest that maternal protein restriction may induce intrauterine inflammation and affect liver inflammation in the adult offspring by an influx of fats from adipose that may alter lipid metabolism and reduce insulin sensitivity in skeletal muscle.
Collapse
|
5
|
R J M, A V, Chakraborthy A, B MK, Shetty A V, Badanthadka M. Protein malnutrition in BALB/C mice: A model mimicking clinical scenario of marasmic-kwashiorkor malnutrition. J Pharmacol Toxicol Methods 2023; 119:107231. [PMID: 36410663 DOI: 10.1016/j.vascn.2022.107231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Protein malnutrition continues to be a major global issue. A stable animal model to address protein malnutrition and its effect on various disease conditions is necessary. In the present study, we have formulated and standardized a low protein diet (LPD) to develop a protein malnutrition model using Balb/C mice. Healthy male Balb/C mice were weaned and exposed to LPD combinations while another group exposed to normal diet (18% protein). Animal survival, change in body weight, body mass index (BMI), biochemical parameters, antioxidant status, and liver histopathology were used to confirm the development of malnourished mice model (marasmic-kwashiorkor). Mice receiving 10% protein diet showed moderate weight gain, higher BMI, and no mortality compared to the 6% protein group. The former group showed remarkable differences in BMI, biochemical and antioxidant parameters. Further, histopathological changes against the normal group at weeks 20 and 30 confirmed the development of protein malnutrition in mice on 10% protein diet. The study confirms the development of a stable, economical, reproducible, and clinically relevant protein malnutrition model using the formulated 10% protein diet. Further, the model can be used for short and long-term studies to investigate the pathophysiology of malnutrition in any disease/condition.
Collapse
Affiliation(s)
- Madhura R J
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Department of Nitte University Centre for Animal Research and Experimentation (NUCARE), Paneer campus, Deralakatte, Mangaluru 575 018, Karnataka, India
| | - Varsha A
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Department of Nitte University Centre for Animal Research and Experimentation (NUCARE), Paneer campus, Deralakatte, Mangaluru 575 018, Karnataka, India
| | - Anirban Chakraborthy
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Molecular Genetics and Cancer, Kotekar-Beeri Road, Deralakatte, Mangaluru 575018, India
| | - Mohana Kumar B
- Nitte (Deemed to be University), K. S. Hegde Medical Academy, Nitte University Center for Stem Cell Research and Regenerative Medicine, Deralakatte, 575018 Mangaluru, India
| | - Veena Shetty A
- Nitte (Deemed to be University), K. S. Hegde Medical Academy, Department of Microbiology, Deralakatte, Mangaluru 575018, India
| | - Murali Badanthadka
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Department of Nitte University Centre for Animal Research and Experimentation (NUCARE), Paneer campus, Deralakatte, Mangaluru 575 018, Karnataka, India.
| |
Collapse
|
6
|
Castro TDF, de Matos NA, de Souza ABF, Costa GDP, Perucci LO, Talvani A, Cangussú SD, Chianca-Jr DA, de Menezes RCA, Bezerra FS. Protein restriction during pregnancy affects lung development and promotes oxidative stress and inflammation in C57BL/6 mice offspring. Nutrition 2022; 101:111682. [DOI: 10.1016/j.nut.2022.111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
|
7
|
Vipin VA, Blesson CS, Yallampalli C. Maternal low protein diet and fetal programming of lean type 2 diabetes. World J Diabetes 2022; 13:185-202. [PMID: 35432755 PMCID: PMC8984567 DOI: 10.4239/wjd.v13.i3.185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/30/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Maternal nutrition is found to be the key factor that determines fetal health in utero and metabolic health during adulthood. Metabolic diseases have been primarily attributed to impaired maternal nutrition during pregnancy, and impaired nutrition has been an immense issue across the globe. In recent years, type 2 diabetes (T2D) has reached epidemic proportion and is a severe public health problem in many countries. Although plenty of research has already been conducted to tackle T2D which is associated with obesity, little is known regarding the etiology and pathophysiology of lean T2D, a variant of T2D. Recent studies have focused on the effects of epigenetic variation on the contribution of in utero origins of lean T2D, although other mechanisms might also contribute to the pathology. Observational studies in humans and experiments in animals strongly suggest an association between maternal low protein diet and lean T2D phenotype. In addition, clear sex-specific disease prevalence was observed in different studies. Consequently, more research is essential for the understanding of the etiology and pathophysiology of lean T2D, which might help to develop better disease prevention and treatment strategies. This review examines the role of protein insufficiency in the maternal diet as the central driver of the developmental programming of lean T2D.
Collapse
Affiliation(s)
- Vidyadharan Alukkal Vipin
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Chellakkan Selvanesan Blesson
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
- Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, United States
| | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
8
|
Mechanisms Underlying the Expansion and Functional Maturation of β-Cells in Newborns: Impact of the Nutritional Environment. Int J Mol Sci 2022; 23:ijms23042096. [PMID: 35216239 PMCID: PMC8877060 DOI: 10.3390/ijms23042096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
The functional maturation of insulin-secreting β-cells is initiated before birth and is completed in early postnatal life. This process has a critical impact on the acquisition of an adequate functional β-cell mass and on the capacity to meet and adapt to insulin needs later in life. Many cellular pathways playing a role in postnatal β-cell development have already been identified. However, single-cell transcriptomic and proteomic analyses continue to reveal new players contributing to the acquisition of β-cell identity. In this review, we provide an updated picture of the mechanisms governing postnatal β-cell mass expansion and the transition of insulin-secreting cells from an immature to a mature state. We then highlight the contribution of the environment to β-cell maturation and discuss the adverse impact of an in utero and neonatal environment characterized by calorie and fat overload or by protein deficiency and undernutrition. Inappropriate nutrition early in life constitutes a risk factor for developing diabetes in adulthood and can affect the β-cells of the offspring over two generations. A better understanding of these events occurring in the neonatal period will help developing better strategies to produce functional β-cells and to design novel therapeutic approaches for the prevention and treatment of diabetes.
Collapse
|
9
|
Early Weaning Affects Liver Antioxidant Function in Piglets. Animals (Basel) 2021; 11:ani11092679. [PMID: 34573645 PMCID: PMC8469846 DOI: 10.3390/ani11092679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Early weaning is used to improve efficiency in pig production. However, early weaning may trigger liver oxidative stress in piglets. In this study, we evaluated the effects of early weaning on the development and antioxidant function of the liver in piglets. Our findings show that early weaning significantly decreases piglet body weight and suppresses liver development. We find that early weaning also suppresses the activities of superoxide dismutase (SOD) and catalase (CAT) (p < 0.05). It could be concluded that weaning may reduce the growth performance and liver antioxidant function of piglets. Abstract This study examined the impact of early weaning on antioxidant function in piglets. A total of 40 Duroc × Landrace × Large White, 21-day-old piglets (half male and half female) were divided into suckling groups (SG) and weaning groups (WG). Piglets in WG were weaned at the 21st day, while the piglets in SG continued to get breastfed. Eight piglets from each group were randomly selected and slaughtered at 24th-day (SG3, WG3) and 28th-day old (SG7, WG7). The body weight, liver index, hepatocyte morphology, antioxidant enzymes activity, gene expression of antioxidant enzymes, and Nrf2 signaling in the liver of piglets were measured. The results showed that weaning caused decreased body weight (p < 0.01), lower liver weight (p < 0.01), and decreased the liver organ index (p < 0.05) of piglets. The area and size of hepatocytes in the WG group was smaller than that in the SG group (p < 0.05). We also observed that weaning reduced the activity of superoxide dismutase (SOD) and catalase (CAT) (p < 0.05) in the liver of piglets. Relative to the SG3 group, the gene expression of GSH-Px in liver of WG3 was significantly reduced (p < 0.05). The gene expression of Nrf2 in the SG3 group was higher than that in the WG3 group (p < 0.01). The gene expression of NQO1 in the SG7 group was higher than that in the WG7 group (p < 0.05). In conclusion, weaning resulted in lower weight, slowed liver development, and reduced antioxidant enzymes activity, thereby impairing liver antioxidant function and suppressing piglet growth.
Collapse
|
10
|
Oke SL, Lee K, Papp R, Laviolette SR, Hardy DB. In Utero Exposure to Δ9-Tetrahydrocannabinol Leads to Postnatal Catch-Up Growth and Dysmetabolism in the Adult Rat Liver. Int J Mol Sci 2021; 22:ijms22147502. [PMID: 34299119 PMCID: PMC8305322 DOI: 10.3390/ijms22147502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 12/25/2022] Open
Abstract
The rates of gestational cannabis use have increased despite limited evidence for its safety in fetal life. Recent animal studies demonstrate that prenatal exposure to Δ9-tetrahydrocannabinol (Δ9-THC, the psychoactive component of cannabis) promotes intrauterine growth restriction (IUGR), culminating in postnatal metabolic deficits. Given IUGR is associated with impaired hepatic function, we hypothesized that Δ9-THC offspring would exhibit hepatic dyslipidemia. Pregnant Wistar rat dams received daily injections of vehicular control or 3 mg/kg Δ9-THC i.p. from embryonic day (E) 6.5 through E22. Exposure to Δ9-THC decreased the liver to body weight ratio at birth, followed by catch-up growth by three weeks of age. At six months, Δ9-THC-exposed male offspring exhibited increased visceral adiposity and higher hepatic triglycerides. This was instigated by augmented expression of enzymes involved in triglyceride synthesis (ACCα, SCD, FABP1, and DGAT2) at three weeks. Furthermore, the expression of hepatic DGAT1/DGAT2 was sustained at six months, concomitant with mitochondrial dysfunction (i.e., elevated p66shc) and oxidative stress. Interestingly, decreases in miR-203a-3p and miR-29a/b/c, both implicated in dyslipidemia, were also observed in these Δ9-THC-exposed offspring. Collectively, these findings indicate that prenatal Δ9-THC exposure results in long-term dyslipidemia associated with enhanced hepatic lipogenesis. This is attributed by mitochondrial dysfunction and epigenetic mechanisms.
Collapse
Affiliation(s)
- Shelby L. Oke
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; (S.L.O.); (K.L.); (R.P.)
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | - Kendrick Lee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; (S.L.O.); (K.L.); (R.P.)
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | - Rosemary Papp
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; (S.L.O.); (K.L.); (R.P.)
| | - Steven R. Laviolette
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
| | - Daniel B. Hardy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; (S.L.O.); (K.L.); (R.P.)
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
- Correspondence:
| |
Collapse
|
11
|
Oke SL, Hardy DB. The Role of Cellular Stress in Intrauterine Growth Restriction and Postnatal Dysmetabolism. Int J Mol Sci 2021; 22:6986. [PMID: 34209700 PMCID: PMC8268884 DOI: 10.3390/ijms22136986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
Disruption of the in utero environment can have dire consequences on fetal growth and development. Intrauterine growth restriction (IUGR) is a pathological condition by which the fetus deviates from its expected growth trajectory, resulting in low birth weight and impaired organ function. The developmental origins of health and disease (DOHaD) postulates that IUGR has lifelong consequences on offspring well-being, as human studies have established an inverse relationship between birth weight and long-term metabolic health. While these trends are apparent in epidemiological data, animal studies have been essential in defining the molecular mechanisms that contribute to this relationship. One such mechanism is cellular stress, a prominent underlying cause of the metabolic syndrome. As such, this review considers the role of oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and inflammation in the pathogenesis of metabolic disease in IUGR offspring. In addition, we summarize how uncontrolled cellular stress can lead to programmed cell death within the metabolic organs of IUGR offspring.
Collapse
Affiliation(s)
- Shelby L. Oke
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | - Daniel B. Hardy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| |
Collapse
|
12
|
Kassem M, El Habhab A, Kreutter G, Amoura L, Baltzinger P, Abbas M, Sbat N, Zobairi F, Schini-Kerth VB, Kessler L, Toti F. In Vitro Impact of Pro-Senescent Endothelial Microvesicles on Isolated Pancreatic Rat Islets Function. Transplant Proc 2021; 53:1736-1743. [PMID: 33934912 DOI: 10.1016/j.transproceed.2021.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/15/2021] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Ischemia-driven islet isolation procedure is one of the limiting causes of pancreatic islet transplantation. Ischemia-reperfusion process is associated with endothelium dysfunction and the release of pro-senescent microvesicles. We investigated whether pro-senescent endothelial microvesicles prompt islet senescence and dysfunction in vitro. MATERIAL AND METHODS Pancreatic islets were isolated from male young rats. Replicative endothelial senescence was induced by serial passaging of primary porcine coronary artery endothelial cells, and microvesicles were isolated either from young passage 1 (P1) or senescent passage 3 (P3) endothelial cells. Islet viability was assessed by fluorescence microscopy, apoptosis by flow cytometry, and Western blot. Function was assessed by insulin secretion and islet senescence markers p53, p21, and p16 by Western blot. Microvesicles were stained by the PKH26 lipid fluorescent probe and their islet integration assessed by microscopy and flow cytometry. RESULTS Regardless of the passage, half microvesicles were integrated in target islets after 24 hours incubation. Insulin secretion significantly decreased after treatment by senescent microvesicles (P3: 1.7 ± 0.2 vs untreated islet: 2.7 ± 0.2, P < .05) without altering the islet viability (89.47% ± 1.69 vs 93.15% ± 0.97) and with no significant apoptosis. Senescent microvesicles significantly doubled the expression of p53, p21, and p16 (P < .05), whereas young microvesicles had no significant effect. CONCLUSION Pro-senescent endothelial microvesicles specifically accelerate the senescence of islets and alter their function. These data suggest that islet isolation contributes to endothelial driven islet senescence.
Collapse
Affiliation(s)
- Mohamad Kassem
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Ali El Habhab
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Guillaume Kreutter
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Lamia Amoura
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Philippe Baltzinger
- Department of Diabetes and Nutrition Endocrinology, University Hospital of Strasbourg, Strasbourg, France
| | - Malak Abbas
- UMR CNRS 7213, Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Noura Sbat
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Fatiha Zobairi
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Laurence Kessler
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France; Department of Diabetes and Nutrition Endocrinology, University Hospital of Strasbourg, Strasbourg, France
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
13
|
Pathology, Risk Factors, and Oxidative Damage Related to Type 2 Diabetes-Mediated Alzheimer's Disease and the Rescuing Effects of the Potent Antioxidant Anthocyanin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4051207. [PMID: 33728019 PMCID: PMC7936905 DOI: 10.1155/2021/4051207] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
The pathology and neurodegeneration in type 2 diabetes- (T2D-) mediated Alzheimer's disease (AD) have been reported in several studies. Despite the lack of information regarding the basic underlying mechanisms involved in the development of T2D-mediated AD, some common features of the two conditions have been reported, such as brain atrophy, reduced cerebral glucose metabolism, and insulin resistance. T2D phenotypes such as glucose dyshomeostasis, insulin resistance, impaired insulin signaling, and systemic inflammatory cytokines have been shown to be involved in the progression of AD pathology by increasing amyloid-beta accumulation, tau hyperphosphorylation, and overall neuroinflammation. Similarly, oxidative stress, mitochondrial dysfunction, and the generation of advanced glycation end products (AGEs) and their receptor (RAGE) as a result of chronic hyperglycemia may serve as critical links between diabetes and AD. The natural dietary polyflavonoid anthocyanin enhances insulin sensitivity, attenuates insulin resistance at the level of the target tissues, inhibits free fatty acid oxidation, and abrogates the release of peripheral inflammatory cytokines in obese (prediabetic) individuals, which are responsible for insulin resistance, systemic hyperglycemia, systemic inflammation, brain metabolism dyshomeostasis, amyloid-beta accumulation, and neuroinflammatory responses. In this review, we have shown that obesity may induce T2D-mediated AD and assessed the recent therapeutic advances, especially the use of anthocyanin, against T2D-mediated AD pathology. Taken together, the findings of current studies may help elucidate a new approach for the prevention and treatment of T2D-mediated AD by using the polyflavonoid anthocyanin.
Collapse
|
14
|
Oke SL, Sohi G, Hardy DB. Perinatal protein restriction with postnatal catch-up growth leads to elevated p66Shc and mitochondrial dysfunction in the adult rat liver. Reproduction 2020; 159:27-39. [PMID: 31689235 PMCID: PMC6933810 DOI: 10.1530/rep-19-0188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Epidemiological data suggest an inverse relationship between birth weight and long-term metabolic deficits, which is exacerbated by postnatal catch-up growth. We have previously demonstrated that rat offspring subject to maternal protein restriction (MPR) followed by catch-up growth exhibit impaired hepatic function and ER stress. Given that mitochondrial dysfunction is associated with various metabolic pathologies, we hypothesized that altered expression of p66Shc, a gatekeeper of oxidative stress and mitochondrial function, contributes to the hepatic defects observed in MPR offspring. To test this hypothesis, pregnant Wistar rats were fed a control (20% protein) diet or an isocaloric low protein (8%; LP) diet throughout gestation. Offspring born to control dams received a control diet in postnatal life, while MPR offspring remained on a LP diet (LP1) or received a control diet post weaning (LP2) or at birth (LP3). At four months, LP2 offspring exhibited increased protein abundance of both p66Shc and the cis-trans isomerase PIN1. This was further associated with aberrant markers of oxidative stress (i.e. elevated 4-HNE, SOD1 and SOD2, decreased catalase) and aerobic metabolism (i.e., increased phospho-PDH and LDHa, decreased complex II, citrate synthase and TFAM). We further demonstrated that tunicamycin-induced ER stress in HepG2 cells led to increased p66Shc protein abundance, suggesting that ER stress may underlie the programmed effects observed in vivo. In summary, because these defects are exclusive to adult LP2 offspring, it is possible that a low protein diet during perinatal life, a period of liver plasticity, followed by catch-up growth is detrimental to long-term mitochondrial function.
Collapse
Affiliation(s)
- Shelby L Oke
- The Children’s Health Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, London, Ontario, Canada
- Department of Physiology and Pharmacology, London, Ontario, Canada
- The University of Western Ontario, London, Ontario, Canada
| | - Gurjeev Sohi
- Department of Physiology and Pharmacology, London, Ontario, Canada
- The University of Western Ontario, London, Ontario, Canada
| | - Daniel B Hardy
- The Children’s Health Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, London, Ontario, Canada
- Department of Physiology and Pharmacology, London, Ontario, Canada
- The University of Western Ontario, London, Ontario, Canada
- Correspondence should be addressed to D B Hardy;
| |
Collapse
|
15
|
Rashid CS, Bansal A, Simmons RA. Oxidative Stress, Intrauterine Growth Restriction, and Developmental Programming of Type 2 Diabetes. Physiology (Bethesda) 2018; 33:348-359. [PMID: 30109821 PMCID: PMC6230552 DOI: 10.1152/physiol.00023.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Intrauterine growth restriction (IUGR) leads to reduced birth weight and the development of metabolic diseases such as Type 2 diabetes in adulthood. Mitochondria dysfunction and oxidative stress are commonly found in key tissues (pancreatic islets, liver, and skeletal muscle) of IUGR individuals. In this review, we explore the role of oxidative stress in IUGR-associated diabetes etiology.
Collapse
Affiliation(s)
- Cetewayo S Rashid
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Amita Bansal
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Cappelli APG, Zoppi CC, Silveira LR, Batista TM, Paula FM, da Silva PMR, Rafacho A, Barbosa-Sampaio HC, Boschero AC, Carneiro EM. Reduced glucose-induced insulin secretion in low-protein-fed rats is associated with altered pancreatic islets redox status. J Cell Physiol 2017; 233:486-496. [PMID: 28370189 DOI: 10.1002/jcp.25908] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 01/01/2023]
Abstract
In the present study, we investigated the relationship between early life protein malnutrition-induced redox imbalance, and reduced glucose-stimulated insulin secretion. After weaning, male Wistar rats were submitted to a normal-protein-diet (17%-protein, NP) or to a low-protein-diet (6%-protein, LP) for 60 days. Pancreatic islets were isolated and hydrogen peroxide (H2 O2 ), oxidized (GSSG) and reduced (GSH) glutathione content, CuZn-superoxide dismutase (SOD1), glutathione peroxidase (GPx1) and catalase (CAT) gene expression, as well as enzymatic antioxidant activities were quantified. Islets that were pre-incubated with H2 O2 and/or N-acetylcysteine, were subsequently incubated with glucose for insulin secretion measurement. Protein malnutrition increased CAT mRNA content by 100%. LP group SOD1 and CAT activities were 50% increased and reduced, respectively. H2 O2 production was more than 50% increased whereas GSH/GSSG ratio was near 60% lower in LP group. Insulin secretion was, in most conditions, approximately 50% lower in LP rat islets. When islets were pre-incubated with H2 O2 (100 μM), and incubated with glucose (33 mM), LP rats showed significant decrease of insulin secretion. This effect was attenuated when LP islets were exposed to N-acetylcysteine.
Collapse
Affiliation(s)
- Ana Paula G Cappelli
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão (UFMA), São Luís, Maranhão, Brazil.,Department of Physiology and Biophysiology, Institute of Biomedical Sciences, University of Sao Paulo (USP), São Paulo, Brazil
| | - Claudio C Zoppi
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Leonardo R Silveira
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Thiago M Batista
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Flávia M Paula
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Alex Rafacho
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Department of Physiologic Sciences, Center of Biologic Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil
| | - Helena C Barbosa-Sampaio
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Antonio C Boschero
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Everardo M Carneiro
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
17
|
Protein malnutrition potentiates the amplifying pathway of insulin secretion in adult obese mice. Sci Rep 2016; 6:33464. [PMID: 27633083 PMCID: PMC5025848 DOI: 10.1038/srep33464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 08/30/2016] [Indexed: 12/28/2022] Open
Abstract
Pancreatic beta cell (β) dysfunction is an outcome of malnutrition. We assessed the role of the amplifying pathway (AMP PATH) in β cells in malnourished obese mice. C57Bl-6 mice were fed a control (C) or a low-protein diet (R). The groups were then fed a high-fat diet (CH and RH). AMP PATH contribution to insulin secretion was assessed upon incubating islets with diazoxide and KCl. CH and RH displayed increased glucose intolerance, insulin resistance and glucose-stimulated insulin secretion. Only RH showed a higher contribution of the AMP PATH. The mitochondrial membrane potential of RH was decreased, and ATP flux was unaltered. In RH islets, glutamate dehydrogenase (GDH) protein content and activity increased, and the AMP PATH contribution was reestablished when GDH was blunted. Thus, protein malnutrition induces mitochondrial dysfunction in β cells, leading to an increased contribution of the AMP PATH to insulin secretion through the enhancement of GDH content and activity.
Collapse
|
18
|
Deng Y, Zhang Q, Luo H, Chen X, Han Q, Wang F, Huang P, Lai W, Guan X, Pan X, Ji Y, Guo W, Che L, Tang Y, Gu L, Yu J, Namaka M, Deng Y, Li X. Sustained elevation of NF-κB activity sensitizes offspring of maternal inflammation to hypertension via impairing PGC-1α recovery. Sci Rep 2016; 6:32642. [PMID: 27616627 PMCID: PMC5018852 DOI: 10.1038/srep32642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Growing evidence has demonstrated that maternal detrimental factors, including inflammation, contribute to the development of hypertension in the offspring. The current study found that offspring subjected to prenatal exposure of inflammation by lipopolysaccharide (LPS) challenge during the second semester showed significantly increased systolic blood pressure. In addition, these offspring also displayed augmented vascular damage and reactive oxygen species (ROS) levels in thoracic aortas when challenged with deoxycorticosterone acetate and high-salt diet (DOCA-salt). Interestingly, the antioxidant N-acetyl-L-cysteine markedly reversed these changes. Mechanistically, prenatal LPS exposure led to pre-existing elevated peroxisome proliferators-activated receptor-γ co-activator (PGC)-1α, a critical master of ROS metabolism, which up-regulated the ROS defense capacity and maintained the balance of ROS generation and elimination under resting state. However, continued elevation of NF-κB activity significantly suppressed the rapid recovery of PGC-1α expression response to DOCA-salt challenge in offspring that underwent prenatal inflammatory stimulation. This was further confirmed by using a NF-κB inhibitor (N-p-Tosyl-L-phenylalanine chloromethyl ketone) that restored PGC-1α recovery and prevented blood pressure elevation induced by DOCA-salt. Our results suggest that maternal inflammation programmed proneness to NF-κB over-activation which impaired PGC-1α-mediated anti-oxidant capacity resulting in the increased sensitivity of offspring to hypertensive damage.
Collapse
Affiliation(s)
- Yafei Deng
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qi Zhang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hongqin Luo
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xianhua Chen
- Diagosis and Treatment Center for Servicemen, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qi Han
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Fangjie Wang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Pei Huang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wenjing Lai
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiao Guan
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaodong Pan
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yan Ji
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wei Guo
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ling Che
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yuan Tang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Liangqi Gu
- The Center for Disease Control and Prevention of Chengdu Military Command, Chengdu, China
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Michael Namaka
- Colleges of Pharmacy and Medicine, University of Manitoba, Winnipeg, MB, Canada
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and the College of Medicine University of Manitoba, Shantou, China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
19
|
Protein undernutrition during development and oxidative impairment in the central nervous system (CNS): potential factors in the occurrence of metabolic syndrome and CNS disease. J Dev Orig Health Dis 2016; 7:513-524. [DOI: 10.1017/s2040174416000246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria play a regulatory role in several essential cell processes including cell metabolism, calcium balance and cell viability. In recent years, it has been postulated that mitochondria participate in the pathogenesis of a number of chronic diseases, including central nervous system disorders. Thus, the concept of mitochondrial function now extends far beyond the common view of this organelle as the ‘powerhouse’ of the cell to a new appreciation of the mitochondrion as a transducer of early metabolic insult into chronic disease in later life. In this review, we have attempted to describe some of the associations between nutritional status and mitochondrial function (and dysfunction) during embryonic development with the occurrence of neural oxidative imbalance and neurogenic disease in adulthood.
Collapse
|
20
|
Bajpai SK, Das A, Saini M, Kullu SS, Sharma AK. Influence of dietary protein on serum metabolites and antioxidant status: A study in Chrysolophus amherstiae. Zoo Biol 2016; 35:346-54. [PMID: 27186655 DOI: 10.1002/zoo.21294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 11/06/2022]
Abstract
This experiment was conducted to study the effect of feeding graded levels of dietary crude protein (CP) on serum biochemical profile of Lady Amherst's pheasants (LAP). Eighteen male LAP were randomly distributed into three groups of six each in an experiment based on completely randomized design. The CP content of the diets was 13.4%, 16.5%, and 19.1%, in groups I, II, and III, respectively. Serum concentrations of uric acid was lowest (P < 0.05) in group I. Relationship between serum concentration of uric acid and nitrogen intake was linear (R(2) = 0.39, P < 0.01). Concentrations of other serum metabolites and enzymes were similar among the groups. Serum concentration of triiodothyronine (T3 ) was highest (P < 0.05) in group I, followed by groups II and III. Total antioxidant capacity (TAC) of serum was lower (P < 0.007), whereas serum concentration of malondialdehyde (MDA) was higher (P < 0.001) in group I as compared to groups II and III. Regression of serum concentration of TAC (R(2) = 0.74, P < 0.01) and MDA (R(2) = 0.39, P < 0.05) was polynomial. Heterophil to lymphocyte ratio was higher (P < 0.007) in group I as compared to groups II and III. Relationship between H/L ratio and nitrogen intake was polynomial (R(2) = 0.69, P < 0.05). Cell mediated immune response measured as foot web index was similar among the groups. Based upon the results, it was concluded that a diet containing 16.5% crude protein would be optimum for improving antioxidant defense and the ability of Lady Amherst's pheasant to combat stress. Zoo Biol. 35:346-354, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- S K Bajpai
- Centre for Wildlife Conservation, Management and Disease Surveillance, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - A Das
- Centre for Wildlife Conservation, Management and Disease Surveillance, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - M Saini
- Centre for Wildlife Conservation, Management and Disease Surveillance, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - S S Kullu
- Centre for Wildlife Conservation, Management and Disease Surveillance, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - A K Sharma
- Centre for Wildlife Conservation, Management and Disease Surveillance, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
21
|
Adebayo OL, Adenuga GA, Sandhir R. Selenium and zinc protect brain mitochondrial antioxidants and electron transport chain enzymes following postnatal protein malnutrition. Life Sci 2016; 152:145-55. [PMID: 26965089 DOI: 10.1016/j.lfs.2016.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/23/2016] [Accepted: 03/04/2016] [Indexed: 01/24/2023]
Abstract
AIMS Selenium (Se) and zinc (Zn) are trace elements required for optimal brain functions. Thus, the role of Se and Zn against protein malnutrition induced oxidative stress on mitochondrial antioxidants and electron transport chain (ETC) enzymes from rats' brain were investigated. MAIN METHODS Normal protein (NP) and low protein (LP) rats were fed with diets containing 16% and 5% casein respectively for a period of 10weeks. Then the rats were supplemented with Se and Zn at a concentration of 0.15mgL(-1) and 227mgL(-1) in drinking water for 3weeks after which the rats were sacrificed. KEY FINDINGS The results obtained from the study showed significant (p<0.05) increase in lipid peroxidation (LPO), ROS production, oxidized glutathione (GSSG) levels and mitochondrial swelling and significant (p<0.05) reductions in catalase (CAT) and Mn-superoxide dismutase (Mn-SOD) activities, glutathione (GSH) levels, GSH/GSSG ratio and MTT reduction as a result of LP ingestion. The activities of mitochondrial ETC enzymes were also significantly inhibited in both the cortex and cerebellum of LP-fed rats. Supplementation with either Se or Zn restored the alterations in all the parameters. SIGNIFICANCE The study showed that Se and Zn might be beneficial in protecting mitochondrial antioxidants and ETC enzymes against protein malnutrition induced oxidative stress.
Collapse
Affiliation(s)
- Olusegun L Adebayo
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Sector 25, 160014, Chandigarh, India; Department of Chemical Sciences, College of Natural Sciences, Redeemer's University, P.M.B. 230, Ede, Osun State, Nigeria; Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, P.M.B. 2005, Remo Campus, Ikenne, Ogun State, Nigeria
| | - Gbenga A Adenuga
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, P.M.B. 2005, Remo Campus, Ikenne, Ogun State, Nigeria
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Sector 25, 160014, Chandigarh, India.
| |
Collapse
|
22
|
Gavia-García G, González-Martínez H, Miliar-García Á, Bonilla-González E, Rosas-Trejo MDLÁ, Königsberg M, Nájera-Medina O, Luna-López A, González-Torres MC. Oxidative damage and antioxidant defense in thymus of malnourished lactating rats. Nutrition 2015; 31:1408-15. [PMID: 26429663 DOI: 10.1016/j.nut.2015.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/29/2015] [Accepted: 05/10/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Malnutrition has been associated with oxidative damage by altered antioxidant protection mechanisms. Specifically, the aim of this study was to evaluate oxidative damage (DNA and lipid) and antioxidant status (superoxide dismutase [SOD], glutathione peroxidase [GPx], and catalase [CAT] mRNA, and protein expression) in thymus from malnourished rat pups. METHODS Malnutrition was induced during the lactation period by the food competition method. Oxidative DNA damage was determined quantifying 8-oxo-7, 8-dihydro-2'-deoxyguanosine adduct by high-performance liquid chromatography. Lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances. Levels of gene and protein expression of SOD, GPx, and CAT were evaluated by real-time polymerase chain reaction and Western blot, respectively. Antioxidant enzyme activities were measured spectrophotometrically. RESULTS Oxidative DNA damage and lipid peroxidation significantly increased in second-degree (MN-2) and third-degree malnourished (MN-3) rats compared with well-nourished rats. Higher amounts of oxidative damage, lower mRNA expression, and lower relative concentrations of protein, as well as decreased antioxidant activity of SOD, GPx, and CAT were associated with the MN-2 and MN-3 groups. CONCLUSIONS The results of this study demonstrated that higher body-weight deficits were related to alterations in antioxidant protection, which contribute to increased levels of damage in the thymus. To our knowledge, this study demonstrated for the first time that early in life, malnutrition leads to increased DNA and lipid oxidative damage, attributable to damaged antioxidant mechanisms including transcriptional and enzymatic activity alterations. These findings may contribute to the elucidation of the causes of previously reported thymus dysfunction, and might explain partially why children and adults who have overcome child undernourishment experience immunologic deficiencies.
Collapse
Affiliation(s)
- Graciela Gavia-García
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico; Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico
| | - Haydeé González-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - Ángel Miliar-García
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Edmundo Bonilla-González
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico
| | | | - Mina Königsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico
| | - Oralia Nájera-Medina
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, México City, Mexico
| | - Armando Luna-López
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, México City, Mexico
| | | |
Collapse
|
23
|
Shibuya T, Kaburagi T, Nagai R, Oshiro S. The effects of moderate exercise on secretory IgA production in mice depends on dietary carbohydrate intake. J Clin Biochem Nutr 2015; 57:44-9. [PMID: 26236100 PMCID: PMC4512897 DOI: 10.3164/jcbn.15-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/04/2015] [Indexed: 12/29/2022] Open
Abstract
Secretory immunoglobulin A (sIgA) is produced from intestinal mucosa and is essential in preventing infection. We analyzed the influence of moderate exercise on intestinal sIgA production and antioxidative function under different carbohydrate nutritional conditions. Thirty-six mice were fed an experimental diet for 10 weeks—a high-carbohydrate (HC) diet, a low-carbohydrate (LC) diet, or a control (C) diet. After 1 week on the experimental diets, mice were divided into sedentary and exercise groups (n = 6/group), where the exercise consisted of treadmill running for 30 min/day at 11 m/min for 6 days/week in 9 consecutive weeks. Intestinal sIgA levels in the exercise groups fed C or LC diets were significantly lower compared with the parallel sedentary groups, or exercise-group mice fed HC diet. Expression of the polymeric immunoglobulin receptor (pIgR) in the small intestine was significantly higher in the exercise group fed a HC diet. Superoxide dismutase activity in the small intestine was higher in the exercise group than in the sedentary group, with no effects resulting from intake carbohydrate levels. Our results indicated that moderate exercise reduced the levels of intestinal sIgA depending on decreasing of carbohydrate intake, which is connected with the expression of pIgR.
Collapse
Affiliation(s)
- Takumi Shibuya
- Division of Cell Biology, Graduate School of Sports and Health Science, Daito Bunka University, 560 Iwadono, Higashi-Matsuyama, Saitama 355-8501, Japan
| | - Tomoko Kaburagi
- Division of Nutrition, Department of Health Science, Faculty of Sports and Health Sciences, Daito Bunka University, 560 Iwadono, Higashi-Matsuyama, Saitama 355-8501, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Department of Bioscience, School of Agriculture, Tokai University, Kawayou, Minamiaso, Aso-gun, Kumamoto 869-1404, Japan
| | - Satoru Oshiro
- Division of Cell Biology, Graduate School of Sports and Health Science, Daito Bunka University, 560 Iwadono, Higashi-Matsuyama, Saitama 355-8501, Japan
| |
Collapse
|
24
|
Oliveras-López MJ, Ruiz-Prieto I, Bolaños-Ríos P, De la Cerda F, Martín F, Jáuregui-Lobera I. Antioxidant activity and nutritional status in anorexia nervosa: effects of weight recovery. Nutrients 2015; 7:2193-208. [PMID: 25830944 PMCID: PMC4425140 DOI: 10.3390/nu7042193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022] Open
Abstract
Few studies are focused on the antioxidant status and its changes in anorexia nervosa (AN). Based on the hypothesis that renutrition improves that status, the aim was to determine the plasma antioxidant status and the antioxidant enzymes activity at the beginning of a personalized nutritional program (T0) and after recovering normal body mass index (BMI) (T1). The relationship between changes in BMI and biochemical parameters was determined. Nutritional intake, body composition, anthropometric, hematological and biochemical parameters were studied in 25 women with AN (19.20 ± 6.07 years). Plasma antioxidant capacity and antioxidant enzymes activity were measured. Mean time to recover normal weight was 4.1 ± 2.44 months. Energy, macronutrients and micronutrients intake improved. Catalase activity was significantly modified after dietary intake improvement and weight recovery (T0 = 25.04 ± 1.97 vs. T1 = 35.54 ± 2.60μmol/min/mL; p < 0.01). Total antioxidant capacity increased significantly after gaining weight (T0 = 1033.03 ± 34.38 vs. T1 = 1504.61 ± 99.73 μmol/L; p < 0.01). Superoxide dismutase activity decreased (p < 0.05) and glutathione peroxidase did not change. Our results support an association between nutrition improvement and weight gain in patients with AN, followed by an enhancement of antioxidant capacity and catalase antioxidant system.
Collapse
Affiliation(s)
- María-Jesús Oliveras-López
- Department of Molecular Biology and Biochemical Engineering, University of Pablo de Olavide of Seville, Ctra Utrera km 1, Seville 41013, Spain.
| | | | | | | | - Franz Martín
- Department of Molecular Biology and Biochemical Engineering, University of Pablo de Olavide of Seville, Ctra Utrera km 1, Seville 41013, Spain.
- CABIMER, Andalusian Center of Molecular Biology and Regenerative Medicine, University of Pablo de Olavide of Seville, Avda Americo Vespucio s/n, Seville 41092, Spain.
| | - Ignacio Jáuregui-Lobera
- Department of Molecular Biology and Biochemical Engineering, University of Pablo de Olavide of Seville, Ctra Utrera km 1, Seville 41013, Spain.
| |
Collapse
|
25
|
De Jesus DF, Kulkarni RN. Epigenetic modifiers of islet function and mass. Trends Endocrinol Metab 2014; 25:628-36. [PMID: 25246382 DOI: 10.1016/j.tem.2014.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/28/2023]
Abstract
Type 2 diabetes (T2D) is associated with insulin resistance in target tissues including the β-cell, leading to significant β-cell loss and secretory dysfunction. T2D is also associated with aging, and the underlying mechanisms that increase susceptibility of an individual to develop the disease implicate epigenetics: interactions between susceptible loci and the environment. In this review, we discuss the effects of aging on β-cell function and adaptation, besides the significance of mitochondria in islet bioenergetics and epigenome. We highlight three important modulators of the islet epigenome, namely: metabolites, hormones, and the nutritional state. Unraveling the signaling pathways that regulate the islet epigenome during aging will help to better understand the development of disease progression and to design novel therapies for diabetes prevention.
Collapse
Affiliation(s)
- Dario F De Jesus
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Graduate Program in Areas of Basic and Applied Biology (GABBA), Abdel Salazar Biomedical Sciences Institute, University of Porto, 5000 Porto, Portugal
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
26
|
Nielsen JH, Haase TN, Jaksch C, Nalla A, Søstrup B, Nalla AA, Larsen L, Rasmussen M, Dalgaard LT, Gaarn LW, Thams P, Kofod H, Billestrup N. Impact of fetal and neonatal environment on beta cell function and development of diabetes. Acta Obstet Gynecol Scand 2014; 93:1109-22. [DOI: 10.1111/aogs.12504] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/10/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Jens H. Nielsen
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Tobias N. Haase
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Caroline Jaksch
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Amarnadh Nalla
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Birgitte Søstrup
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Anjana A. Nalla
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Louise Larsen
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Morten Rasmussen
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research; University of Copenhagen; Copenhagen Denmark
| | - Louise T. Dalgaard
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Science; Roskilde University; Roskilde Denmark
| | - Louise W. Gaarn
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
- Novo Nordisk; Måløv Denmark
| | - Peter Thams
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Hans Kofod
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Nils Billestrup
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
27
|
Mahalle N, Kulkarni MV, Naik SS, Garg MK. Association of dietary factors with insulin resistance and inflammatory markers in subjects with diabetes mellitus and coronary artery disease in Indian population. J Diabetes Complications 2014; 28:536-41. [PMID: 24746438 DOI: 10.1016/j.jdiacomp.2012.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/10/2012] [Accepted: 09/19/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Insulin resistance (IR) and inflammation have been implicated in pathogenesis of diabetes and cardiovascular disease. Dietary factors have been reported to be associated to insulin resistance and inflammation. Hence, we studied the association of dietary factors with IR and inflammation in known patients with diabetes mellitus and coronary artery disease with the hypothesis that carbohydrate and fat will be positively; and protein, fiber and mineral will be negatively associated with IR and inflammatory markers. METHODS Three hundred patients (M: 216; F: 84, age: 25-92) who had coronary disease on angiography were included in this study consecutively. All patients were evaluated for anthropometry and cardiovascular risk factors, and blood samples were collected for biochemical and inflammatory markers. Nutrition assessment was done once at the time of recruitment, based on 24h dietary recall. RESULTS AND CONCLUSIONS Diabetic patients had significantly lower protein and total dietary fiber intake as compared to non diabetics. Diabetic patients had lower intake of vitamin A, riboflavin and vitamin B12. There was significantly lower intake of minerals by diabetic patients. Dietary carbohydrate and fat were positively, and protein and dietary fiber intakes were negatively correlated with HOMA-IR and IL-6. There was no correlation of individual amino acids with HOMA-IR but showed strong negative correlation with inflammatory markers (hsCRP; IL-6 and TNF-α). Intake of vitamins and minerals was negatively correlated with HOMA-IR and inflammatory markers. There is a strong correlation between dietary factors, insulin resistance and inflammatory markers.
Collapse
Affiliation(s)
- N Mahalle
- Deenanath Mangeshkar Hospital and Research Center, Biochemistry Section, Department of Pathology, Erandawane, Pune-411004, India; Department of Endocrinology, Command Hospital (Southern Command), Pune.
| | - M V Kulkarni
- Division of Biochemistry, Department of Chemistry, University of Pune
| | - S S Naik
- Deenanath Mangeshkar Hospital and Research Center, Biochemistry Section, Department of Pathology, Erandawane, Pune-411004, India; Department of Endocrinology, Command Hospital (Southern Command), Pune
| | - M K Garg
- Department of Endocrinology, Command Hospital (Southern Command), Pune
| |
Collapse
|
28
|
Goosse K, Bouckenooghe T, Sisino G, Aurientis S, Remacle C, Reusens B. Increased susceptibility to streptozotocin and impeded regeneration capacity of beta-cells in adult offspring of malnourished rats. Acta Physiol (Oxf) 2014; 210:99-109. [PMID: 23701924 DOI: 10.1111/apha.12121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/22/2013] [Accepted: 05/16/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Epidemiological studies related poor maternal nutrition and subsequent growth retardation in the progeny to the development of diabetes later in life. Low-protein diet during gestation altered the beta-cell development of the rat progeny by decreasing beta-cell proliferation and increasing their sensitivity to nitric oxide and cytokines in the foetus. This disturbed maternal environment had long-lasting consequences because the higher beta-cell vulnerability was maintained at adulthood. AIM The aim of this study was to determine whether early malnutrition influences the vulnerability and the regeneration capacity of beta-cells after streptozotocin (STZ) damage at adulthood. METHODS Gestating rats were fed either a control or a low-protein diet until weaning. Adult female offspring received injections of Freund's adjuvant weekly for 5 weeks followed 24 h later by STZ. Half of the cohort was killed at d34, whereas the other half was maintained until d48 to analyse the regeneration capacity of the beta-cells. RESULTS Although control and low-protein rats had equivalent pancreatic insulin content and beta-cell volume density at d34, hyperglycaemia appeared earlier and was more dramatic in low-protein rats than in control rats. STZ treatment increased beta-cell proliferation similarly in both groups. At d48, apoptotic rate was higher in the low-protein group. Regeneration appeared in control, but not in the low-protein rats, where beta-cell aggregates/surface area and Reg1-positive area were decreased compared to control. CONCLUSION Maternal malnutrition programmes a more vulnerable endocrine pancreas in the progeny which is unable to regenerate after injury, therefore predisposing it to develop glucose intolerance and diabetes later in life.
Collapse
Affiliation(s)
- K. Goosse
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - T. Bouckenooghe
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
- EA 4489 “Environnement périnatal et croissance”; Faculté de Médecine; H Warembourg; Lille France
| | - G. Sisino
- EA 4489 “Environnement périnatal et croissance”; Faculté de Médecine; H Warembourg; Lille France
| | - S. Aurientis
- EA 4489 “Environnement périnatal et croissance”; Faculté de Médecine; H Warembourg; Lille France
| | - C. Remacle
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - B. Reusens
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
| |
Collapse
|
29
|
Cox AR, Beamish CA, Carter DE, Arany EJ, Hill DJ. Cellular mechanisms underlying failed beta cell regeneration in offspring of protein-restricted pregnant mice. Exp Biol Med (Maywood) 2013; 238:1147-59. [PMID: 23986224 DOI: 10.1177/1535370213493715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Low birth weight and poor foetal growth following low protein (LP) exposure are associated with altered islet development and glucose intolerance in adulthood. Additionally, LP-fed offspring fail to regenerate their β-cells following depletion with streptozotocin (STZ) in contrast to control-fed offspring that restore β-cell mass. Our objective was to identify signalling pathways and cellular functions that may be critically altered in LP offspring rendering them susceptible to developing long-term glucose intolerance and decreased β-cell plasticity. Pregnant Balb/c mice were fed a control (C; 20% protein) or an isocaloric LP (8% protein) diet throughout gestation and C diet thereafter. Female offspring were injected intraperitoneally with 35 mg/kg STZ or vehicle on days 1 to 5 for each dietary treatment. At 30 days of age, total RNA was extracted from pancreatic tissue for microarray analysis using the Affymetrix GeneChip Mouse Genome 430 2.0. Gene and protein expression were quantified from isolated islets. Finally, β-cell proliferation was determined in vitro following REG1α treatment. The microarray data and GO enrichment analysis indicated that foetal protein restriction alters the early expression of genes necessary for many cell functions, such as oxidative phosphorylation and free radical scavenging. Expression of Reg1 was upregulated following STZ, whereas protein content was decreased in LP + STZ islets. Furthermore, REG1α failed to stimulate β-cell proliferation in vitro in LP + STZ islets. Therefore, early nutritional insults may programme the Reg1 pathway resulting in a limited ability to increase β-cell mass during metabolic stress. In conclusion, this study implicates the Reg1 pathway in β-cell regeneration and describes altered programming of gene expression in LP offspring, which underlies later development of cell dysfunction and glucose intolerance in adulthood.
Collapse
Affiliation(s)
- Aaron R Cox
- Lawson Health Research Institute, St. Joseph's Health Care, London, Ontario, Canada, N6A 4V2
| | | | | | | | | |
Collapse
|
30
|
Sandovici I, Hammerle CM, Ozanne SE, Constância M. Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes. Cell Mol Life Sci 2013; 70:1575-95. [PMID: 23463236 PMCID: PMC11113912 DOI: 10.1007/s00018-013-1297-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/26/2022]
Abstract
The development of the endocrine pancreas is controlled by a hierarchical network of transcriptional regulators. It is increasingly evident that this requires a tightly interconnected epigenetic "programme" to drive endocrine cell differentiation and maintain islet function. Epigenetic regulators such as DNA and histone-modifying enzymes are now known to contribute to determination of pancreatic cell lineage, maintenance of cellular differentiation states, and normal functioning of adult pancreatic endocrine cells. Persistent effects of an early suboptimal environment, known to increase risk of type 2 diabetes in later life, can alter the epigenetic control of transcriptional master regulators, such as Hnf4a and Pdx1. Recent genome-wide analyses also suggest that an altered epigenetic landscape is associated with the β cell failure observed in type 2 diabetes and aging. At the cellular level, epigenetic mechanisms may provide a mechanistic link between energy metabolism and stable patterns of gene expression. Key energy metabolites influence the activity of epigenetic regulators, which in turn alter transcription to maintain cellular homeostasis. The challenge is now to understand the detailed molecular mechanisms that underlie these diverse roles of epigenetics, and the extent to which they contribute to the pathogenesis of type 2 diabetes. In-depth understanding of the developmental and environmental epigenetic programming of the endocrine pancreas has the potential to lead to novel therapeutic approaches in diabetes.
Collapse
Affiliation(s)
- Ionel Sandovici
- Department of Obstetrics and Gynaecology, Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0SW UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG UK
- Cambridge Biomedical Research Centre, National Institute for Health Research, Cambridge, CB2 0QQ UK
| | - Constanze M. Hammerle
- Department of Obstetrics and Gynaecology, Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0SW UK
| | - Susan E. Ozanne
- Cambridge Biomedical Research Centre, National Institute for Health Research, Cambridge, CB2 0QQ UK
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Miguel Constância
- Department of Obstetrics and Gynaecology, Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0SW UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG UK
- Cambridge Biomedical Research Centre, National Institute for Health Research, Cambridge, CB2 0QQ UK
| |
Collapse
|
31
|
Sato S, Mukai Y, Saito T. Quercetin intake during lactation modulates the AMP-activated protein kinase pathway in the livers of adult male rat offspring programmed by maternal protein restriction. J Nutr Biochem 2013; 24:118-23. [DOI: 10.1016/j.jnutbio.2012.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 02/10/2012] [Accepted: 03/07/2012] [Indexed: 12/31/2022]
|
32
|
Abstract
β-Cell dysfunction is a critical component in the development of type 2 diabetes. Whilst both genetic and environmental factors contribute to the development of the disease, relatively little is known about the molecular network that is responsible for diet-induced functional changes in pancreatic β-cells. Recent genome-wide association studies for diabetes-related traits have generated a large number of candidate genes that constitute possible links between dietary factors and the genetic susceptibility for β-cell failure. Here, we summarize recent approaches for identifying nutritionally regulated transcripts in islets on a genome-wide scale. Polygenic mouse models for type 2 diabetes have been instrumental for investigating the mechanism of diet-induced β-cell dysfunction. Enhanced oxidative metabolism, triggered by a combination of dietary carbohydrates and fat, appears to play a critical role in the pathophysiology of diet-induced impairment of islets. More systematic studies of gene-diet interactions in β-cells of rodent models in combination with genetic profiling might reveal the regulatory circuits fundamental for the understanding of diet-induced impairments of β-cell function in humans.
Collapse
Affiliation(s)
- A Chadt
- German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | |
Collapse
|
33
|
Abstract
The global prevalence of type-2 diabetes (T2D) has more than doubled in the last 30 years and is predicted to continue to rise at an alarming rate. The associated health and financial burdens are considerable. The aetiology of common forms of T2D is multifactorial and involves a complex interplay between genetic, epigenetic and environmental factors. The influential role of the environment, in particular our diet and sedentary lifestyles, in diabetes risk is well established. Of major concern is the increasing prevalence of early onset T2D or pre-diabetic characteristics in children. In recent years, the role of the early life environment in programming diabetes risk has been the focus of numerous human and animal studies. Historical studies highlighted an association between low birthweight, a proxy for suboptimal in utero growth, and diabetes risk in adulthood. Over more recent years it has become apparent that a variety of expositions, including maternal obesity and/or maternal diabetes, can have a significant effect on offspring health outcomes. Further complicating matters, paternal and transgenerational transmission of T2D can occur thus mediating a perpetuating cycle of disease risk between generations. It is imperative for the underlying mechanisms to be elucidated so that interventions can be introduced. In doing so, it may be possible to prevent, delay or reverse a pre-programmed risk for T2D induced by pre- and/or postnatal environmental factors to improve health outcomes and curb premature metabolic decline. This review presents evidence for how the early life environment may programme T2D risk and suggests some mechanisms by which this may occur.
Collapse
Affiliation(s)
- L M Berends
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
34
|
He ZX, Sun ZH, Tan ZL, Tang SX, Zhou CS, Han XF, Wang M, Wu DQ, Kang JH, Beauchemin KA. Effects of maternal protein or energy restriction during late gestation on antioxidant status of plasma and immune tissues in postnatal goats. J Anim Sci 2012; 90:4319-26. [PMID: 22952363 DOI: 10.2527/jas.2012-5088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Maternal malnutrition can have temporary or long-lasting effects on development and physiological function of offspring. Our objective was to investigate whether maternal protein or energy restriction in late gestation affects the antioxidant status of plasma, immune organs (thymus and spleen), and natural barrier organs (jejunum) in neonatal goats and whether the effects could be reversed after nutritional recovery. Forty-five pregnant goats (Liuyang Blacks) of similar age (2.0 ± 0.3 yr) and BW (22.2 ± 1.5 kg at d 90 of gestation) were assigned to 3 dietary treatments during late gestation: control (ME = 9.34 MJ/kg and CP = 12.5%, DM basis), 40% protein restricted (PR), and 40% energy restricted (ER) until parturition, after which offspring received the normal diet for nutritional recovery. Plasma and tissues of kids were sampled to determine antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and catalase (CAT)] and gene expression of antioxidant enzymes (Cu/Zn-SOD [SOD1], CAT, and peroxiredoxin 2 [PRDX2]). Maternal protein or energy restriction decreased (P < 0.05) SOD activities in plasma, liver, thymus, and spleen and SOD1 expression in thymus, and maternal energy restriction also decreased (P < 0.05) plasma GSH-Px activity and expressions of SOD1 and CAT in liver at birth. After nutritional recovery of 6 wk, SOD activities in thymus (both in PR and ER) and spleen (only in PR) were greater (P < 0.05), but CAT activity of thymus (both in PR and ER) and CAT expression (only in ER) were less (P < 0.01) than those in control. After nutritional recovery of 22 wk, SOD1 and PRDX2 expression in thymus (both in PR and ER) and SOD1 expression in liver (only in ER) were greater (P < 0.05) whereas CAT expression in thymus (both in PR and ER) was less (P < 0.001) than in control. The current results indicate that maternal protein or energy restriction can decrease the antioxidant capacity of the neonatal kids and result in an imbalance of SOD and hydrogen peroxide-inactivating systems in thymus, even after 6 or 22 wk of nutritional recovery.
Collapse
Affiliation(s)
- Z X He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha 410125, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Strakovsky RS, Pan YX. In utero oxidative stress epigenetically programs antioxidant defense capacity and adulthood diseases. Antioxid Redox Signal 2012; 17:237-53. [PMID: 22035055 PMCID: PMC6918535 DOI: 10.1089/ars.2011.4372] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Maternal health and diet during gestation are critical for predicting fetal outcomes, both immediately at birth and in adulthood. While epigenetic modifications have previously been tightly linked to carcinogenesis, recent advances in the field have suggested that numerous adulthood diseases, including those characteristic of metabolic syndrome, could be programmed in utero in response to maternal exposures, and these "programmable" diseases are associated with epigenetic modifications of vital genes. RECENT ADVANCES While little is currently known about the epigenetic regulation of the antioxidant (AOX) defense system, several studies in animals show that AOX defense capacity may be programmed in utero, making it likely that the critical genes involved in this pathway are epigenetically regulated, either by DNA methylation or by the modification of histone tails. CRITICAL ISSUES This article presents the most current knowledge of the in utero regulation of the AOX defense capacity, and will specifically focus on the potential epigenetic regulation of this system in response to various in utero exposures or stimuli. The ability to appropriately respond to oxidative stress is critical for the health and survival of any organism, and the potential programming of this capacity may provide a link between the in utero environment and the tendency of certain individuals to be more susceptible toward disease stimuli in their postnatal environments. FUTURE DIRECTIONS We sincerely hope that future studies which result in a deeper understanding of the in utero programming of the epigenome will lead to novel and effective therapies for the treatment of epigenetically linked diseases.
Collapse
Affiliation(s)
- Rita S Strakovsky
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
36
|
Maniam J, Morris MJ. The link between stress and feeding behaviour. Neuropharmacology 2012; 63:97-110. [PMID: 22710442 DOI: 10.1016/j.neuropharm.2012.04.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/11/2012] [Accepted: 04/20/2012] [Indexed: 02/06/2023]
Abstract
Exposure to stress is inevitable, and it may occur, to varying degrees, at different phases throughout the lifespan. The impact of stress experienced in later life has been well documented as many populations in modern society experience increasing socio-economic demands. The effects of stress early in life are less well known, partly as the impact of an early exposure may be difficult to quantify, however emerging evidence shows it can impact later in life. One of the major impacts of stress besides changes in psychosocial behaviour is altered feeding responses. The system that regulates stress responses, the hypothalamo-pituitary-adrenal axis, also regulates feeding responses because the neural circuits that regulate food intake converge on the paraventricular nucleus, which contains corticotrophin releasing hormone (CRH), and urocortin containing neurons. In other words the systems that control food intake and stress responses share the same anatomy and thus each system can influence each other in eliciting a response. Stress is known to alter feeding responses in a bidirectional pattern, with both increases and decreases in intake observed. Stress-induced bidirectional feeding responses underline the complex mechanisms and multiple contributing factors, including the levels of glucocorticoids (dependent on the severity of a stressor), the interaction between glucocorticoids and feeding related neuropeptides such as neuropeptide Y (NPY), alpha-melanocyte stimulating hormone (α-MSH), agouti-related protein (AgRP), melanocortins and their receptors, CRH, urocortin and peripheral signals (leptin, insulin and ghrelin). This review discusses the neuropeptides that regulate feeding behaviour and how their function can be altered through cross-talk with hormones and neuropeptides that also regulate the hypothalamo-pituitary-adrenal axis. In addition, long-term stress induced alterations in feeding behaviour, and changes in gene expression of neuropeptides regulating stress and food intake through epigenetic modifications will be discussed. This article is part of a Special Issue entitled 'SI: Central Control of Food Intake'.
Collapse
Affiliation(s)
- Jayanthi Maniam
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | | |
Collapse
|
37
|
Reusens B, Theys N, Dumortier O, Goosse K, Remacle C. Maternal malnutrition programs the endocrine pancreas in progeny. Am J Clin Nutr 2011; 94:1824S-1829S. [PMID: 21562089 DOI: 10.3945/ajcn.110.000729] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Type 2 diabetes arises when the endocrine pancreas fails to secrete sufficient insulin to cope with metabolic demands resulting from β cell secretory dysfunction, decreased β cell mass, or both. Epidemiologic studies have shown strong relations between poor fetal and early postnatal nutrition and susceptibility to diabetes later in life. Animal models have been established, and studies have shown that a reduction in the availability of nutrients during fetal development programs the endocrine pancreas and insulin-sensitive tissues. We investigated several modes of early malnutrition in rats. Regardless of the type of diet investigated, whether there was a deficit in calories or protein in food or even in the presence of a high-fat diet, malnourished pups were born with a defect in their β cell population, with fewer β cells that did not secrete enough insulin and that were more vulnerable to oxidative stress; such populations of β cells will never completely recover. Despite the similar endpoint, the cellular and physiologic mechanisms that contribute to alterations in β cell mass differ depending on the nature of the nutritional insult. Hormones that are operative during fetal life, such as insulin, insulin-like growth factors, and glucocorticoids; specific molecules, such as taurine; and islet vascularization have been implicated as possible factors in amplifying this defect. The molecular mechanisms responsible for intrauterine programming of β cells are still elusive, but among them the programming of mitochondria may be a strong central candidate.
Collapse
Affiliation(s)
- Brigitte Reusens
- Université Catholique de Louvain, Life Sciences Institute, Louvain-la-Neuve, Belgium.
| | | | | | | | | |
Collapse
|
38
|
Reusens B, Theys N, Remacle C. Alteration of mitochondrial function in adult rat offspring of malnourished dams. World J Diabetes 2011; 2:149-57. [PMID: 21954419 PMCID: PMC3180527 DOI: 10.4239/wjd.v2.i9.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/16/2011] [Accepted: 08/21/2011] [Indexed: 02/05/2023] Open
Abstract
Under-nutrition as well as over-nutrition during pregnancy has been associated with the development of adult diseases such as diabetes and obesity. Both epigenetic modifications and programming of the mitochondrial function have been recently proposed to explain how altered intrauterine metabolic environment may produce such a phenotype. This review aims to report data reported in several animal models of fetal malnutrition due to maternal low protein or low calorie diet, high fat diet as well as reduction in placental blood flow. We focus our overview on the β cell. We highlight that, notwithstanding early nutritional events, mitochondrial dysfunctions resulting from different alteration by diet or gender are programmed. This may explain the higher propensity to develop obesity and diabetes in later life.
Collapse
Affiliation(s)
- Brigitte Reusens
- Brigitte Reusens, Nicolas Theys, Claude Remacle, Laboratory of Cell Biology, Institute of Life Science, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
39
|
Maternal low-protein diet suppresses vascular and renal endothelial nitric oxide synthase phosphorylation in rat offspring independent of a postnatal fructose diet. J Dev Orig Health Dis 2011; 2:168-75. [DOI: 10.1017/s2040174411000110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Maternal malnutrition programs pancreatic islet mitochondrial dysfunction in the adult offspring. J Nutr Biochem 2010; 22:985-94. [PMID: 21190832 DOI: 10.1016/j.jnutbio.2010.08.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 08/20/2010] [Accepted: 08/25/2010] [Indexed: 12/12/2022]
Abstract
Accumulating evidence has shown that maternal malnutrition increases the risk of metabolic disease in the progeny. We previously reported that prenatal exposure to a low-protein diet (LP) leads to mitochondrial dysfunction in pancreatic islets from adult rodent offspring that could relate physiological and cellular alterations due to early diet. We aim to determine whether mitochondrial dysfunction could be a common consequence of prenatal nutritional unbalances. Pregnant Wistar rats received either a global food restriction (GFR), consisting in the reduction by 50% of the normal daily food intake, or a high-fat diet (HF) throughout gestation. GFR or HF diet during pregnancy leads to a lack of increase in insulin release and ATP content in response to glucose stimulation in islets from 3-month-old male and female offspring. These similar consequences originated from impairment in either glucose sensing or glucose metabolism, depending on the type of early malnutrition and on the sex of the progeny. Indeed, the glucose transport across β-cell membrane seemed compromised in female HF offspring, since GLUT-2 gene was markedly underexpressed. Additionally, for each progeny, consequences downstream the entry of glucose were also apparent. Expression of genes involved in glycolysis, TCA cycle and oxidative phosphorylations was altered in GFR and HF rats in a sex- and diet-dependent manner. Moreover, prenatal malnutrition affected the regulators of mitochondrial biogenesis, namely, PPAR coactivator 1 alpha (PGC-1α), since its expression was higher in islets from GFR rats. In conclusion, programming of mitochondrial dysfunction is a consequence of maternal malnutrition, which may predispose to glucose intolerance in the adult offspring.
Collapse
|
41
|
Bernal AB, Vickers MH, Hampton MB, Poynton RA, Sloboda DM. Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring. PLoS One 2010; 5:e15558. [PMID: 21179452 PMCID: PMC3001490 DOI: 10.1371/journal.pone.0015558] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/12/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We have shown recently that maternal undernutrition (UN) advanced female pubertal onset in a manner that is dependent upon the timing of UN. The long-term consequence of this accelerated puberty on ovarian function is unknown. Recent findings suggest that oxidative stress may be one mechanism whereby early life events impact on later physiological functioning. Therefore, using an established rodent model of maternal UN at critical windows of development, we examined maternal UN-induced changes in offspring ovarian function and determined whether these changes were underpinned by ovarian oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS Our study is the first to show that maternal UN significantly reduced primordial and secondary follicle number in offspring in a manner that was dependent upon the timing of maternal UN. Specifically, a reduction in these early stage follicles was observed in offspring born to mothers undernourished throughout both pregnancy and lactation. Additionally, antral follicle number was reduced in offspring born to all mothers that were UN regardless of whether the period of UN was restricted to pregnancy or lactation or both. These reductions were associated with decreased mRNA levels of genes critical for follicle maturation and ovulation. Increased ovarian protein carbonyls were observed in offspring born to mothers UN during pregnancy and/or lactation and this was associated with peroxiredoxin 3 hyperoxidation and reduced mRNA levels; suggesting compromised antioxidant defence. This was not observed in offspring of mothers UN during lactation alone. CONCLUSIONS We propose that maternal UN, particularly at a time-point that includes pregnancy, results in reduced offspring ovarian follicle numbers and mRNA levels of regulatory genes and may be mediated by increased ovarian oxidative stress coupled with a decreased ability to repair the resultant oxidative damage. Together these data are suggestive of maternal UN potentially contributing to premature ovarian ageing in offspring.
Collapse
Affiliation(s)
- Angelica B. Bernal
- The Liggins Institute, The University of Auckland and the National Research Centre for Growth and Development, Auckland, New Zealand
| | - Mark H. Vickers
- The Liggins Institute, The University of Auckland and the National Research Centre for Growth and Development, Auckland, New Zealand
| | - Mark B. Hampton
- Free Radical Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Rebecca A. Poynton
- Free Radical Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Deborah M. Sloboda
- The Liggins Institute, The University of Auckland and the National Research Centre for Growth and Development, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
42
|
Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir S, Marchetti P, Weir GC. Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One 2010; 5:e11499. [PMID: 20644627 PMCID: PMC2903480 DOI: 10.1371/journal.pone.0011499] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/06/2010] [Indexed: 12/26/2022] Open
Abstract
Background Changes in gene expression in pancreatic beta-cells from type 2 diabetes (T2D) should provide insights into their abnormal insulin secretion and turnover. Methodology/Principal Findings Frozen sections were obtained from cadaver pancreases of 10 control and 10 T2D human subjects. Beta-cell enriched samples were obtained by laser capture microdissection (LCM). RNA was extracted, amplified and subjected to microarray analysis. Further analysis was performed with DNA-Chip Analyzer (dChip) and Gene Set Enrichment Analysis (GSEA) software. There were changes in expression of genes linked to glucotoxicity. Evidence of oxidative stress was provided by upregulation of several metallothionein genes. There were few changes in the major genes associated with cell cycle, apoptosis or endoplasmic reticulum stress. There was differential expression of genes associated with pancreatic regeneration, most notably upregulation of members of the regenerating islet gene (REG) family and metalloproteinase 7 (MMP7). Some of the genes found in GWAS studies to be related to T2D were also found to be differentially expressed. IGF2BP2, TSPAN8, and HNF1B (TCF2) were upregulated while JAZF1 and SLC30A8 were downregulated. Conclusions/Significance This study made possible by LCM has identified many novel changes in gene expression that enhance understanding of the pathogenesis of T2D.
Collapse
Affiliation(s)
- Lorella Marselli
- Section on Islet Transplantation and Cell Biology, Research Division, Joslin Diabetes Center and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeffrey Thorne
- Section on Islet Transplantation and Cell Biology, Research Division, Joslin Diabetes Center and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sonika Dahiya
- Molecular Pathology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dennis C. Sgroi
- Molecular Pathology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arun Sharma
- Section on Islet Transplantation and Cell Biology, Research Division, Joslin Diabetes Center and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susan Bonner-Weir
- Section on Islet Transplantation and Cell Biology, Research Division, Joslin Diabetes Center and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Piero Marchetti
- Section of Endocrinology and Metabolism of Organ Transplantation, Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Gordon C. Weir
- Section on Islet Transplantation and Cell Biology, Research Division, Joslin Diabetes Center and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
43
|
Abstract
Low birth weight is an important risk factor for impaired glucose tolerance and diabetes later in life. One hypothesis is that fetal beta-cells inherit a persistent defect as a developmental response to fetal malnutrition, a primary cause of intrauterine growth restriction (IUGR). Our understanding of fetal programing events in the human endocrine pancreas is limited, but several animal models of IUGR extend our knowledge of developmental programing in beta-cells. Pathological outcomes such as beta-cell dysfunction, impaired glucose tolerance, and diabetes are often observed in adult offspring from these animal models, similar to the associations of low birth weight and metabolic diseases in humans. However, the identified mechanisms underlying beta-cell dysfunction across models and species are varied, likely resulting from the different methodologies used to induce experimental IUGR, as well as from intraspecies differences in pancreas development. In this review, we first present the evidence for human beta-cell dysfunction being associated with low birth weight or IUGR. We then evaluate relevant animal models of IUGR, focusing on the strengths of each, in order to define critical periods and types of nutrient deficiencies that can lead to impaired beta-cell function. These findings frame our current knowledge of beta-cell developmental programing and highlight future research directions to clarify the mechanisms of beta-cell dysfunction for human IUGR.
Collapse
Affiliation(s)
- Alice S. Green
- Department of Animal Sciences, University of Arizona, Tucson, AZ
| | - Paul J. Rozance
- Department of Pediatrics, University of Colorado, Denver, CO
| | - Sean W. Limesand
- Department of Animal Sciences, University of Arizona, Tucson, AZ
| |
Collapse
|
44
|
Barelier S, Linard D, Pons J, Clippe A, Knoops B, Lancelin JM, Krimm I. Discovery of fragment molecules that bind the human peroxiredoxin 5 active site. PLoS One 2010; 5:e9744. [PMID: 20305821 PMCID: PMC2840032 DOI: 10.1371/journal.pone.0009744] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/22/2010] [Indexed: 12/17/2022] Open
Abstract
The search for protein ligands is a crucial step in the inhibitor design process. Fragment screening represents an interesting method to rapidly find lead molecules, as it enables the exploration of a larger portion of the chemical space with a smaller number of compounds as compared to screening based on drug-sized molecules. Moreover, fragment screening usually leads to hit molecules that form few but optimal interactions with the target, thus displaying high ligand efficiencies. Here we report the screening of a homemade library composed of 200 highly diverse fragments against the human Peroxiredoxin 5 protein. Peroxiredoxins compose a family of peroxidases that share the ability to reduce peroxides through a conserved cysteine. The three-dimensional structures of these enzymes ubiquitously found throughout evolution have been extensively studied, however, their biological functions are still not well understood and to date few inhibitors have been discovered against these enzymes. Six fragments from the library were shown to bind to the Peroxiredoxin 5 active site and ligand-induced chemical shift changes were used to drive the docking of these small molecules into the protein structure. The orientation of the fragments in the binding pocket was confirmed by the study of fragment homologues, highlighting the role of hydroxyl functions that hang the ligands to the Peroxiredoxin 5 protein. Among the hit fragments, the small catechol molecule was shown to significantly inhibit Peroxiredoxin 5 activity in a thioredoxin peroxidase assay. This study reports novel data about the ligand-Peroxiredoxin interactions that will help considerably the development of potential Peroxiredoxin inhibitors.
Collapse
Affiliation(s)
- Sarah Barelier
- Laboratory of Analytical Sciences (UMR CNRS 5180), Université Claude Bernard - Lyon 1, Bât. ESCPE Lyon, Domaine scientifique de la Doua, Villeurbanne, France
| | - Dominique Linard
- Laboratory of Cell Biology, Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Julien Pons
- Laboratory of Analytical Sciences (UMR CNRS 5180), Université Claude Bernard - Lyon 1, Bât. ESCPE Lyon, Domaine scientifique de la Doua, Villeurbanne, France
| | - André Clippe
- Laboratory of Cell Biology, Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Bernard Knoops
- Laboratory of Cell Biology, Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Marc Lancelin
- Laboratory of Analytical Sciences (UMR CNRS 5180), Université Claude Bernard - Lyon 1, Bât. ESCPE Lyon, Domaine scientifique de la Doua, Villeurbanne, France
| | - Isabelle Krimm
- Laboratory of Analytical Sciences (UMR CNRS 5180), Université Claude Bernard - Lyon 1, Bât. ESCPE Lyon, Domaine scientifique de la Doua, Villeurbanne, France
| |
Collapse
|
45
|
Effects of short-term maternal fasting in the third trimester of pregnancy on fetal biophysical profile and Doppler indices scores. Arch Gynecol Obstet 2010; 283:461-7. [DOI: 10.1007/s00404-010-1380-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
|
46
|
Theys N, Bouckenooghe T, Ahn MT, Remacle C, Reusens B. Maternal low-protein diet alters pancreatic islet mitochondrial function in a sex-specific manner in the adult rat. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1516-25. [PMID: 19759337 DOI: 10.1152/ajpregu.00280.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction may be a long-term consequence of a poor nutritional environment during early life. Our aim was to investigate whether a maternal low-protein (LP) diet may program mitochondrial dysfunction in islets of adult progeny before glucose intolerance ensues. To address this, pregnant Wistar rats were fed isocaloric diets containing either 20% protein (control) or 8% protein (LP diet) throughout gestation. From birth, offspring received the control diet. The mitochondrial function was analyzed in islets of 3-mo-old offspring. Related to their basal insulin release, cultured islets from both male and female LP offspring presented a lower response to glucose challenge and a blunted ATP production compared with control offspring. The expression of malate dehydrogenase as well as the subunit 6 of the ATP synthase encoded by mitochondrial genome (mtDNA) was lower in these islets, reducing the capacity of ATP production through the Krebs cycle and oxidative phosphorylation. However, mtDNA content was unchanged in LP islets compared with control. Several consequences of protein restriction during fetal life were more marked in male offspring. Only LP males showed an increased reactive oxygen species production associated with a higher expression of mitochondrial subunits of the electron transport chain NADH-ubiquinone oxireductase subunit 4L, an overexpression of peroxisome proliferator-activated receptor-gamma and uncoupling protein-2, and a strongly reduced beta-cell mass. In conclusion, mitochondrial function is clearly altered in islets from LP adult offspring in a sex-specific manner. That may provide a cellular explanation for the earlier development of glucose intolerance in male than in female offspring of dams fed an LP diet.
Collapse
Affiliation(s)
- Nicolas Theys
- Laboratory of Cell Biology, Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|