1
|
Guan S, Li Y, Xin Y, Wang D, Lu P, Han F, Xu H. Deciphering the dual role of N-methyl-D-Aspartate receptor in postoperative cognitive dysfunction: A comprehensive review. Eur J Pharmacol 2024; 971:176520. [PMID: 38527701 DOI: 10.1016/j.ejphar.2024.176520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication following surgery, adversely impacting patients' recovery, increasing the risk of negative outcomes, prolonged hospitalization, and higher mortality rates. The N-methyl-D-aspartate (NMDA) receptor, crucial for learning, memory, and synaptic plasticity, plays a significant role in the development of POCD. Various perioperative factors, including age and anesthetic use, can reduce NMDA receptor function, while surgical stress, inflammation, and pain may lead to its excessive activation. This review consolidates preclinical and clinical research to explore the intricate relationship between perioperative factors affecting NMDA receptor functionality and the onset of POCD. It discusses the influence of aging, anesthetic administration, perioperative injury, pain, and inflammation on the NMDA receptor-related pathophysiology of POCD. The comprehensive analysis presented aims to identify effective treatment targets for POCD, contributing to the improvement of patient outcomes post-surgery.
Collapse
Affiliation(s)
- Shaodi Guan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yali Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yueyang Xin
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danning Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei Lu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fanglong Han
- Department of Anesthesiology, Xiangyang Maternal and Child Health Hospital, Xiangyang, 441003, China
| | - Hui Xu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Mishima T, Komano K, Tabaru M, Kofuji T, Saito A, Ugawa Y, Terao Y. Repetitive pulsed-wave ultrasound stimulation suppresses neural activity by modulating ambient GABA levels via effects on astrocytes. Front Cell Neurosci 2024; 18:1361242. [PMID: 38601023 PMCID: PMC11004293 DOI: 10.3389/fncel.2024.1361242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Ultrasound is highly biopermeable and can non-invasively penetrate deep into the brain. Stimulation with patterned low-intensity ultrasound can induce sustained inhibition of neural activity in humans and animals, with potential implications for research and therapeutics. Although mechanosensitive channels are involved, the cellular and molecular mechanisms underlying neuromodulation by ultrasound remain unknown. To investigate the mechanism of action of ultrasound stimulation, we studied the effects of two types of patterned ultrasound on synaptic transmission and neural network activity using whole-cell recordings in primary cultured hippocampal cells. Single-shot pulsed-wave (PW) or continuous-wave (CW) ultrasound had no effect on neural activity. By contrast, although repetitive CW stimulation also had no effect, repetitive PW stimulation persistently reduced spontaneous recurrent burst firing. This inhibitory effect was dependent on extrasynaptic-but not synaptic-GABAA receptors, and the effect was abolished under astrocyte-free conditions. Pharmacological activation of astrocytic TRPA1 channels mimicked the effects of ultrasound by increasing the tonic GABAA current induced by ambient GABA. Pharmacological blockade of TRPA1 channels abolished the inhibitory effect of ultrasound. These findings suggest that the repetitive PW low-intensity ultrasound used in our study does not have a direct effect on neural function but instead exerts its sustained neuromodulatory effect through modulation of ambient GABA levels via channels with characteristics of TRPA1, which is expressed in astrocytes.
Collapse
Affiliation(s)
- Tatsuya Mishima
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| | - Kenta Komano
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Marie Tabaru
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takefumi Kofuji
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
- Radioisotope Laboratory, Kyorin University School of Medicine, Mitaka, Japan
| | - Ayako Saito
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| |
Collapse
|
3
|
Llansola M, Arenas YM, Sancho-Alonso M, Mincheva G, Palomares-Rodriguez A, Doverskog M, Izquierdo-Altarejos P, Felipo V. Neuroinflammation alters GABAergic neurotransmission in hyperammonemia and hepatic encephalopathy, leading to motor incoordination. Mechanisms and therapeutic implications. Front Pharmacol 2024; 15:1358323. [PMID: 38560359 PMCID: PMC10978603 DOI: 10.3389/fphar.2024.1358323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Enhanced GABAergic neurotransmission contributes to impairment of motor coordination and gait and of cognitive function in different pathologies, including hyperammonemia and hepatic encephalopathy. Neuroinflammation is a main contributor to enhancement of GABAergic neurotransmission through increased activation of different pathways. For example, enhanced activation of the TNFα-TNFR1-NF-κB-glutaminase-GAT3 pathway and the TNFα-TNFR1-S1PR2-CCL2-BDNF-TrkB pathway in cerebellum of hyperammonemic rats enhances GABAergic neurotransmission. This is mediated by mechanisms affecting GABA synthesizing enzymes GAD67 and GAD65, total and extracellular GABA levels, membrane expression of GABAA receptor subunits, of GABA transporters GAT1 and GAT three and of chloride co-transporters. Reducing neuroinflammation reverses these changes, normalizes GABAergic neurotransmission and restores motor coordination. There is an interplay between GABAergic neurotransmission and neuroinflammation, which modulate each other and altogether modulate motor coordination and cognitive function. In this way, neuroinflammation may be also reduced by reducing GABAergic neurotransmission, which may also improve cognitive and motor function in pathologies associated to neuroinflammation and enhanced GABAergic neurotransmission such as hyperammonemia, hepatic encephalopathy or Parkinson's disease. This provides therapeutic targets that may be modulated to improve cognitive and motor function and other alterations such as fatigue in a wide range of pathologies. As a proof of concept it has been shown that antagonists of GABAA receptors such as bicuculline reduces neuroinflammation and improves cognitive and motor function impairment in rat models of hyperammonemia and hepatic encephalopathy. Antagonists of GABAA receptors are not ideal therapeutic tools because they can induce secondary effects. As a more effective treatment to reduce GABAergic neurotransmission new compounds modulating it by other mechanisms are being developed. Golexanolone reduces GABAergic neurotransmission by reducing the potentiation of GABAA receptor activation by neurosteroids such as allopregnanolone. Golexanolone reduces neuroinflammation and GABAergic neurotransmission in animal models of hyperammonemia, hepatic encephalopathy and cholestasis and this is associated with improvement of fatigue, cognitive impairment and motor incoordination. This type of compounds may be useful therapeutic tools to improve cognitive and motor function in different pathologies associated with neuroinflammation and increased GABAergic neurotransmission.
Collapse
Affiliation(s)
- Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Yaiza M. Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María Sancho-Alonso
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
4
|
Untiet V. Astrocytic chloride regulates brain function in health and disease. Cell Calcium 2024; 118:102855. [PMID: 38364706 DOI: 10.1016/j.ceca.2024.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Chloride ions (Cl-) play a pivotal role in synaptic inhibition in the central nervous system, primarily mediated through ionotropic mechanisms. A recent breakthrough emphathizes the significant influence of astrocytic intracellular chloride concentration ([Cl-]i) regulation, a field still in its early stages of exploration. Typically, the [Cl-]i in most animal cells is maintained at lower levels than the extracellular chloride [Cl-]o, a critical balance to prevent cell swelling due to osmotic pressure. Various Cl- transporters are expressed differently across cell types, fine-tuning the [Cl-]i, while Cl- gradients are utilised by several families of Cl- channels. Although the passive distribution of ions within cells is governed by basic biophysical principles, astrocytes actively expend energy to sustain [Cl-]i at much higher levels than those achieved passively, and much higher than neuronal [Cl-]i. Beyond the role in volume regulation, astrocytic [Cl-]i is dynamically linked to brain states and influences neuronal signalling in actively behaving animals. As a vital component of brain function, astrocytic [Cl-]i also plays a role in the development of disorders where inhibitory transmission is disrupted. This review synthesises the latest insights into astrocytic [Cl-]i, elucidating its role in modulating brain function and its implications in various pathophysiological conditions.
Collapse
Affiliation(s)
- Verena Untiet
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
5
|
Rose CR, Verkhratsky A. Sodium homeostasis and signalling: The core and the hub of astrocyte function. Cell Calcium 2024; 117:102817. [PMID: 37979342 DOI: 10.1016/j.ceca.2023.102817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/20/2023]
Abstract
Neuronal activity and neurochemical stimulation trigger spatio-temporal changes in the cytoplasmic concentration of Na+ ions in astrocytes. These changes constitute the substrate for Na+ signalling and are fundamental for astrocytic excitability. Astrocytic Na+ signals are generated by Na+ influx through neurotransmitter transporters, with primary contribution of glutamate transporters, and through cationic channels; whereas recovery from Na+ transients is mediated mainly by the plasmalemmal Na+/K+ ATPase. Astrocytic Na+ signals regulate the activity of plasmalemmal transporters critical for homeostatic function of astrocytes, thus providing real-time coordination between neuronal activity and astrocytic support.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Alexej Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| |
Collapse
|
6
|
Adermark L, Stomberg R, Söderpalm B, Ericson M. Astrocytic Regulation of Endocannabinoid-Dependent Synaptic Plasticity in the Dorsolateral Striatum. Int J Mol Sci 2024; 25:581. [PMID: 38203752 PMCID: PMC10779090 DOI: 10.3390/ijms25010581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Astrocytes are pivotal for synaptic transmission and may also play a role in the induction and expression of synaptic plasticity, including endocannabinoid-mediated long-term depression (eCB-LTD). In the dorsolateral striatum (DLS), eCB signaling plays a major role in balancing excitation and inhibition and promoting habitual learning. The aim of this study was to outline the role of astrocytes in regulating eCB signaling in the DLS. To this end, we employed electrophysiological slice recordings combined with metabolic, chemogenetic and pharmacological approaches in an attempt to selectively suppress astrocyte function. High-frequency stimulation induced eCB-mediated LTD (HFS-LTD) in brain slices from both male and female rats. The metabolic uncoupler fluorocitrate (FC) reduced the probability of transmitter release and depressed synaptic output in a manner that was independent on cannabinoid 1 receptor (CB1R) activation. Fluorocitrate did not affect the LTD induced by the CB1R agonist WIN55,212-2, but enhanced CB1R-dependent HFS-LTD. Reduced neurotransmission and facilitated HFS-LTD were also observed during chemogenetic manipulation using Gi-coupled DREADDs targeting glial fibrillary acidic protein (GFAP)-expressing cells, during the pharmacological inhibition of connexins using carbenoxolone disodium, or during astrocytic glutamate uptake using TFB-TBOA. While pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanoic acid (APV) failed to prevent synaptic depression induced by FC, it blocked the facilitation of HFS-LTD. While the lack of tools to disentangle astrocytes from neurons is a major limitation of this study, our data collectively support a role for astrocytes in modulating basal neurotransmission and eCB-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Louise Adermark
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Rosita Stomberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (R.S.); (B.S.); (M.E.)
| | - Bo Söderpalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (R.S.); (B.S.); (M.E.)
- Beroendekliniken, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Mia Ericson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (R.S.); (B.S.); (M.E.)
| |
Collapse
|
7
|
Fernández de la Torre M, Fiuza-Luces C, Laine-Menéndez S, Delmiro A, Arenas J, Martín MÁ, Lucia A, Morán M. Pathophysiology of Cerebellar Degeneration in Mitochondrial Disorders: Insights from the Harlequin Mouse. Int J Mol Sci 2023; 24:10973. [PMID: 37446148 DOI: 10.3390/ijms241310973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
By means of a proteomic approach, we assessed the pathways involved in cerebellar neurodegeneration in a mouse model (Harlequin, Hq) of mitochondrial disorder. A differential proteomic profile study (iTRAQ) was performed in cerebellum homogenates of male Hq and wild-type (WT) mice 8 weeks after the onset of clear symptoms of ataxia in the Hq mice (aged 5.2 ± 0.2 and 5.3 ± 0.1 months for WT and Hq, respectively), followed by a biochemical validation of the most relevant changes. Additional groups of 2-, 3- and 6-month-old WT and Hq mice were analyzed to assess the disease progression on the proteins altered in the proteomic study. The proteomic analysis showed that beyond the expected deregulation of oxidative phosphorylation, the cerebellum of Hq mice showed a marked astroglial activation together with alterations in Ca2+ homeostasis and neurotransmission, with an up- and downregulation of GABAergic and glutamatergic neurotransmission, respectively, and the downregulation of cerebellar "long-term depression", a synaptic plasticity phenomenon that is a major player in the error-driven learning that occurs in the cerebellar cortex. Our study provides novel insights into the mechanisms associated with cerebellar degeneration in the Hq mouse model, including a complex deregulation of neuroinflammation, oxidative phosphorylation and glutamate, GABA and amino acids' metabolism.
Collapse
Affiliation(s)
- Miguel Fernández de la Torre
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
| | - Carmen Fiuza-Luces
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
| | - Sara Laine-Menéndez
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
| | - Aitor Delmiro
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
- Servicio de Bioquímica Clínica, Hospital Universitario "12 de Octubre", 28041 Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
| | - Miguel Ángel Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
- Servicio de Genética, Hospital Universitario "12 de Octubre", 28041 Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sports Sciences, European University of Madrid, 28670 Madrid, Spain
- Spanish Network for Biomedical Research in Fragility and Healthy Aging (CIBERFES), 28029 Madrid, Spain
| | - María Morán
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
| |
Collapse
|
8
|
Purushotham SS, Buskila Y. Astrocytic modulation of neuronal signalling. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1205544. [PMID: 37332623 PMCID: PMC10269688 DOI: 10.3389/fnetp.2023.1205544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Neuronal signalling is a key element in neuronal communication and is essential for the proper functioning of the CNS. Astrocytes, the most prominent glia in the brain play a key role in modulating neuronal signalling at the molecular, synaptic, cellular, and network levels. Over the past few decades, our knowledge about astrocytes and their functioning has evolved from considering them as merely a brain glue that provides structural support to neurons, to key communication elements. Astrocytes can regulate the activity of neurons by controlling the concentrations of ions and neurotransmitters in the extracellular milieu, as well as releasing chemicals and gliotransmitters that modulate neuronal activity. The aim of this review is to summarise the main processes through which astrocytes are modulating brain function. We will systematically distinguish between direct and indirect pathways in which astrocytes affect neuronal signalling at all levels. Lastly, we will summarize pathological conditions that arise once these signalling pathways are impaired focusing on neurodegeneration.
Collapse
Affiliation(s)
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- The MARCS Institute, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
9
|
Ueberbach T, Simacek CA, Tegeder I, Kirischuk S, Mittmann T. Tonic activation of GABA B receptors via GAT-3 mediated GABA release reduces network activity in the developing somatosensory cortex in GAD67-GFP mice. Front Synaptic Neurosci 2023; 15:1198159. [PMID: 37325697 PMCID: PMC10267986 DOI: 10.3389/fnsyn.2023.1198159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
The efficiency of neocortical information processing critically depends on the balance between the glutamatergic (excitatory, E) and GABAergic (inhibitory, I) synaptic transmission. A transient imbalance of the E/I-ratio during early development might lead to neuropsychiatric disorders later in life. The transgenic glutamic acid decarboxylase 67-green fluorescent protein (GAD67-GFP) mouse line (KI) was developed to selectively visualize GABAergic interneurons in the CNS. However, haplodeficiency of the GAD67 enzyme, the main GABA synthetizing enzyme in the brain, temporarily leads to a low GABA level in the developing brain of these animals. However, KI mice did not demonstrate any epileptic activity and only few and mild behavioral deficits. In the present study we investigated how the developing somatosensory cortex of KI-mice compensates the reduced GABA level to prevent brain hyperexcitability. Whole-cell patch clamp recordings from layer 2/3 pyramidal neurons at P14 and at P21 revealed a reduced frequency of miniature inhibitory postsynaptic currents (mIPSCs) in KI mice without any change in amplitude or kinetics. Interestingly, mEPSC frequencies were also decreased, while the E/I-ratio was nevertheless shifted toward excitation. Surprisingly, multi-electrode-recordings (MEA) from acute slices revealed a decreased spontaneous neuronal network activity in KI mice compared to wild-type (WT) littermates, pointing to a compensatory mechanism that prevents hyperexcitability. Blockade of GABAB receptors (GABABRs) with CGP55845 strongly increased the frequency of mEPSCs in KI, but failed to affect mIPSCs in any genotype or age. It also induced a membrane depolarization in P14 KI, but not in P21 KI or WT mice. MEA recordings in presence of CGP55845 revealed comparable levels of network activity in both genotypes, indicating that tonically activated GABABRs balance neuronal activity in P14 KI cortex despite the reduced GABA levels. Blockade of GABA transporter 3 (GAT-3) reproduced the CGP55845 effects suggesting that tonic activation of GABABRs is mediated by ambient GABA released via GAT-3 operating in reverse mode. We conclude that GAT-3-mediated GABA release leads to tonic activation of both pre- and postsynaptic GABABRs and restricts neuronal excitability in the developing cortex to compensate for reduced neuronal GABA synthesis. Since GAT-3 is predominantly located in astrocytes, GAD67 haplodeficiency may potentially stimulate astrocytic GABA synthesis through GAD67-independent pathways.
Collapse
Affiliation(s)
- Timo Ueberbach
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Clara A. Simacek
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Sergei Kirischuk
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Mittmann
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
10
|
Kruk PK, Nader K, Skupien-Jaroszek A, Wójtowicz T, Buszka A, Olech-Kochańczyk G, Wilczynski GM, Worch R, Kalita K, Włodarczyk J, Dzwonek J. Astrocytic CD44 Deficiency Reduces the Severity of Kainate-Induced Epilepsy. Cells 2023; 12:1483. [PMID: 37296604 PMCID: PMC10252631 DOI: 10.3390/cells12111483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Epilepsy affects millions of people worldwide, yet we still lack a successful treatment for all epileptic patients. Most of the available drugs modulate neuronal activity. Astrocytes, the most abundant cells in the brain, may constitute alternative drug targets. A robust expansion of astrocytic cell bodies and processes occurs after seizures. Highly expressed in astrocytes, CD44 adhesion protein is upregulated during injury and is suggested to be one of the most important proteins associated with epilepsy. It connects the astrocytic cytoskeleton to hyaluronan in the extracellular matrix, influencing both structural and functional aspects of brain plasticity. METHODS Herein, we used transgenic mice with an astrocyte CD44 knockout to evaluate the impact of the hippocampal CD44 absence on the development of epileptogenesis and ultrastructural changes at the tripartite synapse. RESULTS We demonstrated that local, virally-induced CD44 deficiency in hippocampal astrocytes reduces reactive astrogliosis and decreases the progression of kainic acid-induced epileptogenesis. We also observed that CD44 deficiency resulted in structural changes evident in a higher dendritic spine number along with a lower percentage of astrocyte-synapse contacts, and decreased post-synaptic density size in the hippocampal molecular layer of the dentate gyrus. CONCLUSIONS Overall, our study indicates that CD44 signaling may be important for astrocytic coverage of synapses in the hippocampus and that alterations of astrocytes translate to functional changes in the pathology of epilepsy.
Collapse
Affiliation(s)
- Patrycja K. Kruk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Karolina Nader
- Laboratory of Neurobiology, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders-Braincity, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Anna Skupien-Jaroszek
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Anna Buszka
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Gabriela Olech-Kochańczyk
- Laboratory of Molecular and Structural Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Structural Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Remigiusz Worch
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders-Braincity, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Joanna Dzwonek
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| |
Collapse
|
11
|
Magloire V, Savtchenko LP, Jensen TP, Sylantyev S, Kopach O, Cole N, Tyurikova O, Kullmann DM, Walker MC, Marvin JS, Looger LL, Hasseman JP, Kolb I, Pavlov I, Rusakov DA. Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network. Curr Biol 2023; 33:1249-1264.e7. [PMID: 36921605 PMCID: PMC10615848 DOI: 10.1016/j.cub.2023.02.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Mechanisms that entrain and pace rhythmic epileptiform discharges remain debated. Traditionally, the quest to understand them has focused on interneuronal networks driven by synaptic GABAergic connections. However, synchronized interneuronal discharges could also trigger the transient elevations of extracellular GABA across the tissue volume, thus raising tonic conductance (Gtonic) of synaptic and extrasynaptic GABA receptors in multiple cells. Here, we monitor extracellular GABA in hippocampal slices using patch-clamp GABA "sniffer" and a novel optical GABA sensor, showing that periodic epileptiform discharges are preceded by transient, region-wide waves of extracellular GABA. Neural network simulations that incorporate volume-transmitted GABA signals point to a cycle of GABA-driven network inhibition and disinhibition underpinning this relationship. We test and validate this hypothesis using simultaneous patch-clamp recordings from multiple neurons and selective optogenetic stimulation of fast-spiking interneurons. Critically, reducing GABA uptake in order to decelerate extracellular GABA fluctuations-without affecting synaptic GABAergic transmission or resting GABA levels-slows down rhythmic activity. Our findings thus unveil a key role of extrasynaptic, volume-transmitted GABA in pacing regenerative rhythmic activity in brain networks.
Collapse
Affiliation(s)
- Vincent Magloire
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | - Leonid P Savtchenko
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | - Thomas P Jensen
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Sergyi Sylantyev
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK; Rowett Institute, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK
| | - Olga Kopach
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Nicholas Cole
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Olga Tyurikova
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dimitri M Kullmann
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Matthew C Walker
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jeremy P Hasseman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ilya Kolb
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ivan Pavlov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
12
|
Tang Y, Yan Y, Mao J, Ni J, Qing H. The hippocampus associated GABAergic neural network impairment in early-stage of Alzheimer's disease. Ageing Res Rev 2023; 86:101865. [PMID: 36716975 DOI: 10.1016/j.arr.2023.101865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD) is the commonest neurodegenerative disease with slow progression. Pieces of evidence suggest that the GABAergic system is impaired in the early stage of AD, leading to hippocampal neuron over-activity and further leading to memory and cognitive impairment in patients with AD. However, the precise impairment mechanism of the GABAergic system on the pathogenesis of AD is still unclear. The impairment of neural networks associated with the GABAergic system is tightly associated with AD. Therefore, we describe the roles played by hippocampus-related GABAergic circuits and their impairments in AD neuropathology. In addition, we give our understand on the process from GABAergic circuit impairment to cognitive and memory impairment, since recent studies on astrocyte in AD plays an important role behind cognition dysfunction caused by GABAergic circuit impairment, which helps better understand the GABAergic system and could open up innovative AD therapy.
Collapse
Affiliation(s)
- Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Mao
- Zhengzhou Tobacco Institute of China National Tobacco Company, Zhengzhou 450001, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| |
Collapse
|
13
|
Huffels CFM, Middeldorp J, Hol EM. Aß Pathology and Neuron-Glia Interactions: A Synaptocentric View. Neurochem Res 2023; 48:1026-1046. [PMID: 35976488 PMCID: PMC10030451 DOI: 10.1007/s11064-022-03699-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 10/15/2022]
Abstract
Alzheimer's disease (AD) causes the majority of dementia cases worldwide. Early pathological hallmarks include the accumulation of amyloid-ß (Aß) and activation of both astrocytes and microglia. Neurons form the building blocks of the central nervous system, and astrocytes and microglia provide essential input for its healthy functioning. Their function integrates at the level of the synapse, which is therefore sometimes referred to as the "quad-partite synapse". Increasing evidence puts AD forward as a disease of the synapse, where pre- and postsynaptic processes, as well as astrocyte and microglia functioning progressively deteriorate. Here, we aim to review the current knowledge on how Aß accumulation functionally affects the individual components of the quad-partite synapse. We highlight a selection of processes that are essential to the healthy functioning of the neuronal synapse, including presynaptic neurotransmitter release and postsynaptic receptor functioning. We further discuss how Aß affects the astrocyte's capacity to recycle neurotransmitters, release gliotransmitters, and maintain ion homeostasis. We additionally review literature on how Aß changes the immunoprotective function of microglia during AD progression and conclude by summarizing our main findings and highlighting the challenges in current studies, as well as the need for further research.
Collapse
Affiliation(s)
- Christiaan F M Huffels
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Neurobiology & Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Bakhtiarzadeh F, Zare M, Ghasemi Z, Dehghan S, Sadeghin A, Joghataei MT, Ahmadirad N. Neurostimulation as a Putative Method for the Treatment of Drug-resistant Epilepsy in Patient and Animal Models of Epilepsy. Basic Clin Neurosci 2023; 14:1-18. [PMID: 37346878 PMCID: PMC10279981 DOI: 10.32598/bcn.2022.2360.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 06/23/2023] Open
Abstract
A patient with epilepsy was shown to have neurobiological, psychological, cognitive, and social issues as a result of recurring seizures, which is regarded as a chronic brain disease. However, despite numerous drug treatments, approximately, 30%-40% of all patients are resistant to antiepileptic drugs. Therefore, newer therapeutic modalities are introduced into clinical practice which involve neurostimulation and direct stimulation of the brain. Hence, we review published literature on vagus nerve stimulation, trigeminal nerve stimulation, applying responsive stimulation systems, and deep brain stimulation (DBS) in animals and epileptic patient with an emphasis on drug-resistant epilepsy.
Collapse
Affiliation(s)
- Fatemeh Bakhtiarzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meysam Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Ghasemi
- Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
| | - Samaneh Dehghan
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Health Institute, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Sadeghin
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Anatomy and Neuroscience, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Kilb W, Kirischuk S. GABA Release from Astrocytes in Health and Disease. Int J Mol Sci 2022; 23:ijms232415859. [PMID: 36555501 PMCID: PMC9784789 DOI: 10.3390/ijms232415859] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Astrocytes are the most abundant glial cells in the central nervous system (CNS) mediating a variety of homeostatic functions, such as spatial K+ buffering or neurotransmitter reuptake. In addition, astrocytes are capable of releasing several biologically active substances, including glutamate and GABA. Astrocyte-mediated GABA release has been a matter of debate because the expression level of the main GABA synthesizing enzyme glutamate decarboxylase is quite low in astrocytes, suggesting that low intracellular GABA concentration ([GABA]i) might be insufficient to support a non-vesicular GABA release. However, recent studies demonstrated that, at least in some regions of the CNS, [GABA]i in astrocytes might reach several millimoles both under physiological and especially pathophysiological conditions, thereby enabling GABA release from astrocytes via GABA-permeable anion channels and/or via GABA transporters operating in reverse mode. In this review, we summarize experimental data supporting both forms of GABA release from astrocytes in health and disease, paying special attention to possible feedback mechanisms that might govern the fine-tuning of astrocytic GABA release and, in turn, the tonic GABAA receptor-mediated inhibition in the CNS.
Collapse
|
16
|
Arenas YM, Martínez-García M, Llansola M, Felipo V. Enhanced BDNF and TrkB Activation Enhance GABA Neurotransmission in Cerebellum in Hyperammonemia. Int J Mol Sci 2022; 23:ijms231911770. [PMID: 36233065 PMCID: PMC9570361 DOI: 10.3390/ijms231911770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Hyperammonemia is a main contributor to minimal hepatic encephalopathy (MHE) in cirrhotic patients. Hyperammonemic rats reproduce the motor incoordination of MHE patients, which is due to enhanced GABAergic neurotransmission in the cerebellum as a consequence of neuroinflammation. In hyperammonemic rats, neuroinflammation increases BDNF by activating the TNFR1–S1PR2–CCR2 pathway. (1) Identify mechanisms enhancing GABAergic neurotransmission in hyperammonemia; (2) assess the role of enhanced activation of TrkB; and (3) assess the role of the TNFR1–S1PR2–CCR2–BDNF pathway. In the cerebellum of hyperammonemic rats, increased BDNF levels enhance TrkB activation in Purkinje neurons, leading to increased GAD65, GAD67 and GABA levels. Enhanced TrkB activation also increases the membrane expression of the γ2, α2 and β3 subunits of GABAA receptors and of KCC2. Moreover, enhanced TrkB activation in activated astrocytes increases the membrane expression of GAT3 and NKCC1. These changes are reversed by blocking TrkB or the TNFR1–SP1PR2–CCL2–CCR2–BDNF–TrkB pathway. Hyperammonemia-induced neuroinflammation increases BDNF and TrkB activation, leading to increased synthesis and extracellular GABA, and the amount of GABAA receptors in the membrane and chloride gradient. These factors enhance GABAergic neurotransmission in the cerebellum. Blocking TrkB or the TNFR1–SP1PR2–CCL2–CCR2–BDNF–TrkB pathway would improve motor function in patients with hepatic encephalopathy and likely with other pathologies associated with neuroinflammation.
Collapse
|
17
|
Kovács Z, Skatchkov SN, Szabó Z, Qahtan S, Méndez-González MP, Malpica-Nieves CJ, Eaton MJ, Kardos J, Héja L. Putrescine Intensifies Glu/GABA Exchange Mechanism and Promotes Early Termination of Seizures. Int J Mol Sci 2022; 23:ijms23158191. [PMID: 35897767 PMCID: PMC9331600 DOI: 10.3390/ijms23158191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Endogenous anticonvulsant mechanisms represent a reliable and currently underdeveloped strategy against recurrent seizures and may recall novel original therapeutics. Here, we investigated whether the intensification of the astroglial Glu-GABA exchange mechanism by application of the GABA precursor putrescine (PUT) may be effective against convulsive and non-convulsive seizures. We explored the potential of PUT to inhibit spontaneous spike-and-wave discharges (SWDs) in WAG/Rij rats, a genetic model of absence epilepsy. Significant shortening of SWDs in response to intraperitoneally applied PUT has been observed, which could be antagonized by blocking GAT-2/3-mediated astrocytic GABA release with the specific inhibitor SNAP-5114. Direct application of exogenous GABA also reduced SWD duration, suggesting that PUT-triggered astroglial GABA release through GAT-2/3 may be a critical step in limiting seizure duration. PUT application also dose-dependently shortened seizure-like events (SLEs) in the low-[Mg2+] in vitro model of temporal lobe epilepsy. SNAP-5114 reversed the antiepileptic effect of PUT in the in vitro model as well, further confirming that PUT reduces seizure duration by triggering glial GABA release. In accordance, we observed that PUT specifically reduces the frequency of excitatory synaptic potentials, suggesting that it specifically acts at excitatory synapses. We also identified that PUT specifically eliminated the tonic depolarization-induced desynchronization of SLEs. Since PUT is an important source of glial GABA and we previously showed significant GABA release, it is suggested that the astroglial Glu-GABA exchange mechanism plays a key role in limiting ictal discharges, potentially opening up novel pathways to control seizure propagation and generalization.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4, 9700 Szombathely, Hungary;
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central del Caribe, Bayamon, PR 00960, USA; (S.N.S.); (C.J.M.-N.)
- Department of Biochemistry, Universidad Central del Caribe, Bayamon, PR 00960, USA; (M.P.M.-G.); (M.J.E.)
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (Z.S.); (S.Q.); (J.K.)
| | - Saif Qahtan
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (Z.S.); (S.Q.); (J.K.)
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
- College of Science, University of Al-Qadisiyah, Al-Diwaniyah 58001, Iraq
| | - Miguel P. Méndez-González
- Department of Biochemistry, Universidad Central del Caribe, Bayamon, PR 00960, USA; (M.P.M.-G.); (M.J.E.)
- Natural Sciences Department, University of Puerto Rico in Aguadilla, Aguadilla, PR 00604, USA
- Department of Science and Technology, Antilles Adventist University, Mayagüez, PR 00681, USA
| | - Christian J. Malpica-Nieves
- Department of Physiology, Universidad Central del Caribe, Bayamon, PR 00960, USA; (S.N.S.); (C.J.M.-N.)
- Department of Biochemistry, Universidad Central del Caribe, Bayamon, PR 00960, USA; (M.P.M.-G.); (M.J.E.)
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamon, PR 00960, USA; (M.P.M.-G.); (M.J.E.)
| | - Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (Z.S.); (S.Q.); (J.K.)
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (Z.S.); (S.Q.); (J.K.)
- Correspondence:
| |
Collapse
|
18
|
Arenas YM, Balzano T, Ivaylova G, Llansola M, Felipo V. The S1PR2‐CCL2‐BDNF‐TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathol Appl Neurobiol 2022; 48. [PMID: 35152448 DOI: 10.1111/nan.12799] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/05/2022] [Indexed: 11/18/2024]
Abstract
AbstractAimsChronic hyperammonaemia and inflammation synergistically induce neurological impairment, including motor incoordination, in hepatic encephalopathy. Hyperammonaemic rats show neuroinflammation in the cerebellum which enhances GABAergic neurotransmission leading to motor incoordination. We aimed to identify underlying mechanisms. The aims were (1) to assess if S1PR2 is involved in microglial and astrocytic activation in the cerebellum of hyperammonaemic rats; (2) to identify pathways by which enhanced S1PR2 activation induces neuroinflammation and alters neurotransmission; (3) to assess if blocking S1PR2 reduces neuroinflammation and restores motor coordination in hyperammonaemic rats.MethodsWe performed ex vivo studies in cerebellar slices from control or hyperammonaemic rats to identify pathways by which neuroinflammation enhances GABAergic neurotransmission in hyperammonaemia. Neuroinflammation and neurotransmission were assessed by immunochemistry/immunofluorescence and western blot. S1PR2 was blocked by intracerebral treatment with JTE‐013 using osmotic mini‐pumps. Motor coordination was assessed by beam walking.ResultsChronic hyperammonaemia enhances S1PR2 activation in the cerebellum by increasing its membrane expression. This increases CCL2, especially in Purkinje neurons. CCL2 activates CCR2 in microglia, leading to microglial activation, increased P2X4 membrane expression and BDNF in microglia. BDNF enhances TrkB activation in neurons, increasing KCC2 membrane expression. This enhances GABAergic neurotransmission, leading to motor incoordination in hyperammonaemic rats. Blocking S1PR2 in hyperammonaemic rats by intracerebral administration of JTE‐013 normalises the S1PR2‐CCL2‐CCR2‐BDNF‐TrkB‐KCC2 pathway, reduces glial activation and restores motor coordination in hyperammonaemic rats.ConclusionsEnhanced S1PR2‐CCL2‐BDNF‐TrkB pathway activation mediates neuroinflammation and incoordination in hyperammonaemia. The data raise a promising therapy for patients with hepatic encephalopathy using compounds targeting this pathway.
Collapse
Affiliation(s)
- Yaiza M. Arenas
- Laboratory of Neurobiology Centro Investigación Príncipe Felipe Valencia Spain
| | - Tiziano Balzano
- Laboratory of Neurobiology Centro Investigación Príncipe Felipe Valencia Spain
| | - Gergana Ivaylova
- Laboratory of Neurobiology Centro Investigación Príncipe Felipe Valencia Spain
| | - Marta Llansola
- Laboratory of Neurobiology Centro Investigación Príncipe Felipe Valencia Spain
| | - Vicente Felipo
- Laboratory of Neurobiology Centro Investigación Príncipe Felipe Valencia Spain
| |
Collapse
|
19
|
Rogério da Silva Moraes E, Santos-Silva M, Grisólia AA, Braga DV, Reis Leão LK, Bahia CP, Soares de Moraes SA, Passos AF, de Jesus Oliveira Batista E, Herculano AM, Matos Oliveira KRH. High performance liquid chromatography-based method to analyze activity of GABA transporters in central nervous system. Neurochem Int 2022; 158:105359. [DOI: 10.1016/j.neuint.2022.105359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
|
20
|
Aldabbagh Y, Islam A, Zhang W, Whiting P, Ali AB. Alzheimer’s Disease Enhanced Tonic Inhibition is Correlated With Upregulated Astrocyte GABA Transporter-3/4 in a Knock-In APP Mouse Model. Front Pharmacol 2022; 13:822499. [PMID: 35185574 PMCID: PMC8850407 DOI: 10.3389/fphar.2022.822499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cognitive decline is a major symptom in Alzheimer’s disease (AD), which is strongly associated with synaptic excitatory-inhibitory imbalance. Here, we investigated whether astrocyte-specific GABA transporter 3/4 (GAT3/4) is altered in APP knock-in mouse model of AD and whether this is correlated with changes in principal cell excitability. Using the APPNL-F/NL-F knock-in mouse model of AD, aged-matched to wild-type mice, we performed in vitro electrophysiological whole-cell recordings combined with immunohistochemistry in the CA1 and dentate gyrus (DG) regions of the hippocampus. We observed a higher expression of GAD67, an enzyme that catalyses GABA production, and GAT3/4 in reactive astrocytes labelled with GFAP, which correlated with an enhanced tonic inhibition in the CA1 and DG of 12–16 month-old APPNL-F/NL-F mice compared to the age-matched wild-type animals. Comparative neuroanatomy experiments performed using post-mortem brain tissue from human AD patients, age-matched to healthy controls, mirrored the results obtained using mice tissue. Blocking GAT3/4 associated tonic inhibition recorded in CA1 and DG principal cells resulted in an increased membrane input resistance, enhanced firing frequency and synaptic excitation in both wild-type and APPNL-F/NL-F mice. These effects exacerbated synaptic hyperactivity reported previously in the APPNL-F/NL-F mice model. Our data suggest that an alteration in astrocyte GABA homeostasis is correlated with increased tonic inhibition in the hippocampus, which probably plays an important compensatory role in restoring AD-associated synaptic hyperactivity. Therefore, reducing tonic inhibition through GAT3/4 may not be a good therapeutic strategy for AD
Collapse
Affiliation(s)
| | - Anam Islam
- UCL School of Pharmacy, London, United Kingdom
| | | | - Paul Whiting
- Alzheimer’s Research UK Drug Discovery Institute, Queen Square Institute of Neurology, London, United Kingdom
| | - Afia B. Ali
- UCL School of Pharmacy, London, United Kingdom
- *Correspondence: Afia B. Ali,
| |
Collapse
|
21
|
Kovács Z, Skatchkov SN, Veh RW, Szabó Z, Németh K, Szabó PT, Kardos J, Héja L. Critical Role of Astrocytic Polyamine and GABA Metabolism in Epileptogenesis. Front Cell Neurosci 2022; 15:787319. [PMID: 35069115 PMCID: PMC8770812 DOI: 10.3389/fncel.2021.787319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence indicate that astrocytes are essential players of the excitatory and inhibitory signaling during normal and epileptiform activity via uptake and release of gliotransmitters, ions, and other substances. Polyamines can be regarded as gliotransmitters since they are almost exclusively stored in astrocytes and can be released by various mechanisms. The polyamine putrescine (PUT) is utilized to synthesize GABA, which can also be released from astrocytes and provide tonic inhibition on neurons. The polyamine spermine (SPM), synthesized form PUT through spermidine (SPD), is known to unblock astrocytic Cx43 gap junction channels and therefore facilitate astrocytic synchronization. In addition, SPM released from astrocytes may also modulate neuronal NMDA, AMPA, and kainate receptors. As a consequence, astrocytic polyamines possess the capability to significantly modulate epileptiform activity. In this study, we investigated different steps in polyamine metabolism and coupled GABA release to assess their potential to control seizure generation and maintenance in two different epilepsy models: the low-[Mg2+] model of temporal lobe epilepsy in vitro and in the WAG/Rij rat model of absence epilepsy in vivo. We show that SPM is a gliotransmitter that is released from astrocytes and significantly contributes to network excitation. Importantly, we found that inhibition of SPD synthesis completely prevented seizure generation in WAG/Rij rats. We hypothesize that this antiepileptic effect is attributed to the subsequent enhancement of PUT to GABA conversion in astrocytes, leading to GABA release through GAT-2/3 transporters. This interpretation is supported by the observation that antiepileptic potential of the Food and Drug Administration (FDA)-approved drug levetiracetam can be diminished by specifically blocking astrocytic GAT-2/3 with SNAP-5114, suggesting that levetiracetam exerts its effect by increasing surface expression of GAT-2/3. Our findings conclusively suggest that the major pathway through which astrocytic polyamines contribute to epileptiform activity is the production of GABA. Modulation of astrocytic polyamine levels, therefore, may serve for a more effective antiepileptic drug development in the future.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central Del Caribe, Bayamon, PR, United States
- Department of Biochemistry, Universidad Central Del Caribe, Bayamon, PR, United States
| | - Rüdiger W. Veh
- Institut für Zell- und Neurobiologie, Centrum 2, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Krisztina Németh
- MS Metabolomics Research Group, Centre for Structural Study, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Pál T. Szabó
- MS Metabolomics Research Group, Centre for Structural Study, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
22
|
Flanagan B, McDaid L, Wade JJ, Toman M, Wong-Lin K, Harkin J. A Computational Study of Astrocytic GABA Release at the Glutamatergic Synapse: EAAT-2 and GAT-3 Coupled Dynamics. Front Cell Neurosci 2021; 15:682460. [PMID: 34322000 PMCID: PMC8312685 DOI: 10.3389/fncel.2021.682460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Neurotransmitter dynamics within neuronal synapses can be controlled by astrocytes and reflect key contributors to neuronal activity. In particular, Glutamate (Glu) released by activated neurons is predominantly removed from the synaptic space by perisynaptic astrocytic transporters EAAT-2 (GLT-1). In previous work, we showed that the time course of Glu transport is affected by ionic concentration gradients either side of the astrocytic membrane and has the propensity for influencing postsynaptic neuronal excitability. Experimental findings co-localize GABA transporters GAT-3 with EAAT-2 on the perisynaptic astrocytic membrane. While these transporters are unlikely to facilitate the uptake of synaptic GABA, this paper presents simulation results which demonstrate the coupling of EAAT-2 and GAT-3, giving rise to the ionic-dependent reversed transport of GAT-3. The resulting efflux of GABA from the astrocyte to the synaptic space reflects an important astrocytic mechanism for modulation of hyperexcitability. Key results also illustrate an astrocytic-mediated modulation of synaptic neuronal excitation by released GABA at the glutamatergic synapse.
Collapse
Affiliation(s)
- Bronac Flanagan
- Intelligent Systems Research Centre, Ulster University, Derry, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Epileptic Mechanisms Shared by Alzheimer's Disease: Viewed via the Unique Lens of Genetic Epilepsy. Int J Mol Sci 2021; 22:ijms22137133. [PMID: 34281185 PMCID: PMC8268161 DOI: 10.3390/ijms22137133] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Our recent work on genetic epilepsy (GE) has identified common mechanisms between GE and neurodegenerative diseases including Alzheimer's disease (AD). Although both disorders are seemingly unrelated and occur at opposite ends of the age spectrum, it is likely there are shared mechanisms and studies on GE could provide unique insights into AD pathogenesis. Neurodegenerative diseases are typically late-onset disorders, but the underlying pathology may have already occurred long before the clinical symptoms emerge. Pathophysiology in the early phase of these diseases is understudied but critical for developing mechanism-based treatment. In AD, increased seizure susceptibility and silent epileptiform activity due to disrupted excitatory/inhibitory (E/I) balance has been identified much earlier than cognition deficit. Increased epileptiform activity is likely a main pathology in the early phase that directly contributes to impaired cognition. It is an enormous challenge to model the early phase of pathology with conventional AD mouse models due to the chronic disease course, let alone the complex interplay between subclinical nonconvulsive epileptiform activity, AD pathology, and cognition deficit. We have extensively studied GE, especially with gene mutations that affect the GABA pathway such as mutations in GABAA receptors and GABA transporter 1. We believe that some mouse models developed for studying GE and insights gained from GE could provide unique opportunity to understand AD. These include the pathology in early phase of AD, endoplasmic reticulum (ER) stress, and E/I imbalance as well as the contribution to cognitive deficit. In this review, we will focus on the overlapping mechanisms between GE and AD, the insights from mutations affecting GABAA receptors, and GABA transporter 1. We will detail mechanisms of E/I imbalance and the toxic epileptiform generation in AD, and the complex interplay between ER stress, impaired membrane protein trafficking, and synaptic physiology in both GE and AD.
Collapse
|
24
|
Szabó Z, Péter M, Héja L, Kardos J. Dual Role for Astroglial Copper-Assisted Polyamine Metabolism during Intense Network Activity. Biomolecules 2021; 11:604. [PMID: 33921742 PMCID: PMC8073386 DOI: 10.3390/biom11040604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/29/2022] Open
Abstract
Astrocytes serve essential roles in human brain function and diseases. Growing evidence indicates that astrocytes are central players of the feedback modulation of excitatory Glu signalling during epileptiform activity via Glu-GABA exchange. The underlying mechanism results in the increase of tonic inhibition by reverse operation of the astroglial GABA transporter, induced by Glu-Na+ symport. GABA, released from astrocytes, is synthesized from the polyamine (PA) putrescine and this process involves copper amino oxidase. Through this pathway, putrescine can be considered as an important source of inhibitory signaling that counterbalances epileptic discharges. Putrescine, however, is also a precursor for spermine that is known to enhance gap junction channel communication and, consequently, supports long-range Ca2+ signaling and contributes to spreading of excitatory activity through the astrocytic syncytium. Recently, we presented the possibility of neuron-glia redox coupling through copper (Cu+/Cu2+) signaling and oxidative putrescine catabolism. In the current work, we explore whether the Cu+/Cu2+ homeostasis is involved in astrocytic control on neuronal excitability by regulating PA catabolism. We provide supporting experimental data underlying this hypothesis. We show that the blockade of copper transporter (CTR1) by AgNO3 (3.6 µM) prevents GABA transporter-mediated tonic inhibitory currents, indicating causal relationship between copper (Cu+/Cu2+) uptake and the catabolism of putrescine to GABA in astrocytes. In addition, we show that MnCl2 (20 μM), an inhibitor of the divalent metal transporter DMT1, also prevents the astrocytic Glu-GABA exchange. Furthermore, we observed that facilitation of copper uptake by added CuCl2 (2 µM) boosts tonic inhibitory currents. These findings corroborate the hypothesis that modulation of neuron-glia coupling by copper uptake drives putrescine → GABA transformation, which leads to subsequent Glu-GABA exchange and tonic inhibition. Findings may in turn highlight the potential role of copper signaling in fine-tuning the activity of the tripartite synapse.
Collapse
Affiliation(s)
- Zsolt Szabó
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| | - Márton Péter
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| | - Julianna Kardos
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| |
Collapse
|
25
|
Héja L, Szabó Z, Péter M, Kardos J. Spontaneous Ca 2+ Fluctuations Arise in Thin Astrocytic Processes With Real 3D Geometry. Front Cell Neurosci 2021; 15:617989. [PMID: 33732110 PMCID: PMC7957061 DOI: 10.3389/fncel.2021.617989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Fluctuations of cytosolic Ca2+ concentration in astrocytes are regarded as a critical non-neuronal signal to regulate neuronal functions. Although such fluctuations can be evoked by neuronal activity, rhythmic astrocytic Ca2+ oscillations may also spontaneously arise. Experimental studies hint that these spontaneous astrocytic Ca2+ oscillations may lie behind different kinds of emerging neuronal synchronized activities, like epileptogenic bursts or slow-wave rhythms. Despite the potential importance of spontaneous Ca2+ oscillations in astrocytes, the mechanism by which they develop is poorly understood. Using simple 3D synapse models and kinetic data of astrocytic Glu transporters (EAATs) and the Na+/Ca2+ exchanger (NCX), we have previously shown that NCX activity alone can generate markedly stable, spontaneous Ca2+ oscillation in the astrocytic leaflet microdomain. Here, we extend that model by incorporating experimentally determined real 3D geometries of 208 excitatory synapses reconstructed from publicly available ultra-resolution electron microscopy datasets. Our simulations predict that the surface/volume ratio (SVR) of peri-synaptic astrocytic processes prominently dictates whether NCX-mediated spontaneous Ca2+ oscillations emerge. We also show that increased levels of intracellular astrocytic Na+ concentration facilitate the appearance of Ca2+ fluctuations. These results further support the principal role of the dynamical reshaping of astrocyte processes in the generation of intrinsic Ca2+ oscillations and their spreading over larger astrocytic compartments.
Collapse
Affiliation(s)
- László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (MTA), Budapest, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (MTA), Budapest, Hungary
| | - Márton Péter
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (MTA), Budapest, Hungary.,Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (MTA), Budapest, Hungary
| |
Collapse
|
26
|
Müller J, Timmermann A, Henning L, Müller H, Steinhäuser C, Bedner P. Astrocytic GABA Accumulation in Experimental Temporal Lobe Epilepsy. Front Neurol 2020; 11:614923. [PMID: 33391173 PMCID: PMC7775561 DOI: 10.3389/fneur.2020.614923] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/30/2020] [Indexed: 01/17/2023] Open
Abstract
An imbalance of excitation and inhibition has been associated with the pathophysiology of epilepsy. Loss of GABAergic interneurons and/or synaptic inhibition has been shown in various epilepsy models and in human epilepsy. Despite this loss, several studies reported preserved or increased tonic GABAA receptor-mediated currents in epilepsy, raising the question of the source of the inhibitory transmitter. We used the unilateral intracortical kainate mouse model of temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) to answer this question. In our model we observed profound loss of interneurons in the sclerotic hippocampal CA1 region and dentate gyrus already 5 days after epilepsy induction. Consistent with the literature, the absence of interneurons caused no reduction of tonic inhibition of CA1 pyramidal neurons. In dentate granule cells the inhibitory currents were even increased in epileptic tissue. Intriguingly, immunostaining of brain sections from epileptic mice with antibodies against GABA revealed strong and progressive accumulation of the neurotransmitter in reactive astrocytes. Pharmacological inhibition of the astrocytic GABA transporter GAT3 did not affect tonic inhibition in the sclerotic hippocampus, suggesting that this transporter is not responsible for astrocytic GABA accumulation or release. Immunostaining further indicated that both decarboxylation of glutamate and putrescine degradation accounted for the increased GABA levels in reactive astrocytes. Together, our data provide evidence that the preserved tonic inhibitory currents in the epileptic brain are mediated by GABA overproduction and release from astrocytes. A deeper understanding of the underlying mechanisms may lead to new strategies for antiepileptic drug therapy.
Collapse
Affiliation(s)
- Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Aline Timmermann
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hendrik Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
27
|
Kim YS, Choi J, Yoon BE. Neuron-Glia Interactions in Neurodevelopmental Disorders. Cells 2020; 9:cells9102176. [PMID: 32992620 PMCID: PMC7601502 DOI: 10.3390/cells9102176] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies have revealed synaptic dysfunction to be a hallmark of various psychiatric diseases, and that glial cells participate in synapse formation, development, and plasticity. Glial cells contribute to neuroinflammation and synaptic homeostasis, the latter being essential for maintaining the physiological function of the central nervous system (CNS). In particular, glial cells undergo gliotransmission and regulate neuronal activity in tripartite synapses via ion channels (gap junction hemichannel, volume regulated anion channel, and bestrophin-1), receptors (for neurotransmitters and cytokines), or transporters (GLT-1, GLAST, and GATs) that are expressed on glial cell membranes. In this review, we propose that dysfunction in neuron-glia interactions may contribute to the pathogenesis of neurodevelopmental disorders. Understanding the mechanisms of neuron-glia interaction for synapse formation and maturation will contribute to the development of novel therapeutic targets of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea; (Y.S.K.); (J.C.)
| | - Juwon Choi
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea; (Y.S.K.); (J.C.)
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea; (Y.S.K.); (J.C.)
- Department of Nanobiomedical science, Dankook University, Cheonan 31116, Korea
- Correspondence: ; Tel.: +82-41-529-6085
| |
Collapse
|
28
|
Ramakrishna Y, Sadeghi SG. Activation of GABA B receptors results in excitatory modulation of calyx terminals in rat semicircular canal cristae. J Neurophysiol 2020; 124:962-972. [PMID: 32816581 PMCID: PMC7509296 DOI: 10.1152/jn.00243.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Previous studies have found GABA in vestibular end organs. However, existence of GABA receptors or possible GABAergic effects on vestibular nerve afferents has not been investigated. The current study was conducted to determine whether activation of GABAB receptors affects calyx afferent terminals in the central region of the cristae of semicircular canals. We used patch-clamp recording in postnatal day 13-18 (P13-P18) Sprague-Dawley rats of either sex. Application of GABAB receptor agonist baclofen inhibited voltage-sensitive potassium currents. This effect was blocked by selective GABAB receptor antagonist CGP 35348. Application of antagonists of small (SK)- and large-conductance potassium (BK) channels almost completely blocked the effects of baclofen. The remaining baclofen effect was blocked by cadmium chloride, suggesting that it could be due to inhibition of voltage-gated calcium channels. Furthermore, baclofen had no effect in the absence of calcium in the extracellular fluid. Inhibition of potassium currents by GABAB activation resulted in an excitatory effect on calyx terminal action potential firing. While in the control condition calyces could only fire a single action potential during step depolarizations, in the presence of baclofen they fired continuously during steps and a few even showed repetitive discharge. We also found a decrease in threshold for action potential generation and a decrease in first-spike latency during step depolarization. These results provide the first evidence for the presence of GABAB receptors on calyx terminals, showing that their activation results in an excitatory effect and that GABA inputs could be used to modulate calyx response properties.NEW & NOTEWORTHY Using in vitro whole cell patch-clamp recordings from calyx terminals in the vestibular end organs, we show that activation of GABAB receptors result in an excitatory effect, with decreased spike-frequency adaptation and shortened first-spike latencies. Our results suggest that these effects are mediated through inhibition of calcium-sensitive potassium channels.
Collapse
Affiliation(s)
- Yugandhar Ramakrishna
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Communication Disorders and Sciences, California State University, Northridge, Northridge, California
| | - Soroush G Sadeghi
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, New York
- Neuroscience Program, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
29
|
Felix L, Delekate A, Petzold GC, Rose CR. Sodium Fluctuations in Astroglia and Their Potential Impact on Astrocyte Function. Front Physiol 2020; 11:871. [PMID: 32903427 PMCID: PMC7435049 DOI: 10.3389/fphys.2020.00871] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Astrocytes are the main cell type responsible for the regulation of brain homeostasis, including the maintenance of ion gradients and neurotransmitter clearance. These processes are tightly coupled to changes in the intracellular sodium (Na+) concentration. While activation of the sodium-potassium-ATPase (NKA) in response to an elevation of extracellular K+ may decrease intracellular Na+, the cotransport of transmitters, such as glutamate, together with Na+ results in an increase in astrocytic Na+. This increase in intracellular Na+ can modulate, for instance, metabolic downstream pathways. Thereby, astrocytes are capable to react on a fast time scale to surrounding neuronal activity via intracellular Na+ fluctuations and adjust energy production to the demand of their environment. Beside the well-documented conventional roles of Na+ signaling mainly mediated through changes in its electrochemical gradient, several recent studies have identified more atypical roles for Na+, including protein interactions leading to changes in their biochemical activity or Na+-dependent regulation of gene expression. In this review, we will address both the conventional as well as the atypical functions of astrocytic Na+ signaling, presenting the role of transporters and channels involved and their implications for physiological processes in the central nervous system (CNS). We will also discuss how these important functions are affected under pathological conditions, including stroke and migraine. We postulate that Na+ is an essential player not only in the maintenance of homeostatic processes but also as a messenger for the fast communication between neurons and astrocytes, adjusting the functional properties of various cellular interaction partners to the needs of the surrounding network.
Collapse
Affiliation(s)
- Lisa Felix
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Andrea Delekate
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
30
|
Gaidin SG, Zinchenko VP, Sergeev AI, Teplov IY, Mal'tseva VN, Kosenkov AM. Activation of alpha‐2 adrenergic receptors stimulates GABA release by astrocytes. Glia 2020; 68:1114-1130. [DOI: 10.1002/glia.23763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Sergei G. Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Valery P. Zinchenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Alexander I. Sergeev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Ilia Y. Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Valentina N. Mal'tseva
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Artem M. Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| |
Collapse
|
31
|
Sueviriyapan N, Tso CF, Herzog ED, Henson MA. Astrocytic Modulation of Neuronal Activity in the Suprachiasmatic Nucleus: Insights from Mathematical Modeling. J Biol Rhythms 2020; 35:287-301. [PMID: 32285754 PMCID: PMC7401727 DOI: 10.1177/0748730420913672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus consists of a highly heterogeneous neuronal population networked together to allow precise and robust circadian timekeeping in mammals. While the critical importance of SCN neurons in regulating circadian rhythms has been extensively studied, the roles of SCN astrocytes in circadian system function are not well understood. Recent experiments have demonstrated that SCN astrocytes are circadian oscillators with the same functional clock genes as SCN neurons. Astrocytes generate rhythmic outputs that are thought to modulate neuronal activity through pre- and postsynaptic interactions. In this study, we developed an in silico multicellular model of the SCN clock to investigate the impact of astrocytes in modulating neuronal activity and affecting key clock properties such as circadian rhythmicity, period, and synchronization. The model predicted that astrocytes could alter the rhythmic activity of neurons via bidirectional interactions at tripartite synapses. Specifically, astrocyte-regulated extracellular glutamate was predicted to increase neuropeptide signaling from neurons. Consistent with experimental results, we found that astrocytes could increase the circadian period and enhance neural synchronization according to their endogenous circadian period. The impact of astrocytic modulation of circadian rhythm amplitude, period, and synchronization was predicted to be strongest when astrocytes had periods between 0 and 2 h longer than neurons. Increasing the number of neurons coupled to the astrocyte also increased its impact on period modulation and synchrony. These computational results suggest that signals that modulate astrocytic rhythms or signaling (e.g., as a function of season, age, or treatment) could cause disruptions in circadian rhythm or serve as putative therapeutic targets.
Collapse
Affiliation(s)
- Natthapong Sueviriyapan
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Chak Foon Tso
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Current Affiliation: Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Erik D. Herzog
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Michael A. Henson
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
32
|
Łątka K, Jończyk J, Bajda M. γ-Aminobutyric acid transporters as relevant biological target: Their function, structure, inhibitors and role in the therapy of different diseases. Int J Biol Macromol 2020; 158:S0141-8130(20)32987-1. [PMID: 32360967 DOI: 10.1016/j.ijbiomac.2020.04.126] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022]
Abstract
γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the nervous system. It plays a crucial role in many physiological processes. Upon release from the presynaptic element, it is removed from the synaptic cleft by reuptake due to the action of GABA transporters (GATs). GATs belong to a large SLC6 protein family whose characteristic feature is sodium-dependent relocation of neurotransmitters through the cell membrane. GABA transporters are characterized in many contexts, but their spatial structure is not fully known. They are divided into four types, which differ in occurrence and role. Herein, the special attention was paid to these transporting proteins. This comprehensive review presents the current knowledge about GABA transporters. Their distribution in the body, physiological functions and possible utilization in the therapy of different diseases were fully discussed. The important structural features were described based on published data, including sequence analysis, mutagenesis studies, and comparison with known SLC6 transporters for leucine (LeuT), dopamine (DAT) and serotonin (SERT). Moreover, the most important inhibitors of GABA transporters of various basic scaffolds, diverse selectivity and potency were presented.
Collapse
Affiliation(s)
- Kamil Łątka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland
| | - Jakub Jończyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland
| | - Marek Bajda
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland.
| |
Collapse
|
33
|
Kardos J, Dobolyi Á, Szabó Z, Simon Á, Lourmet G, Palkovits M, Héja L. Molecular Plasticity of the Nucleus Accumbens Revisited-Astrocytic Waves Shall Rise. Mol Neurobiol 2019; 56:7950-7965. [PMID: 31134458 PMCID: PMC6834761 DOI: 10.1007/s12035-019-1641-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Part of the ventral striatal division, the nucleus accumbens (NAc) drives the circuit activity of an entire macrosystem about reward like a "flagship," signaling and leading diverse conducts. Accordingly, NAc neurons feature complex inhibitory phenotypes that assemble to process circuit inputs and generate outputs by exploiting specific arrays of opposite and/or parallel neurotransmitters, neuromodulatory peptides. The resulting complex combinations enable versatile yet specific forms of accumbal circuit plasticity, including maladaptive behaviors. Although reward signaling and behavior are elaborately linked to neuronal circuit activities, it is plausible to propose whether these neuronal ensembles and synaptic islands can be directly controlled by astrocytes, a powerful modulator of neuronal activity. Pioneering studies showed that astrocytes in the NAc sense citrate cycle metabolites and/or ATP and may induce recurrent activation. We argue that the astrocytic calcium, GABA, and Glu signaling and altered sodium and chloride dynamics fundamentally shape metaplasticity by providing active regulatory roles in the synapse- and network-level flexibility of the NAc.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary.
| | - Árpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Üllői út 26, Budapest, 1086, Hungary
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Pázmány Péter sétány 1C, Budapest, 1117, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - Guillaume Lourmet
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Üllői út 26, Budapest, 1086, Hungary
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Tűzoltó utca 58, Budapest, H-1094, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| |
Collapse
|
34
|
Vico Varela E, Etter G, Williams S. Excitatory-inhibitory imbalance in Alzheimer's disease and therapeutic significance. Neurobiol Dis 2019; 127:605-615. [DOI: 10.1016/j.nbd.2019.04.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 11/29/2022] Open
|
35
|
Braga DV, Wanderley Picanço-Diniz DL, Herculano Matos Oliveira KR, Luz WL, Soares de Moraes SA, Fonseca Passos AC, de Jesus Oliveira Batista E, Grisólia A, Herculano AM. Adenosine A1 receptors modulate the Na+-Hypertonicity induced glutamate release in hypothalamic glial cells. Neurochem Int 2019; 126:64-68. [DOI: 10.1016/j.neuint.2019.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 02/09/2023]
|
36
|
Héja L, Simon Á, Szabó Z, Kardos J. Feedback adaptation of synaptic excitability via Glu:Na + symport driven astrocytic GABA and Gln release. Neuropharmacology 2019; 161:107629. [PMID: 31103619 DOI: 10.1016/j.neuropharm.2019.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/30/2019] [Accepted: 05/07/2019] [Indexed: 02/08/2023]
Abstract
Glutamatergic transmission composed of the arriving of action potential at the axon terminal, fast vesicular Glu release, postsynaptic Glu receptor activation, astrocytic Glu clearance and Glu→Gln shuttle is an abundantly investigated phenomenon. Despite its essential role, however, much less is known about the consequences of the mechanistic connotations of Glu:Na+ symport. Due to the coupled Na+ transport, Glu uptake results in significantly elevated intracellular astrocytic [Na+] that markedly alters the driving force of other Na+-coupled astrocytic transporters. The resulting GABA and Gln release by reverse transport through the respective GAT-3 and SNAT3 transporters help to re-establish the physiological Na+ homeostasis without ATP dissipation and consequently leads to enhanced tonic inhibition and replenishment of axonal glutamate pool. Here, we place this emerging astrocytic adjustment of synaptic excitability into the centre of future perspectives. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
| |
Collapse
|
37
|
Vincze R, Péter M, Szabó Z, Kardos J, Héja L, Kovács Z. Connexin 43 Differentially Regulates Epileptiform Activity in Models of Convulsive and Non-convulsive Epilepsies. Front Cell Neurosci 2019; 13:173. [PMID: 31133805 PMCID: PMC6523398 DOI: 10.3389/fncel.2019.00173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/11/2019] [Indexed: 11/13/2022] Open
Abstract
The influence of astrocytic cell networks on neuronal network activity is an emerging issue in epilepsy. Among the various mechanisms by which astrocytes modulate neuronal function, synchronization of astrocytes via gap junction channels is widely considered to be a crucial mechanism in epileptic conditions, contributing to the synchronization of the neuronal cell networks, possibly inducing recurrent epileptiform activity. Here, we explored whether modulation of astrocytic gap junctions could alter epileptic seizures in different types of epilepsy. Opening of gap junctions by trimethylamine intensifies seizure-like events (SLEs) in the low-[Mg2+] in vitro model of temporal lobe epilepsy, while alleviates seizures in the in vivo WAG/Rij rat model of absence epilepsy. In contrast, application of the gap junction blocker carbenoxolone prevents the appearance of SLEs in the low-[Mg2+] epilepsy model, but aggravates seizures in non-convulsive absence epilepsy, in vivo. Pharmacological dissection of neuronal vs. astrocytic connexins shows that astrocytic Cx43 contribute to seizure formation to a significantly higher extent than neuronal Cx36. We conclude that astrocytic gap junctions are key players in the formation of epileptiform activity and we provide a scheme for the different mode of action in the convulsive and non-convulsive epilepsy types.
Collapse
Affiliation(s)
- Renáta Vincze
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Márton Péter
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Kovács
- Department of Biology, Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| |
Collapse
|
38
|
Fischer AU, Müller NIC, Deller T, Del Turco D, Fisch JO, Griesemer D, Kattler K, Maraslioglu A, Roemer V, Xu‐Friedman MA, Walter J, Friauf E. GABA is a modulator, rather than a classical transmitter, in the medial nucleus of the trapezoid body-lateral superior olive sound localization circuit. J Physiol 2019; 597:2269-2295. [PMID: 30776090 PMCID: PMC6462465 DOI: 10.1113/jp277566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The lateral superior olive (LSO), a brainstem hub involved in sound localization, integrates excitatory and inhibitory inputs from the ipsilateral and the contralateral ear, respectively. In gerbils and rats, inhibition to the LSO reportedly shifts from GABAergic to glycinergic within the first three postnatal weeks. Surprisingly, we found no evidence for synaptic GABA signalling during this time window in mouse LSO principal neurons. However, we found that presynaptic GABAB Rs modulate Ca2+ influx into medial nucleus of the trapezoid body axon terminals, resulting in reduced synaptic strength. Moreover, GABA elicited strong responses in LSO neurons that were mediated by extrasynaptic GABAA Rs. RNA sequencing revealed highly abundant δ subunits, which are characteristic of extrasynaptic receptors. Whereas GABA increased the excitability of neonatal LSO neurons, it reduced the excitability around hearing onset. Collectively, GABA appears to control the excitability of mouse LSO neurons via extrasynaptic and presynaptic signalling. Thus, GABA acts as a modulator, rather than as a classical transmitter. ABSTRACT GABA and glycine mediate fast inhibitory neurotransmission and are coreleased at several synapse types. Here we assessed the contribution of GABA and glycine in synaptic transmission between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO), two nuclei involved in sound localization. Whole-cell patch-clamp experiments in acute mouse brainstem slices at postnatal days (P) 4 and 11 during pharmacological blockade of GABAA receptors (GABAA Rs) and/or glycine receptors demonstrated no GABAergic synaptic component on LSO principal neurons. A GABAergic component was absent in evoked inhibitory postsynaptic currents and miniature events. Coimmunofluorescence experiments revealed no codistribution of the presynaptic GABAergic marker GAD65/67 with gephyrin, a postsynaptic marker for GABAA Rs, corroborating the conclusion that GABA does not act synaptically in the mouse LSO. Imaging experiments revealed reduced Ca2+ influx into MNTB axon terminals following activation of presynaptic GABAB Rs. GABAB R activation reduced the synaptic strength at P4 and P11. GABA appears to act on extrasynaptic GABAA Rs as demonstrated by application of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol, a δ-subunit-specific GABAA R agonist. RNA sequencing showed high mRNA levels for the δ-subunit in the LSO. Moreover, GABA transporters GAT-1 and GAT-3 appear to control extracellular GABA. Finally, we show an age-dependent effect of GABA on the excitability of LSO neurons. Whereas tonic GABA increased the excitability at P4, leading to spike facilitation, it decreased the excitability at P11 via shunting inhibition through extrasynaptic GABAA Rs. Taken together, we demonstrate a modulatory role of GABA in the murine LSO, rather than a function as a classical synaptic transmitter.
Collapse
Affiliation(s)
- Alexander U. Fischer
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Nicolas I. C. Müller
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience CenterGoethe‐University Frankfurt, Theodor‐Stern‐Kai 7D‐60590Frankfurt am MainGermany
| | - Domenico Del Turco
- Institute of Clinical Neuroanatomy, Neuroscience CenterGoethe‐University Frankfurt, Theodor‐Stern‐Kai 7D‐60590Frankfurt am MainGermany
| | - Jonas O. Fisch
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Désirée Griesemer
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Kathrin Kattler
- Genetics/Epigenetic Group, Department of Biological SciencesSaarland UniversityD‐66123Saarbrücken
| | - Ayse Maraslioglu
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Vera Roemer
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Matthew A. Xu‐Friedman
- Department of Biological SciencesUniversity at BuffaloState University of New YorkBuffaloNY14260USA
| | - Jörn Walter
- Genetics/Epigenetic Group, Department of Biological SciencesSaarland UniversityD‐66123Saarbrücken
| | - Eckhard Friauf
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| |
Collapse
|
39
|
Nicaise C, Marneffe C, Bouchat J, Gilloteaux J. Osmotic Demyelination: From an Oligodendrocyte to an Astrocyte Perspective. Int J Mol Sci 2019; 20:E1124. [PMID: 30841618 PMCID: PMC6429405 DOI: 10.3390/ijms20051124] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Osmotic demyelination syndrome (ODS) is a disorder of the central myelin that is often associated with a precipitous rise of serum sodium. Remarkably, while the myelin and oligodendrocytes of specific brain areas degenerate during the disease, neighboring neurons and axons appear unspoiled, and neuroinflammation appears only once demyelination is well established. In addition to blood‒brain barrier breakdown and microglia activation, astrocyte death is among one of the earliest events during ODS pathology. This review will focus on various aspects of biochemical, molecular and cellular aspects of oligodendrocyte and astrocyte changes in ODS-susceptible brain regions, with an emphasis on the crosstalk between those two glial cells. Emerging evidence pointing to the initiating role of astrocytes in region-specific degeneration are discussed.
Collapse
Affiliation(s)
| | - Catherine Marneffe
- Laboratory of Glia Biology (VIB-KU Leuven Center for Brain & Disease Research), Department of Neuroscience, KU Leuven, 3000 Leuven, Belgium.
| | - Joanna Bouchat
- URPhyM-NARILIS, Université de Namur, 5000 Namur, Belgium.
| | - Jacques Gilloteaux
- URPhyM-NARILIS, Université de Namur, 5000 Namur, Belgium.
- Department of Anatomical Sciences, St George's University School of Medicine, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
40
|
Cabrera-Pastor A, Arenas YM, Taoro-Gonzalez L, Montoliu C, Felipo V. Chronic hyperammonemia alters extracellular glutamate, glutamine and GABA and membrane expression of their transporters in rat cerebellum. Modulation by extracellular cGMP. Neuropharmacology 2019; 161:107496. [PMID: 30641078 DOI: 10.1016/j.neuropharm.2019.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/15/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Trafficking of glutamate, glutamine and GABA between astrocytes and neurons is essential to maintain proper neurotransmission. Chronic hyperammonemia alters neurotransmission and cognitive function. The aims of this work were to analyze in cerebellum of rats the effects of chronic hyperammonemia on: a) extracellular glutamate, glutamine and GABA concentrations; b) membrane expression of glutamate, glutamine and GABA transporters; c) how they are modulated by extracellular cGMP. Hyperammonemic rats show increased levels of extracellular glutamate, glutamine, GABA and citrulline in cerebellum in vivo. Hyperammonemic rats show: a) increased membrane expression of the astrocytic glutamine transporter SNAT3 and reduced membrane expression of the neuronal transporter SNAT1; b) reduced membrane expression of the neuronal GABA transporter GAT1 and increased membrane expression of the astrocytic GAT3 transporter; c) reduced membrane expression of the astrocytic glutamate transporters GLAST and GLT-1 and of the neuronal transporter EAAC1. Increasing extracellular cGMP normalizes membrane expression of SNAT3, GAT3, GAT1 and GLAST and extracellular glutamate, glutamine, GABA and citrulline hyperammonemic rats. Extracellular cGMP also modulates membrane expression of most transporters in control rats, reducing membrane expression of SNAT1, GLT-1 and EAAC1 and increasing that of GAT1 and GAT3. Modulation of SNAT3, SNAT1, GLT-1 and EAAC1 by extracellular cGMP would be mediated by inhibition of glycine receptors. These data suggest that, in pathological situations such as hyperammonemia, hepatic encephalopathy or Alzheimer's disease, reduced levels of extracellular cGMP contribute to alterations in membrane expression of glutamine, glutamate and GABA transporters, in the extracellular levels of glutamine, glutamate and GABA and in neurotransmission. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain; Fundacion Investigacion Hospital Clinico Valencia, Instituto de Investigacion Sanitaria INCLIVA, Valencia, Spain
| | - Yaiza M Arenas
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Lucas Taoro-Gonzalez
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Carmina Montoliu
- Fundacion Investigacion Hospital Clinico Valencia, Instituto de Investigacion Sanitaria INCLIVA, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
41
|
Zhang Y, Mao X, Lin R, Li Z, Lin J. Electroacupuncture ameliorates cognitive impairment through inhibition of Ca 2+-mediated neurotoxicity in a rat model of cerebral ischaemia-reperfusion injury. Acupunct Med 2018; 36:401-407. [PMID: 30257960 PMCID: PMC6287559 DOI: 10.1136/acupmed-2016-011353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2017] [Indexed: 01/05/2023]
Abstract
Background The hippocampus is vulnerable to severe damage after cerebral ischaemia–reperfusion (I/R) injury. This study aimed to explore the effect of electroacupuncture (EA) on cognitive impairment and its relationship with Ca2+neurotoxicity in a rat model of I/R injury induced by middle cerebral artery occlusion (MCAO). Methods 60 adult male Sprague-Dawley rats were randomly divided into three groups: control (sham surgery) group, untreated MCAO group and EA-treated MCAO+EA group. Rats in the MCAO and MCAO+EA groups underwent modelling of poststroke cognitive impairment by MCAO surgery. EA was performed for 30 min daily at GV20 and GV24 (1–20 Hz) for 1 week. The Morris water maze experiment was used to assess cognitive function. 2,3,5-triphenyl tetrazolium chloride staining was used to measure infarct volume. The intracellular Ca2+content in the Cornu Ammonis (CA)1 area of the hippocampus was assessed by laser confocal scanning microscopy. ELISA was performed to evaluate the concentration of glutamate (Glu) in the hippocampus, and the protein expression of two Glu receptors (N-methyl-D-aspartic acid receptor (NMDAR) 2A and NMDAR2B) were analysed by Western blotting. Results Compared with the untreated MCAO group, EA effectively ameliorated cognitive impairment (P=0.01) and shrunk the infarct volume (P=0.032). The content of intracellular Ca2+, Glu and NMDAR2B in the hippocampus was significantly raised by MCAO (P=0.031-0.043), while EA abrogated these effects. NMDAR2A was decreased by MCAO (P=0.015) but increased by EA (P=0.033). Conclusions EA had a beneficial effect on cognitive repair after cerebral I/R, and its mechanism of action likely involves a reduction of Ca2+influx via inhibition of Glu neurotoxicity and downregulation of NMDAR2B expression.
Collapse
Affiliation(s)
- Yun Zhang
- Clinical Medicine Department, Fujian Health College, Fuzhou, China
| | - Xiang Mao
- Acupuncture Department, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ruhui Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuanfang Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Lin
- Clinical Medicine Department, Fujian Health College, Fuzhou, China
| |
Collapse
|
42
|
Cabrera-Pastor A, Balzano T, Hernández-Rabaza V, Malaguarnera M, Llansola M, Felipo V. Increasing extracellular cGMP in cerebellum in vivo reduces neuroinflammation, GABAergic tone and motor in-coordination in hyperammonemic rats. Brain Behav Immun 2018; 69:386-398. [PMID: 29288802 DOI: 10.1016/j.bbi.2017.12.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 11/28/2022] Open
Abstract
Hyperammonemia is a main contributor to cognitive impairment and motor in-coordination in patients with hepatic encephalopathy. Hyperammonemia-induced neuroinflammation mediates the neurological alterations in hepatic encephalopathy. Intracerebral administration of extracellular cGMP restores some but not all types of cognitive impairment. Motor in-coordination, is mainly due to increased GABAergic tone in cerebellum. We hypothesized that extracellular cGMP would restore motor coordination in hyperammonemic rats by normalizing GABAergic tone in cerebellum and that this would be mediated by reduction of neuroinflammation. The aims of this work were to assess whether chronic intracerebral administration of cGMP to hyperammonemic rats: 1) restores motor coordination; 2) reduces neuroinflammation in cerebellum; 3) reduces extracellular GABA levels and GABAergic tone in cerebellum; and also 4) to provide some advance in the understanding on the molecular mechanisms involved. The results reported show that rats with chronic hyperammonemia show neuroinflammation in cerebellum, including microglia and astrocytes activation and increased levels of IL-1b and TNFa and increased membrane expression of the TNFa receptor. This is associated with increased glutaminase expression and extracellular glutamate, increased amount of the GABA transporter GAT-3 in activated astrocytes, increased extracellular GABA in cerebellum and motor in-coordination. Chronic intracerebral administration of extracellular cGMP to rats with chronic hyperammonemia reduces neuroinflammation, including microglia and astrocytes activation and membrane expression of the TNFa receptor. This is associated with reduced nuclear NF-κB, glutaminase expression and extracellular glutamate, reduced amount of the GABA transporter GAT-3 in activated astrocytes and reduced extracellular GABA in cerebellum and restoration of motor coordination. The data support that extracellular cGMP restores motor coordination in hyperammonemic rats by reducing microglia activation and neuroinflammation, leading to normalization of extracellular glutamate and GABA levels in cerebellum and of motor coordination.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Tiziano Balzano
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | | | - Michele Malaguarnera
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Marta Llansola
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Vicente Felipo
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain.
| |
Collapse
|
43
|
Schousboe A. Metabolic signaling in the brain and the role of astrocytes in control of glutamate and GABA neurotransmission. Neurosci Lett 2018; 689:11-13. [PMID: 29378296 DOI: 10.1016/j.neulet.2018.01.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 12/15/2022]
Abstract
Neurotransmission mediated by the two amino acids glutamate and GABA is based on recycling of the two signaling molecules between the presynaptic nerve endings and the surrounding astrocytes. During the recycling process, a fraction of the transmitter pool is lost since both transmitters undergo oxidative metabolism. This loss must be replenished by de novo synthesis which involves the action of pyruvate carboxylase, aminotransferases, glutamate dehydrogenase and glutamine synthetase. Among these enzymes, pyruvate carboxylase and glutamine synthetase are selectively expressed in astrocytes and thus these cells are obligatory partners in synaptic replenishment of both glutamate and GABA. The cycling processes also involve transporters for glutamate, GABA and glutamine and the operation of these transporters is discussed. Additionally, astrocytes appear to be essential for production of the neuromodulators, citrate, glycine and d-serine, aspects that will be briefly discussed.
Collapse
Affiliation(s)
- Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
44
|
Ghirardini E, Wadle SL, Augustin V, Becker J, Brill S, Hammerich J, Seifert G, Stephan J. Expression of functional inhibitory neurotransmitter transporters GlyT1, GAT-1, and GAT-3 by astrocytes of inferior colliculus and hippocampus. Mol Brain 2018; 11:4. [PMID: 29370841 PMCID: PMC5785846 DOI: 10.1186/s13041-018-0346-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Neuronal inhibition is mediated by glycine and/or GABA. Inferior colliculus (IC) neurons receive glycinergic and GABAergic inputs, whereas inhibition in hippocampus (HC) predominantly relies on GABA. Astrocytes heterogeneously express neurotransmitter transporters and are expected to adapt to the local requirements regarding neurotransmitter homeostasis. Here we analyzed the expression of inhibitory neurotransmitter transporters in IC and HC astrocytes using whole-cell patch-clamp and single-cell reverse transcription-PCR. We show that most astrocytes in both regions expressed functional glycine transporters (GlyTs). Activation of these transporters resulted in an inward current (IGly) that was sensitive to the competitive GlyT1 agonist sarcosine. Astrocytes exhibited transcripts for GlyT1 but not for GlyT2. Glycine did not alter the membrane resistance (RM) arguing for the absence of functional glycine receptors (GlyRs). Thus, IGly was mainly mediated by GlyT1. Similarly, we found expression of functional GABA transporters (GATs) in all IC astrocytes and about half of the HC astrocytes. These transporters mediated an inward current (IGABA) that was sensitive to the competitive GAT-1 and GAT-3 antagonists NO711 and SNAP5114, respectively. Accordingly, transcripts for GAT-1 and GAT-3 were found but not for GAT-2 and BGT-1. Only in hippocampal astrocytes, GABA transiently reduced RM demonstrating the presence of GABAA receptors (GABAARs). However, IGABA was mainly not contaminated by GABAAR-mediated currents as RM changes vanished shortly after GABA application. In both regions, IGABA was stronger than IGly. Furthermore, in HC the IGABA/IGly ratio was larger compared to IC. Taken together, our results demonstrate that astrocytes are heterogeneous across and within distinct brain areas. Furthermore, we could show that the capacity for glycine and GABA uptake varies between both brain regions.
Collapse
Affiliation(s)
- Elsa Ghirardini
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany.,Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli 32, I-20129, Milan, Italy.,Pharmacology and Brain Pathology Lab, Humanitas Clinical and Research Center, via Manzoni 56, I-20089, Rozzano, Italy
| | - Simon L Wadle
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany
| | - Vanessa Augustin
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany
| | - Jasmin Becker
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany
| | - Sina Brill
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany
| | - Julia Hammerich
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, D-53105, Bonn, Germany
| | - Jonathan Stephan
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
45
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
46
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1012] [Impact Index Per Article: 144.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
47
|
Lin YH, Liang HY, Xu K, Ni HY, Dong J, Xiao H, Chang L, Wu HY, Li F, Zhu DY, Luo CX. Dissociation of nNOS from PSD-95 promotes functional recovery after cerebral ischaemia in mice through reducing excessive tonic GABA release from reactive astrocytes. J Pathol 2017; 244:176-188. [DOI: 10.1002/path.4999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/12/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
| | - Hai-Ying Liang
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
| | - Ke Xu
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
| | - Huan-Yu Ni
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
| | - Jian Dong
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
| | - Hui Xiao
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
- Laboratory of Cerebrovascular Disease; Nanjing Medical University; Nanjing PR China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
- Laboratory of Cerebrovascular Disease; Nanjing Medical University; Nanjing PR China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy; Nanjing Medical University; Nanjing PR China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
- Laboratory of Cerebrovascular Disease; Nanjing Medical University; Nanjing PR China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy; Nanjing Medical University; Nanjing PR China
- Laboratory of Cerebrovascular Disease; Nanjing Medical University; Nanjing PR China
| |
Collapse
|
48
|
Fried DE, Watson RE, Robson SC, Gulbransen BD. Ammonia modifies enteric neuromuscular transmission through glial γ-aminobutyric acid signaling. Am J Physiol Gastrointest Liver Physiol 2017; 313:G570-G580. [PMID: 28838986 PMCID: PMC5814673 DOI: 10.1152/ajpgi.00154.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 01/31/2023]
Abstract
Impaired gut motility may contribute, at least in part, to the development of systemic hyperammonemia and systemic neurological disorders in inherited metabolic disorders, or in severe liver and renal disease. It is not known whether enteric neurotransmission regulates intestinal luminal and hence systemic ammonia levels by induced changes in motility. Here, we propose and test the hypothesis that ammonia acts through specific enteric circuits to influence gut motility. We tested our hypothesis by recording the effects of ammonia on neuromuscular transmission in tissue samples from mice, pigs, and humans and investigated specific mechanisms using novel mutant mice, selective drugs, cellular imaging, and enzyme-linked immunosorbent assays. Exogenous ammonia increased neurogenic contractions and decreased neurogenic relaxations in segments of mouse, pig, and human intestine. Enteric glial cells responded to ammonia with intracellular Ca2+ responses. Inhibition of glutamine synthetase and the deletion of glial connexin-43 channels in hGFAP::CreERT2+/-/connexin43f/f mice potentiated the effects of ammonia on neuromuscular transmission. The effects of ammonia on neuromuscular transmission were blocked by GABAA receptor antagonists, and ammonia drove substantive GABA release as did the selective pharmacological activation of enteric glia in GFAP::hM3Dq transgenic mice. We propose a novel mechanism whereby local ammonia is operational through GABAergic glial signaling to influence enteric neuromuscular circuits that regulate intestinal motility. Therapeutic manipulation of these mechanisms may benefit a number of neurological, hepatic, and renal disorders manifesting hyperammonemia.NEW & NOTEWORTHY We propose that local circuits in the enteric nervous system sense and regulate intestinal ammonia. We show that ammonia modifies enteric neuromuscular transmission to increase motility in human, pig, and mouse intestine model systems. The mechanisms underlying the effects of ammonia on enteric neurotransmission include GABAergic pathways that are regulated by enteric glial cells. Our new data suggest that myenteric glial cells sense local ammonia and directly modify neurotransmission by releasing GABA.
Collapse
Affiliation(s)
- David E. Fried
- 1Neuroscience Program and Department of Physiology,
Michigan State University, East Lansing,
Michigan;
| | - Ralph E. Watson
- 2Department of Medicine, Michigan State
University, East Lansing, Michigan; and
| | - Simon C. Robson
- 3Divisions of Gastroenterology and Transplantation, Department
of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical
School, Boston, Massachusetts
| | - Brian D. Gulbransen
- 1Neuroscience Program and Department of Physiology,
Michigan State University, East Lansing,
Michigan;
| |
Collapse
|
49
|
Gao W, Bi Y, Ding L, Zhu W, Ye M. SSa ameliorates the Glu uptaking capacity of astrocytes in epilepsy via AP-1/miR-155/GLAST. Biochem Biophys Res Commun 2017; 493:1329-1335. [PMID: 28958944 DOI: 10.1016/j.bbrc.2017.09.139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neuronal glutamate (Glu) release has been reported to mediate the neuronal injury of epilepsy, while Saikosaponin a (Ssa) was shown to ameliorate the epilepsy that induced by pentylenetetrazol (PTZ). However, potential interactions between glutamate release and Ssa has not been fully identified. METHODS Herein, PTZ-induced rat model were established to evaluate the neuron injury, while Ssa was used to treat the model rat. Rat astrocytes were isolated and induced by PTZ to construct cell models of epilepsy, real-time PCR and western blot were used to determine genes' expression. Luciferase reporter assay were performed to validate the relationship between miR-155-5p and glutamate aspartate transporter (GLAST). The level of Glu was sampled for HPLC measurement. RESULTS Ssa treatment could decrease the level of Glu in hippocampus of rat. PTZ-induced astrocytes pretreated with Ssa significantly decreased the expression of AP-1 and miR-155, but increased the expression of GLAST, furthermore, PTZ stimulation enables astrocytes to uptake large amount of extracellular Glu. AP-1 could bind with the promoter of miR-155 to promote its transcription. MiR-155 tragets GLAST to govern its expression. CONCLUSION Ssa treatment played pivotal roles in PTZ-induced epilepsy by promoting the expression of GLAT1 and uptaking of Glu, which was mediated by the expression of AP-1 and miR-155.
Collapse
Affiliation(s)
- Wei Gao
- Department of Neurosurgery, The First Affiliated Hospital of Suzhou University, Suzhou 215000, China
| | - Yongfeng Bi
- Department of Neurosurgery, The First Affiliated Hospital of Suzhou University, Suzhou 215000, China
| | - Li Ding
- Department of Neurosurgery, The First Affiliated Hospital of Suzhou University, Suzhou 215000, China
| | - Weiwei Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Suzhou University, Suzhou 215000, China
| | - Ming Ye
- Department of Neurosurgery, The First Affiliated Hospital of Suzhou University, Suzhou 215000, China.
| |
Collapse
|
50
|
Szabó Z, Héja L, Szalay G, Kékesi O, Füredi A, Szebényi K, Dobolyi Á, Orbán TI, Kolacsek O, Tompa T, Miskolczy Z, Biczók L, Rózsa B, Sarkadi B, Kardos J. Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo. Sci Rep 2017; 7:6018. [PMID: 28729692 PMCID: PMC5519671 DOI: 10.1038/s41598-017-06073-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/26/2017] [Indexed: 01/19/2023] Open
Abstract
Slow wave activity (SWA) is a characteristic brain oscillation in sleep and quiet wakefulness. Although the cell types contributing to SWA genesis are not yet identified, the principal role of neurons in the emergence of this essential cognitive mechanism has not been questioned. To address the possibility of astrocytic involvement in SWA, we used a transgenic rat line expressing a calcium sensitive fluorescent protein in both astrocytes and interneurons and simultaneously imaged astrocytic and neuronal activity in vivo. Here we demonstrate, for the first time, that the astrocyte network display synchronized recurrent activity in vivo coupled to UP states measured by field recording and neuronal calcium imaging. Furthermore, we present evidence that extensive synchronization of the astrocytic network precedes the spatial build-up of neuronal synchronization. The earlier extensive recruitment of astrocytes in the synchronized activity is reinforced by the observation that neurons surrounded by active astrocytes are more likely to join SWA, suggesting causality. Further supporting this notion, we demonstrate that blockade of astrocytic gap junctional communication or inhibition of astrocytic Ca2+ transients reduces the ratio of both astrocytes and neurons involved in SWA. These in vivo findings conclusively suggest a causal role of the astrocytic syncytium in SWA generation.
Collapse
Affiliation(s)
- Zsolt Szabó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - László Héja
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
| | - Gergely Szalay
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony 43, 1083, Budapest, Hungary
| | - Orsolya Kékesi
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - András Füredi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Institute of Cancer Research, Medical University Wien, Borschkegasse 8a, 1090, Wien, Austria
| | - Kornélia Szebényi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Institute of Cancer Research, Medical University Wien, Borschkegasse 8a, 1090, Wien, Austria
| | - Árpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1C, 1117, Budapest, Hungary
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Orsolya Kolacsek
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Tamás Tompa
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony 43, 1083, Budapest, Hungary
| | - Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - László Biczók
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Balázs Rózsa
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony 43, 1083, Budapest, Hungary
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Julianna Kardos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| |
Collapse
|