1
|
Panwar P, Jhala D, Tamrakar A, Joshi C, Patel A. Bacterially expressed full length Hemagglutinin of Avian Influenza Virus H5N1 forms oligomers and exhibits hemagglutination. Protein Expr Purif 2024; 223:106541. [PMID: 38971212 DOI: 10.1016/j.pep.2024.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Avian influenza poses a significant global health threat, with the potential for widespread pandemics and devastating consequences. Hemagglutinin (HA), a critical surface glycoprotein of influenza viruses, plays a pivotal role in viral entry and serves as a primary target for subunit vaccine development. In this study, we successfully cloned, expressed, and purified hemagglutinin from the circulating strain of H5N1 influenza virus using a robust molecular biology approach. The cloning process involved insertion of the synthetic HA gene into the pET21b vector, confirmed through double digestion and sequencing. SDS-PAGE analysis confirmed the presence of the expected 60 kDa protein band post-induction. Following expression, the protein was subjected to purification via Ni-NTA affinity chromatography, yielding pure protein fractions. Native PAGE analysis confirmed the protein's oligomeric forms, essential for optimal antigenicity. Western blot analysis further validated protein identity using anti-His and anti-HA antibodies. MALDI-TOF analysis confirmed the protein's sequence integrity, while hemagglutination assay demonstrated its biological activity in binding to N-acetyl neuraminic acid. These findings underscore the potential of recombinant hemagglutinin as a valuable antigen for diagnosis and biochemical assays as well as for vaccine development against avian influenza. In conclusion, this study represents a critical guide for bacterial production of H5N1 HA, which can be a cost-effective and simpler strategy compared to mammalian protein expression. Further research into optimizing vaccine candidates and production methods will be essential in combating the ongoing threat of avian influenza pandemics.
Collapse
Affiliation(s)
- Priyanka Panwar
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382010, India
| | - Dhwani Jhala
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382010, India
| | - Anubhav Tamrakar
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382010, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382010, India.
| | - Amrutlal Patel
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382010, India.
| |
Collapse
|
2
|
Calzas C, Alkie TN, Suderman M, Embury-Hyatt C, Khatri V, Le Goffic R, Berhane Y, Bourgault S, Archambault D, Chevalier C. M2e nanovaccines supplemented with recombinant hemagglutinin protect chickens against heterologous HPAI H5N1 challenge. NPJ Vaccines 2024; 9:161. [PMID: 39237609 PMCID: PMC11377767 DOI: 10.1038/s41541-024-00944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Current poultry vaccines against influenza A viruses target the globular head region of the hemagglutinin (HA1), providing limited protection against antigenically divergent strains. Experimental subunit vaccines based on the conserved ectodomain of the matrix protein 2 (M2e) induce cross-reactive antibody responses, but fail to fully prevent virus shedding after low pathogenic avian influenza (LPAI) virus challenge, and are ineffective against highly pathogenic avian influenza (HPAI) viruses. This study assessed the benefits of combining nanoparticles bearing three tandem M2e repeats (NR-3M2e nanorings or NF-3M2e nanofilaments) with an HA1 subunit vaccine in protecting chickens against a heterologous HPAI H5N1 virus challenge. Chickens vaccinated with the combined formulations developed M2e and HA1-specific antibodies, were fully protected from clinical disease and mortality, and showed no histopathological lesions or virus shedding, unlike those given only HA1, NR-3M2e, or NF-3M2e. Thus, the combined vaccine formulations provided complete cross-protection against HPAI H5N1 virus, and prevented environmental virus shedding, crucial for controlling avian influenza outbreaks.
Collapse
Affiliation(s)
- Cynthia Calzas
- INRAE, UVSQ, UMR892 VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Tamiru N Alkie
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Matthew Suderman
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Canada
| | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Vinay Khatri
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Ronan Le Goffic
- INRAE, UVSQ, UMR892 VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | - Steve Bourgault
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Denis Archambault
- Department of Biological Sciences, Université du Québec à Montréal, Montréal, QC, Canada.
| | | |
Collapse
|
3
|
Cui X, Vervaeke P, Gao Y, Opsomer L, Sun Q, Snoeck J, Devriendt B, Zhong Z, Sanders NN. Immunogenicity and biodistribution of lipid nanoparticle formulated self-amplifying mRNA vaccines against H5 avian influenza. NPJ Vaccines 2024; 9:138. [PMID: 39097672 PMCID: PMC11298010 DOI: 10.1038/s41541-024-00932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
This study reports on the immunogenicity and biodistribution of H5 hemagglutinin (HA)-based self-amplifying (sa) mRNA vaccines in mice. Four sa-mRNA vaccines encoding either a secreted full-length HA, a secreted HA head domain, a secreted HA stalk domain, or a full-length membrane-anchored HA were investigated. All vaccines elicited an adaptive immune response. However, the full-length HA sa-RNA vaccines demonstrated superior performance compared to head and stalk domain vaccines. The antibody titers positively correlated with the vaccine dose. Cellular immune responses and antigen-specific IgA antibodies in the lungs were also observed. The comparison of the sa-mRNA vaccines encoding the secreted and membrane-anchored full-length HA revealed that anchoring of the HA to the membrane significantly enhanced the antibody and cellular responses. In addition to the injection site, the intramuscularly injected sa-mRNA-LNPs were also detected in the draining lymph nodes, spleen, and to a lesser extent, in the lung, kidney, liver, and heart.
Collapse
Affiliation(s)
- Xiaole Cui
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Pieter Vervaeke
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Ya Gao
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, B-9820, Merelbeke, Belgium
| | - Lisa Opsomer
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Qing Sun
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Janne Snoeck
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Bert Devriendt
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, B-9820, Merelbeke, Belgium
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, Ghent, Belgium.
- Cancer Research Institute (CRIG), Ghent University, 9000, Ghent, Belgium.
| | - Niek N Sanders
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium.
- Cancer Research Institute (CRIG), Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
4
|
Hatlem D, Christensen M, Broeker NK, Kristiansen PE, Lund R, Barbirz S, Linke D. A trimeric coiled-coil motif binds bacterial lipopolysaccharides with picomolar affinity. Front Cell Infect Microbiol 2023; 13:1125482. [PMID: 36875521 PMCID: PMC9978483 DOI: 10.3389/fcimb.2023.1125482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
α-helical coiled-coils are ubiquitous protein structures in all living organisms. For decades, modified coiled-coils sequences have been used in biotechnology, vaccine development, and biochemical research to induce protein oligomerization, and form self-assembled protein scaffolds. A prominent model for the versatility of coiled-coil sequences is a peptide derived from the yeast transcription factor, GCN4. In this work, we show that its trimeric variant, GCN4-pII, binds bacterial lipopolysaccharides (LPS) from different bacterial species with picomolar affinity. LPS molecules are highly immunogenic, toxic glycolipids that comprise the outer leaflet of the outer membrane of Gram-negative bacteria. Using scattering techniques and electron microscopy, we show how GCN4-pII breaks down LPS micelles in solution. Our findings suggest that the GCN4-pII peptide and derivatives thereof could be used for novel LPS detection and removal solutions with high relevance to the production and quality control of biopharmaceuticals and other biomedical products, where even minuscule amounts of residual LPS can be lethal.
Collapse
Affiliation(s)
- Daniel Hatlem
- Institutt for Biovitenskap, Universitetet i Oslo, Oslo, Norway
| | | | - Nina K. Broeker
- Department Humanmedizin, HMU Health and Medical University, Potsdam, Germany
| | | | - Reidar Lund
- Kjemisk Institutt, Universitetet i Oslo, Oslo, Norway
| | - Stefanie Barbirz
- Department Humanmedizin, HMU Health and Medical University, Potsdam, Germany
| | - Dirk Linke
- Institutt for Biovitenskap, Universitetet i Oslo, Oslo, Norway
| |
Collapse
|
5
|
Basavarajappa SC, Liu AR, Bruchez A, Li Z, Suzart VG, Liu Z, Chen Y, Xiao TS, Buck M, Ramakrishnan P. Trimeric Receptor Binding Domain of SARS-CoV-2 Acts as a Potent Inhibitor of ACE2 Receptor-Mediated Viral Entry. iScience 2022; 25:104716. [PMID: 35813876 PMCID: PMC9251894 DOI: 10.1016/j.isci.2022.104716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
The COVID-19 pandemic has caused over four million deaths and effective methods to control CoV-2 infection, in addition to vaccines, are needed. The CoV-2 binds to the ACE2 on human cells through the receptor-binding domain (RBD) of the trimeric spike protein. Our modeling studies show that a modified trimeric RBD (tRBD) can interact with three ACE2 receptors, unlike the native spike protein, which binds to only one ACE2. We found that tRBD binds to the ACE2 with 58-fold higher affinity than monomeric RBD (mRBD) and blocks spike-dependent pseudoviral infection over 4-fold more effectively compared to the mRBD. Although mRBD failed to block CoV-2 USA-WA1/2020 infection, tRBD efficiently blocked the true virus infection in plaque assays. We show that tRBD is a potent inhibitor of CoV-2 through both competitive binding to the ACE2 and steric hindrance, and has the potential to emerge as a first-line therapeutic method to control COVID-19. tRBD binds multiple ACE2 receptors, while mRBD and spike bind one ACE2 receptor tRBD shows 4-fold higher inhibition of CoV-2 pseudovirus infection than mRBD tRBD, yet not mRBD, prevents CoV-2 USA-WA1/2020 from infecting Vero cells Use of tRBD is a potential therapeutic method to block CoV-2 infection
Collapse
|
6
|
Neuraminidase in Virus-like Particles Contributes to the Protection against High Dose of Avian Influenza Virus Challenge Infection. Pathogens 2021; 10:pathogens10101291. [PMID: 34684240 PMCID: PMC8537550 DOI: 10.3390/pathogens10101291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022] Open
Abstract
Neuraminidase is an important target for influenza vaccination. In this study, we generated avian influenza VLPs, expressing hemagglutinin (HA), neuraminidase (NA), HA and NA co-expressed (HANA), to evaluate the protective role of NA against a high (10LD50) and low (2LD50) dose of avian influenza virus challenge infections. A single immunization with HANA VLPs elicited the highest level of virus-specific IgG, IgG1, and IgG2a responses from the sera post-vaccination and the lungs post-challenge-infection. Potent antibody-secreting cell responses were observed from the spleens and lungs of HANA-VLP-immunized mice post-challenge-infection. HANA VLPs induced the highest CD4+ T cell, CD8+ T cell, and germinal center B cells, while strongly limiting inflammatory cytokine production in the lungs compared to other VLP immunization groups. In correlation with these findings, the lowest bodyweight losses and lung virus titers were observed from HANA VLP immunization, and all of the immunized mice survived irrespective of the challenge dose. Contrastingly, VLPs expressing either HA or NA alone failed to elicit complete protection. These results indicated that NA in VLPs played a critical role in inducing protection against a high dose of the challenge infection.
Collapse
|
7
|
A novel lamprey antibody sequence to multimerize and increase the immunogenicity of recombinant viral and bacterial vaccine antigens. Vaccine 2020; 38:7905-7915. [PMID: 33153770 DOI: 10.1016/j.vaccine.2020.10.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Abstract
Hemagglutinin, the major surface protein of influenza viruses, was recombinantly expressed in eukaryotic cells as a monomer instead of its native trimer, and was only immunogenic when administered with an adjuvant [Pion et al. 2014]. In order to multimerize this antigen to increase its immunogenicity, a cysteine-rich peptide sequence found at the extreme C-terminus of lamprey variable lymphocyte receptor (VLR)-B antibodies was fused to various recombinant hemagglutinin (rHA) proteins from A and B influenza virus strains. The rHA-Lamp fusion (rHA fused to the lamprey sequence) protein was expressed in Leishmania tarentolae and Chinese hamster ovary (CHO) cells and shown to produce several multimeric forms. The multimers produced were very stable and more immunogenic in mice than monomeric rHA. The lamprey VLR-B sequence was also used to multimerize the neuraminidase (NA) of influenza viruses expressed in CHO cells. For some viral strains, the NA was expressed as a tetramer like the native viral NA form. In addition, the lamprey VLR-B sequence was fused with two surface antigens of Shigella flexneri 2a, the invasion plasmid antigen D and a double mutated soluble form of the membrane expression of the invasion plasmid antigen H namely MxiH. The fusion proteins were expressed in Escherichia coli to produce the respective multimer protein forms. The resulting proteins had similar multimeric forms as rHA-Lamp protein and were more immunogenic in mice than the monomer forms. In conclusion, the VLR-B sequence can be used to increase the immunogenicity of recombinant viral and bacterial antigens, thus negating the need for adjuvants.
Collapse
|
8
|
Zhao S, Schuurman N, Tieke M, Quist B, Zwinkels S, van Kuppeveld FJM, de Haan CAM, Egberink H. Serological Screening of Influenza A Virus Antibodies in Cats and Dogs Indicates Frequent Infection with Different Subtypes. J Clin Microbiol 2020; 58:e01689-20. [PMID: 32878956 PMCID: PMC7587082 DOI: 10.1128/jcm.01689-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Influenza A viruses (IAVs) infect humans and a variety of other animal species. Infections with some subtypes of IAV were also reported in domestic cats and dogs. In addition to animal health implications, close contact between companion animals and humans also poses a potential risk of zoonotic IAV infections. In this study, serum samples from different cat and dog cohorts were analyzed for IAV antibodies against seven IAV subtypes, using three distinctive IAV-specific assays differing in IAV subtype-specific discriminatory power and sensitivity. Enzyme-linked immunosorbent assays against the complete hemagglutinin (HA) ectodomain or the HA1 domain were used, as well as a novel nanoparticle-based, virus-free hemagglutination inhibition assay. Using these three assays, we found cat and dog sera from different cohorts to be positive for antibodies against one or more IAV subtypes and/or strains. Cat and dog serum samples collected after the 2009 pandemic H1N1 outbreak exhibit much higher seropositivity against H1 compared to samples from before 2009. Cat sera, furthermore, displayed higher reactivity for avian IAVs than dog sera. Our findings show the added value of using complementary serological assays, which are based on reactivity with different numbers of HA epitopes, to study IAV antibody responses and for improved serosurveillance of IAV infections. We conclude that infection of cats and dogs with both human and avian IAVs of different subtypes is prevalent. These observations highlight the role of cats and dogs in IAV ecology and indicate the potential of these companion animals to give rise to novel (reassorted) viruses with increased zoonotic potential.
Collapse
Affiliation(s)
- Shan Zhao
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nancy Schuurman
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Malte Tieke
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Berit Quist
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Steven Zwinkels
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A M de Haan
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Herman Egberink
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Lei H, Gao T, Cen Q, Peng X. Haemagglutinin displayed on the surface of Lactococcus lactis confers broad cross-clade protection against different H5N1 viruses in chickens. Microb Cell Fact 2020; 19:193. [PMID: 33059676 PMCID: PMC7557258 DOI: 10.1186/s12934-020-01453-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023] Open
Abstract
Background The highly pathogenic avian influenza (HPAI) H5N1 virus poses a potential threat to the poultry industry. The currently available avian influenza H5N1 vaccines for poultry are clade-specific. Therefore, an effective vaccine for preventing and controlling H5N1 viruses belonging to different clades needs to be developed. Results Recombinant L. lactis/pNZ8148-Spax-HA was generated, and the influenza virus haemagglutinin (HA) protein of A/Vietnam/1203/2004 (H5N1) was displayed on the surface of Lactococcus lactis (L. lactis). Spax was used as an anchor protein. Chickens vaccinated orally with unadjuvanted L. lactis/pNZ8148-Spax-HA could produce significant humoral and mucosal responses and neutralizing activities against H5N1 viruses belonging to different clades. Importantly, unadjuvanted L. lactis/pNZ8148-Spax-HA conferred cross-clade protection against lethal challenge with different H5N1 viruses in the chicken model. Conclusion This study provides insights into the cross-clade protection conferred by unadjuvanted L. lactis/pNZ8148-Spax-HA, and the results might help the establishment of a promising platform for the development of a safe and effective H5N1 cross-clade vaccine for poultry.
Collapse
Affiliation(s)
- Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Tong Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qianhong Cen
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xiaojue Peng
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China
| |
Collapse
|
10
|
Du W, Wolfert MA, Peeters B, van Kuppeveld FJM, Boons GJ, de Vries E, de Haan CAM. Mutation of the second sialic acid-binding site of influenza A virus neuraminidase drives compensatory mutations in hemagglutinin. PLoS Pathog 2020; 16:e1008816. [PMID: 32853241 PMCID: PMC7480853 DOI: 10.1371/journal.ppat.1008816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/09/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
Influenza A viruses (IAVs) cause seasonal epidemics and occasional pandemics. Most pandemics occurred upon adaptation of avian IAVs to humans. This adaptation includes a hallmark receptor-binding specificity switch of hemagglutinin (HA) from avian-type α2,3- to human-type α2,6-linked sialic acids. Complementary changes of the receptor-destroying neuraminidase (NA) are considered to restore the precarious, but poorly described, HA-NA-receptor balance required for virus fitness. In comparison to the detailed functional description of adaptive mutations in HA, little is known about the functional consequences of mutations in NA in relation to their effect on the HA-NA balance and host tropism. An understudied feature of NA is the presence of a second sialic acid-binding site (2SBS) in avian IAVs and absence of a 2SBS in human IAVs, which affects NA catalytic activity. Here we demonstrate that mutation of the 2SBS of avian IAV H5N1 disturbs the HA-NA balance. Passaging of a 2SBS-negative H5N1 virus on MDCK cells selected for progeny with a restored HA-NA balance. These viruses obtained mutations in NA that restored a functional 2SBS and/or in HA that reduced binding of avian-type receptors. Importantly, a particular HA mutation also resulted in increased binding of human-type receptors. Phylogenetic analyses of avian IAVs show that also in the field, mutations in the 2SBS precede mutations in HA that reduce binding of avian-type receptors and increase binding of human-type receptors. Thus, 2SBS mutations in NA can drive acquisition of mutations in HA that not only restore the HA-NA balance, but may also confer increased zoonotic potential.
Collapse
Affiliation(s)
- Wenjuan Du
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Margreet A. Wolfert
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States of America
| | - Ben Peeters
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, the Netherlands
| | - Frank J. M. van Kuppeveld
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States of America
| | - Erik de Vries
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A. M. de Haan
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
11
|
Kawai A, Yamamoto Y, Yoshioka Y. Vaccine effect of recombinant single-chain hemagglutinin protein as an antigen. Heliyon 2020; 6:e04301. [PMID: 32637694 PMCID: PMC7327749 DOI: 10.1016/j.heliyon.2020.e04301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022] Open
Abstract
Vaccination is one of the most effective interventions for preventing the spread of influenza viruses at the population level. Currently most influenza vaccines are produced by using embryonated chicken eggs, but alternative methods that achieve more rapid large-scale production are highly desirable for vaccines against both pandemic and seasonal influenza viruses. The use of recombinant hemagglutinin (HA), a key virus surface protein, as an antigen is an attractive candidate alternative approach, because of the potential for high protein yields and the ease of cloning new antigenic variants. Although fusion of HA with trimerization domains is needed to stabilize the trimeric structure and enhance the immunogenicity of the recombinant HA protein, whether the trimerization domains are immunogenic must be considered. Here, we generated recombinant multimeric HA without trimerization domains by using a short peptide linker, termed a single-chain HA (scHA), and evaluated scHAs as potential antigens for generating vaccines against influenza virus. Using mammalian cells, we succeeded in making three types of recombinant scHAs—two dimeric scHAs and a trimeric scHA. After immunization with aluminium salts in mice, one of the dimeric scHAs induced the greatest HA-specific IgG response among the scHAs and protected against virus challenge as strongly as the typically used trimeric HA containing a trimerization domain. We did not observe IgGs specific for the short peptide linker in mice immunized with the dimeric scHA, although IgGs specific for the trimerization domain occurred in mice immunized with the trimeric HA containing that domain. Furthermore, changing to another adjuvant did not diminish the utility of the dimeric scHA. These results suggest the potential usefulness of dimeric scHA as a vaccine antigen. We believe that single-chain antigens may represent new alternatives for production of recombinant antigen–based vaccines.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuyuki Yamamoto
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding author.
| |
Collapse
|
12
|
Murr M, Karger A, Steglich C, Mettenleiter TC, Römer-Oberdörfer A. Coexpression of soluble and membrane-bound avian influenza virus H5 by recombinant Newcastle disease virus leads to an increase in antigen levels. J Gen Virol 2020; 101:473-483. [PMID: 32209169 DOI: 10.1099/jgv.0.001405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Newcastle disease virus (NDV) vectors expressing avian influenza virus (AIV) haemagglutinin (HA) of subtype H5 simultaneously protect chickens from Newcastle disease (ND) as well as avian influenza (AI). The expressed, membrane-bound surface protein HA is incorporated into virions while soluble HA has been described as a potent antigen. We tested whether co-expression of both HA variants from the same NDV vector increased the overall level of HA, which could be important for optimal immunogenicity. Recombinant NDVsolH5_H5 co-expressed membrane-bound H5 of highly pathogenic (HP) AIV H5N1, detectable in infected cells, and soluble H5, which was secreted into the supernatant. This virus was compared to recombinant NDV that express either membrane-bound (rNDVH5) or soluble H5 (rNDVsolH5). Replication in embryonated chicken eggs (ECEs) and in cell culture, as well as pathogenicity in ECEs, was not influenced by the second heterologous transcriptional unit. However, the co-expression of soluble H5 with membrane-bound H5 increased total protein level about 5.25-fold as detected by MS quantification. Hence, this virus is very interesting as a vaccine virus in chickens against HPAIV infections in situations in which previous H5-expressing NDVs have reached their limit, such as in the face of pre-existing AIV maternal immunity.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Constanze Steglich
- Present address: Ceva Riems GmbH, An der Wiek 7, 17493 Greifswald - Insel Riems, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
13
|
Furuyama W, Reynolds P, Haddock E, Meade-White K, Quynh Le M, Kawaoka Y, Feldmann H, Marzi A. A single dose of a vesicular stomatitis virus-based influenza vaccine confers rapid protection against H5 viruses from different clades. NPJ Vaccines 2020; 5:4. [PMID: 31934358 PMCID: PMC6954110 DOI: 10.1038/s41541-019-0155-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/20/2019] [Indexed: 12/02/2022] Open
Abstract
The avian influenza virus outbreak in 1997 highlighted the potential of the highly pathogenic H5N1 virus to cause severe disease in humans. Therefore, effective vaccines against H5N1 viruses are needed to counter the potential threat of a global pandemic. We have previously developed a fast-acting and efficacious vaccine against Ebola virus (EBOV) using the vesicular stomatitis virus (VSV) platform. In this study, we generated recombinant VSV-based H5N1 influenza virus vectors to demonstrate the feasibility of this platform for a fast-acting pan-H5 influenza virus vaccine. We chose multiple approaches regarding antigen design and genome location to define a more optimized vaccine approach. After the VSV-based H5N1 influenza virus constructs were recovered and characterized in vitro, mice were vaccinated by a single dose or prime/boost regimen followed by challenge with a lethal dose of the homologous H5 clade 1 virus. We found that a single dose of VSV vectors expressing full-length hemagglutinin (HAfl) were sufficient to provide 100% protection. The vaccine vectors were fast-acting as demonstrated by uniform protection when administered 3 days prior to lethal challenge. Moreover, single vaccination induced cross-protective H5-specific antibodies and protected mice against lethal challenge with various H5 clade 2 viruses, highlighting the potential of the VSV-based HAfl as a pan-H5 influenza virus emergency vaccine.
Collapse
Affiliation(s)
- Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - Pierce Reynolds
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
- Present Address: Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - Mai Quynh Le
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, Univeristy of Tokyo, Tokyo, Japan
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| |
Collapse
|
14
|
Yamada S, Yasuhara A, Kawaoka Y. Soluble Recombinant Hemagglutinin Protein of H1N1pdm09 Influenza Virus Elicits Cross-Protection Against a Lethal H5N1 Challenge in Mice. Front Microbiol 2019; 10:2031. [PMID: 31551968 PMCID: PMC6737379 DOI: 10.3389/fmicb.2019.02031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Currently, influenza vaccines are produced using embryonated chicken eggs. Recently, recombinant influenza vaccines have been developed as a potential alternative to egg-grown vaccines. In this study, we evaluated the efficacy of soluble recombinant hemagglutinin (HA) protein produced in human cell culture (Expi293F cells) as an influenza vaccine against homosubtypic and heterosubtypic influenza virus challenges in mice. Mice were immunized intramuscularly with purified soluble HA protein of H1N1pdm09 virus and then challenged with a lethal dose of H1N1pdm09, seasonal H3N2, or highly pathogenic avian influenza (HPAI) H5N1 virus. Vaccinated mice showed better morbidity than mock-vaccinated mice following H1N1pdm09 challenge. By contrast, all mice died following H3N2 challenge. Interestingly, all vaccinated mice survived challenge with H5N1 virus, whereas all mock-vaccinated mice died. These results suggest that intramuscular immunization with recombinant HA proteins produced in Expi 293F cells could be of value in influenza vaccine strategies.
Collapse
Affiliation(s)
- Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Atsuhiro Yasuhara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, United States.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Sączyńska V, Romanik-Chruścielewska A, Florys K, Cecuda-Adamczewska V, Łukasiewicz N, Sokołowska I, Kęsik-Brodacka M, Płucienniczak G. Prime-Boost Vaccination With a Novel Hemagglutinin Protein Produced in Bacteria Induces Neutralizing Antibody Responses Against H5-Subtype Influenza Viruses in Commercial Chickens. Front Immunol 2019; 10:2006. [PMID: 31552018 PMCID: PMC6736996 DOI: 10.3389/fimmu.2019.02006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
The highly pathogenic (HP) avian influenza virus (AIV), H5N1 and reassortant H5-subtype HPAIVs, H5N2, H5N6, and H5N8, cause high mortality in domestic birds, resulting in economic losses in the poultry industry. H5N1 and H5N6 also pose significant public health risks and H5N1 viruses are a permanent pandemic threat. To control HPAIVs, eukaryotic expression systems have traditionally been exploited to produce vaccines based on hemagglutinin (HA), a protective viral antigen. In contrast, we used a bacterial expression system to produce vaccine targeting the HA protein. A fragment of the HA ectodomain from H5N1, with a multibasic cleavage site deletion, was expressed in Escherichia coli, refolded, and chromatographically purified from inclusion bodies. The resulting antigen, rH5-E. coli, was validated in terms of conformational integrity and oligomerization status. Previously, the protective efficacy of rH5-E. coli adjuvanted with aluminum hydroxide, has been positively verified by challenging the specific pathogen-free layer chickens with homologous and heterologous H5N1 HPAIVs. Protection was provided primarily by the H5 subtype-specific antibodies, as detected in the FluAC H5 test. The present studies were conducted to assess the performance of alum-adjuvanted rH5-E. coli in commercial birds. Broiler chickens were vaccinated twice with 25 μg of rH5-E. coli at 2- and 4-week intervals, while the layer chickens were vaccinated with 5- to 25-μg antigen doses at 4- and 6-week intervals. Post-vaccination sera were analyzed for anti-H5 HA antibodies, using homologous ELISA and heterologous FluAC H5 and hemagglutination inhibition (HI) tests. Prime-boost immunizations with rH5-E. coli elicited H5 HA-specific antibodies in all the chickens tested. Two antigen doses administered at 4- or 6-week intervals were sufficient to induce neutralizing antibodies against H5-subtype HAs; however, they were ineffective when applied with a 2-week delay. In the layers, 80% to 100% of individuals developed antibodies that were active in the FluAC H5 and/or HI tests. A dose-sparing effect was seen when using the longer prime-boost interval. In the broiler chickens, 62.5% positivity was achieved in the FluAC H5 and/or HI tests. The trials confirmed the vaccine potential of rH5-E. coli and provided indications for anti-influenza vaccination with respect to the chicken type and immunization scheme.
Collapse
Affiliation(s)
- Violetta Sączyńska
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | | | - Katarzyna Florys
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | | | - Natalia Łukasiewicz
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | - Iwona Sokołowska
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | | | - Grażyna Płucienniczak
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| |
Collapse
|
16
|
Gebauer M, Hürlimann HC, Behrens M, Wolff T, Behrens SE. Subunit vaccines based on recombinant yeast protect against influenza A virus in a one-shot vaccination scheme. Vaccine 2019; 37:5578-5587. [PMID: 31399274 DOI: 10.1016/j.vaccine.2019.07.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 01/03/2023]
Abstract
Here we report on new subunit vaccines based on recombinant yeast of the type Kluyveromyces lactis (K. lactis), which protect mice from a lethal influenza A virus infection. Applying a genetic system that enables the rapid generation of transgenic yeast, we have developed K. lactis strains that express the influenza A virus hemagglutinin, HA, either individually or in combination with the viral M1 matrix protein. Subcutaneous application of the inactivated, but otherwise non-processed yeast material shows a complete protection of BALB/c mice in prime/boost and even one-shot/single dose vaccination schemes against a subsequent, lethal challenge with the cognate influenza virus. The yeast vaccines induce titers of neutralizing antibodies that are readily comparable to those induced by an inactivated virus vaccine. These data suggest that HA and M1 are produced with a high antigenicity in the yeast cells. Based on these findings, multivalent, DIVA-capable, yeast-based subunit vaccines may be developed as promising alternatives to conventional virus-based anti-flu vaccines for veterinary applications.
Collapse
Affiliation(s)
- Mandy Gebauer
- Martin Luther University Halle-Wittenberg, Faculty of Life Sciences (NFI), Institute of Biochemistry and Biotechnology, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Hans C Hürlimann
- Martin Luther University Halle-Wittenberg, Faculty of Life Sciences (NFI), Institute of Biology, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Martina Behrens
- Martin Luther University Halle-Wittenberg, Faculty of Life Sciences (NFI), Institute of Biochemistry and Biotechnology, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Thorsten Wolff
- Robert Koch Institute, Unit 17 "Influenza and Other Respiratory Viruses", Seestr. 10, 13353 Berlin, Germany
| | - Sven-Erik Behrens
- Martin Luther University Halle-Wittenberg, Faculty of Life Sciences (NFI), Institute of Biochemistry and Biotechnology, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
17
|
Du W, Guo H, Nijman VS, Doedt J, van der Vries E, van der Lee J, Li Z, Boons GJ, van Kuppeveld FJM, de Vries E, Matrosovich M, de Haan CAM. The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance. PLoS Pathog 2019; 15:e1007860. [PMID: 31181126 PMCID: PMC6586374 DOI: 10.1371/journal.ppat.1007860] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/20/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022] Open
Abstract
Influenza A virus (IAV) neuraminidase (NA) receptor-destroying activity and hemagglutinin (HA) receptor-binding affinity need to be balanced with the host receptor repertoire for optimal viral fitness. NAs of avian, but not human viruses, contain a functional 2nd sialic acid (SIA)-binding site (2SBS) adjacent to the catalytic site, which contributes to sialidase activity against multivalent substrates. The receptor-binding specificity and potentially crucial contribution of the 2SBS to the HA-NA balance of virus particles is, however, poorly characterized. Here, we elucidated the receptor-binding specificity of the 2SBS of N2 NA and established an important role for this site in the virion HA-NA-receptor balance. NAs of H2N2/1957 pandemic virus with or without a functional 2SBS and viruses containing this NA were analysed. Avian-like N2, with a restored 2SBS due to an amino acid substitution at position 367, was more active than human N2 on multivalent substrates containing α2,3-linked SIAs, corresponding with the pronounced binding-specificity of avian-like N2 for these receptors. When introduced into human viruses, avian-like N2 gave rise to altered plaque morphology and decreased replication compared to human N2. An opposite replication phenotype was observed when N2 was combined with avian-like HA. Specific bio-layer interferometry assays revealed a clear effect of the 2SBS on the dynamic interaction of virus particles with receptors. The absence or presence of a functional 2SBS affected virion-receptor binding and receptor cleavage required for particle movement on a receptor-coated surface and subsequent NA-dependent self-elution. The contribution of the 2SBS to virus-receptor interactions depended on the receptor-binding properties of HA and the identity of the receptors used. We conclude that the 2SBS is an important and underappreciated determinant of the HA-NA-receptor balance. The rapid loss of a functional 2SBS in pandemic viruses may have served to balance the novel host receptor-repertoire and altered receptor-binding properties of the corresponding HA protein.
Collapse
Affiliation(s)
- Wenjuan Du
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hongbo Guo
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vera S. Nijman
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jennifer Doedt
- Institute of Virology, Philipps University, Marburg, Germany
| | - Erhard van der Vries
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joline van der Lee
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Zeshi Li
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands
| | | | - Erik de Vries
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mikhail Matrosovich
- Institute of Virology, Philipps University, Marburg, Germany
- * E-mail: (MM); (CAMdH)
| | - Cornelis A. M. de Haan
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail: (MM); (CAMdH)
| |
Collapse
|
18
|
Strohmidel P, Sperling M, Karst U. Investigations on the binding of ethylmercury from thiomersal to proteins in influenza vaccines. J Trace Elem Med Biol 2018; 50:100-104. [PMID: 30262265 DOI: 10.1016/j.jtemb.2018.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/07/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023]
Abstract
This study investigates the binding of ethylmercury (EtHg+) released from the preservative thiomersal by hydrolysis to proteins in influenza vaccines via ultrafiltration and subsequent total reflection x-ray fluorescence (TXRF) analysis as well as size exclusion chromatography (SEC) hyphenated to inductively coupled plasma-mass spectrometry (ICP-MS). Binding of EtHg+ to the protein fraction was shown by means of ultrafiltration and TXRF in a qualitative matter. SEC/ICP-MS was applied to gain more information about the molecular weight of the bound protein and quantitative information. First experiments showed the necessity of a rinsing step during elution with a thiol-containing compound to prevent unspecific binding or mercury species to the chromatographic system. Adduct formation of EtHg+ and a high-molecular compound could be observed for different concentrations of EtHg+ applied. The mercury-containing fraction was larger than 133 kDa, indicating binding to hemagglutinin, which is the active ingredient in influenza vaccines. The applied SEC/ICP-MS method allowed for external calibration with EtHg+ and a binding of 141 μg L-1 Hg was shown for a vaccine solution that was incubated with EtHg+ (25 mg L-1 Hg).
Collapse
Affiliation(s)
- Philipp Strohmidel
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Michael Sperling
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany; European Virtual Institute for Speciation Analysis (EVISA), Mendelstr. 11, 48149 Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany.
| |
Collapse
|
19
|
Kim HK, Jeong DG, Yoon SW. Recent outbreaks of highly pathogenic avian influenza viruses in South Korea. Clin Exp Vaccine Res 2017; 6:95-103. [PMID: 28775973 PMCID: PMC5540969 DOI: 10.7774/cevr.2017.6.2.95] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/07/2017] [Accepted: 06/11/2017] [Indexed: 01/13/2023] Open
Abstract
Outbreaks of H5 highly pathogenic avian influenza viruses (HPAIVs) have caused economic loss for the poultry industry and posed a threat to public health. In South Korea, novel reassortants of HPAIVs such as H5N6 and H5N8 had been circulating in poultry. Here, we will discuss the identity of recent novel reassortants of Korean H5 HPAIVs and the recent advances in vaccine development, which will be useful for controlling HPAIV transmission in poultry and for effectively preventing future epidemics and pandemics.
Collapse
Affiliation(s)
- Hye Kwon Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Dae Gwin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,University of Science and Technology (UST), Daejeon, Korea
| | - Sun-Woo Yoon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
20
|
Sączyńska V, Romanik A, Florys K, Cecuda-Adamczewska V, Kęsik-Brodacka M, Śmietanka K, Olszewska M, Domańska-Blicharz K, Minta Z, Szewczyk B, Płucienniczak G, Płucienniczak A. A novel hemagglutinin protein produced in bacteria protects chickens against H5N1 highly pathogenic avian influenza viruses by inducing H5 subtype-specific neutralizing antibodies. PLoS One 2017; 12:e0172008. [PMID: 28212428 PMCID: PMC5315377 DOI: 10.1371/journal.pone.0172008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/30/2017] [Indexed: 11/18/2022] Open
Abstract
The highly pathogenic (HP) H5N1 avian influenza viruses (AIVs) cause a mortality rate of up to 100% in infected chickens and pose a permanent pandemic threat. Attempts to obtain effective vaccines against H5N1 HPAIVs have focused on hemagglutinin (HA), an immunodominant viral antigen capable of eliciting neutralizing antibodies. The vast majority of vaccine projects have been performed using eukaryotic expression systems. In contrast, we used a bacterial expression system to produce vaccine HA protein (bacterial HA) according to our own design. The HA protein with the sequence of the H5N1 HPAIV strain was efficiently expressed in Escherichia coli, recovered in the form of inclusion bodies and refolded by dilution between two chromatographic purification steps. Antigenicity studies showed that the resulting antigen, referred to as rH5-E. coli, preserves conformational epitopes targeted by antibodies specific for H5-subtype HAs, inhibiting hemagglutination and/or neutralizing influenza viruses in vitro. The proper conformation of this protein and its ability to form functional oligomers were confirmed by a hemagglutination test. Consistent with the biochemical characteristics, prime-boost immunizations with adjuvanted rH5-E. coli protected 100% and 70% of specific pathogen-free, layer-type chickens against challenge with homologous and heterologous H5N1 HPAIVs, respectively. The observed protection was related to the positivity in the FluAC H5 test (IDVet) but not to hemagglutination-inhibiting antibody titers. Due to full protection, the effective contact transmission of the homologous challenge virus did not occur. Survivors from both challenges did not or only transiently shed the viruses, as established by viral RNA detection in oropharyngeal and cloacal swabs. Our results demonstrate that vaccination with rH5-E. coli could confer control of H5N1 HPAIV infection and transmission rates in chicken flocks, accompanied by reduced virus shedding. Moreover, the role of H5 subtype-specific neutralizing antibodies in anti-influenza immunity and a novel correlate of protection are indicated.
Collapse
Affiliation(s)
| | | | | | | | | | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Monika Olszewska
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | | | - Zenon Minta
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Bogusław Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | | | | |
Collapse
|
21
|
Peeters B, Reemers S, Dortmans J, de Vries E, de Jong M, van de Zande S, Rottier PJM, de Haan CAM. Genetic versus antigenic differences among highly pathogenic H5N1 avian influenza A viruses: Consequences for vaccine strain selection. Virology 2017; 503:83-93. [PMID: 28135661 DOI: 10.1016/j.virol.2017.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 01/03/2023]
Abstract
Highly pathogenic H5N1 avian influenza A viruses display a remarkable genetic and antigenic diversity. We examined to what extent genetic distances between several H5N1 viruses from different clades correlate with antigenic differences and vaccine performance. H5-specific antisera were generated, and cross-reactivity and antigenic distances between 12 different viruses were determined. In general, antigenic distances increased proportional to genetic distances although notable exceptions were observed. Antigenic distances correlated better with genetic variation in 27 selected, antigenically-relevant H5 residues, than in the complete HA1 domain. Variation in these selected residues could accurately predict the antigenic distances for a novel H5N8 virus. Protection provided by vaccines against heterologous H5N1 challenge viruses indicated that cross-protection also correlates better with genetic variation in the selected antigenically-relevant residues than in complete HA1. When time is limited, variation at these selected residues may be used to accurately predict antigenic distance and vaccine performance.
Collapse
Affiliation(s)
- Ben Peeters
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.
| | | | - Jos Dortmans
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - Erik de Vries
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - Mart de Jong
- Department of Quantitative Veterinary Epidemiology, Wageningen University, Wageningen, The Netherlands
| | | | - Peter J M Rottier
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A M de Haan
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Jansen CA, van Haarlem DA, Sperling B, van Kooten PJ, de Vries E, Viertlboeck BC, Vervelde L, Göbel TW. Identification of an Activating Chicken Ig-like Receptor Recognizing Avian Influenza Viruses. THE JOURNAL OF IMMUNOLOGY 2016; 197:4696-4703. [PMID: 27821665 DOI: 10.4049/jimmunol.1600401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 10/12/2016] [Indexed: 01/15/2023]
Abstract
Chicken Ig-like receptors (CHIRs) represent a multigene family encoded by the leukocyte receptor complex that encodes a variety of receptors that are subdivided into activating CHIR-A, inhibitory CHIR-B, and bifunctional CHIR-AB. Apart from CHIR-AB, which functions as an Fc receptor, CHIR ligands are unknown. In the current study, we used a panel of different BWZ.36 CHIR reporter cells to identify an interaction between specific CHIRs and avian influenza virus (AIV). The specificity of the CHIR-AIV interaction was further demonstrated using CHIR fusion proteins that bound to AIV-coated plates and were able to reduce the interaction of reporter cells with AIV. There was no difference in binding of CHIR to different AIV strains. Furthermore, CHIR fusion proteins reduced AIV-induced in vitro activation of NK cells obtained from lungs of AIV-infected animals, as judged by the lower frequency of CD107+ cells. Because the original CHIR reporter lines were generated based on sequence information about extracellular CHIR domains, we next identified a full-length CHIR that displayed similar binding to AIV. The sequence analysis identified this CHIR as a CHIR-A. Neuraminidase treatment of coated CHIR-human Ig proteins reduced binding of trimeric H5 proteins to CHIR. This suggests that the interaction is dependent on sialic acid moieties on the receptor. In conclusion, this article identifies AIV as a ligand of CHIR-A and describes the functional consequences of this interaction.
Collapse
Affiliation(s)
- Christine A Jansen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; and
| | - Daphne A van Haarlem
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; and
| | - Beatrice Sperling
- Institute for Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University Munich, 80539 Munich, Germany
| | - Peter J van Kooten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; and
| | - Erik de Vries
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; and
| | - Birgit C Viertlboeck
- Institute for Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University Munich, 80539 Munich, Germany
| | - Lonneke Vervelde
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; and
| | - Thomas W Göbel
- Institute for Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University Munich, 80539 Munich, Germany
| |
Collapse
|
23
|
Leyson C, França M, Jackwood M, Jordan B. Polymorphisms in the S1 spike glycoprotein of Arkansas-type infectious bronchitis virus (IBV) show differential binding to host tissues and altered antigenicity. Virology 2016; 498:218-225. [PMID: 27619927 PMCID: PMC7111678 DOI: 10.1016/j.virol.2016.08.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 10/29/2022]
Abstract
Sequencing avian infectious bronchitis virus spike genes re-isolated from vaccinated chicks revealed that many sequence changes are found on the S1 spike gene. In the ArkDPI strain, Y43H and ∆344 are the two most common changes observed. This study aims to examine the roles of Y43H and ∆344 in selection in vivo. Using recombinant ArkDPI S1 proteins, we conducted binding assays on chicken tracheas and embryonic chorioallantoic membrane (CAM). Protein histochemistry showed that the Y43H change allows for enhanced binding to trachea, whereas the ArkDPI S1 spike with H43 alone was able to bind CAM. Using Western blot under denaturing conditions, ArkDPI serotype-specific sera did not bind to S1 proteins with ∆344, suggesting that ∆344 alters antigenicity of S1. These findings are important because they propose that specific changes in S1 enhances virus fitness by more effective binding to host tissues (Y43H) and by evading a vaccine-induced antibody response (∆344).
Collapse
Affiliation(s)
- Christina Leyson
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602, USA.
| | - Monique França
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602, USA.
| | - Mark Jackwood
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602, USA.
| | - Brian Jordan
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602, USA; Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, 953 College Station Road, Athens, GA 30602, USA.
| |
Collapse
|
24
|
Abstract
The transient and stable expression of potentially therapeutic proteins in plants is a promising tool for the efficient production of vaccines and antibodies at low cost connected with a practically unlimited scale-up. To achieve these goals, two major challenges, inadequate production levels and non-scalable purification technologies, have to be overcome. Here we present and discuss protocols enabling to perform influenza vaccine production by transient expression in tobacco plants, to perform analytical experiments as Western blot, ELISA, and hemagglutination assays and to purify the antigens by classical affinity chromatography and scalable membrane-based Inverse Transition Cycling.
Collapse
Affiliation(s)
- Hoang Trong Phan
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Stadt Seeland OT, Gatersleben, 06466, Germany
- Department of Plant Cell Biotechnology, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Udo Conrad
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Stadt Seeland OT, Gatersleben, 06466, Germany.
| |
Collapse
|
25
|
Sliepen K, van Montfort T, Melchers M, Isik G, Sanders RW. Immunosilencing a highly immunogenic protein trimerization domain. J Biol Chem 2015; 290:7436-42. [PMID: 25635058 DOI: 10.1074/jbc.m114.620534] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many therapeutic proteins and protein subunit vaccines contain heterologous trimerization domains, such as the widely used GCN4-based isoleucine zipper (IZ) and the T4 bacteriophage fibritin foldon (Fd) trimerization domains. We found that these domains induced potent anti-IZ or anti-Fd antibody responses in animals when fused to an HIV-1 envelope glycoprotein (Env) immunogen. To dampen IZ-induced responses, we constructed an IZ domain containing four N-linked glycans (IZN4) to shield the underlying protein surface. When fused to two different vaccine antigens, HIV-1 Env and influenza hemagglutinin (HA), IZN4 strongly reduced the antibody responses against the IZ, but did not affect the antibody titers against Env or HA. Silencing of immunogenic multimerization domains with glycans might be relevant for therapeutic proteins and protein vaccines.
Collapse
Affiliation(s)
- Kwinten Sliepen
- From the Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands and
| | - Thijs van Montfort
- From the Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands and
| | - Mark Melchers
- From the Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands and
| | - Gözde Isik
- From the Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands and
| | - Rogier W Sanders
- From the Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands and Weill Medical College of Cornell University, New York, New York 10065
| |
Collapse
|
26
|
Ross KA, Loyd H, Wu W, Huntimer L, Ahmed S, Sambol A, Broderick S, Flickinger Z, Rajan K, Bronich T, Mallapragada S, Wannemuehler MJ, Carpenter S, Narasimhan B. Hemagglutinin-based polyanhydride nanovaccines against H5N1 influenza elicit protective virus neutralizing titers and cell-mediated immunity. Int J Nanomedicine 2014; 10:229-43. [PMID: 25565816 PMCID: PMC4284014 DOI: 10.2147/ijn.s72264] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
H5N1 avian influenza is a significant global concern with the potential to become the next pandemic threat. Recombinant subunit vaccines are an attractive alternative for pandemic vaccines compared to traditional vaccine technologies. In particular, polyanhydride nanoparticles encapsulating subunit proteins have been shown to enhance humoral and cell-mediated immunity and provide protection upon lethal challenge. In this work, a recombinant H5 hemagglutinin trimer (H5₃) was produced and encapsulated into polyanhydride nanoparticles. The studies performed indicated that the recombinant H5₃ antigen was a robust immunogen. Immunizing mice with H5₃ encapsulated into polyanhydride nanoparticles induced high neutralizing antibody titers and enhanced CD4(+) T cell recall responses in mice. Finally, the H5₃-based polyanhydride nanovaccine induced protective immunity against a low-pathogenic H5N1 viral challenge. Informatics analyses indicated that mice receiving the nanovaccine formulations and subsequently challenged with virus were similar to naïve mice that were not challenged. The current studies provide a basis to further exploit the advantages of polyanhydride nanovaccines in pandemic scenarios.
Collapse
Affiliation(s)
- Kathleen A Ross
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Hyelee Loyd
- Animal Science, Iowa State University, Ames, IA, USA
| | - Wuwei Wu
- Animal Science, Iowa State University, Ames, IA, USA
| | - Lucas Huntimer
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Shaheen Ahmed
- Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anthony Sambol
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Broderick
- Materials Science and Engineering, Iowa State University, Ames, IA, USA
| | | | - Krishna Rajan
- Materials Science and Engineering, Iowa State University, Ames, IA, USA
| | - Tatiana Bronich
- Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surya Mallapragada
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | | | | | - Balaji Narasimhan
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| |
Collapse
|
27
|
Animal models for influenza viruses: implications for universal vaccine development. Pathogens 2014; 3:845-74. [PMID: 25436508 PMCID: PMC4282889 DOI: 10.3390/pathogens3040845] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 01/22/2023] Open
Abstract
Influenza virus infections are a significant cause of morbidity and mortality in the human population. Depending on the virulence of the influenza virus strain, as well as the immunological status of the infected individual, the severity of the respiratory disease may range from sub-clinical or mild symptoms to severe pneumonia that can sometimes lead to death. Vaccines remain the primary public health measure in reducing the influenza burden. Though the first influenza vaccine preparation was licensed more than 60 years ago, current research efforts seek to develop novel vaccination strategies with improved immunogenicity, effectiveness, and breadth of protection. Animal models of influenza have been essential in facilitating studies aimed at understanding viral factors that affect pathogenesis and contribute to disease or transmission. Among others, mice, ferrets, pigs, and nonhuman primates have been used to study influenza virus infection in vivo, as well as to do pre-clinical testing of novel vaccine approaches. Here we discuss and compare the unique advantages and limitations of each model.
Collapse
|
28
|
Pion C, Courtois V, Husson S, Bernard MC, Nicolai MC, Talaga P, Trannoy E, Moste C, Sodoyer R, Legastelois I. Characterization and immunogenicity in mice of recombinant influenza haemagglutinins produced in Leishmania tarentolae. Vaccine 2014; 32:5570-6. [PMID: 25131728 DOI: 10.1016/j.vaccine.2014.07.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/17/2014] [Accepted: 07/31/2014] [Indexed: 12/16/2022]
Abstract
The membrane displayed antigen haemagglutinin (HA) from several influenza strains were expressed in the Leishmania tarentolae system. This non-conventional expression system based on a parasite of lizards, can be readily propagated to high cell density (>10(8)cells/mL) in a simple incubator at 26°C. The genes encoding HA proteins were cloned from six influenza strains, among these being a 2009 A/H1N1 pandemic strain from swine origin, namely A/California/07/09(H1N1). Soluble HA proteins were secreted into the cell culture medium and were easily and successfully purified via a His-Tag domain fused to the proteins. The overall process could be conducted in less than 3 months and resulted in a yield of approximately 1.5-5mg of HA per liter of biofermenter culture after purification. The recombinant HA proteins expressed by L. tarentolae were characterized by dynamic light scattering and were observed to be mostly monomeric. The L. tarentolae recombinant HA proteins were immunogenic in mice at a dose of 10μg when administered twice with an oil-in-water emulsion-based adjuvant. These results suggest that the L. tarentolae expression system may be an alternative to the current egg-based vaccine production.
Collapse
Affiliation(s)
- Corinne Pion
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Virginie Courtois
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Stéphanie Husson
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Marie-Clotilde Bernard
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Marie-Claire Nicolai
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Philippe Talaga
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Emanuelle Trannoy
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Catherine Moste
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| | - Régis Sodoyer
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France; Technology Research Institute Bioaster, 317 Avenue Jean-Jaurès, 69007 Lyon, France.
| | - Isabelle Legastelois
- Department of Research and Development, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France.
| |
Collapse
|
29
|
Oreshkova N, Cornelissen LAHM, de Haan CAM, Moormann RJM, Kortekaas J. Evaluation of nonspreading Rift Valley fever virus as a vaccine vector using influenza virus hemagglutinin as a model antigen. Vaccine 2014; 32:5323-9. [PMID: 25066737 DOI: 10.1016/j.vaccine.2014.07.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/02/2014] [Accepted: 07/15/2014] [Indexed: 11/30/2022]
Abstract
Virus replicon particles are capable of infection, genome replication and gene expression, but are unable to produce progeny virions, rendering their use inherently safe. By virtue of this unique combination of features, replicon particles hold great promise for vaccine applications. We previously developed replicon particles of Rift Valley fever virus (RVFV) and demonstrated their high efficacy as a RVFV vaccine in the natural target species. We have now investigated the feasibility of using this nonspreading RVFV (NSR) as a vaccine vector using influenza virus hemagglutinin as a model antigen. NSR particles were designed to express either the full-length hemagglutinin of influenza A virus H1N1 (NSR-HA) or the respective soluble ectodomain (NSR-sHA). The efficacies of the two NSR vector vaccines, applied via either the intramuscular or the intranasal route, were evaluated. A single vaccination with NSR-HA protected all mice from a lethal challenge dose, while vaccination with NSR-sHA was not protective. Interestingly, whereas intramuscular vaccination elicited superior systemic immune responses, intranasal vaccination provided optimal clinical protection.
Collapse
Affiliation(s)
- N Oreshkova
- Department of Virology, Central Veterinary Institute of Wageningen University and Research Centre, Lelystad, The Netherlands; Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - L A H M Cornelissen
- Department of Virology, Central Veterinary Institute of Wageningen University and Research Centre, Lelystad, The Netherlands.
| | - C A M de Haan
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - R J M Moormann
- Department of Virology, Central Veterinary Institute of Wageningen University and Research Centre, Lelystad, The Netherlands; Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - J Kortekaas
- Department of Virology, Central Veterinary Institute of Wageningen University and Research Centre, Lelystad, The Netherlands.
| |
Collapse
|
30
|
Phan HT, Hause B, Hause G, Arcalis E, Stoger E, Maresch D, Altmann F, Joensuu J, Conrad U. Influence of elastin-like polypeptide and hydrophobin on recombinant hemagglutinin accumulations in transgenic tobacco plants. PLoS One 2014; 9:e99347. [PMID: 24914995 PMCID: PMC4051685 DOI: 10.1371/journal.pone.0099347] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/30/2014] [Indexed: 11/19/2022] Open
Abstract
Fusion protein strategies are useful tools to enhance expression and to support the development of purification technologies. The capacity of fusion protein strategies to enhance expression was explored in tobacco leaves and seeds. C-terminal fusion of elastin-like polypeptides (ELP) to influenza hemagglutinin under the control of either the constitutive CaMV 35S or the seed-specific USP promoter resulted in increased accumulation in both leaves and seeds compared to the unfused hemagglutinin. The addition of a hydrophobin to the C-terminal end of hemagglutinin did not significantly increase the expression level. We show here that, depending on the target protein, both hydrophobin fusion and ELPylation combined with endoplasmic reticulum (ER) targeting induced protein bodies in leaves as well as in seeds. The N-glycosylation pattern indicated that KDEL sequence-mediated retention of leaf-derived hemagglutinins and hemagglutinin-hydrophobin fusions were not completely retained in the ER. In contrast, hemagglutinin-ELP from leaves contained only the oligomannose form, suggesting complete ER retention. In seeds, ER retention seems to be nearly complete for all three constructs. An easy and scalable purification method for ELPylated proteins using membrane-based inverse transition cycling could be applied to both leaf- and seed-expressed hemagglutinins.
Collapse
Affiliation(s)
- Hoang Trong Phan
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Plant Cell Biotechnology, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Bettina Hause
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Gerd Hause
- Microscopy Unit, Biocenter, University of Halle-Wittenberg, Halle, Germany
| | - Elsa Arcalis
- Molecular Plant Physiology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Eva Stoger
- Molecular Plant Physiology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Jussi Joensuu
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Udo Conrad
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
31
|
Newcastle disease virus: current status and our understanding. Virus Res 2014; 184:71-81. [PMID: 24589707 PMCID: PMC7127793 DOI: 10.1016/j.virusres.2014.02.016] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 01/23/2023]
Abstract
Newcastle disease (ND) is one of the highly pathogenic viral diseases of avian species. ND is economically significant because of the huge mortality and morbidity associated with it. The disease is endemic in many third world countries where agriculture serves as the primary source of national income. Newcastle disease virus (NDV) belongs to the family Paramyxoviridae and is well characterized member among the avian paramyxovirus serotypes. In recent years, NDV has lured the virologists not only because of its pathogenic potential, but also for its oncolytic activity and its use as a vaccine vector for both humans and animals. The NDV based recombinant vaccine offers a pertinent choice for the construction of live attenuated vaccine due to its modular nature of transcription, minimum recombination frequency, and lack of DNA phase during replication. Our current understanding about the NDV biology is expanding rapidly because of the availability of modern molecular biology tools and high-throughput complete genome sequencing.
Collapse
|
32
|
Ross KA, Loyd H, Wu W, Huntimer L, Wannemuehler MJ, Carpenter S, Narasimhan B. Structural and antigenic stability of H5N1 hemagglutinin trimer upon release from polyanhydride nanoparticles. J Biomed Mater Res A 2014; 102:4161-8. [DOI: 10.1002/jbm.a.35086] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/19/2013] [Accepted: 01/15/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Kathleen A. Ross
- Department of Chemical and Biological Engineering; Iowa State University; Ames Iowa 50011
| | - Hyelee Loyd
- Department of Animal Science; Iowa State University; Ames Iowa 50011
| | - Wuwei Wu
- Department of Animal Science; Iowa State University; Ames Iowa 50011
| | - Lucas Huntimer
- Department of Veterinary Microbiology and Preventive Medicine; Iowa State University; Ames Iowa 50011
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine; Iowa State University; Ames Iowa 50011
| | - Susan Carpenter
- Department of Animal Science; Iowa State University; Ames Iowa 50011
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering; Iowa State University; Ames Iowa 50011
| |
Collapse
|
33
|
Hemagglutinin receptor specificity and structural analyses of respiratory droplet-transmissible H5N1 viruses. J Virol 2013; 88:768-73. [PMID: 24173215 DOI: 10.1128/jvi.02690-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two ferret-adapted H5N1 viruses capable of respiratory droplet transmission have been reported with mutations in the hemagglutinin receptor-binding site and stalk domains. Glycan microarray analysis reveals that both viruses exhibit a strong shift toward binding to "human-type" α2-6 sialosides but with notable differences in fine specificity. Crystal structure analysis further shows that the stalk mutation causes no obvious perturbation of the receptor-binding pocket, consistent with its impact on hemagglutinin stability without affecting receptor specificity.
Collapse
|
34
|
Dortmans JCFM, Dekkers J, Wickramasinghe INA, Verheije MH, Rottier PJM, van Kuppeveld FJM, de Vries E, de Haan CAM. Adaptation of novel H7N9 influenza A virus to human receptors. Sci Rep 2013; 3:3058. [PMID: 24162312 PMCID: PMC3808826 DOI: 10.1038/srep03058] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/11/2013] [Indexed: 12/22/2022] Open
Abstract
The emergence of the novel H7N9 influenza A virus (IAV) has caused global concerns about the ability of this virus to spread between humans. Analysis of the receptor-binding properties of this virus using a recombinant protein approach in combination with fetuin-binding, glycan array and human tissue-binding assays demonstrates increased binding of H7 to both α2-6 and α2-8 sialosides as well as reduced binding to α2-3-linked SIAs compared to a closely related avian H7N9 virus from 2008. These differences could be attributed to substitutions Q226L and G186V. Analysis of the enzymatic activity of the neuraminidase N9 protein indicated a reduced sialidase activity, consistent with the reduced binding of H7 to α2-3 sialosides. However, the novel H7N9 virus still preferred binding to α2-3- over α2-6-linked SIAs and was not able to efficiently bind to epithelial cells of human trachea in contrast to seasonal IAV, consistent with its limited human-to-human transmission.
Collapse
Affiliation(s)
- J C F M Dortmans
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Cross-clade protection against H5N1 HPAI strains recently isolated from commercial poultry in Egypt with a single dose of a baculovirus based vaccine. Vaccine 2013; 31:5075-81. [DOI: 10.1016/j.vaccine.2013.08.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/19/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022]
|
36
|
Rigter A, Widjaja I, Versantvoort H, Coenjaerts FEJ, van Roosmalen M, Leenhouts K, Rottier PJM, Haijema BJ, de Haan CAM. A protective and safe intranasal RSV vaccine based on a recombinant prefusion-like form of the F protein bound to bacterium-like particles. PLoS One 2013; 8:e71072. [PMID: 23951084 PMCID: PMC3741363 DOI: 10.1371/journal.pone.0071072] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/28/2013] [Indexed: 11/25/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an important cause of respiratory tract disease in infants and the elderly. Currently, no licensed vaccine against RSV is available. Here we describe the development of a safe and effective intranasal subunit vaccine that is based on recombinant fusion (F) protein bound to the surface of immunostimulatory bacterium-like particles (BLPs) derived from the food-grade bacterium Lactococcus lactis. Different variants of F were analyzed with respect to their conformation and reactivity with neutralizing antibodies, assuming that F proteins mimicking the metastable prefusion form of RSV F expose a more extensive and relevant epitope repertoire than F proteins corresponding to the postfusion structure. Our results indicate that the recombinant soluble ectodomain of RSV F readily adopts a postfusion conformation, generation of which cannot be prevented by C-terminal addition of a trimerization motif, but whose formation is prevented by mutation of the two furin cleavage sites in F. While the putative postfusion form of F is recognized well by the monoclonal antibody Palivizumab, this is much less so for the more potently neutralizing, prefusion-specific antibodies D25 and AM22. Both addition of the trimerization motif and mutation of the furin cleavage sites increased the reactivity of F with D25 and AM22, with the highest reactivity being observed for F proteins in which both these features were combined. Intranasal vaccination of mice or cotton rats with BLPs loaded with this latter prefusion-like F protein (BLP-F), resulted in the potent induction of F-specific immunoglobulins and in significantly decreased virus titers in the lungs upon RSV challenge. Moreover, and in contrast to animals vaccinated with formalin-inactivated RSV, animals that received BLP-F exhibited high levels of F-specific secretory IgA in the nose and RSV-neutralizing antibodies in sera, but did not show symptoms of enhanced disease after challenge with RSV.
Collapse
Affiliation(s)
- Alan Rigter
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Mucosis B.V., Groningen, The Netherlands
| | - Ivy Widjaja
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Mucosis B.V., Groningen, The Netherlands
| | | | - Frank E. J. Coenjaerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Peter J. M. Rottier
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Cornelis A. M. de Haan
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
37
|
Different immunity elicited by recombinant H5N1 hemagglutinin proteins containing pauci-mannose, high-mannose, or complex type N-glycans. PLoS One 2013; 8:e66719. [PMID: 23799128 PMCID: PMC3682957 DOI: 10.1371/journal.pone.0066719] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/10/2013] [Indexed: 12/21/2022] Open
Abstract
Highly pathogenic avian influenza H5N1 viruses can result in poultry and occasionally in human mortality. A safe and effective H5N1 vaccine is urgently needed to reduce the pandemic potential. Hemagglutinin (HA), a major envelope protein accounting for approximately 80% of spikes in influenza virus, is often used as a major antigen for subunit vaccine development. In this study, we conducted a systematic study of the immune response against influenza virus infection following immunization with recombinant HA proteins expressed in insect (Sf9) cells, insect cells that contain exogenous genes for elaborating N-linked glycans (Mimic) and mammalian cells (CHO). While the antibody titers are higher with the insect cell derived HA proteins, the neutralization and HA inhibition titers are much higher with the mammalian cell produced HA proteins. Recombinant HA proteins containing tri- or tetra-antennary complex, terminally sialylated and asialyated-galactose type N-glycans induced better protective immunity in mice to lethal challenge. The results are highly relevant to issues that should be considered in the production of fragment vaccines.
Collapse
|
38
|
Rajesh Kumar S, Syed Khader SM, Kiener TK, Szyporta M, Kwang J. Intranasal immunization of baculovirus displayed hemagglutinin confers complete protection against mouse adapted highly pathogenic H7N7 reassortant influenza virus. PLoS One 2013; 8:e63856. [PMID: 23762234 PMCID: PMC3676417 DOI: 10.1371/journal.pone.0063856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/06/2013] [Indexed: 01/08/2023] Open
Abstract
Background Avian influenza A H7N7 virus poses a pandemic threat to human health because of its ability for direct transmission from domestic poultry to humans and from human to human. The wide zoonotic potential of H7N7 combined with an antiviral immunity inhibition similar to pandemic 1918 H1N1 and 2009 H1N1 influenza viruses is disconcerting and increases the risk of a putative H7N7 pandemic in the future, underlining the urgent need for vaccine development against this virus. Methodology/Principal Findings In this study, we developed a recombinant vaccine by expressing the H7N7-HA protein on the surface of baculovirus (Bac-HA). The protective efficacy of the live Bac-HA vaccine construct was evaluated in a mouse model by challenging mice immunized intranasally (i.n.) or subcutaneously (s.c.) with high pathogenic mouse adapted H7N7 reassorted strain. Although s.c. injection of live Bac-HA induced higher specific IgG than i.n. immunization, the later resulted in an elevated neutralization titer. Interestingly, 100% protection from the lethal viral challenge was only observed for the mice immunized intranasally with live Bac-HA, whereas no protection was achieved in any other s.c. or i.n. immunized mice groups. In addition, we also observed higher mucosal IgA as well as increased IFN-γ and IL-4 responses in the splenocytes of the surviving mice coupled with a reduced viral titer and diminished histopathological signs in the lungs. Conclusion Our results indicated that protection from high pathogenic H7N7 (NL/219/03) virus requires both mucosal and systemic immune responses in mice. The balance between Th1 and Th2 cytokines is also required for the protection against the H7N7 pathogen. Intranasal administration of live Bac-HA induced all these immune responses and protected the mice from lethal viral challenge. Therefore, live Bac-HA is an effective vaccine candidate against H7N7 viral infections.
Collapse
MESH Headings
- Adaptation, Physiological/immunology
- Administration, Intranasal
- Animals
- Antibodies, Neutralizing/immunology
- Baculoviridae/genetics
- Enzyme-Linked Immunospot Assay
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunity, Cellular/immunology
- Immunity, Mucosal/immunology
- Immunization
- Influenza A Virus, H7N7 Subtype/genetics
- Influenza A Virus, H7N7 Subtype/immunology
- Influenza A Virus, H7N7 Subtype/pathogenicity
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Lung/immunology
- Lung/pathology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Reassortant Viruses/genetics
- Reassortant Viruses/immunology
- Reproducibility of Results
- Subcutaneous Tissue/immunology
- Subcutaneous Tissue/pathology
- Subcutaneous Tissue/virology
Collapse
Affiliation(s)
- Subaschandrabose Rajesh Kumar
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Syed Musthaq Syed Khader
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Tanja K. Kiener
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Milene Szyporta
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
39
|
Phan HT, Pohl J, Floss DM, Rabenstein F, Veits J, Le BT, Chu HH, Hause G, Mettenleiter T, Conrad U. ELPylated haemagglutinins produced in tobacco plants induce potentially neutralizing antibodies against H5N1 viruses in mice. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:582-93. [PMID: 23398695 DOI: 10.1111/pbi.12049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/17/2012] [Accepted: 01/07/2013] [Indexed: 06/01/2023]
Abstract
Reducing the cost of vaccine production is a key priority for veterinary research, and the possibility of heterologously expressing antigen in plants provides a particularly attractive means of achieving this. Here, we report the expression of the avian influenza virus haemagglutinin (AIV HA) in tobacco, both as a monomer and as a trimer in its native and its ELPylated form. We firstly presented evidence to produce stabilized trimers of soluble HA in plants. ELPylation of these trimers does not influence the trimerization. Strong expression enhancement in planta caused by ELPylation was demonstrated for trimerized H5-ELP. ELPylated trimers could be purified by a membrane-based inverse transition cycling procedure with the potential of successful scale-up. The trimeric form of AIV HA was found to enhance the HA-specific immune response compared with the monomeric form. Plant-derived AIV HA trimers elicited potentially neutralizing antibodies interacting with both homologous virus-like particles from plants and heterologous inactivated AIV. ELPylation did not influence the functionality and the antigenicity of the stabilized H5 trimers. These data allow further developments including scale-up of production, purification and virus challenge experiments with the final goal to achieve suitable technologies for efficient avian flu vaccine production.
Collapse
Affiliation(s)
- Hoang T Phan
- Leibniz Institute of Plant Genetics and Crop Plant Research-IPK, Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shoji Y, Jones RM, Mett V, Chichester JA, Musiychuk K, Sun X, Tumpey TM, Green BJ, Shamloul M, Norikane J, Bi H, Hartman CE, Bottone C, Stewart M, Streatfield SJ, Yusibov V. A plant-produced H1N1 trimeric hemagglutinin protects mice from a lethal influenza virus challenge. Hum Vaccin Immunother 2013; 9:553-60. [PMID: 23296194 PMCID: PMC3891711 DOI: 10.4161/hv.23234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022] Open
Abstract
The increased worldwide awareness of seasonal and pandemic influenza, including pandemic H1N1 virus, has stimulated interest in the development of economic platforms for rapid, large-scale production of safe and effective subunit vaccines. In recent years, plants have demonstrated their utility as such a platform and have been used to produce vaccine antigens against various infectious diseases. Previously, we have produced in our transient plant expression system a recombinant monomeric hemagglutinin (HA) protein (HAC1) derived from A/California/04/09 (H1N1) strain of influenza virus and demonstrated its immunogenicity and safety in animal models and human volunteers. In the current study, to mimic the authentic HA structure presented on the virus surface and to improve stability and immunogenicity of the HA antigen, we generated trimeric HA by introducing a trimerization motif from a heterologous protein into the HA sequence. Here, we describe the engineering, production in Nicotiana benthamiana plants, and characterization of the highly purified recombinant trimeric HA protein (tHA-BC) from A/California/04/09 (H1N1) strain of influenza virus. The results demonstrate the induction of serum hemagglutination inhibition antibodies by tHA-BC and its protective efficacy in mice against a lethal viral challenge. In addition, the immunogenic and protective doses of tHA-BC were much lower compared with monomeric HAC1. Further investigation into the optimum vaccine dose and/or regimen as well as the stability of trimerized HA is necessary to determine whether trimeric HA is a more potent vaccine antigen than monomeric HA.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Disease Models, Animal
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Plants, Genetically Modified/genetics
- Protein Engineering
- Protein Multimerization
- Survival Analysis
- Nicotiana/genetics
- Treatment Outcome
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | | | - Xiangjie Sun
- Influenza Division; National Center for Immunization and Respiratory Diseases; Centers for Disease Control and Prevention; Atlanta, GA USA
| | - Terrence M. Tumpey
- Influenza Division; National Center for Immunization and Respiratory Diseases; Centers for Disease Control and Prevention; Atlanta, GA USA
| | - Brian J. Green
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Hong Bi
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Cory Bottone
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Michelle Stewart
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| |
Collapse
|
41
|
Fischer NO, Rasley A, Corzett M, Hwang MH, Hoeprich PD, Blanchette CD. Colocalized Delivery of Adjuvant and Antigen Using Nanolipoprotein Particles Enhances the Immune Response to Recombinant Antigens. J Am Chem Soc 2013; 135:2044-7. [DOI: 10.1021/ja3063293] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicholas O. Fischer
- Physical
and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United
States
| | - Amy Rasley
- Physical
and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United
States
| | - Michele Corzett
- Physical
and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United
States
| | - Mona H. Hwang
- Physical
and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United
States
| | - Paul D. Hoeprich
- Physical
and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United
States
| | - Craig D. Blanchette
- Physical
and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United
States
| |
Collapse
|
42
|
Lanza AM, Cheng JK, Alper HS. Emerging synthetic biology tools for engineering mammalian cell systems and expediting cell line development. Curr Opin Chem Eng 2012. [DOI: 10.1016/j.coche.2012.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Miller T, Fanton M, Nickelson S, Mason H, Webb S. Safety and immunogenicity of bacterial and tobacco plant cell line derived recombinant native and mutant Escherichia coli heat-labile toxin in chickens. Avian Pathol 2012; 41:441-9. [PMID: 22928883 DOI: 10.1080/03079457.2012.709606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The safety and immunogenicity of the mammalian mucosal adjuvants, Escherichia coli wild-type heat-labile holotoxin (LT) and E. coli mutant LT (LTA-K63/LTB), were examined in 1-day-old chicks and 10-day-old to 21-day-old broilers. Biologically active, E. coli recombinant wild-type LT and recombinant LTA-K63/LTB produced in a transgenic Nicotiana tabacum (NT-1) tobacco cell line (SLT102) were tested for safety and antigenicity following various routes of administration. Safety was assessed by clinical signs, body weight gain, gross organ pathology and wet organ weight, and histopathology. Antigenicity was assessed using LT-B-specific serum IgG enzyme-linked immunosorbent assay. Parenteral administration of E. coli recombinant wild-type LT did not have any discernible effect on bird health and was well tolerated at levels up to 400 µg per dose. Recombinant, SLT102-derived mutant LT derived from SLT102 cells retained in vitro ganglioside binding and was safe and antigenic following repeated mucosal administration to birds. The highest systemic LT-B-specific IgG titres were detected in birds that received three on-feed doses of SLT102-derived mutant LT. Among the various SLT102-derived mutant LT preparations tested, whole, wet cells or whole cell lysates were the most antigenic. These results demonstrate for the first time that E. coli-derived recombinant, wild-type LT holotoxin is well tolerated following multiple administrations to young birds at body weight doses previously reported to be enteropathogenic and toxic in mammalian species. Moreover, these data also demonstrate the feasibility of using recombinant wild-type and mutant LT produced in transgenic NT-1 tobacco cells as safe and potent vaccine adjuvants in poultry.
Collapse
Affiliation(s)
- Tim Miller
- Benchmark BioLabs, Inc., Lincoln, NE 68528-1574, USA.
| | | | | | | | | |
Collapse
|
44
|
Oligomeric recombinant H5 HA1 vaccine produced in bacteria protects ferrets from homologous and heterologous wild-type H5N1 influenza challenge and controls viral loads better than subunit H5N1 vaccine by eliciting high-affinity antibodies. J Virol 2012; 86:12283-93. [PMID: 22951833 DOI: 10.1128/jvi.01596-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recombinant hemagglutinin from influenza viruses with pandemic potential can be produced rapidly in various cell substrates. In this study, we compared the functionality and immunogenicity of bacterially produced oligomeric or monomeric HA1 proteins from H5N1 (A/Vietnam/1203/04) with those of the egg-based licensed subunit H5N1 (SU-H5N1) vaccine in ferrets challenged with homologous or heterologous H5N1 highly pathogenic influenza strains. Ferrets were vaccinated twice with the oligomeric or monomeric rHA1 or with SU-H5N1 (Sanofi Pasteur) emulsified with Titermax adjuvant and were challenged with wild-type homologous (A/Vietnam/1203/04; clade 1) or heterologous (A/Whooperswan/Mongolia/244/2005; clade 2.2) virus. Only the oligomeric rHA1 (not the monomeric rHA1) immunogen and the SU-H5N1 vaccine provided protection against the lethality and morbidity of homologous and heterologous highly pathogenic H5N1. Oligomeric rHA1 generated more cross-neutralizing antibodies and higher levels of serum antibody binding to HA1, with stronger avidity and a better IgG/IgM ratio, than monomeric HA1 and SU-H5N1 vaccines, as determined by surface plasmon resonance (SPR). Importantly, viral loads after heterologous H5N1 challenge were more efficiently controlled in ferrets vaccinated with the oligomeric rHA1 immunogen than in SU-H5N1-vaccinated ferrets. The reduction of viral loads in the nasal washes correlated strongly with higher-avidity antibodies to oligomeric rHA1 derived from H5N1 clade 1 and clade 2.2 viruses, as measured by SPR. This is the first study to show the role of antibody avidity for the HA1 globular head domain in reduction of viral loads in the upper respiratory tract, which could significantly reduce viral transmission.
Collapse
|
45
|
Cornelissen LAHM, de Leeuw OS, Tacken MG, Klos HC, de Vries RP, de Boer-Luijtze EA, van Zoelen-Bos DJ, Rigter A, Rottier PJM, Moormann RJM, de Haan CAM. Protective efficacy of Newcastle disease virus expressing soluble trimeric hemagglutinin against highly pathogenic H5N1 influenza in chickens and mice. PLoS One 2012; 7:e44447. [PMID: 22952980 PMCID: PMC3429475 DOI: 10.1371/journal.pone.0044447] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 08/07/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Highly pathogenic avian influenza virus (HPAIV) causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to humans. One effective way to combat avian influenza with pandemic potential is through the vaccination of poultry. Several live vaccines based on attenuated Newcastle disease virus (NDV) that express influenza hemagglutinin (HA) have been developed to protect chickens or mammalian species against HPAIV. However, the zoonotic potential of NDV raises safety concerns regarding the use of live NDV recombinants, as the incorporation of a heterologous attachment protein may result in the generation of NDV with altered tropism and/or pathogenicity. METHODOLOGY/PRINCIPAL FINDINGS In the present study we generated recombinant NDVs expressing either full length, membrane-anchored HA of the H5 subtype (NDV-H5) or a soluble trimeric form thereof (NDV-sH5(3)). A single intramuscular immunization with NDV-sH5(3) or NDV-H5 fully protected chickens against disease after a lethal challenge with H5N1 and reduced levels of virus shedding in tracheal and cloacal swabs. NDV-sH5(3) was less protective than NDV-H5 (50% vs 80% protection) when administered via the respiratory tract. The NDV-sH5(3) was ineffective in mice, regardless of whether administered oculonasally or intramuscularly. In this species, NDV-H5 induced protective immunity against HPAIV H5N1, but only after oculonasal administration, despite the poor H5-specific serum antibody response it elicited. CONCLUSIONS/SIGNIFICANCE Although NDV expressing membrane anchored H5 in general provided better protection than its counterpart expressing soluble H5, chickens could be fully protected against a lethal challenge with H5N1 by using the latter NDV vector. This study thus provides proof of concept for the use of recombinant vector vaccines expressing a soluble form of a heterologous viral membrane protein. Such vectors may be advantageous as they preclude the incorporation of heterologous membrane proteins into the viral vector particles.
Collapse
|
46
|
Krammer F, Margine I, Tan GS, Pica N, Krause JC, Palese P. A carboxy-terminal trimerization domain stabilizes conformational epitopes on the stalk domain of soluble recombinant hemagglutinin substrates. PLoS One 2012; 7:e43603. [PMID: 22928001 PMCID: PMC3426533 DOI: 10.1371/journal.pone.0043603] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/24/2012] [Indexed: 11/26/2022] Open
Abstract
Recently, a new class of broadly neutralizing anti-influenza virus antibodies that target the stalk domain of the viral hemagglutinin was discovered. As such, induction, isolation, characterization, and quantification of these novel antibodies has become an area of intense research and great interest. Since most of these antibodies bind to conformational epitopes, the structural integrity of hemagglutinin substrates for the detection and quantification of these antibodies is of high importance. Here we evaluate the binding of these antibodies to soluble, secreted hemagglutinins with or without a carboxy-terminal trimerization domain based on the natural trimerization domain of T4 phage fibritin. The lack of such a domain completely abolishes binding to group 1 hemagglutinins and also affects binding to group 2 hemagglutinins. Additionally, the presence of a trimerization domain positively influences soluble hemagglutinin stability during expression and purification. Our findings suggest that a carboxy-terminal trimerization domain is a necessary requirement for the structural integrity of stalk epitopes on recombinant soluble influenza virus hemagglutinin.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Recombinant soluble trimeric influenza A virus (IAV) hemagglutinin (sHA(3)) has proven an effective vaccine antigen against IAV. Here, we investigate to what extent the glycosylation status of the sHA(3) glycoprotein affects its immunogenicity. Different glycosylation forms of subtype H5 trimeric HA protein (sH5(3)) were produced by expression in insect cells and different mammalian cells in the absence and presence of inhibitors of N-glycan-modifying enzymes or by enzymatic removal of the oligosaccharides. The following sH5(3) preparations were evaluated: (i) HA proteins carrying complex glycans produced in HEK293T cells; (ii) HA proteins carrying Man(9)GlcNAc(2) moieties, expressed in HEK293T cells treated with kifunensine; (iii) HA proteins containing Man(5)GlcNAc(2) moieties derived from HEK293S GnTI(-) cells; (iv) insect cell-produced HA proteins carrying paucimannosidic N-glycans; and (v) HEK293S GnTI(-) cell-produced HA proteins treated with endoglycosidase H, thus carrying side chains composed of only a single N-acetylglucosamine each. The different HA glycosylation states were confirmed by comparative electrophoretic analysis and by mass spectrometric analysis of released glycans. The immunogenicity of the HA preparations was studied in chickens and mice. The results demonstrate that HA proteins carrying terminal mannose moieties induce significantly lower hemagglutination inhibition antibody titers than HA proteins carrying complex glycans or single N-acetylglucosamine side chains. However, the glycosylation state of the HA proteins did not affect the breadth of the antibody response as measured by an HA1 antigen microarray. We conclude that the glycosylation state of recombinant antigens is a factor of significant importance when developing glycoprotein-based vaccines, such as recombinant HA proteins.
Collapse
|
48
|
Immunization of chickens with an agonistic monoclonal anti-chicken CD40 antibody-hapten complex: rapid and robust IgG response induced by a single subcutaneous injection. J Immunol Methods 2012; 378:116-20. [PMID: 22366632 DOI: 10.1016/j.jim.2012.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 11/24/2022]
Abstract
Producing diagnostic antibodies in chicken egg yolk represents an alternate animal system that offers many advantages including high productivity at low cost. Despite being an excellent counterpart to mammalian antibodies, chicken IgG from yolk still represents an underused resource. The potential of agonistic monoclonal anti-CD40 antibodies (mAb) as a powerful immunological adjuvant has been demonstrated in mammals, but not in chickens. We recently reported an agonistic anti-chicken CD40 mAb (designated mAb 2C5) and showed that it may have potential as an immunological adjuvant. In this study, we examined the efficacy of targeting a short peptide to chicken CD40 [expressed by the antigen-presenting cells (APCs)] in enhancing an effective IgG response in chickens. For this purpose, an immune complex consisting of one streptavidin molecule, two directionally biotinylated mAb 2C5 molecules, and two biotinylated peptide molecules was produced. Chickens were immunized subcutaneously with doses of this complex ranging from 10 to 90 μg per injection once, and relative quantification of the peptide-specific IgG response showed that the mAb 2C5-based complex was able to elicit a strong IgG response as early as four days post-immunization. This demonstrates that CD40-targeting antigen to chicken APCs can significantly enhance antibody responses and induce immunoglobulin isotype-switching. This immunization strategy holds promise for rapid production of hapten-specific IgG in chickens.
Collapse
|
49
|
Chen JR, Ma C, Wong CH. Vaccine design of hemagglutinin glycoprotein against influenza. Trends Biotechnol 2011; 29:426-34. [PMID: 21640418 DOI: 10.1016/j.tibtech.2011.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 11/29/2022]
Abstract
Influenza viruses continue to cause annual epidemics and pose the threat of a deadly global pandemic. Vaccination has remained the best approach for prevention and control of influenza infection. However, current influenza vaccines are only effective against closely-matched circulating strains, and therefore must be updated and administered every year. In this review, we discuss recent developments in the search for better influenza vaccines, especially using the major virus surface glycoprotein hemagglutinins (HAs). Understanding how glycans on HAs affect the immune response and knowledge of how broadly neutralizing antibodies are induced will pave the way for a cross-protective influenza vaccine that does not require frequent updates or annual immunizations.
Collapse
Affiliation(s)
- Juine-Ruey Chen
- Genomics Research Center, Academia Sinica, 128 Academia Road Section 2, Taipei 115, Taiwan
| | | | | |
Collapse
|
50
|
Goldenberg D, Lublin A, Rosenbluth E, Heller ED, Pitcovski J. Differentiating infected from vaccinated animals, and among virulent prototypes of reovirus. J Virol Methods 2011; 177:80-6. [PMID: 21762731 DOI: 10.1016/j.jviromet.2011.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 11/17/2022]
Abstract
Birds are most susceptible to infection by avian reovirus, genus Orthoreovirus family Reoviridae, at a young age. Although chicks are protected by antibodies transferred from vaccinated maternal flocks, due to the many variants in the field, the efficiency of the vaccines is limited. The level of antibodies against viruses is generally determined by enzyme-linked immunosorbent assay (ELISA), using the whole virus as the antigen. This has some disadvantages: first, the test measures antibodies against all capsid proteins, most of which are irrelevant for neutralizing the virus, and as such does not reflect the real protection status; second, it is impossible to distinguish between vaccine- and infection-derived antibodies. In the case of a virus that changes frequently, a third disadvantage is the inability to distinguish among serotypes. The aim of this study was to develop a test that would address these concerns. Four prototypes of the avian reovirus protein sigma C were used as antigens on the ELISA plate. Sigma C is the main protein inducing neutralizing antibodies and the most variable among strains and isolates, and it is used for reovirus classification. This differentiating ELISA enabled distinguishing between vaccine and field strains of the virus, identifying the infection source, and in the case of vaccination, exclusively determining the level of protective antibodies. Whereas the whole virus detected antibodies against all strains, differentiating ELISA enabled differentiating between infected and vaccinated animals (DIVA) and in most cases, identifying the sigma C genotype. In a field study, a correlation was found between disease symptoms and antibodies identified against virulent strains in the flock. Thus virulent strains can be identified in the field, enabling adjustment of the relevant vaccines.
Collapse
|