1
|
Yitao L, Lv Z, Xin W, Yongchen F, Ying W. Dynamic brain functional states associated with inhibition control under different altitudes. Cogn Neurodyn 2024; 18:1931-1941. [PMID: 39104701 PMCID: PMC11297874 DOI: 10.1007/s11571-023-10054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/28/2023] [Accepted: 11/04/2023] [Indexed: 08/07/2024] Open
Abstract
Chronic exposure to the hypobaric hypoxia environment of plateau could influence human cognitive behaviours which are supported by dynamic brain connectivity states. Until now, how functional connectivity (FC) of the brain network changes with altitudes is still unclear. In this article, we used EEG data of the Go/NoGo paradigm from Weinan (347 m) and Nyingchi (2950 m). A combination of dynamic FC (dFC) and the K-means cluster was employed to extract dynamic FC states which were later distinguished by graph metrics. Besides, temporal properties of networks such as fractional windows (FW), transition numbers (TN) and mean dwell time (MDT) were calculated. Finally, we successfully extracted two different states from dFC matrices where State 1 was verified to have higher functional integration and segregation. The dFC states dynamically switched during the Go/NoGo tasks and the FW of State 1 showed a rise in the high-altitude participants. Also, in the regional analysis, we found higher state deviation in the fronto-parietal cortices and enhanced FC strength in the occipital lobe. These results demonstrated that long-term exposure to the high-altitude environment could lead brain networks to reorganize as networks with higher inter- and intra-networks information transfer efficiency, which could be attributed to a compensatory mechanism to the compromised brain function due to the plateau environment. This study provides a new perspective in considering how the plateau impacted cognitive impairment.
Collapse
Affiliation(s)
- Lin Yitao
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Zhou Lv
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an, 710049 China
| | - Wei Xin
- Institute of Social Psychology, School of Humanities and Social Sciences, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Fan Yongchen
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an, 710049 China
| | - Wu Ying
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an, 710049 China
- National Demonstration Center for Experimental Mechanics Education, Xi’an Jiaotong University, Xi’an, 710049 China
| |
Collapse
|
2
|
Ji X, Bao B, Li LZ, Pu J, Lin Y, Zhang X, Chen Z, Li T. EEG and fNIRS datasets based on Stroop task during two weeks of high-altitude exposure in new immigrants. Sci Data 2024; 11:350. [PMID: 38589476 PMCID: PMC11001964 DOI: 10.1038/s41597-024-03200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Maintaining sufficient cerebral oxygen metabolism is crucial for human survival, especially in challenging conditions such as high-altitudes. Human cognitive neural activity is sensitive to fluctuations in oxygen levels. However, there is a lack of publicly available datasets on human behavioural responses and cerebral dynamics assessments during the execution of conflicting tasks in natural hypoxic environments. We recruited 80 healthy new immigrant volunteers (males, aged 20 ± 2 years) and employed the Stroop cognitive conflict paradigm. After a two-week exposure to both high and low-altitudes, the behavioural performance, prefrontal oxygen levels, and electroencephalography (EEG) signals were recorded. Comparative analyses were conducted on the behavioural reaction times and accuracy during Stroop tasks, and statistical analyses of participants' prefrontal oxygen levels and EEG signals were performed. We anticipate that our open-access dataset will contribute to the development of monitoring devices and algorithms, designed specifically for measuring cerebral oxygen and EEG dynamics in populations exposed to extreme environments, particularly among individuals suffering from oxygen deficiency.
Collapse
Affiliation(s)
- Xiang Ji
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Botao Bao
- School of optoelectronic science and engineering, University of Electronic Science & Technology of China, Chengdu, China
| | - Lin Z Li
- Britton Chance Laboratory of Redox Imaging and Laboratory of Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiangbo Pu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yu Lin
- The Estee Lauder Companies, Melville, NY, USA
| | - Xin Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zemeng Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ting Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
3
|
Liu B, Yuan M, Yang M, Zhu H, Zhang W. The Effect of High-Altitude Hypoxia on Neuropsychiatric Functions. High Alt Med Biol 2024; 25:26-41. [PMID: 37815821 DOI: 10.1089/ham.2022.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Liu, Bo, Minlan Yuan, Mei Yang, Hongru Zhu, and Wei Zhang. The effect of high-altitude hypoxia on neuropsychiatric functions. High Alt Med Biol. 25:26-41, 2024. Background: In recent years, there has been a growing popularity in engaging in activities at high altitudes, such as hiking and work. However, these high-altitude environments pose risks of hypoxia, which can lead to various acute or chronic cerebral diseases. These conditions include common neurological diseases such as acute mountain sickness (AMS), high-altitude cerebral edema, and altitude-related cerebrovascular diseases, as well as psychiatric disorders such as anxiety, depression, and psychosis. However, reviews of altitude-related neuropsychiatric conditions and their potential mechanisms are rare. Methods: We conducted searches on PubMed and Google Scholar, exploring existing literature encompassing preclinical and clinical studies. Our aim was to summarize the prevalent neuropsychiatric diseases induced by altitude hypoxia, the potential pathophysiological mechanisms, as well as the available pharmacological and nonpharmacological strategies for prevention and intervention. Results: The development of altitude-related cerebral diseases may arise from various pathogenic processes, including neurovascular alterations associated with hypoxia, cytotoxic responses, activation of reactive oxygen species, and dysregulation of the expression of hypoxia inducible factor-1 and nuclear factor erythroid 2-related factor 2. Furthermore, the interplay between hypoxia-induced neurological and psychiatric changes is believed to play a role in the progression of brain damage. Conclusions: While there is some evidence pointing to pathophysiological changes in hypoxia-induced brain damage, the precise mechanisms responsible for neuropsychiatric alterations remain elusive. Currently, the range of prevention and intervention strategies available is primarily focused on addressing AMS, with a preference for prevention rather than treatment.
Collapse
Affiliation(s)
- Bo Liu
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
- Zigong Mental Health Center, Zigong, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Mei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences and Forensic Medicine, Chengdu, Sichuan
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Liu Y, Yuan F, Peng Z, Zhan Y, Lin J, Zhang R, Zhang J. Decrease in Cerebral Blood Flow after Reoxygenation Is Associated with Neurological Syndrome Sequelae and Blood Pressure. Brain Sci 2023; 13:1600. [PMID: 38002559 PMCID: PMC10669967 DOI: 10.3390/brainsci13111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Changes in cerebral blood flow (CBF) and regulation of cerebral circulation occur at high altitude (HA). However, the changes in CBF and their associations with neurological syndrome sequelae and blood pressure after subjects return to the lowlands remain unclear. In this study, the subjects were 23 college students who were teaching at an altitude of 4300 m for 30 days. These subjects were studied before reaching the HA (Test 1), one week after returning to the lowlands (Test 2), and three months after returning to the lowlands (Test 3). Symptom scores for de-acclimatization syndrome were evaluated. Changes in CBF were measured using the magnetic resonance imaging arterial spin labeling (ASL) technique. Additionally, the velocity of CBF in the cerebral arteries was measured using a transcranial doppler (TCD). In Test 2 vs. Test 1, the peak systolic velocity and mean velocity in the basilar artery were significantly decreased. CBF exhibited significant decreases in the left putamen/cerebellum crus1/vermis and right thalamus/inferior temporal gyrus, while significant increases were observed in the left postcentral gyrus/precuneus and right middle cingulate gyrus/superior frontal gyrus. In Test 3 vs. Test 1, the basilar artery velocity returned to the baseline level, while CBF continued to decrease. The mean global CBF showed a decreasing trend from Test 1 to Test 3. Furthermore, the mean global CBF had a negative correlation with the systolic pressure, pulse pressure, and mean arterial pressure. The decrease in CBF after reoxygenation may underlie the neurological symptoms in subjects returning to the lowlands. Increased blood pressure could serve as a predictor of a decrease in CBF.
Collapse
Affiliation(s)
- Yanqiu Liu
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China
| | - Fengjuan Yuan
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China
| | - Zhongwei Peng
- Department of Neurology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Yadong Zhan
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China
| | - Jianzhong Lin
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Ran Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Chen X, Zhang J, Lin Y, Li Y, Wang H, Wang Z, Liu H, Hu Y, Liu L. Mechanism, prevention and treatment of cognitive impairment caused by high altitude exposure. Front Physiol 2023; 14:1191058. [PMID: 37731540 PMCID: PMC10507266 DOI: 10.3389/fphys.2023.1191058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/05/2023] [Indexed: 09/22/2023] Open
Abstract
Hypobaric hypoxia (HH) characteristics induce impaired cognitive function, reduced concentration, and memory. In recent years, an increasing number of people have migrated to high-altitude areas for work and study. Headache, sleep disturbance, and cognitive impairment from HH, severely challenges the physical and mental health and affects their quality of life and work efficiency. This review summarizes the manifestations, mechanisms, and preventive and therapeutic methods of HH environment affecting cognitive function and provides theoretical references for exploring and treating high altitude-induced cognitive impairment.
Collapse
Affiliation(s)
- Xin Chen
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiexin Zhang
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- Faculty of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Yuan Lin
- Sichuan Xincheng Biological Co., LTD., Chengdu, Sichuan, China
| | - Yan Li
- Department of General Surgery, The 77th Army Hospital, Leshan, Sichuan, China
| | - Han Wang
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Zhanhao Wang
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Huawei Liu
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yonghe Hu
- Faculty of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lei Liu
- Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Patrician A, Willie C, Hoiland RL, Gasho C, Subedi P, Anholm JD, Tymko MM, Ainslie PN. Manipulation of iron status on cerebral blood flow at high altitude in lowlanders and adapted highlanders. J Cereb Blood Flow Metab 2023; 43:1166-1179. [PMID: 36883428 PMCID: PMC10291452 DOI: 10.1177/0271678x231152734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 12/05/2022] [Indexed: 03/09/2023]
Abstract
Cerebral blood flow (CBF) increases during hypoxia to counteract the reduction in arterial oxygen content. The onset of tissue hypoxemia coincides with the stabilization of hypoxia-inducible factor (HIF) and transcription of downstream HIF-mediated processes. It has yet to be determined, whether HIF down- or upregulation can modulate hypoxic vasodilation of the cerebral vasculature. Therefore, we examined whether: 1) CBF would increase with iron depletion (via chelation) and decrease with repletion (via iron infusion) at high-altitude, and 2) explore whether genotypic advantages of highlanders extend to HIF-mediated regulation of CBF. In a double-blinded and block-randomized design, CBF was assessed in 82 healthy participants (38 lowlanders, 20 Sherpas and 24 Andeans), before and after the infusion of either: iron(III)-hydroxide sucrose, desferrioxamine or saline. Across both lowlanders and highlanders, baseline iron levels contributed to the variability in cerebral hypoxic reactivity at high altitude (R2 = 0.174, P < 0.001). At 5,050 m, CBF in lowlanders and Sherpa were unaltered by desferrioxamine or iron. At 4,300 m, iron infusion led to 4 ± 10% reduction in CBF (main effect of time p = 0.043) in lowlanders and Andeans. Iron status may provide a novel, albeit subtle, influence on CBF that is potentially dependent on the severity and length-of-stay at high altitude.
Collapse
Affiliation(s)
- Alexander Patrician
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
| | - Christopher Willie
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Gasho
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Prajan Subedi
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - James D Anholm
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Michael M Tymko
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
| |
Collapse
|
7
|
Luo Q, Zhang JX, Huang S, Hu YH, Wang H, Chen X. Effects of long-term exposure to high altitude on brain structure in healthy people: an MRI-based systematic review and meta-analysis. Front Psychiatry 2023; 14:1196113. [PMID: 37435401 PMCID: PMC10330765 DOI: 10.3389/fpsyt.2023.1196113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Purpose To conduct a systematic review and meta-analysis of observational studies of brain MRI, this paper assesses the effects of long-term exposure to high-altitude on brain structures in healthy people. Methods Observational studies related to high-altitude, brain and MRI were systematically searched based on data retrieved from PubMed, Embase and Cochrane Library. The timescale for collecting literature was from the establishment of the databases to 2023. NoteExpress 3.2 was used to manage the literature. Two investigators performed literature screening and data extraction based on inclusion criteria, exclusion criteria, and literature quality. The quality of the literature was assessed using the NOS Scale. Finally, meta-analysis of included studies was performed using Reviewer Manager 5.3. Results Initially, 3,626 articles were retrieved. After screening, 16 articles (n = 756 participants) were included in the systematic review, and meta-analysis was performed on 6 articles (n = 350 participants). The overall quality of the included articles was at medium level, with a mean NOS score of 5.62. The results of meta-analysis showed that the differences between the HA group and LA group were not statistically significant, in total GM volume (MD: -0.60, 95% CI: -16.78 to 15.58, P = 0.94), WM volume (MD: 3.05, 95% CI: -15.72 to 21.81, P = 0.75) and CSF volume (MD: 5.00, 95% CI: -11.10 to 21.09, P = 0.54).The differences between HA and LA in FA values of frontotemporal lobes were not statistically significant: right frontal lobe (MD: -0.02, 95% CI: -0.07 to 0.03, P = 0.38), left frontal lobe (MD: 0.01, 95% CI: -0.02 to 0.04, P = 0.65), right temporal lobe (MD: -0.00, 95% CI: -0.03 to 0.02, P = 0.78) and left temporal lobe (MD: -0.01, 95% CI: -0.04 to 0.02, P = 0.62). However, there were significant differences in GM volume, GM density and FA values in local brain regions between HA group and LA group. Conclusion Compared with LA area, there were no significant differences in total GM, WM and CSF volumes in healthy people living at high-altitude area for long-term, while there were significant differences in GM volume and FA values in local brain regions. Long-term exposure to high-altitude area caused the adaptive structural changes in local brain regions. Since heterogeneity existed between the studies, further studies are needed to uncover the effects of high-altitude on brain of healthy people. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42023403491.
Collapse
Affiliation(s)
- Qiao Luo
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Third People's Hospital of Chengdu City, Chengdu, China
| | - Jie-Xin Zhang
- Department of Laboratory Medicine, Southwest Jiaotong University, Chengdu, China
| | - Shuo Huang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong-He Hu
- Department of Laboratory Medicine, Southwest Jiaotong University, Chengdu, China
- The General Hospital of Western Theater Command, Chengdu, China
| | - Han Wang
- The Third People's Hospital of Chengdu City, Chengdu, China
| | - Xin Chen
- The Third People's Hospital of Chengdu City, Chengdu, China
| |
Collapse
|
8
|
Bao X, Zhang D, Li X, Liu M, Ma H. Long-term high-altitude exposure influences task-related representations in visual working memory. Front Neurol 2023; 14:1149623. [PMID: 37273714 PMCID: PMC10236478 DOI: 10.3389/fneur.2023.1149623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Objective Human working memory is impaired when individuals are exposed to high altitudes, however, whether the capacity of visual working memory is affected remains unclear. This study combined a lateralized change detection task and event-related potentials analysis to explore changes in visual working memory capacity among individuals who emigrated from a low-altitude environment to Tibet (a high-altitude environment). Materials and methods Thirty-five college students were recruited from Tibet University as the high-altitude (HA) group, and thirty-six low-altitude (LA) students were enrolled from South China Normal University (sea level) as the LA group. We measured participants' contralateral delay activity (CDA) under different memory loads. Results ERP component analysis showed that both the HA and LA groups reached an asymptote at memory load four. However, the contralateral and ipsilateral activity of the HA and LA groups shows different patterns. The results showed a significantly larger contralateral activity for the LA group than for the HA group at memory load one (p = 0.04, Cohen's d = 0.52) and load three (p = 0.02, Cohen's d = 0.61). Additionally, we found marginally larger contralateral activity at memory load four for the LA group (p = 0.06, Cohen's d = 0.47), but not at memory load two (p = 0.10) or load five (p = 0.12). No significant differences were observed for ipsilateral activity. In addition, we observed that the HA group performed larger ipsilateral activity than contralateral activity under each memory load, compared with the LA group. Conclusion These findings demonstrated that the attentional resource of long-term HA exposure is more captured by task-irrelevant information, potentially due to impaired inhibitory control, which makes it difficult for them to exclude the interference of task-irrelevant information.
Collapse
Affiliation(s)
- Xiaohua Bao
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Delong Zhang
- Plateau Brain Science Research Center, South China Normal University, Guangzhou, China
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Xiaoyan Li
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
| | - Ming Liu
- Plateau Brain Science Research Center, South China Normal University, Guangzhou, China
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Hailin Ma
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province, Xining, China
| |
Collapse
|
9
|
Feng J, Men W, Yu X, Liu W, Zhang S, Liu J, Ma L. High-altitude exposure duration dependent global and regional gray matter volume decrease in healthy immigrants: a cross-sectional study. Acta Radiol 2023; 64:751-759. [PMID: 35369766 DOI: 10.1177/02841851221091674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The correlation between brain injury and high-altitude (HA) exposure duration (Dur_HA) as well as peripheral oxygen saturation (SpO2) remains unclear. PURPOSE To evaluate the global and regional brain volume differences between HA immigrants and sea-level residents, and the relationship between brain volume with Dur_HA and SpO2. MATERIAL AND METHODS Structural magnetic resonance imaging (MRI) scans were acquired in 33 healthy male HA immigrants (HA group) and 33 matched sea-level male residents (SL group). Differences in global gray matter volume (GMV), white matter volume (WMV), brain parenchyma volume (BV), total intracranial volume (TIV), and the volume-fraction (the ratio of GMV/TIV, WMV/TIV, BV/TIV) were assessed. Regional gray matter differences were investigated using voxel-based morphology analysis. The volume of clusters with GM loss were calculated as the volume of volume of interest (V_VOI). Student's t-test and partial correlation were adopted for statistic calculation. RESULTS Compared to the SL group, the HA immigrants had larger WMV (P = 0.015), smaller ratio of GMV/WMV (P = 0.022), and regional gray matter loss in bilateral basal ganglion, limbic system, midbrain, and vermis (cluster size >100 voxels, family-wise error corrected at P = 0.01). The global GMV, BV, and V_VOI confined to vermis had negative correlations with the Dur_HA (r = -0.369, P = 0.049; r = -0.380, P = 0.042; and r = -0.471, P = 0.010. Neither global nor regional brain volume correlated with SpO2. CONCLUSION Global and regional brain are affected by long-term HA exposure, and global and regional gray matter have a time-dependent volume loss.
Collapse
Affiliation(s)
- Jie Feng
- 104607Medical School of Chinese People's Liberation Army, Beijing, PR China
- Department of Radiology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
- Department of Radiology, Corps Hospital of Shanxi Province of Chinese People's Armed Police Force, Taiyuan, PR China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, PR China
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, PR China
| | - Xiao Yu
- 104607Medical School of Chinese People's Liberation Army, Beijing, PR China
- Department of Radiology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Wenjia Liu
- Department of Radiology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Shiyu Zhang
- 104607Medical School of Chinese People's Liberation Army, Beijing, PR China
- Department of Radiology, Beijing Friendship Hospital, 535066Capital Medical University, Beijing, PR China
| | - Jie Liu
- Department of Radiology, General Hospital of Tibet Military Region, Lhasa, Tibet, PR China
| | - Lin Ma
- 104607Medical School of Chinese People's Liberation Army, Beijing, PR China
- Department of Radiology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| |
Collapse
|
10
|
Zhang X, Xie W, Du W, Liu Y, Lin J, Yin W, Yang L, Yuan F, Zhang R, Liu H, Ma H, Zhang J. Consistent differences in brain structure and functional connectivity in high-altitude native Tibetans and immigrants. Brain Imaging Behav 2023; 17:271-281. [PMID: 36694086 DOI: 10.1007/s11682-023-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
It has been well-established that high-altitude (HA) environments affect the human brain; however, the differences in brain structural and functional networks between HA natives and acclimatized immigrants have not been well clarified. In this study, native HA Tibetans were recruited for comparison with Han immigrants (average of 2.3 ± 0.3 years at HA), with lowland residents recruited as controls. Cortical gray matter volume, thickness, and functional connectivity were investigated using magnetic resonance imaging data. In addition, reaction time and correct score in the visual movement task, hematology, and SpO2 were measured. In both Tibetans and HA immigrants vs. lowlanders, decreased SpO2, increased hematocrit and hemoglobin, and increased reaction time and correct score in the visual movement task were detected. In both Tibetans and HA immigrants vs. lowlanders, gray matter volumes and cortical thickness were increased in the left somatosensory and motor cortex, and functional connectivity was decreased in the visual, default mode, subcortical, somatosensory-motor, ventral attention, and subcortical networks. Furthermore, SpO2 increased, hematocrit and hemoglobin decreased, and gray matter volumes and cortical thickness increased in the visual cortex, left motor cortex, and right auditory cortex in native Tibetans compared to immigrants. Movement time and correct score in task were positively correlated with the thickness of the visual cortex. In conclusion, brain structural and functional network difference in both Tibetan natives and HA immigrants were largely consistent, with native Tibetans only showing more intense brain modulation. Different populations acclimatized to HA develop similar brain mechanisms to cope with hostile HA environmental factors.
Collapse
Affiliation(s)
- Xinjuan Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Weiwei Xie
- Plateau Brain Science Research Centre, Tibet University, Lhasa, 850012, China
| | - Wenrui Du
- Department of Clinical Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yanqiu Liu
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jianzhong Lin
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wu Yin
- Department of Radiology, Tibet Autonomous Region People's Hospital, Lhasa, Tibet Autonomous Region, 850000, China
| | - Lihui Yang
- Department of Endocrinology, Tibet Autonomous Region People's Hospital, Tibet Autonomous Region, Lhasa, 850000, China
| | - Fengjuan Yuan
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Ran Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Haipeng Liu
- Department of Radiology, Tibet Autonomous Region Women's and Children's Hospital, Tibet Autonomous Region, Lhasa, 850000, China
| | - Hailin Ma
- Plateau Brain Science Research Centre, Tibet University, Lhasa, 850012, China.
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
11
|
Mostajo-Radji MA. A Latin American perspective on neurodiplomacy. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 4:1005043. [PMID: 36712171 PMCID: PMC9880232 DOI: 10.3389/fmedt.2022.1005043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023] Open
Affiliation(s)
- Mohammed A. Mostajo-Radji
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
12
|
Fan J, Chen D, Wang N, Su R, Li H, Ma H, Gao F. Negative relationship between brain-derived neurotrophic factor (BDNF) and attention: A possible elevation in BDNF level among high-altitude migrants. Front Neurol 2023; 14:1144959. [PMID: 37114226 PMCID: PMC10126458 DOI: 10.3389/fneur.2023.1144959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Objective Brain-derived neurotrophic factor (BDNF), a member of the neurotrophic family that plays a vital role in regulating neuronal activity and synaptic plasticity in the brain, affects attention. However, studies investigating the association between BDNF and attention in long-term high-altitude (HA) migrants are limited in the literature. As HA affects both BDNF and attention, the relationship between these factors becomes more complex. Therefore, this study aimed to evaluate the relationship between peripheral blood concentrations of BDNF and the three attentional networks in both behavioral and electrical aspects of the brain in long-term HA migrants. Materials and methods Ninety-eight Han adults (mean age: 34.74 ± 3.48 years, 51 females and 47 males, all have lived at Lhasa for 11.30 ± 3.82 years) were recruited in this study. For all participants, the serum BDNF levels were assessed using enzyme-linked immunosorbent assay; event-related potentials (N1, P1, and P3) were recorded during the Attentional Networks Test, which was used as the measure of three attentional networks. Results Executive control scores were negatively correlated with P3 amplitude (r = -0.20, p = 0.044), and serum BDNF levels were positively correlated with executive control scores (r = 0.24, p = 0.019) and negatively correlated with P3 amplitude (r = -0.22, p = 0.027). Through grouping of BDNF levels and three attentional networks, executive control was found to be significantly higher in the high BDNF group than in the low BDNF group (p = 0.010). Different BDNF levels were associated with both orienting scores (χ2 = 6.99, p = 0.030) and executive control scores (χ2 = 9.03, p = 0.011). The higher the BDNF level, the worse was the executive function and the lower was the average P3 amplitude and vice versa. Females were found to have higher alerting scores than males (p = 0.023). Conclusion This study presented the relationship between BDNF and attention under HA. The higher the BDNF level, the worse was the executive control, suggesting that after long-term exposure to HA, hypoxia injury of the brain may occur in individuals with relatively higher BDNF levels, and this higher BDNF level may be the result of self-rehabilitation tackling the adverse effects brought by the HA environment.
Collapse
Affiliation(s)
- Jing Fan
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
| | - Dongmei Chen
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Office of Safety and Health, Lhasa No. 1 Middle School, Lhasa, China
| | - Niannian Wang
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
| | - Rui Su
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Hao Li
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
| | - Hailin Ma
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province, Xining, China
- *Correspondence: Hailin Ma
| | - Fei Gao
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Fei Gao
| |
Collapse
|
13
|
Zhang X, Zhang J. The human brain in a high altitude natural environment: A review. Front Hum Neurosci 2022; 16:915995. [PMID: 36188182 PMCID: PMC9520777 DOI: 10.3389/fnhum.2022.915995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
With the advancement of in vivo magnetic resonance imaging (MRI) technique, more detailed information about the human brain at high altitude (HA) has been revealed. The present review aimed to draw a conclusion regarding changes in the human brain in both unacclimatized and acclimatized states in a natural HA environment. Using multiple advanced analysis methods that based on MRI as well as electroencephalography, the modulations of brain gray and white matter morphology and the electrophysiological mechanisms underlying processing of cognitive activity have been explored in certain extent. The visual, motor and insular cortices are brain regions seen to be consistently affected in both HA immigrants and natives. Current findings regarding cortical electrophysiological and blood dynamic signals may be related to cardiovascular and respiratory regulations, and may clarify the mechanisms underlying some behaviors at HA. In general, in the past 10 years, researches on the brain at HA have gone beyond cognitive tests. Due to the sample size is not large enough, the current findings in HA brain are not very reliable, and thus much more researches are needed. Moreover, the histological and genetic bases of brain structures at HA are also needed to be elucidated.
Collapse
Affiliation(s)
- Xinjuan Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, China
- Department of Physiology, School of Medicine, Xiamen University, Xiamen, China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, China
- Department of Physiology, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Jiaxing Zhang,
| |
Collapse
|
14
|
Li Y, Wang Y. Effects of Long-Term Exposure to High Altitude Hypoxia on Cognitive Function and Its Mechanism: A Narrative Review. Brain Sci 2022; 12:808. [PMID: 35741693 PMCID: PMC9221409 DOI: 10.3390/brainsci12060808] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Cognitive function is affected by low pressure and hypoxia in high-altitude environments, and is regulated by altitude and exposure time. With the economic development in the Qinghai-Tibet Plateau, the increase in work and study activities, as well as the development of plateau tourism, mountaineering, and other activities, the number of plateau immigrants is increasing daily. Long-term hypoxia challenges human physical and mental health, restricts work efficiency, and thus affects plateau economic development and human wellbeing. Therefore, it is of scientific and social significance to study how long-term exposure to the hypoxic plateau environment affects the physical and mental health of lowlanders as part of the ongoing development of the current plateau region. In this paper, we reviewed the research progress and mechanism of the effects of long-term (≥1 year) high-altitude (>2500 m) hypoxia exposure on the cognitive function of lowlanders, and suggested that the scope and sample size of the research should be expanded in the future, and that follow-up studies should be carried out to explore the time threshold of cognitive impairment and its compensatory or repair mechanism.
Collapse
Affiliation(s)
- Yuan Li
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China;
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China
| | - Yan Wang
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China;
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Resting-State Neuronal Activity and Functional Connectivity Changes in the Visual Cortex after High Altitude Exposure: A Longitudinal Study. Brain Sci 2022; 12:brainsci12060724. [PMID: 35741609 PMCID: PMC9221383 DOI: 10.3390/brainsci12060724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/31/2022] Open
Abstract
Damage to the visual cortex structures after high altitude exposure has been well clarified. However, changes in the neuronal activity and functional connectivity (FC) of the visual cortex after hypoxia/reoxygenation remain unclear. Twenty-three sea-level college students, who took part in 30 days of teaching at high altitude (4300 m), underwent routine blood tests, visual behavior tests, and magnetic resonance imaging scans before they went to high altitude (Test 1), 7 days after they returned to sea level (Test 2), as well as 3 months (Test 3) after they returned to sea level. In this study, we investigated the hematological parameters, behavioral data, and spontaneous brain activity. There were significant differences among the tests in hematological parameters and spontaneous brain activity. The hematocrit, hemoglobin concentration, and red blood cell count were significantly increased in Test 2 as compared with Tests 1 and 3. As compared with Test 1, Test 3 increased amplitudes of low-frequency fluctuations (ALFF) in the right calcarine gyrus; Tests 2 and 3 increased ALFF in the right supplementary motor cortex, increased regional homogeneity (ReHo) in the left lingual gyrus, increased the voxel-mirrored homotopic connectivity (VMHC) value in the motor cortex, and decreased FC between the left lingual gyrus and left postcentral gyrus. The color accuracy in the visual task was positively correlated with ALFF and ReHo in Test 2. Hypoxia/reoxygenation increased functional connection between the neurons within the visual cortex and the motor cortex but decreased connection between the visual cortex and motor cortex.
Collapse
|
16
|
Bao H, He X, Wang F, Kang D. Study of Brain Structure and Function in Chronic Mountain Sickness Based on fMRI. Front Neurol 2022; 12:763835. [PMID: 35069409 PMCID: PMC8777079 DOI: 10.3389/fneur.2021.763835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Objective: Headache and memory impairment are the primary clinical symptoms of chronic mountain sickness (CMS). In this study, we used voxel-based morphometry (VBM) and the amplitude of the low-frequency fluctuation method (ALFF) based on blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) to identify changes in the brain structure and function caused by CMS. Materials and Methods: T1W anatomical images and a resting-state functional MRI (fMRI) of the whole brain were performed in 24 patients diagnosed with CMS and 25 normal controls matched for age, sex, years of education, and living altitude. MRI images were acquired, followed by VBM and ALFF data analyses. Results: Compared with the control group, the CMS group had increased gray matter volume in the left cerebellum crus II area, left inferior temporal gyrus, right middle temporal gyrus, right insula, right caudate nucleus, and bilateral lentiform nucleus along with decreased gray matter volume in the left middle occipital gyrus and left middle temporal gyrus. White matter was decreased in the bilateral middle temporal gyrus and increased in the right Heschl's gyrus. Resting-state fMRI in patients with CMS showed increased spontaneous brain activity in the left supramarginal gyrus, left parahippocampal gyrus, and left middle temporal gyrus along with decreased spontaneous brain activity in the right cerebellum crus I area and right supplementary motor area. Conclusion: Patients with CMS had differences in gray and white matter volume and abnormal spontaneous brain activity in multiple brain regions compared to the controls. This suggests that long-term chronic hypoxia may induce changes in brain structure and function, resulting in CMS.
Collapse
Affiliation(s)
- Haihua Bao
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Xin He
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Fangfang Wang
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Dongjie Kang
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
17
|
Zhu D, He B, Zhang M, Wan Y, Liu R, Wang L, Zhang Y, Li Y, Gao F. A Multimodal MR Imaging Study of the Effect of Hippocampal Damage on Affective and Cognitive Functions in a Rat Model of Chronic Exposure to a Plateau Environment. Neurochem Res 2022; 47:979-1000. [PMID: 34981302 PMCID: PMC8891211 DOI: 10.1007/s11064-021-03498-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023]
Abstract
Prolonged exposure to high altitudes above 2500 m above sea level (a.s.l.) can cause cognitive and behavioral dysfunctions. Herein, we sought to investigate the effects of chronic exposure to plateau hypoxia on the hippocampus in a rat model by using voxel-based morphometry, creatine chemical exchange saturation transfer (CrCEST) and dynamic contrast-enhanced MR imaging techniques. 58 healthy 4-week-old male rats were randomized into plateau hypoxia rats (H group) as the experimental group and plain rats (P group) as the control group. H group rats were transported from Chengdu (500 m a.s.l.), a city in a plateau located in southwestern China, to the Qinghai-Tibet Plateau (4250 m a.s.l.), Yushu, China, and then fed for 8 months there, while P group rats were fed in Chengdu (500 m a.s.l.), China. After 8 months of exposure to plateau hypoxia, open-field and elevated plus maze tests revealed that the anxiety-like behavior of the H group rats was more serious than that of the P group rats, and the Morris water maze test revealed impaired spatial memory function in the H group rats. Multimodal MR imaging analysis revealed a decreased volume of the regional gray matter, lower CrCEST contrast and higher transport coefficient Ktrans in the hippocampus compared with the P group rats. Further correlation analysis found associations of quantitative MRI parameters of the hippocampus with the behavioral performance of H group rats. In this study, we validated the viability of using noninvasive multimodal MR imaging techniques to evaluate the effects of chronic exposure to a plateau hypoxic environment on the hippocampus.
Collapse
Affiliation(s)
- Dongyong Zhu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Bo He
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Mengdi Zhang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Yixuan Wan
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Ruibin Liu
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310030, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhang
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310030, China
| | - Yunqing Li
- Department of Anatomy and KK Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China. .,Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Qiu Q, Lv P, Zhongshen Y, Yuan F, Zhang X, Zhou X, Li S, Liu X, Zhang J. Electrophysiological mechanisms underlying hypoxia-induced deficits in visual spatial and non-spatial discrimination. Physiol Rep 2021; 9:e15036. [PMID: 34558212 PMCID: PMC8461214 DOI: 10.14814/phy2.15036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
Impaired visual cognition in residents of hypoxic environment has been widely reported; however, the underlying electrophysiological mechanisms remain unclear. In this study, 23 college students underwent three sessions of a Clock task test before a 30-day high-altitude exposure (Test 1) and 1 week (Test 2) and 3 months (Test 3) after they returned to lowlands. The Clock task consists of a visual spatial angle and a visual non-spatial color discrimination subtask. Simultaneously, electroencephalography (EEG) was recorded during the Clock task. The behavioral results showed that, compared with Test 1, accuracy in Test 2 was significantly decreased in both the Angle and Color tasks, and reaction time (RT) was significantly increased in the Angle task. The event-related potentials results showed that, during both tasks amplitudes of the occipital N1 and P3 components during both tasks were significantly decreased in Test 2, compared with Test 1. Moreover, N1 amplitude was negatively correlated with RT and positively correlated with accuracy. Further time-frequency EEG analysis showed that theta power at occipital sites was significantly decreased in both tasks in Test 2, compared with Test 1, and was negatively correlated with RT in the Angle task. In Test 3, both the behavioral performance and EEG activity recovered to the baseline level in Test 1. These findings suggested that hypoxia impairs both visual spatial and visual non-spatial discriminations, and these impairments can recover after subjects return to lowlands. Inhibition of brain electrophysiological activity in the visual cortex may explain the deficits in visual cognition.
Collapse
Affiliation(s)
- Qi Qiu
- Institute of Brain Diseases and CognitionSchool of MedicineXiamen UniversityXiamenFujianChina
| | - Pengpeng Lv
- Department of Clinical MedicineSchool of MedicineXiamen UniversityXiamenFujianChina
| | - Yihao Zhongshen
- Department of Traditional Chinese MedicineSchool of MedicineXiamen UniversityXiamenFujianChina
| | - Fengjuan Yuan
- Institute of Brain Diseases and CognitionSchool of MedicineXiamen UniversityXiamenFujianChina
| | - Xinjuan Zhang
- Institute of Brain Diseases and CognitionSchool of MedicineXiamen UniversityXiamenFujianChina
| | - Xiuzhu Zhou
- Department of Gynecology and ObstetricsThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
| | - Shanhua Li
- Institute of Brain Diseases and CognitionSchool of MedicineXiamen UniversityXiamenFujianChina
| | - Xiaonan Liu
- Institute of PsychologySchool of Public PolicyXiamen UniversityXiamenFujianChina
| | - Jiaxing Zhang
- Institute of Brain Diseases and CognitionSchool of MedicineXiamen UniversityXiamenFujianChina
| |
Collapse
|
19
|
Li Z, Xue X, Li X, Bao X, Yu S, Wang Z, Liu M, Ma H, Zhang D. Neuropsychological effect of working memory capacity on mental rotation under hypoxia environment. Int J Psychophysiol 2021; 165:18-28. [PMID: 33839196 DOI: 10.1016/j.ijpsycho.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
High-altitude exposure induces the decline of spatial manipulation such as mental rotation which is limited by working memory capacity, but the underlying neuropsychological effect remains to be identified. We evaluated the mental rotation task and the contralateral delay activity (CDA) task under hypoxia environment using the event-related potential. When compared with the controls, the behavior response was slowed on two tasks in the high-altitude group. The declined mental rotation and the decreased working memory capacity were synchronously related to the amplitudes of P50 and CDA, respectively. The P50 during mental rotation was positively correlated to that of rotation-related negativity (RRN) component, so was with the CDA. Time-frequency analysis showed that the beta/alpha power in mental rotation and the theta/alpha/beta power in CDA were enhanced in the high-altitude group. The present study might suggest that the decline of working memory capacity induced poor performance of mental rotation, which may be derived from a bottom-up sensory gating deficit reflected by P50.
Collapse
Affiliation(s)
- Zefeng Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Xiaojuan Xue
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Xiaoyan Li
- Plateau Brain Science Research Center, South China Normal University/Tibet University, China
| | - Xiaohua Bao
- Plateau Brain Science Research Center, South China Normal University/Tibet University, China
| | - Sifang Yu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Zengjian Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Ming Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China; Plateau Brain Science Research Center, South China Normal University/Tibet University, China
| | - Hailin Ma
- Plateau Brain Science Research Center, South China Normal University/Tibet University, China
| | - Delong Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China; Plateau Brain Science Research Center, South China Normal University/Tibet University, China.
| |
Collapse
|
20
|
HE Y, Hu S, Ge D, Yang Q, Connor T, Zhou C. Evolutionary history of Spalacidae inferred from fossil occurrences and molecular phylogeny. Mamm Rev 2019. [DOI: 10.1111/mam.12170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ya HE
- Key Laboratory of Southwest China Wildlife Resources Conservation Institute of Ecology Institute of Rare Animals and Plants of School of Life Sciences China West Normal University Nanchong Sichuan 637009China
- Natural History Research Center Shanghai Natural History Museum Shanghai Science & Technology Museum Shanghai 200041China
| | - Shuzhan Hu
- Key Laboratory of Southwest China Wildlife Resources Conservation Institute of Ecology Institute of Rare Animals and Plants of School of Life Sciences China West Normal University Nanchong Sichuan 637009China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing 100101China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing 100101China
| | - Thomas Connor
- Department of Fisheries and Wildlife Michigan State University East Lansing Michigan48823USA
| | - Caiquan Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation Institute of Ecology Institute of Rare Animals and Plants of School of Life Sciences China West Normal University Nanchong Sichuan 637009China
| |
Collapse
|
21
|
Chen X, Li H, Zhang Q, Wang J, Zhang W, Liu J, Li B, Xin Z, Liu J, Yin H, Chen J, Kong Y, Luo W. Combined fractional anisotropy and subcortical volumetric abnormalities in healthy immigrants to high altitude: A longitudinal study. Hum Brain Mapp 2019; 40:4202-4212. [PMID: 31206892 DOI: 10.1002/hbm.24696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 01/21/2023] Open
Abstract
The study of individuals at high-altitude (HA) exposure provides an important opportunity for unraveling physiological and psychological mechanism of brain underlying hypoxia condition. However, this has rarely been assessed longitudinally. We aim to explore the cognitive and cerebral microstructural alterations after chronic HA exposure. We recruited 49 college freshmen who immigrated to Tibet and followed up for 2 years. Control group consisted of 49 gender and age-matched subjects from sea level. Neuropsychological tests were also conducted to determine whether the subjects' cognitive function had changed in response to chronic HA exposure. Surface-based cortical and subcortical volumes were calculated from structural magnetic resonance imaging data, and tract-based spatial statistics (TBSS) analysis of white matter (WM) fractional anisotropy (FA) based on diffusion weighted images were performed. Compared to healthy controls, the high-altitude exposed individuals showed significantly lower accuracy and longer reaction times in memory tests. Significantly decreased gray matter volume in the caudate region and significant FA changes in multiple WM tracts were observed for HA immigrants. Furthermore, differences in subcortical volume and WM integration were found to be significantly correlated with the cognitive changes after 2 years' HA exposure. Cognitive functions such as working memory and psychomotor function were found to be impaired during chronic HA. Differences of brain subcortical volumes and WM integration between HA and sea-level participants indicated potential impairments in the brain structural modifications and microstructural integrity of WM tracts after HA exposure.
Collapse
Affiliation(s)
- Xiaoming Chen
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Hong Li
- CAS Key Laboratory of Behavioral Sciences, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Jiye Wang
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Wenbin Zhang
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Jian Liu
- Network Center, Air Force Medical University, Xi'an, China
| | - Baojuan Li
- School of Biomedical Engineering, Air Force Medical University, Xi'an, China
| | - Zhenlong Xin
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Jie Liu
- Department of Radiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, General Hospital of Tibet Military Region, Lhasa, China
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral Sciences, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| |
Collapse
|
22
|
Hanania NA, O'Donnell DE. Activity-related dyspnea in chronic obstructive pulmonary disease: physical and psychological consequences, unmet needs, and future directions. Int J Chron Obstruct Pulmon Dis 2019; 14:1127-1138. [PMID: 31213793 PMCID: PMC6538882 DOI: 10.2147/copd.s188141] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/01/2019] [Indexed: 12/27/2022] Open
Abstract
Dyspnea is a distressing, debilitating, and near-ubiquitous symptom affecting patients with COPD. In addition to the functional consequences of dyspnea, which include activity limitation and reduced exercise tolerance, it is important to consider its psychological impact on patients with COPD, such as onset of depression or anxiety. Moreover, the anticipation of dyspnea itself can have a significant effect on patients' emotions and behavior, with patients frequently self-limiting physical activity to avoid what has become the hallmark symptom of COPD. Dyspnea is, therefore, a key target for COPD treatments. Pharmacologic treatments can optimize respiratory mechanics, provide symptom relief, and reduce patients' increased inspiratory neural drive to breathe. However, it is important to acknowledge the value of non-pharmacologic interventions, such as pulmonary rehabilitation and patient self-management education, which have proven to be invaluable tools for targeting the affective components of dyspnea. Furthermore, it is important to encourage maintenance of physical activity to optimize long-term patient outcomes. Here, we review the physiological and psychological consequences of activity-related dyspnea in COPD, assess the efficacy of modern management strategies in improving this common respiratory symptom, and discuss key unmet clinical and research needs that warrant further immediate attention.
Collapse
Affiliation(s)
- Nicola A Hanania
- Department of Medicine, Section of Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX, USA
| | - Denis E O'Donnell
- Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
23
|
Wu Q, Wu WS, Su L, Zheng X, Wu WY, Santambrogio P, Gou YJ, Hao Q, Wang PN, Li YR, Zhao BL, Nie G, Levi S, Chang YZ. Mitochondrial Ferritin Is a Hypoxia-Inducible Factor 1α-Inducible Gene That Protects from Hypoxia-Induced Cell Death in Brain. Antioxid Redox Signal 2019; 30:198-212. [PMID: 29402144 DOI: 10.1089/ars.2017.7063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: Mitochondrial ferritin (protein [FtMt]) is preferentially expressed in cell types of high metabolic activity and oxygen consumption, which is consistent with its role of sequestering iron and preventing oxygen-derived redox damage. As of yet, the mechanisms of FtMt regulation and the protection FtMt affords remain largely unknown. Results: Here, we report that hypoxia-inducible factor 1α (HIF-1α) can upregulate FtMt expression. We verify one functional hypoxia-response element (HRE) in the positive regulatory region and two HREs possessing HIF-1α binding activity in the minimal promoter region of the human FTMT gene. We also demonstrate that FtMt can alleviate hypoxia-induced brain cell death by sequestering uncommitted iron, whose levels increase with hypoxia in these cells. Innovation: In the absence of FtMt, this catalytic metal excess catalyzes the production of cytotoxic reactive oxygen species. Conclusion: Thus, the cell ability to increase expression of FtMt during hypoxia may be a skill to avoid tissue damage derived from oxygen limitation.
Collapse
Affiliation(s)
- Qiong Wu
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China .,2 Division of Neuroscience, San Raffaele Scientific Institute , Milano, Italy .,3 College of Basic Medicine, Hebei University of Chinese Medicine , Shijiazhuang, China .,4 Department of Clinical Laboratory, The Third Hospital of Hebei Medical University , Shijiazhuang, China
| | - Wen-Shuang Wu
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China .,3 College of Basic Medicine, Hebei University of Chinese Medicine , Shijiazhuang, China .,4 Department of Clinical Laboratory, The Third Hospital of Hebei Medical University , Shijiazhuang, China
| | - Lin Su
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Xin Zheng
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Wen-Yue Wu
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Paolo Santambrogio
- 2 Division of Neuroscience, San Raffaele Scientific Institute , Milano, Italy
| | - Yu-Jing Gou
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Qian Hao
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Pei-Na Wang
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Ya-Ru Li
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Bao-Lu Zhao
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Guangjun Nie
- 5 CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing, China
| | - Sonia Levi
- 2 Division of Neuroscience, San Raffaele Scientific Institute , Milano, Italy .,6 Vita-Salute San Raffaele University , Milano, Italy
| | - Yan-Zhong Chang
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| |
Collapse
|
24
|
Ma H, Li X, Liu M, Ma H, Zhang D. Mental Rotation Effect on Adult Immigrants with Long-term Exposure to High Altitude in Tibet: An ERP Study. Neuroscience 2018; 386:339-350. [PMID: 30049664 DOI: 10.1016/j.neuroscience.2018.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/19/2018] [Accepted: 06/24/2018] [Indexed: 11/25/2022]
Abstract
Human spatial manipulation ability is sensitive to high-altitude (HA) environment. The present study aimed to investigate the electrophysiological basis of spatial manipulation ability on adult immigrants with long-term HA exposure using the mental rotation (MR) task and the ERP approach. Toward this end, we explored the MR effect in individuals who immigrated to HA areas for three years compared with individuals who lived in low altitude areas. We found that the reaction time related to the MR effect was significantly slower in the HA group than that of the low-altitude group. The ERP component analysis further indicated that the rotation-related negativity (RRN) amplitude was highly corresponding to the MR effect in each group, the RRN amplitude was significantly larger in the HA group than the low-altitude group related to each rotation angle condition. The brain topographical map further showed that only the right hemisphere regions instead of the bilateral hemisphere regions involved into the MR effect in the HA group, which was different to the low-altitude group. Together, these findings might collectively suggest that the mental resource was insufficient as a result of HA exposure which can be reflected on the RRN amplitude, which may help understanding the neural basis of spatial ability change from the long-term HA exposure.
Collapse
Affiliation(s)
- Hailin Ma
- Plateau Brain Science Research Center, South China Normal University/Tibet University, Guangzhou 510631/Lhasa 850012, China; Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Xiaoyan Li
- Plateau Brain Science Research Center, South China Normal University/Tibet University, Guangzhou 510631/Lhasa 850012, China
| | - Ming Liu
- Plateau Brain Science Research Center, South China Normal University/Tibet University, Guangzhou 510631/Lhasa 850012, China; Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Huifang Ma
- College of Management, Tianjin University, Tianjin, China
| | - Delong Zhang
- Plateau Brain Science Research Center, South China Normal University/Tibet University, Guangzhou 510631/Lhasa 850012, China; Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
25
|
Wang X, Wei W, Yuan F, Li S, Lin J, Zhang J. Regional cerebral blood flow in natives at high altitude: An arterial spin labeled MRI study. J Magn Reson Imaging 2018; 48:708-717. [PMID: 29493838 DOI: 10.1002/jmri.25996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 02/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is known that a neurologic sequence occurs at high altitudes (HA); hence, cerebral blood flow (CBF) might vary by altitude. PURPOSE To use arterial spin labeled (ASL) MRI to evaluate absolute CBF differences between subjects who live at HA and lowlands. STUDY TYPE Cohort prospective trial. POPULATION In all, 64 HA Tibetans, 19 lowland Tibetans, and 25 lowland Han subjects. FIELD STRENGTH/SEQUENCE CBF was measured with the pulsed ASL sequence at 3T. ASSESSMENT CBF was correlated with abode altitude in HA Tibetans; CBF differences among HA Tibetans, lowland Tibetans, and lowland Han subjects was assessed. STATISTICAL TESTS Pearson correlation assessed the correlation. Independent t-tests analyzed group differences. RESULTS In HA Tibetans, CBF decreased with altitude in the bilateral anterior and posterior cingulate gyri, fusiform gyrus, cerebellar tonsil and cortices, and thalamus as well as left middle and inferior temporal gyri and right insula (P < 0.05); HA Tibetans (vs. lowland Tibetans) had lower CBF in the left hemisphere (precuneus, anterior cingulate gyrus, fusiform gyrus, and lingual gyrus) and right hemisphere (superior parietal lobule, precuneus, posterior cingulate gyrus, and cerebellar tonsil), while they had higher CBF in the left inferior parietal lobule, lentiform nucleus, and inferior frontal gyrus (P < 0.05). The overlapping regions, in which CBF in HA Tibetans correlated with altitude and decreased (vs. lowland Tibetans), were selected for region of interest analysis, and the results showed lower CBF in HA Tibetans than lowland Han subjects (P < 0.05). DATA CONCLUSION HA adaptation in Tibetans is associated with a decrease of regional CBF. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wenping Wei
- MRI Center, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Fengjuan Yuan
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, China
| | - Shanhua Li
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, China
| | - Jianzhong Lin
- Magnetic Resonance Center, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
26
|
Ogoh S, Nakata H, Miyamoto T, Bailey DM, Shibasaki M. Dynamic cerebral autoregulation during cognitive task: effect of hypoxia. J Appl Physiol (1985) 2018; 124:1413-1419. [PMID: 29420157 DOI: 10.1152/japplphysiol.00909.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in cerebral blood flow (CBF) subsequent to alterations in the partial pressures of oxygen and carbon dioxide can modify dynamic cerebral autoregulation (CA). While cognitive activity increases CBF, the extent to which it impacts CA remains to be established. In the present study we determined whether dynamic CA would decrease during a cognitive task and whether hypoxia would further compound impairment. Fourteen young healthy subjects performed a simple Go/No-go task during normoxia and hypoxia (inspired O2 fraction = 12%), and the corresponding relationship between mean arterial pressure (MAP) and mean middle cerebral artery blood velocity (MCA Vmean) was examined. Dynamic CA and steady-state changes in MCA V in relation to changes in arterial pressure were evaluated with transfer function analysis. While MCA Vmean increased during the cognitive activity ( P < 0.001), hypoxia did not cause any additional changes ( P = 0.804 vs. normoxia). Cognitive performance was also unaffected by hypoxia (reaction time, P = 0.712; error, P = 0.653). A decrease in the very low- and low-frequency phase shift (VLF and LF; P = 0.021 and P = 0.01) and an increase in LF gain were observed ( P = 0.037) during cognitive activity, implying impaired dynamic CA. While hypoxia also increased VLF gain ( P < 0.001), it failed to cause any additional modifications in dynamic CA. Collectively, our findings suggest that dynamic CA is impaired during cognitive activity independent of altered systemic O2 availability, although we acknowledge the interpretive complications associated with additional competing, albeit undefined, inputs that could potentially distort the MAP-MCA Vmean relationship. NEW & NOTEWORTHY During normoxia, cognitive activity while increasing cerebral perfusion was shown to attenuate dynamic cerebral autoregulation (CA) yet failed to alter reaction time, thereby questioning its functional significance. No further changes were observed during hypoxia, suggesting that impaired dynamic CA occurs independently of altered systemic O2 availability. However, impaired dynamic CA may reflect a technical artifact, given the confounding influence of additional inputs that could potentially distort the mean arterial pressure-mean middle cerebral artery blood velocity relationship.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University , Saitama , Japan
| | - Hiroki Nakata
- Department of Health Sciences, Faculty of Human Life and Environment, Nara Women's University , Nara , Japan
| | | | - Damian Miles Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales , Pontypridd , United Kingdom
| | - Manabu Shibasaki
- Department of Health Sciences, Faculty of Human Life and Environment, Nara Women's University , Nara , Japan
| |
Collapse
|
27
|
Chen X, Zhang Q, Wang J, Liu J, Zhang W, Qi S, Xu H, Li C, Zhang J, Zhao H, Meng S, Li D, Lu H, Aschner M, Li B, Yin H, Chen J, Luo W. Cognitive and neuroimaging changes in healthy immigrants upon relocation to a high altitude: A panel study. Hum Brain Mapp 2017; 38:3865-3877. [PMID: 28480993 DOI: 10.1002/hbm.23635] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Cognitive and neuroimaging changes under chronic high-altitude exposure have never been followed up and dynamically assessed. OBJECTIVES To investigate the cognitive and brain structural/functional alterations associated with chronic high-altitude exposure. METHODS Sixty-nine college freshmen that were immigrating to Tibet were enrolled and followed up for two years. Neuropsychological tests, including verbal/visual memory and simple/recognition reaction time, were utilized to determine whether the subjects' cognitive function had changed in response to chronic high-altitude exposure. Structural magnetic resonance imaging (MRI) and resting-state functional MRI (rs-fMRI) were used to quantify brain gray matter (GM) volumes, regional homogeneity (ReHo) and functional connectivity (FC) alterations before and after exposure. Areas with changes in both GM and ReHo were used as seeds in the inter-regional FC analysis. RESULTS The subjects showed significantly lower accuracy in memory tests and longer reaction times after exposure, and neuroimaging analysis showed markedly decreased GM volumes and ReHo in the left putamen. FC analysis seeding of the left putamen showed significantly weakened FC with the superior temporal gyrus, anterior/middle cingulate gyrus and other brain regions. In addition, decreased ReHo was found in the superior temporal gyrus, superior parietal lobule, anterior cingulate gyrus and medial frontal gyrus, while increased ReHo was found in the hippocampus. Differences in ReHo/FC before and after high-altitude exposure in multiple regions were significantly correlated with the cognitive changes. CONCLUSION Cognitive functions such as working memory and psychomotor function are impaired during chronic high-altitude exposure. The putamen may play an important role in chronic hypoxia-induced cognitive impairment. Hum Brain Mapp 38:3865-3877, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoming Chen
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Qian Zhang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jiye Wang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jie Liu
- Department of Radiology, General Hospital of Tibet Military Region, Lhasa, China
| | - Wenbin Zhang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Shun Qi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Xu
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Li
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinsong Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haitao Zhao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shanshan Meng
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Dan Li
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Huanyu Lu
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York
| | - Bin Li
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
28
|
Zhang J, Chen J, Fan C, Li J, Lin J, Yang T, Fan M. Alteration of Spontaneous Brain Activity After Hypoxia-Reoxygenation: A Resting-State fMRI Study. High Alt Med Biol 2017; 18:20-26. [PMID: 28266873 DOI: 10.1089/ham.2016.0083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Zhang, Jiaxing, Ji Chen, Cunxiu Fan, Jinqiang Li, Jianzhong Lin, Tianhe Yang, and Ming Fan. Alteration of spontaneous brain activity after hypoxia-reoxygenation: A resting-state fMRI study. High Alt Med Biol. 18:20-26, 2017.-The present study was designed to investigate the effect of hypoxia-reoxygenation on the spontaneous neuronal activity in brain. Sixteen sea-level (SL) soldiers (20.5 ± 0.7 years), who garrisoned the frontiers in high altitude (HA) (2300-4400 m) for two years and subsequently descended to sea level for one to seven days, were recruited. Control group consisted of 16 matched SL natives. The amplitude of low-frequency fluctuations (ALFF) of regional brain functional magnetic resonance imaging signal in resting state and functional connectivity (FC) between brain regions was analyzed. HA subjects showed significant increases of ALFF at several sites within the bilateral occipital cortices and significant decreases of ALFF in the right anterior insula and extending to the caudate, putamen, inferior frontal orbital cortex, temporal pole, and superior temporal gyrus; lower ALFF values in the right insula were positively correlated with low respiratory measurements. The right insula in HA subjects had increases of FC with the right superior temporal gyrus, postcentral gyrus, rolandic operculum, supramarginal gyrus, and inferior frontal triangular area. We thus demonstrated that hypoxia-reoxygenation had influence on the spontaneous neuronal activity in brain. The decrease of insular neuronal activity may be related to the reduction of ventilatory drive, while the increase of FC with insula may indicate a central compensation.
Collapse
Affiliation(s)
- Jiaxing Zhang
- 1 Department of Physiology, Medical College of Xiamen University , Xiamen, China
| | - Ji Chen
- 1 Department of Physiology, Medical College of Xiamen University , Xiamen, China
| | - Cunxiu Fan
- 1 Department of Physiology, Medical College of Xiamen University , Xiamen, China
| | - Jinqiang Li
- 2 Department of Clinical Psychology, Gulangyu Sanatorium of PLA , Xiamen, China
| | - Jianzhong Lin
- 3 Magnetic Resonance Center, Zhongshan Hospital Xiamen University , Xiamen, China
| | - Tianhe Yang
- 3 Magnetic Resonance Center, Zhongshan Hospital Xiamen University , Xiamen, China
| | - Ming Fan
- 4 Department of Cognitive Sciences, Institute of Basic Medical Sciences , Beijing, China
| |
Collapse
|
29
|
Wei W, Wang X, Gong Q, Fan M, Zhang J. Cortical Thickness of Native Tibetans in the Qinghai-Tibetan Plateau. AJNR Am J Neuroradiol 2017; 38:553-560. [PMID: 28104637 DOI: 10.3174/ajnr.a5050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/24/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE High-altitude environmental factors and genetic variants together could have exerted their effects on the human brain. The present study was designed to investigate the cerebral morphology in high-altitude native Tibetans. MATERIALS AND METHODS T1-weighted brain images were obtained from 77 Tibetan adolescents on the Qinghai-Tibetan Plateau (altitude, 2300-5300 m) and 80 matched Han controls living at sea level. Cortical thickness, curvature, and sulcus were analyzed by using FreeSurfer. RESULTS Cortical thickness was significantly decreased in the left posterior cingulate cortex, lingual gyrus, superior parietal cortex, precuneus, and rostral middle frontal cortex and the right medial orbitofrontal cortex, lateral occipital cortex, precuneus, and paracentral lobule. Curvature was significantly decreased in the left superior parietal cortex and right superior marginal gyrus; the depth of the sulcus was significantly increased in the left inferior temporal gyrus and significantly decreased in the right superior marginal gyrus, superior temporal gyrus, and insular cortex. Moreover, cortical thickness was negatively correlated with altitude in the left superior and middle temporal gyri, rostral middle frontal cortex, insular cortex, posterior cingulate cortex, precuneus, lingual gyrus, and the right superior temporal gyrus. Curvature was positively correlated with altitude in the left rostral middle frontal cortex, insular cortex, and middle temporal gyrus. The depth of the sulcus was negatively correlated with altitude in the left lingual gyrus and right medial orbitofrontal cortex. CONCLUSIONS Differences in cortical morphometry in native Tibetans may reflect adaptations related to high altitude.
Collapse
Affiliation(s)
- W Wei
- From the MRI Center (W.W.), First Affiliated Hospital of Xiamen University, Xiamen, China.,Institute of Brain Disease and Cognition (W.W., J.Z.), Medical College of Xiamen University, Xiamen, China
| | - X Wang
- Department of Neurology (X.W.), Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Q Gong
- Huaxi Magnetic Resonance Research Center (Q.G.), West China Hospital, Sichuan University, Chengdu, China
| | - M Fan
- Department of Cognitive Sciences (M.F.), Institute of Basic Medical Sciences, Beijing, China
| | - J Zhang
- Institute of Brain Disease and Cognition (W.W., J.Z.), Medical College of Xiamen University, Xiamen, China
| |
Collapse
|
30
|
Fan C, Zhao Y, Yu Q, Yin W, Liu H, Lin J, Yang T, Fan M, Gesang L, Zhang J. Reversible Brain Abnormalities in People Without Signs of Mountain Sickness During High-Altitude Exposure. Sci Rep 2016; 6:33596. [PMID: 27633944 PMCID: PMC5025655 DOI: 10.1038/srep33596] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/30/2016] [Indexed: 01/23/2023] Open
Abstract
A large proportion of lowlanders ascending to high-altitude (HA) show no signs of mountain sickness. Whether their brains have indeed suffered from HA environment and the persistent sequelae after return to lowland remain unknown. Thirty-one sea-level college students, who had a 30-day teaching on Qinghai-Tibet plateau underwent MRI scans before, during, and two months after HA exposure. Brain volume, cortical structures, and white matter microstructure were measured. Besides, serum neuron-specific enolase (NSE), C-reactive protein, and interleukin-6 and neuropsychiatric behaviors were tested. After 30-day HA exposure, the gray and white matter volumes and cortical surface areas significantly increased, with cortical thicknesses and curvatures changed in a wide spread regions; Anisotropy decreased with diffusivities increased in multiple sites of white matter tracts. Two months after HA exposure, cortical measurements returned to basal level. However, increased anisotropy with decreased diffusivities was observed. Behaviors and serum inflammatory factor did not significant changed during three time-point tests. NSE significantly decreased during HA but increased after HA exposure. Results suggest brain swelling occurred in people without neurological signs at HA, but no negative sequelae in cortical structures and neuropsychiatric functions were left after the return to lowlands. Reoxygenation changed white matter microstructure.
Collapse
Affiliation(s)
- Cunxiu Fan
- Department of Physiology, Medical College of Xiamen University, Xiamen 361102, Fujian, China
| | - Yuhua Zhao
- Institute of high altitude medicine, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Qian Yu
- Department of Physiology, Medical College of Xiamen University, Xiamen 361102, Fujian, China
| | - Wu Yin
- Department of Radiology, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Haipeng Liu
- Department of Radiology, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Jianzhong Lin
- Magnetic Resonance Center, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Tianhe Yang
- Magnetic Resonance Center, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Luobu Gesang
- Institute of high altitude medicine, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Jiaxing Zhang
- Department of Physiology, Medical College of Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
31
|
Chen J, Li J, Han Q, Lin J, Yang T, Chen Z, Zhang J. Long-term acclimatization to high-altitude hypoxia modifies interhemispheric functional and structural connectivity in the adult brain. Brain Behav 2016; 6:e00512. [PMID: 27688941 PMCID: PMC5036434 DOI: 10.1002/brb3.512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Structural and functional networks can be reorganized to adjust to environmental pressures and physiologic changes in the adult brain, but such processes remain unclear in prolonged adaptation to high-altitude (HA) hypoxia. This study aimed to characterize the interhemispheric functionally and structurally coupled modifications in the brains of adult HA immigrants. METHODS We performed resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) in 16 adults who had immigrated to the Qinghai-Tibet Plateau (2300-4400 m) for 2 years and in 16 age-matched sea-level (SL) controls. A recently validated approach of voxel-mirrored homotopic connectivity (VMHC) was employed to examine the interhemispheric resting-state functional connectivity. Areas showing changed VMHC in HA immigrants were selected as regions of interest for follow-up DTI tractography analysis. The fiber parameters of fractional anisotropy and fiber length were obtained. Cognitive and physiological assessments were made and correlated with the resulting image metrics. RESULTS Compared with SL controls, VMHC in the bilateral visual cortex was significantly increased in HA immigrants. The mean VMHC value extracted within the visual cortex was positively correlated with hemoglobin concentration. Moreover, the path length of the commissural fibers connecting homotopic visual areas was increased in HA immigrants, covarying positively with VMHC. CONCLUSIONS These observations are the first to demonstrate interhemispheric functional and structural connectivity resilience in the adult brain after prolonged HA acclimatization independent of inherited and developmental effects, and the coupled modifications in the bilateral visual cortex indicate important neural compensatory mechanisms underlying visual dysfunction in physiologically well-acclimatized HA immigrants. The study of human central adaptation to extreme environments promotes the understanding of our brain's capacity for survival.
Collapse
Affiliation(s)
- Ji Chen
- Department of Medical ImagingFuzhou Dongfang HospitalXiamen UniversityFuzhouFujianChina
- Department of Physiology and NeurobiologyMedical College of Xiamen UniversityXiamenFujianChina
| | - Jinqiang Li
- Department of Clinical PsychologyGulangyu Sanatorium of PLAXiamenFujianChina
| | - Qiaoqing Han
- Department of Clinical PsychologyGulangyu Sanatorium of PLAXiamenFujianChina
| | - Jianzhong Lin
- Magnetic Resonance CenterThe Affiliated Zhongshan Hospital of Xiamen UniversityXiamenFujianChina
| | - Tianhe Yang
- Magnetic Resonance CenterThe Affiliated Zhongshan Hospital of Xiamen UniversityXiamenFujianChina
| | - Ziqian Chen
- Department of Medical ImagingFuzhou Dongfang HospitalXiamen UniversityFuzhouFujianChina
| | - Jiaxing Zhang
- Department of Physiology and NeurobiologyMedical College of Xiamen UniversityXiamenFujianChina
| |
Collapse
|
32
|
Liu J, Liu Y, Ren LH, Li L, Wang Z, Liu SS, Li SZ, Cao TS. Effects of race and sex on cerebral hemodynamics, oxygen delivery and blood flow distribution in response to high altitude. Sci Rep 2016; 6:30500. [PMID: 27503416 PMCID: PMC4977556 DOI: 10.1038/srep30500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
To assess racial, sexual, and regional differences in cerebral hemodynamic response to high altitude (HA, 3658 m). We performed cross-sectional comparisons on total cerebral blood flow (TCBF = sum of bilateral internal carotid and vertebral arterial blood flows = QICA + QVA), total cerebrovascular resistance (TCVR), total cerebral oxygen delivery (TCOD) and QVA/TCBF (%), among six groups of young healthy subjects: Tibetans (2-year staying) and Han (Han Chinese) at sea level, Han (2-day, 1-year and 5-year) and Tibetans at HA. Bilateral ICA and VA diameters and flow velocities were derived from duplex ultrasonography; and simultaneous measurements of arterial pressure, oxygen saturation, and hemoglobin concentration were conducted. Neither acute (2-day) nor chronic (>1 year) responses showed sex differences in Han, except that women showed lower TCOD compared with men. Tibetans and Han exhibited different chronic responses (percentage alteration relative to the sea-level counterpart value) in TCBF (−17% vs. 0%), TCVR (22% vs. 12%), TCOD (0% vs. 10%) and QVA/TCBF (0% vs. 2.4%, absolute increase), with lower resting TCOD found in SL- and HA-Tibetans. Our findings indicate racial but not sex differences in cerebral hemodynamic adaptations to HA, with Tibetans (but not Han) demonstrating an altitude-related change of CBF distribution.
Collapse
Affiliation(s)
- Jie Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li-Hua Ren
- General Hospital of Tibet Military Area Command, Lhasa, Tibet Autonomous Region, China
| | - Li Li
- Department of Ultrasonic Medicine, Affiliated Hospital of Tibet University for Nationalities, Xianyang, Shaanxi, China
| | - Zhen Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shan-Shan Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Su-Zhi Li
- General Hospital of Tibet Military Area Command, Lhasa, Tibet Autonomous Region, China
| | - Tie-Sheng Cao
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
33
|
Arya A, Gangwar A, Singh SK, Roy M, Das M, Sethy NK, Bhargava K. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK-PKC-CBP signaling cascade. Int J Nanomedicine 2016; 11:1159-73. [PMID: 27069362 PMCID: PMC4818056 DOI: 10.2147/ijn.s102096] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5′-adenine monophosphate-activated protein kinase–protein kinase C–cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases.
Collapse
Affiliation(s)
- Aditya Arya
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Anamika Gangwar
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Sushil Kumar Singh
- Functional Materials Division, Solid State Physics Laboratory, Defense Research and Development Organization, Timarpur, Delhi, India
| | - Manas Roy
- Biological Science and Bioengineering, Indian Institute of Technology, Kanpur, India; Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Mainak Das
- Biological Science and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Kalpana Bhargava
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| |
Collapse
|
34
|
Chen J, Fan C, Li J, Han Q, Lin J, Yang T, Zhang J. Increased Intraregional Synchronized Neural Activity in Adult Brain After Prolonged Adaptation to High-Altitude Hypoxia: A Resting-State fMRI Study. High Alt Med Biol 2016; 17:16-24. [PMID: 26906285 DOI: 10.1089/ham.2015.0104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human brain is intrinsically plastic such that its functional architecture can be reorganized in response to environmental pressures and physiological changes. However, it remains unclear whether a compensatory modification of spontaneous neural activity occurs in adult brain during prolonged high-altitude (HA) adaptation. In this study, we obtained resting-state functional magnetic resonance (MR) images in 16 adults who have immigrated to Qinghai-Tibet Plateau (2300-4400 m) for 2 years and in 16 age-matched sea level (SL) controls. A validated regional homogeneity (Reho) method was employed to investigate the local synchronization of resting-state functional magnetic resonance imaging (fMRI) signals. Seed connectivity analysis was carried out subsequently. Cognitive and physiological assessments were made and correlated with the image metrics. Compared with SL controls, global mean Reho was significantly increased in HA immigrants as well as a regional increase in the right inferolateral sensorimotor cortex. Furthermore, mean z-Reho value extracted within the inferolateral sensorimotor area showed trend-level significant inverse correlation with memory search reaction time in HA immigrants. These observations, for the first time, provide evidence of adult brain resilience of spontaneous neural activity after long-term HA exposure without inherited and developmental effects. Resting-state fMRI could yield valuable information for central mechanisms underlying respiratory and cognitive compensations in adults during prolonged environmentally hypoxic adaptation, paving the way for future HA-adaptive training.
Collapse
Affiliation(s)
- Ji Chen
- 1 Department of Physiology and Neurobiology, Medical College of Xiamen University , Xiamen, Fujian, China .,2 Department of Medical Imaging Center, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA , Fuzhou, Fujian, China
| | - Cunxiu Fan
- 1 Department of Physiology and Neurobiology, Medical College of Xiamen University , Xiamen, Fujian, China
| | - Jinqiang Li
- 3 Department of Clinical Psychology, Gulangyu Sanatorium of PLA , Xiamen, Fujian, China
| | - Qiaoqing Han
- 3 Department of Clinical Psychology, Gulangyu Sanatorium of PLA , Xiamen, Fujian, China
| | - Jianzhong Lin
- 4 Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University , Xiamen, Fujian, China
| | - Tianhe Yang
- 4 Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University , Xiamen, Fujian, China
| | - Jiaxing Zhang
- 1 Department of Physiology and Neurobiology, Medical College of Xiamen University , Xiamen, Fujian, China
| |
Collapse
|
35
|
Taylor L, Watkins SL, Marshall H, Dascombe BJ, Foster J. The Impact of Different Environmental Conditions on Cognitive Function: A Focused Review. Front Physiol 2016; 6:372. [PMID: 26779029 PMCID: PMC4701920 DOI: 10.3389/fphys.2015.00372] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023] Open
Abstract
Cognitive function defines performance in objective tasks that require conscious mental effort. Extreme environments, namely heat, hypoxia, and cold can all alter human cognitive function due to a variety of psychological and/or biological processes. The aims of this Focused Review were to discuss; (1) the current state of knowledge on the effects of heat, hypoxic and cold stress on cognitive function, (2) the potential mechanisms underpinning these alterations, and (3) plausible interventions that may maintain cognitive function upon exposure to each of these environmental stressors. The available evidence suggests that the effects of heat, hypoxia, and cold stress on cognitive function are both task and severity dependent. Complex tasks are particularly vulnerable to extreme heat stress, whereas both simple and complex task performance appear to be vulnerable at even at moderate altitudes. Cold stress also appears to negatively impact both simple and complex task performance, however, the research in this area is sparse in comparison to heat and hypoxia. In summary, this focused review provides updated knowledge regarding the effects of extreme environmental stressors on cognitive function and their biological underpinnings. Tyrosine supplementation may help individuals maintain cognitive function in very hot, hypoxic, and/or cold conditions. However, more research is needed to clarify these and other postulated interventions.
Collapse
Affiliation(s)
- Lee Taylor
- ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research CentreDoha, Qatar
- Applied Sport and Exercise Physiology Research Group, Department of Sport Science and Physical Activity, Institute for Sport and Physical Activity Research, University of BedfordshireBedford, UK
| | - Samuel L. Watkins
- Applied Sport and Exercise Physiology Research Group, Department of Sport Science and Physical Activity, Institute for Sport and Physical Activity Research, University of BedfordshireBedford, UK
| | - Hannah Marshall
- Applied Sport and Exercise Physiology Research Group, Department of Sport Science and Physical Activity, Institute for Sport and Physical Activity Research, University of BedfordshireBedford, UK
| | - Ben J. Dascombe
- Applied Sport Science and Exercise Testing Laboratory, Faculty of Science and Information Technology, University of NewcastleOurimbah, NSW, Australia
| | - Josh Foster
- Applied Sport and Exercise Physiology Research Group, Department of Sport Science and Physical Activity, Institute for Sport and Physical Activity Research, University of BedfordshireBedford, UK
| |
Collapse
|
36
|
Li K, Guo X, Jin Z, Ouyang X, Zeng Y, Feng J, Wang Y, Yao L, Ma L. Effect of Simulated Microgravity on Human Brain Gray Matter and White Matter--Evidence from MRI. PLoS One 2015; 10:e0135835. [PMID: 26270525 PMCID: PMC4535759 DOI: 10.1371/journal.pone.0135835] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There is limited and inconclusive evidence that space environment, especially microgravity condition, may affect microstructure of human brain. This experiment hypothesized that there would be modifications in gray matter (GM) and white matter (WM) of the brain due to microgravity. METHOD Eighteen male volunteers were recruited and fourteen volunteers underwent -6° head-down bed rest (HDBR) for 30 days simulated microgravity. High-resolution brain anatomical imaging data and diffusion tensor imaging images were collected on a 3T MR system before and after HDBR. We applied voxel-based morphometry and tract-based spatial statistics analysis to investigate the structural changes in GM and WM of brain. RESULTS We observed significant decreases of GM volume in the bilateral frontal lobes, temporal poles, parahippocampal gyrus, insula and right hippocampus, and increases of GM volume in the vermis, bilateral paracentral lobule, right precuneus gyrus, left precentral gyrus and left postcentral gyrus after HDBR. Fractional anisotropy (FA) changes were also observed in multiple WM tracts. CONCLUSION These regions showing GM changes are closely associated with the functional domains of performance, locomotion, learning, memory and coordination. Regional WM alterations may be related to brain function decline and adaption. Our findings provide the neuroanatomical evidence of brain dysfunction or plasticity in microgravity condition and a deeper insight into the cerebral mechanisms in microgravity condition.
Collapse
Affiliation(s)
- Ke Li
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
- Magnetic Resonance Center, 306 Hospital of PLA, Beijing, China
| | - Xiaojuan Guo
- College of Information Science and Technology, Beijing Normal University, Beijing, China
| | - Zhen Jin
- Magnetic Resonance Center, 306 Hospital of PLA, Beijing, China
| | - Xin Ouyang
- College of Information Science and Technology, Beijing Normal University, Beijing, China
| | - Yawei Zeng
- Magnetic Resonance Center, 306 Hospital of PLA, Beijing, China
| | - Jinsheng Feng
- The Third Laboratory, China Astronaut Research and Training Centre, Beijing, China
| | - Yu Wang
- Outpatient Department of 61599 Unit of PLA, Beijing, China
| | - Li Yao
- College of Information Science and Technology, Beijing Normal University, Beijing, China
| | - Lin Ma
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
- * E-mail:
| |
Collapse
|
37
|
Wang J, Xu SZ, Zha Y, Bbu CF, Li LJY, Duan YY. Comparative sonographic study of cerebral hemodynamic differences and changes after oxygen therapy in healthy youths of different ethnicities in Tibet. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2015; 34:1107-1114. [PMID: 26014331 DOI: 10.7863/ultra.34.6.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVES The purpose of this study was to sonographically assess the cerebral hemodynamic differences and changes after oxygen therapy in healthy youths of different ethnicities in Tibet. METHODS Sixty-six healthy young Han visitors and 29 healthy young Tibetan residents were divided into 4 groups. Basic information was collected. Pulsed Doppler sonography was used to record the cerebral hemodynamic parameters for the internal carotid, vertebral, and middle cerebral arteries. The participants were then instructed to inhale oxygen, and basic information and cerebral hemodynamic parameters were recorded at 1, 2, 4, and 8 minutes, respectively. Differences in these parameters between groups were analyzed. RESULTS In comparisons of the flow parameters between sex-matched groups, the mean resistive index values for the internal carotid, vertebral, and middle cerebral arteries in the Han groups were significantly lower than those in the Tibetan groups (P <. 05). The mean peak systolic velocity, end-diastolic velocity, and mean velocity values for the middle cerebral artery in the Han groups were significantly higher than those in the Tibetan groups (P < .05). After oxygen uptake, there were no significant differences in the mean arterial oxygen saturation, heart rate, mean velocity, and resistive index values between the male groups, and similar changes were found for the arterial oxygen saturation and peak systolic velocity values between female groups after 8 minutes of oxygen uptake (P > .05). CONCLUSIONS Sonography is a useful modality for noninvasive and real-time detection of changes in cerebral hemodynamics and can provide reference values for the prevention and treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Jia Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (J.W., L.J.Y., Y.Y.D.); and Department of Special Examination, Tibet Corps Hospital, Chinese People's Armed Police Forces, Lhasa, China (S.Z.X., Y.Z., C.F.B.)
| | - Shu Zhen Xu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (J.W., L.J.Y., Y.Y.D.); and Department of Special Examination, Tibet Corps Hospital, Chinese People's Armed Police Forces, Lhasa, China (S.Z.X., Y.Z., C.F.B.).
| | - Yong Zha
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (J.W., L.J.Y., Y.Y.D.); and Department of Special Examination, Tibet Corps Hospital, Chinese People's Armed Police Forces, Lhasa, China (S.Z.X., Y.Z., C.F.B.)
| | - Ciugene F Bbu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (J.W., L.J.Y., Y.Y.D.); and Department of Special Examination, Tibet Corps Hospital, Chinese People's Armed Police Forces, Lhasa, China (S.Z.X., Y.Z., C.F.B.)
| | - Li Jun Yuan Li
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (J.W., L.J.Y., Y.Y.D.); and Department of Special Examination, Tibet Corps Hospital, Chinese People's Armed Police Forces, Lhasa, China (S.Z.X., Y.Z., C.F.B.)
| | - Yun You Duan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (J.W., L.J.Y., Y.Y.D.); and Department of Special Examination, Tibet Corps Hospital, Chinese People's Armed Police Forces, Lhasa, China (S.Z.X., Y.Z., C.F.B.)
| |
Collapse
|
38
|
Yang Z, Craddock RC, Milham MP. Impact of hematocrit on measurements of the intrinsic brain. Front Neurosci 2015; 8:452. [PMID: 25653582 PMCID: PMC4299407 DOI: 10.3389/fnins.2014.00452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/22/2014] [Indexed: 01/19/2023] Open
Abstract
Blood oxygenation level dependent (BOLD)–based functional MRI (fMRI) is a widely utilized neuroimaging technique for mapping brain function. Hematocrit (HCT), a global hematologic marker of the amount of hemoglobin in blood, is known to impact task-evoked BOLD activation. Yet, its impact on resting-state fMRI (R-fMRI) measures has not been characterized. We address this gap by testing for associations between HCT level and inter-individual variation in commonly employed R-fMRI indices of intrinsic brain function from 45 healthy adults. Given known sex differences in HCT, we also examined potential sex differences. Variation in baseline HCT among individuals were associated with regional differences in four of the six intrinsic brain indices examined. Portions of the default (anterior cingulate cortex/medial prefrontal cortex: ACC/MPFC), dorsal attention (intraparietal sulcus), and salience (insular and opercular cortex) network showed relationships with HCT for two measures. The relationships within MPFC, as well as visual and cerebellar networks, were modulated by sex. These results suggest that inter-individual variations in HCT can serve as a source of variations in R-fMRI derivatives at a regional level. Future work is needed to delineate whether this association is attributable to neural or non-neuronal source of variations and whether these effects are related to acute or chronic differences in HCT level.
Collapse
Affiliation(s)
- Zhen Yang
- Center for the Developing Brain, Child Mind Institute New York, NY, USA ; Nathan Kline Institute for Psychiatric Research Orangeburg, NY, USA
| | - R Cameron Craddock
- Center for the Developing Brain, Child Mind Institute New York, NY, USA ; Nathan Kline Institute for Psychiatric Research Orangeburg, NY, USA
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute New York, NY, USA ; Nathan Kline Institute for Psychiatric Research Orangeburg, NY, USA
| |
Collapse
|
39
|
Bogdanova OV, Abdullah O, Kanekar S, Bogdanov VB, Prescot AP, Renshaw PF. Neurochemical alterations in frontal cortex of the rat after one week of hypobaric hypoxia. Behav Brain Res 2014; 263:203-9. [PMID: 24486259 PMCID: PMC4699295 DOI: 10.1016/j.bbr.2014.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/16/2022]
Abstract
Residing at high altitude may lead to reduced blood oxygen saturation in the brain and altered metabolism in frontal cortical brain areas, probably due to chronic hypobaric hypoxia. These changes may underlie the increased rates of depression and suicidal behavior that have been associated with life at higher altitudes. To test the hypothesis that hypobaric hypoxia is responsible for development of mood disorders due to alterations in neurochemistry, we assessed depression-like behavior in parallel to levels of brain metabolites in rats housed at simulated altitude. 32 female Sprague Dawley rats were housed either in a hypobaric hypoxia chamber at 10,000 ft of simulated altitude for 1 week or at local conditions (4500 ft of elevation in Salt Lake City, Utah). Depression-like behavior was assessed using the forced swim test (FST) and levels of neurometabolites were estimated by in vivo proton magnetic resonance spectroscopy in the frontal cortex, the striatum and the hippocampus at baseline and after a week of exposure to hypobaric hypoxia. After hypoxia exposure the animals demonstrated increased immobility behavior and shortened latency to immobility in the FST. Elevated ratios of myo-inositol, glutamate, and the sum of myo-inositol and glycine to total creatine were observed in the frontal cortex of hypoxia treated rats. A decrease in the ratio of alanine to total creatine was also noted. This study shows that hypoxia induced alterations in frontal lobe brain metabolites, aggravated depression-like behavior and might be a factor in increased rates of psychiatric disorders observed in populations living at high altitudes.
Collapse
Affiliation(s)
- Olena V Bogdanova
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA.
| | - Osama Abdullah
- Department of Bioengineering, University of Utah, 36 S. Wasatch Drive, Salt Lake City 84112, UT USA
| | - Shami Kanekar
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; Psychiatry Department, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA
| | - Volodymyr B Bogdanov
- INRA, Nutrition et Neurobiologie Intégrée and University Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 146 rue Léo-Saignat, Bordeaux Cedex 33076, France
| | - Andrew P Prescot
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; Department of Radiology, University of Utah, 30 North 1900 East, Salt Lake City 84132, UT USA
| | - Perry F Renshaw
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; Psychiatry Department, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; VISN19 MIRECC Salt Lake City UAMC, 500 Foothill Drive, Salt Lake City 84148, UT USA
| |
Collapse
|
40
|
Investigation of whole-brain white matter identifies altered water mobility in the pathogenesis of high-altitude headache. J Cereb Blood Flow Metab 2013; 33:1286-94. [PMID: 23736642 PMCID: PMC3734781 DOI: 10.1038/jcbfm.2013.83] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/02/2013] [Accepted: 05/02/2013] [Indexed: 11/08/2022]
Abstract
Elevated brain water is a common finding in individuals with severe forms of altitude illness. However, the location, nature, and a causative link between brain edema and symptoms of acute mountain sickness such as headache remains unknown. We examined indices of brain white matter water mobility in 13 participants after 2 and 10 hours in normoxia (21% O2) and hypoxia (12% O2) using magnetic resonance imaging. Using a whole-brain analysis (tract-based spatial statistics (TBSS)), mean diffusivity was reduced in the left posterior hemisphere after 2 hours and globally reduced throughout cerebral white matter by 10 hours in hypoxia. However, no changes in T2 relaxation time (T2) or fractional anisotropy were observed. The TBSS identified an association between changes in mean diffusivity, fractional anisotropy, and T2 both supra and subtentorially after 2 and 10 hours, with headache score after 10 hours in hypoxia. Region of interest-based analyses generally confirmed these results. These data indicate that acute periods of hypoxemia cause a shift of water into the intracellular space within the cerebral white matter, whereas no evidence of brain edema (a volumetric enlargement) is identifiable. Furthermore, these changes in brain water mobility are related to the intensity of high-altitude headache.
Collapse
|
41
|
Adaptive modulation of adult brain gray and white matter to high altitude: structural MRI studies. PLoS One 2013; 8:e68621. [PMID: 23874692 PMCID: PMC3712920 DOI: 10.1371/journal.pone.0068621] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/31/2013] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to investigate brain structural alterations in adult immigrants who adapted to high altitude (HA). Voxel-based morphometry analysis of gray matter (GM) volumes, surface-based analysis of cortical thickness, and Tract-Based Spatial Statistics analysis of white matter fractional anisotropy (FA) based on MRI images were conducted on 16 adults (20–22 years) who immigrated to the Qinghai-Tibet Plateau (2300–4400 m) for 2 years. They had no chronic mountain sickness. Control group consisted of 16 matched sea level subjects. A battery of neuropsychological tests was also conducted. HA immigrants showed significantly decreased GM volumes in the right postcentral gyrus and right superior frontal gyrus, and increased GM volumes in the right middle frontal gyrus, right parahippocampal gyrus, right inferior and middle temporal gyri, bilateral inferior ventral pons, and right cerebellum crus1. While there was some divergence in the left hemisphere, surface-based patterns of GM changes in the right hemisphere resembled those seen for VBM analysis. FA changes were observed in multiple WM tracts. HA immigrants showed significant impairment in pulmonary function, increase in reaction time, and deficit in mental rotation. Parahippocampal and middle frontal GM volumes correlated with vital capacity. Superior frontal GM volume correlated with mental rotation and postcentral GM correlated with reaction time. Paracentral lobule and frontal FA correlated with mental rotation reaction time. There might be structural modifications occurred in the adult immigrants during adaptation to HA. The changes in GM may be related to impaired respiratory function and psychological deficits.
Collapse
|
42
|
Zhang J, Zhang H, Chen J, Fan M, Gong Q. Structural modulation of brain development by oxygen: evidence on adolescents migrating from high altitude to sea level environment. PLoS One 2013; 8:e67803. [PMID: 23874449 PMCID: PMC3706444 DOI: 10.1371/journal.pone.0067803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 05/27/2013] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to investigate structural modulation of brain by high level of oxygen during its peak period of development. Voxel-based morphometry analysis of gray matter (GM) and white matter (WM) volumes and Tract-Based Spatial Statistics analysis of WM fractional anisotropy (FA) and mean diffusion (MD) based on MRI images were carried out on 21 Tibetan adolencents (15-18 years), who were born and raised in Qinghai-Tibetan Plateau (2900-4700 m) and have lived at sea level (SL) in the last 4 years. The control group consisted of matched Tibetan adolescents born and raised at high altitude all the time. SL immigrants had increased GM volume in the left insula, left inferior parietal gyrus, and right superior parietal gyrus and decreased GM in the left precentral cortex and multiple sites in cerebellar cortex (left lobule 8, bilateral lobule 6 and crus 1/2). Decreased WM volume was found in the right superior frontal gyrus in SL immigrants. SL immigrants had higher FA and lower MD at multiple sites of WM tracts. Moreover, we detected changes in ventilation and circulation. GM volume in cerebellum lobule 8 positively correlated with diastolic pressure, while GM volume in insula positively correlated vital capacity and hypoxic ventilatory response. Our finding indicate that the structural modulations of GM by high level of oxygen during its peak period of development are related to respiratory and circulatory regulations, while the modulation in WM mainly exhibits an enhancement in myelin maturation.
Collapse
Affiliation(s)
- Jiaxing Zhang
- Department of Physiology and Neurobiology, Medical College of Xiamen University, Xiamen, China
| | - Haiyan Zhang
- Department of Physiology and Neurobiology, Medical College of Xiamen University, Xiamen, China
- Department of Physiology, Weifang Nursing Vocational College, Weifang, China
| | - Ji Chen
- Department of Physiology and Neurobiology, Medical College of Xiamen University, Xiamen, China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, China
| | - Qiyong Gong
- Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Zhang H, Wang X, Lin J, Sun Y, Huang Y, Yang T, Zheng S, Fan M, Zhang J. Reduced regional gray matter volume in patients with chronic obstructive pulmonary disease: a voxel-based morphometry study. AJNR Am J Neuroradiol 2013; 34:334-9. [PMID: 22859277 DOI: 10.3174/ajnr.a3235] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE Decreased oxygen supply may cause neuronal damage in the brains of patients with COPD, which is manifested by clinical symptoms such as neuropsychological deficits and mood disorders. The aim of the present study was to investigate brain gray matter change in COPD. MATERIALS AND METHODS Using voxel-based morphometry based on the high-resolution 3D T1-weighted MR images of GM volume, we investigated 25 stable patients with COPD and 25 matching healthy volunteers. A battery of neuropsychological tests was also performed. RESULTS Patients with COPD (versus controls) showed reduced GM volume in the frontal cortex (bilateral gyrus rectus, bilateral orbital and inferior triangular gyri, and left medial superior gyrus), right anterior insula, cingulate cortex (left anterior and middle gyri, right middle gyrus), right thalamus/pulvinar, right caudate, right putamen, right parahippocampus, and left amygdala. In COPD, in some of these regions, regional GM volume had positive correlations with arterial blood po(2), while in some regions, regional GM volume had negative correlations with disease duration. Patients with COPD (versus controls) had poorer performance in the Mini-Mental State Examination, Visual Reproduction, and Figure Memory tests. Moreover, the GM volume in the inferior triangular frontal cortex in patients with COPD was significantly correlated with the Picture Memory score. CONCLUSIONS Our findings suggest GM reductions in a number of brain regions in COPD, which were associated with disease severity and may underlie the pathophysiologic and psychological changes in patients with COPD.
Collapse
Affiliation(s)
- H Zhang
- Department of Physiology and Neurobiology, Medical College of Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sharma NK, Sethy NK, Bhargava K. Comparative proteome analysis reveals differential regulation of glycolytic and antioxidant enzymes in cortex and hippocampus exposed to short-term hypobaric hypoxia. J Proteomics 2013; 79:277-98. [PMID: 23313218 DOI: 10.1016/j.jprot.2012.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/06/2012] [Accepted: 12/26/2012] [Indexed: 11/24/2022]
Abstract
Hypoxia is one of the major stressors at high altitude. Exposure to hypobaric hypoxia induces several adverse consequences to the structural and functional integrity of brain. In an attempt to understand the proteome modulation, we used 2-DE coupled with MALDI-TOF/TOF for cortex and hippocampus exposed to short-term temporal (0, 3, 6, 12 and 24h) hypobaric hypoxia. This enabled us in the identification of 88 and 73 hypoxia responsive proteins in cortex and hippocampus respectively. We further compared the proteomes of both the regions and identified 37 common proteins along with 49 and 32 specific proteins for cortex and hippocampus respectively. We observed significant up-regulation of glycolytic enzymes like Gapdh, Pgam1, Eno1 and malate-aspartate shuttle enzymes Mdh1 and Got1in cortex as compared to hippocampus deciphering efficient use of energy producing substrates. This was coupled with concomitant increase in expression of antioxidant enzymes like Sod1, Sod2 and Pebp1 in cortex to neutralize the hypoxia-induced reactive oxygen species (ROS) generation. Our comparative proteomics studies demonstrate that efficient use of energy generating pathways in conjugation with abundance of antioxidant enzymes makes cortex less vulnerable to hypoxia than hippocampus.
Collapse
Affiliation(s)
- Narendra Kumar Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110 054, INDIA
| | | | | |
Collapse
|
45
|
Zhang H, Lin J, Sun Y, Huang Y, Ye H, Wang X, Yang T, Jiang X, Zhang J. Compromised white matter microstructural integrity after mountain climbing: evidence from diffusion tensor imaging. High Alt Med Biol 2012; 13:118-25. [PMID: 22724615 DOI: 10.1089/ham.2011.1073] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of the present study was to investigate cerebral microstructural alterations after single short-term mountain climbing. Voxel-based morphometry (VBM) analysis of gray matter (GM) and white matter (WM) volumes and Tract-Based Spatial Statistics (TBSS) analysis of WM fractional anisotropy (FA) based on MRI images were carried out on 14 mountaineers before and after mountain climbing (6206 m). In addition, verbal and spatial 'two-back' tasks and serial reaction time task were also tested. No significant changes were detected in total and regional volumes of GM, WM, and cerebral spinal fluid after mountain climbing. Significant decreased FA values were found in the bilateral corticospinal tract, corpus callosum (anterior and posterior body, splenium), reticular formation of dorsal midbrain, left superior longitudinal fasciculus, right posterior cingulum bundles, and left middle cerebellar peduncle. In all the above regions, the radial diffusivity values tended to increase, except in the left superior longitudinal fasciculus the change was statistically significant. There were no significant changes in the two cognitive tests after mountain climbing. These findings indicate that short-term high-altitude exposure leads to disturbances mainly in cerebral WM, showing compromised fiber microstructural integrity, which may clarify the mechanisms underlining some cognitive and motor deficits tested previously.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Physiology and Neurobiology, Medical College of Xiamen University, Xiamen, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang H, Wang X, Lin J, Sun Y, Huang Y, Yang T, Zheng S, Fan M, Zhang J. Grey and white matter abnormalities in chronic obstructive pulmonary disease: a case-control study. BMJ Open 2012; 2:e000844. [PMID: 22535793 PMCID: PMC3341600 DOI: 10.1136/bmjopen-2012-000844] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES The irreversible airflow limitation characterised by chronic obstructive pulmonary disease (COPD) causes a decrease in the oxygen supply to the brain. The aim of the present study was to investigate brain structural damage in COPD. DESIGN Retrospective case-control study. Patients with COPD and healthy volunteers were recruited. The two groups were matched in age, gender and educational background. SETTING A hospital and a number of communities: they are all located in southern Fujian province, China. PARTICIPANTS 25 stable patients and 25 controls were enrolled from December 2009 to May 2011. METHODS Using voxel-based morphometry and tract-based spatial statistics based on MRI to analyse grey matter (GM) density and white matter fractional anisotropy (FA), respectively, and a battery of neuropsychological tests were performed. RESULTS Patients with COPD (vs controls) showed decreased GM density in the limbic and paralimbic structures, including right gyrus rectus, left precentral gyrus, bilateral anterior and middle cingulate gyri, bilateral superior temporal gyri, bilateral anterior insula extending to Rolandic operculum, bilateral thalamus/pulvinars and left caudate nucleus. Patients with COPD (vs controls) had decreased FA values in the bilateral superior corona radiata, bilateral superior and inferior longitudinal fasciculus, bilateral optic radiation, bilateral lingual gyri, left parahippocampal gyrus and fornix. Lower FA values in these regions were associated with increased radial diffusivity and no changes of longitudinal diffusivity. Patients with COPD had poor performances in the Mini-Mental State Examination, figure memory and visual reproduction. GM density in some decreased regions in COPD had positive correlations with arterial blood Po(2), negative correlations with disease duration and also positive correlations with visual tasks. CONCLUSION The authors demonstrated that COPD exhibited loss of regional GM accompanied by impairment of white matter microstructural integrity, which was associated with disease severity and may underlie the pathophysiological and psychological changes of COPD.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Physiology, Medical College of Xiamen University, Xiamen, China
| | - Xiaochuan Wang
- Department of Neurology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jianzhong Lin
- Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University, Xiamen, China
| | - Yinchuan Sun
- Department of Physiology, Medical College of Xiamen University, Xiamen, China
| | - Yongxia Huang
- Department of Physiology, Medical College of Xiamen University, Xiamen, China
| | - Tianhe Yang
- Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University, Xiamen, China
| | - Shili Zheng
- Department of Respiratory, Zhongshan Hospital, Medical College of Xiamen University, Xiamen, China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, China
| | - Jiaxing Zhang
- Department of Physiology, Medical College of Xiamen University, Xiamen, China
| |
Collapse
|
47
|
Semenoff-Segundo A, Delle Vedove Semenoff TA, Borges ÁH, Pedro FLM, Caporossi LS, Bosco ÁF. The influence of chronic stress imposed on pregnant rats on the induced bone loss in their adult offspring. Arch Oral Biol 2011; 57:477-82. [PMID: 22153316 DOI: 10.1016/j.archoralbio.2011.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 09/14/2011] [Accepted: 10/30/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Stress during pregnancy may alter offspring susceptibility to diseases during adulthood. In the present study, female Lewis rats were subjected to chronic stress during the gestational period, and the effect of this stress was evaluated histometrically on the progression of ligature-induced bone loss in their adult offspring. MATERIAL AND METHODS After confirming pregnancy, half of the pregnant rats were randomly designated as control animals (no stress regimen was imposed), and the other half was submitted to a chronic stress model (immobilization at cold temperature) between the 7th and the 18th gestational day. After birth, 12 male rats delivered by stressed mothers - Group 1 (G1) - and 12 male rats delivered by non-stressed mothers - Group 2 (G2) - were selected. When birthed rats reached 250 g of body weight, a silk ligature was placed around their maxillary right second molar in order to induce bone loss. The non-ligated left side served as a control. Sixty days later, these animals were sacrificed by anaesthetic overdose. After routine laboratorial processing, images of the histological sections were digitized and submitted for histometric measurement using two parameters: histological attachment loss and bone loss. RESULTS On the ligated side, G1 presented with greater histological attachment and bone loss than G2 (p<0.05). On the non-ligated control side, neither of the groups presented with alterations in these parameters (p>0.05). CONCLUSION The chronic stress regimen imposed on pregnant rats produced a greater progression of ligature-induced bone loss in their adult offspring.
Collapse
|
48
|
Sightings, edited by John W. Severinghaus. High Alt Med Biol 2010. [DOI: 10.1089/ham.2010.1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
49
|
Prolonged high-altitude residence impacts verbal working memory: an fMRI study. Exp Brain Res 2010; 208:437-45. [PMID: 21107542 DOI: 10.1007/s00221-010-2494-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/06/2010] [Indexed: 10/18/2022]
Abstract
Oxygen is critical to normal brain functioning and development. In high altitude where the oxygen concentration and pressure are very low, human cognitive capability such as working memory has been found to be jeopardized. Such effect might persist with long-term high-altitude residence. The current study investigated the verbal working memory of 28 high-altitude residents with blood level oxygen dependent (BOLD) functional magnetic resonance imaging (fMRI), in contrast with that of the 30 sea level residents. All of the subjects were healthy college students, matched on their age, gender ratio and social-economic status; they also did not show any difference on their hemoglobin level. The high-altitude subjects showed longer reaction time and decreased response accuracy in behavioral performance. Both groups showed activation in the typical regions associated with the 2-back verbal working memory task, and the behavioral performance of both groups showed significant correlations with the BOLD signal change amplitude and Granger causality values (as a measure of the interregional effective connectivity) between these regions. With group comparison statistics, the high-altitude subjects showed decreased activation at the inferior and middle frontal gyrus, the middle occipital and the lingual gyrus, the pyramis of vermis, as well as the thalamus. In conclusion, the current study revealed impairment in verbal working memory among high-altitude residents, which might be associated with the impact of prolonged chronic hypoxia exposure on the brain functionality.
Collapse
|