1
|
Duvall L, May KE, Waltz A, Kana RK. The neurobiological map of theory of mind and pragmatic communication in autism. Soc Neurosci 2023; 18:191-204. [PMID: 37724352 DOI: 10.1080/17470919.2023.2242095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 09/20/2023]
Abstract
Children with autism often have difficulty with Theory of Mind (ToM), the ability to infer mental states, and pragmatic skills, the contextual use of language. Neuroimaging research suggests ToM and pragmatic skills overlap, as the ability to understand another's mental state is a prerequisite to interpersonal communication. To our knowledge, no study in the last decade has examined this overlap further. To assess the emerging consensus across neuroimaging studies of ToM and pragmatic skills in autism, we used coordinate-based activation likelihood estimation (ALE) analysis of 35 functional magnetic resonance imaging (MRI) studies (13 pragmatic skills, 22 ToM), resulting in a meta-analysis of 1,295 participants (647 autistic, 648 non-autistic) aged 7 to 49 years. Group difference analysis revealed decreased left inferior frontal gyrus (LIFG) activation in autistic participants during pragmatic skills tasks. For ToM tasks, we found reduced anterior cingulate cortex (ACC), medial prefrontal cortex (MPFC), and temporoparietal junction (TPJ) activation in autistic participants. Collectively, both ToM and pragmatic tasks showed activation in IFG and superior temporal gyrus (STG) and a reduction in left hemispheric activation in autistic participants. Overall, the findings underscore the cognitive and neural processing similarities between ToM and pragmatic skills, and their underlying neurobiological differences in autism.
Collapse
Affiliation(s)
- Lauren Duvall
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kaitlyn E May
- Department of Educational Studies in Psychology, Research Methodologies, and Counseling, University of Alabama, Tuscaloosa, AL,USA
| | - Abby Waltz
- Department of Psychology & the Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, AL, USA
| | - Rajesh K Kana
- Department of Psychology & the Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
2
|
Patel SP, Landau E, Martin GE, Rayburn C, Elahi S, Fragnito G, Losh M. A profile of prosodic speech differences in individuals with autism spectrum disorder and first-degree relatives. JOURNAL OF COMMUNICATION DISORDERS 2023; 102:106313. [PMID: 36804204 PMCID: PMC10395513 DOI: 10.1016/j.jcomdis.2023.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Impairments in prosody (e.g., intonation, stress) are among the most notable communication characteristics of individuals with autism spectrum disorder (ASD) and can significantly impact communicative interactions. Evidence suggests that differences in prosody may be evident among first-degree relatives of autistic individuals, indicating that genetic liability to ASD is expressed through prosodic variation, along with subclinical traits referred to as the broad autism phenotype (BAP). This study aimed to further characterize prosodic profiles associated with ASD and the BAP to better understand the clinical and etiologic significance of prosodic differences. METHOD Autistic individuals, their parents, and respective control groups completed the Profiling Elements of Prosody in Speech-Communication (PEPS-C), an assessment of receptive and expressive prosody. Responses to expressive subtests were further examined using acoustic analyses. Relationships between PEPS-C performance, acoustic measurements, and pragmatic language ability in conversation were assessed to understand how differences in prosody might contribute to broader ASD-related pragmatic profiles. RESULTS In ASD, receptive prosody deficits were observed in contrastive stress. With regard to expressive prosody, both the ASD and ASD Parent groups exhibited reduced accuracy in imitation, lexical stress, and contrastive stress expression compared to respective control groups, though no acoustic differences were noted. In ASD and Control groups, lower accuracy across several PEPS-C subtests and acoustic measurements related to increased pragmatic language violations. In parents, acoustic measurements were tied to broader pragmatic language and personality traits of the BAP. CONCLUSION Overlapping areas of expressive prosody differences were identified in ASD and parents, providing evidence that prosody is an important language-related ability that may be impacted by genetic risk of ASD.
Collapse
Affiliation(s)
- Shivani P Patel
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 N Campus Dr, Evanston, IL 60208, USA
| | - Emily Landau
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 N Campus Dr, Evanston, IL 60208, USA
| | - Gary E Martin
- Department of Communication Sciences and Disorders, St. John's University, Staten Island, New York, USA
| | - Claire Rayburn
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 N Campus Dr, Evanston, IL 60208, USA
| | - Saadia Elahi
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 N Campus Dr, Evanston, IL 60208, USA
| | - Gabrielle Fragnito
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 N Campus Dr, Evanston, IL 60208, USA
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 N Campus Dr, Evanston, IL 60208, USA.
| |
Collapse
|
3
|
A Systematic Review of Scientific Studies on the Effects of Music in People with or at Risk for Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095150. [PMID: 35564544 PMCID: PMC9100336 DOI: 10.3390/ijerph19095150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
The prevalence of autism spectrum disorders (ASD) is globally increasing, and the current available interventions show variable success. Thus, there is a growing interest in additional interventions such as music therapy (MT). Therefore, we aimed to provide a comprehensive and systematic review of music and people with, or at risk of, ASD. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and used PubMed, PsycINFO, and Web of Science as databases, with “music”, “music therapy”, “autism spectrum disorder”, and “ASD” as search terms. Among the identified and screened articles, 81 out of 621 qualified as scientific studies involving a total of 43,353 participants. These studies investigated the peculiarities of music perception in people with ASD, as well as the effects of music and MT in this patient group. Most of the music-based interventions were beneficial in improving social, emotional, and behavioural problems. However, the availability of studies utilizing a rigorous randomized controlled trial (RCT) design was scarce. Most of the studies had a small sample size, and the applied therapeutic and scientific research methods were heterogeneous.
Collapse
|
4
|
Conti E, Retico A, Palumbo L, Spera G, Bosco P, Biagi L, Fiori S, Tosetti M, Cipriani P, Cioni G, Muratori F, Chilosi A, Calderoni S. Autism Spectrum Disorder and Childhood Apraxia of Speech: Early Language-Related Hallmarks across Structural MRI Study. J Pers Med 2020; 10:E275. [PMID: 33322765 PMCID: PMC7768516 DOI: 10.3390/jpm10040275] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
Autism Spectrum Disorder (ASD) and Childhood Apraxia of Speech (CAS) are developmental disorders with distinct diagnostic criteria and different epidemiology. However, a common genetic background as well as overlapping clinical features between ASD and CAS have been recently reported. To date, brain structural language-related abnormalities have been detected in both the conditions, but no study directly compared young children with ASD, CAS and typical development (TD). In the current work, we aim: (i) to test the hypothesis that ASD and CAS display neurostructural differences in comparison with TD through morphometric Magnetic Resonance Imaging (MRI)-based measures (ASD vs. TD and CAS vs. TD); (ii) to investigate early possible disease-specific brain structural patterns in the two clinical groups (ASD vs. CAS); (iii) to evaluate predictive power of machine-learning (ML) techniques in differentiating the three samples (ASD, CAS, TD). We retrospectively analyzed the T1-weighted brain MRI scans of 68 children (age range: 34-74 months) grouped into three cohorts: (1) 26 children with ASD (mean age ± standard deviation: 56 ± 11 months); (2) 24 children with CAS (57 ± 10 months); (3) 18 children with TD (55 ± 13 months). Furthermore, a ML analysis based on a linear-kernel Support Vector Machine (SVM) was performed. All but one brain structures displayed significant higher volumes in both ASD and CAS children than TD peers. Specifically, ASD alterations involved fronto-temporal regions together with basal ganglia and cerebellum, while CAS alterations are more focused and shifted to frontal regions, suggesting a possible speech-related anomalies distribution. Caudate, superior temporal and hippocampus volumes directly distinguished the two conditions in terms of greater values in ASD compared to CAS. The ML analysis identified significant differences in brain features between ASD and TD children, whereas only some trends in the ML classification capability were detected in CAS as compared to TD peers. Similarly, the MRI structural underpinnings of two clinical groups were not significantly different when evaluated with linear-kernel SVM. Our results may represent the first step towards understanding shared and specific neural substrate in ASD and CAS conditions, which subsequently may contribute to early differential diagnosis and tailoring specific early intervention.
Collapse
Affiliation(s)
- Eugenia Conti
- IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (E.C.); (P.B.); (L.B.); (S.F.); (M.T.); (P.C.); (G.C.); (F.M.); (A.C.)
| | - Alessandra Retico
- National Institute for Nuclear Physics (INFN), Pisa Division, 56127 Pisa, Italy; (A.R.); (L.P.); (G.S.)
| | - Letizia Palumbo
- National Institute for Nuclear Physics (INFN), Pisa Division, 56127 Pisa, Italy; (A.R.); (L.P.); (G.S.)
| | - Giovanna Spera
- National Institute for Nuclear Physics (INFN), Pisa Division, 56127 Pisa, Italy; (A.R.); (L.P.); (G.S.)
| | - Paolo Bosco
- IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (E.C.); (P.B.); (L.B.); (S.F.); (M.T.); (P.C.); (G.C.); (F.M.); (A.C.)
| | - Laura Biagi
- IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (E.C.); (P.B.); (L.B.); (S.F.); (M.T.); (P.C.); (G.C.); (F.M.); (A.C.)
| | - Simona Fiori
- IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (E.C.); (P.B.); (L.B.); (S.F.); (M.T.); (P.C.); (G.C.); (F.M.); (A.C.)
| | - Michela Tosetti
- IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (E.C.); (P.B.); (L.B.); (S.F.); (M.T.); (P.C.); (G.C.); (F.M.); (A.C.)
| | - Paola Cipriani
- IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (E.C.); (P.B.); (L.B.); (S.F.); (M.T.); (P.C.); (G.C.); (F.M.); (A.C.)
| | - Giovanni Cioni
- IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (E.C.); (P.B.); (L.B.); (S.F.); (M.T.); (P.C.); (G.C.); (F.M.); (A.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Filippo Muratori
- IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (E.C.); (P.B.); (L.B.); (S.F.); (M.T.); (P.C.); (G.C.); (F.M.); (A.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Anna Chilosi
- IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (E.C.); (P.B.); (L.B.); (S.F.); (M.T.); (P.C.); (G.C.); (F.M.); (A.C.)
| | - Sara Calderoni
- IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (E.C.); (P.B.); (L.B.); (S.F.); (M.T.); (P.C.); (G.C.); (F.M.); (A.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Charpentier J, Latinus M, Andersson F, Saby A, Cottier JP, Bonnet-Brilhault F, Houy-Durand E, Gomot M. Brain correlates of emotional prosodic change detection in autism spectrum disorder. NEUROIMAGE-CLINICAL 2020; 28:102512. [PMID: 33395999 PMCID: PMC8481911 DOI: 10.1016/j.nicl.2020.102512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022]
Abstract
We used an oddball paradigm with vocal stimuli to record hemodynamic responses. Brain processing of vocal change relies on STG, insula and lingual area. Activity of the change processing network can be modulated by saliency and emotion. Brain processing of vocal deviancy/novelty appears typical in adults with autism.
Autism Spectrum Disorder (ASD) is currently diagnosed by the joint presence of social impairments and restrictive, repetitive patterns of behaviors. While the co-occurrence of these two categories of symptoms is at the core of the pathology, most studies investigated only one dimension to understand underlying physiopathology. In this study, we analyzed brain hemodynamic responses in neurotypical adults (CTRL) and adults with autism spectrum disorder during an oddball paradigm allowing to explore brain responses to vocal changes with different levels of saliency (deviancy or novelty) and different emotional content (neutral, angry). Change detection relies on activation of the supratemporal gyrus and insula and on deactivation of the lingual area. The activity of these brain areas involved in the processing of deviancy with vocal stimuli was modulated by saliency and emotion. No group difference between CTRL and ASD was reported for vocal stimuli processing or for deviancy/novelty processing, regardless of emotional content. Findings highlight that brain processing of voices and of neutral/ emotional vocal changes is typical in adults with ASD. Yet, at the behavioral level, persons with ASD still experience difficulties with those cues. This might indicate impairments at latter processing stages or simply show that alterations present in childhood might have repercussions at adult age.
Collapse
Affiliation(s)
| | | | | | - Agathe Saby
- Centre universitaire de pédopsychiatrie, CHRU de Tours, Tours, France
| | | | | | - Emmanuelle Houy-Durand
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France; Centre universitaire de pédopsychiatrie, CHRU de Tours, Tours, France
| | - Marie Gomot
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France.
| |
Collapse
|
6
|
Lau JCY, To CKS, Kwan JSK, Kang X, Losh M, Wong PCM. Lifelong Tone Language Experience does not Eliminate Deficits in Neural Encoding of Pitch in Autism Spectrum Disorder. J Autism Dev Disord 2020; 51:3291-3310. [PMID: 33216279 DOI: 10.1007/s10803-020-04796-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
Atypical pitch processing is a feature of Autism Spectrum Disorder (ASD), which affects non-tone language speakers' communication. Lifelong auditory experience has been demonstrated to modify genetically-predisposed risks for pitch processing. We examined individuals with ASD to test the hypothesis that lifelong auditory experience in tone language may eliminate impaired pitch processing in ASD. We examined children's and adults' Frequency-following Response (FFR), a neurophysiological component indexing early neural sensory encoding of pitch. Univariate and machine-learning-based analytics suggest less robust pitch encoding and diminished pitch distinctions in the FFR from individuals with ASD. Contrary to our hypothesis, results point to a linguistic pitch encoding impairment associated with ASD that may not be eliminated even by lifelong sensory experience.
Collapse
Affiliation(s)
- Joseph C Y Lau
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA.,Department of Psychology, Northwestern University, Evanston, IL, USA.,Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Carol K S To
- Division of Speech and Hearing Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Judy S K Kwan
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Department of Chinese and Bilingual Studies, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Xin Kang
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Patrick C M Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
7
|
Kuiper JJ, Lin YH, Young IM, Bai MY, Briggs RG, Tanglay O, Fonseka RD, Hormovas J, Dhanaraj V, Conner AK, O'Neal CM, Sughrue ME. A parcellation-based model of the auditory network. Hear Res 2020; 396:108078. [PMID: 32961519 DOI: 10.1016/j.heares.2020.108078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The auditory network plays an important role in interaction with the environment. Multiple cortical areas, such as the inferior frontal gyrus, superior temporal gyrus and adjacent insula have been implicated in this processing. However, understanding of this network's connectivity has been devoid of tractography specificity. METHODS Using attention task-based functional magnetic resonance imaging (MRI) studies, an activation likelihood estimation (ALE) of the auditory network was generated. Regions of interest corresponding to the cortical parcellation scheme previously published under the Human Connectome Project were co-registered onto the ALE in the Montreal Neurological Institute coordinate space, and visually assessed for inclusion in the network. Diffusion spectrum MRI-based fiber tractography was performed to determine the structural connections between cortical parcellations comprising the network. RESULTS Fifteen cortical regions were found to be part of the auditory network: areas 44 and 8C, auditory area 1, 4, and 5, frontal operculum area 4, the lateral belt, medial belt and parabelt, parietal area F centromedian, perisylvian language area, retroinsular cortex, supplementary and cingulate eye field and the temporoparietal junction area 1. These regions showed consistent interconnections between adjacent parcellations. The frontal aslant tract was found to connect areas within the frontal lobe, while the arcuate fasciculus was found to connect the frontal and temporal lobe, and subcortical U-fibers were found to connect parcellations within the temporal area. Further studies may refine this model with the ultimate goal of clinical application.
Collapse
Affiliation(s)
- Joseph J Kuiper
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | | | - Michael Y Bai
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Onur Tanglay
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - R Dineth Fonseka
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Vukshitha Dhanaraj
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Christen M O'Neal
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia.
| |
Collapse
|
8
|
Hawco C, Yoganathan L, Voineskos AN, Lyon R, Tan T, Daskalakis ZJ, Blumberger DM, Croarkin PE, Lai MC, Szatmari P, Ameis SH. Greater Individual Variability in Functional Brain Activity during Working Memory Performance in young people with Autism and Executive Function Impairment. Neuroimage Clin 2020; 27:102260. [PMID: 32388347 PMCID: PMC7218076 DOI: 10.1016/j.nicl.2020.102260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/12/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Individuals with autism spectrum disorder (ASD) often present with executive functioning (EF) deficits, including spatial working memory (SWM) impairment, which impedes real-world functioning. The present study examined task-related brain activity, connectivity and individual variability in fMRI-measured neural response during an SWM task in older youth and young adults with autism and clinically significant EF impairment. METHODS Neuroimaging was analyzed in 29 individuals with ASD without intellectual disability who had clinically significant EF impairment on the Behavior Rating Inventory of Executive Function, and 20 typically developing controls (participant age range=16-34). An SWM N-Back task was performed during fMRI. SWM activity (2-Back vs. 0-Back) and task-related dorsolateral prefrontal cortex (DLPFC) connectivity was examined within and between groups. Variability of neural response during SWM was also examined. RESULTS During SWM performance both groups activated the expected networks, and no group differences in network activation or task-related DLPFC-connectivity were found. However, greater individual variability in the pattern of SWM activity was found in the ASD versus the typically developing control group. CONCLUSIONS While there were no group differences in SWM task-evoked activity or connectivity, fronto-parietal network engagement was found to be more variable/idiosyncratic in ASD. Our results suggest that the fronto-parietal network may be shifted or sub-optimally engaged during SWM performance in participants with ASD with clinically significant EF impairment, with implications for developing targeted interventions for this subgroup.
Collapse
Affiliation(s)
- Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Laagishan Yoganathan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada; Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Rachael Lyon
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada
| | - Thomas Tan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel M Blumberger
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Szatmari
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
9
|
Briggs RG, Pryor DP, Conner AK, Nix CE, Milton CK, Kuiper JK, Palejwala AH, Sughrue ME. The Artery of Aphasia, A Uniquely Sensitive Posterior Temporal Middle Cerebral Artery Branch that Supplies Language Areas in the Brain: Anatomy and Report of Four Cases. World Neurosurg 2019; 126:e65-e76. [PMID: 30735868 DOI: 10.1016/j.wneu.2019.01.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Arterial disruption during brain surgery can cause devastating injuries to wide expanses of white and gray matter beyond the tumor resection cavity. Such damage may occur as a result of disrupting blood flow through en passage arteries. Identification of these arteries is critical to prevent unforeseen neurologic sequelae during brain tumor resection. In this study, we discuss one such artery, termed the artery of aphasia (AoA), which when disrupted can lead to receptive and expressive language deficits. METHODS We performed a retrospective review of all patients undergoing an awake craniotomy for resection of a glioma by the senior author from 2012 to 2018. Patients were included if they experienced language deficits secondary to postoperative infarction in the left posterior temporal lobe in the distribution of the AoA. The gross anatomy of the AoA was then compared with activation likelihood estimations of the auditory and semantic language networks using coordinate-based meta-analytic techniques. RESULTS We identified 4 patients with left-sided posterior temporal artery infarctions in the distribution of the AoA on diffusion-weighted magnetic resonance imaging. All 4 patients developed substantial expressive and receptive language deficits after surgery. Functional language improvement occurred in only 2/4 patients. Activation likelihood estimations localized parts of the auditory and semantic language networks in the distribution of the AoA. CONCLUSIONS The AoA is prone to blood flow disruption despite benign manipulation. Patients seem to have limited capacity for speech recovery after intraoperative ischemia in the distribution of this artery, which supplies parts of the auditory and semantic language networks.
Collapse
Affiliation(s)
- Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Dillon P Pryor
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Cameron E Nix
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Camille K Milton
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joseph K Kuiper
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ali H Palejwala
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael E Sughrue
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia.
| |
Collapse
|
10
|
Schelinski S, von Kriegstein K. The Relation Between Vocal Pitch and Vocal Emotion Recognition Abilities in People with Autism Spectrum Disorder and Typical Development. J Autism Dev Disord 2019; 49:68-82. [PMID: 30022285 PMCID: PMC6331502 DOI: 10.1007/s10803-018-3681-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We tested the relation between vocal emotion and vocal pitch perception abilities in adults with high-functioning autism spectrum disorder (ASD) and pairwise matched adults with typical development. The ASD group had impaired vocal but typical non-vocal pitch and vocal timbre perception abilities. The ASD group showed less accurate vocal emotion perception than the comparison group and vocal emotion perception abilities were correlated with traits and symptoms associated with ASD. Vocal pitch and vocal emotion perception abilities were significantly correlated in the comparison group only. Our results suggest that vocal emotion recognition difficulties in ASD might not only be based on difficulties with complex social tasks, but also on difficulties with processing of basic sensory features, such as vocal pitch.
Collapse
Affiliation(s)
- Stefanie Schelinski
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- Technische Universität Dresden, Faculty of Psychology, Bamberger Straße 7, 01187 Dresden, Germany
| | - Katharina von Kriegstein
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- Technische Universität Dresden, Faculty of Psychology, Bamberger Straße 7, 01187 Dresden, Germany
| |
Collapse
|
11
|
Charpentier J, Kovarski K, Houy-Durand E, Malvy J, Saby A, Bonnet-Brilhault F, Latinus M, Gomot M. Emotional prosodic change detection in autism Spectrum disorder: an electrophysiological investigation in children and adults. J Neurodev Disord 2018; 10:28. [PMID: 30227832 PMCID: PMC6145332 DOI: 10.1186/s11689-018-9246-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is characterized by atypical behaviors in social environments and in reaction to changing events. While this dyad of symptoms is at the core of the pathology along with atypical sensory behaviors, most studies have investigated only one dimension. A focus on the sameness dimension has shown that intolerance to change is related to an atypical pre-attentional detection of irregularity. In the present study, we addressed the same process in response to emotional change in order to evaluate the interplay between alterations of change detection and socio-emotional processing in children and adults with autism. Methods Brain responses to neutral and emotional prosodic deviancies (mismatch negativity (MMN) and P3a, reflecting change detection and orientation of attention toward change, respectively) were recorded in children and adults with autism and in controls. Comparison of neutral and emotional conditions allowed distinguishing between general deviancy and emotional deviancy effects. Moreover, brain responses to the same neutral and emotional stimuli were recorded when they were not deviants to evaluate the sensory processing of these vocal stimuli. Results In controls, change detection was modulated by prosody: in children, this was characterized by a lateralization of emotional MMN to the right hemisphere, and in adults, by an earlier MMN for emotional deviancy than for neutral deviancy. In ASD, an overall atypical change detection was observed with an earlier MMN and a larger P3a compared to controls suggesting an unusual pre-attentional orientation toward any changes in the auditory environment. Moreover, in children with autism, deviancy detection depicted reduced MMN amplitude. In addition in children with autism, contrary to adults with autism, no modulation of the MMN by prosody was present and sensory processing of both neutral and emotional vocal stimuli appeared atypical. Conclusions Overall, change detection remains altered in people with autism. However, differences between children and adults with ASD evidence a trend toward normalization of vocal processing and of the automatic detection of emotion deviancy with age.
Collapse
Affiliation(s)
| | - K Kovarski
- UMR1253, INSERM, Université de Tours, TOURS, France
| | - E Houy-Durand
- UMR1253, INSERM, Université de Tours, TOURS, France.,Centre Universitaire de Pédopsychiatrie, CHRU de Tours, TOURS, France
| | - J Malvy
- UMR1253, INSERM, Université de Tours, TOURS, France.,Centre Universitaire de Pédopsychiatrie, CHRU de Tours, TOURS, France
| | - A Saby
- Centre Universitaire de Pédopsychiatrie, CHRU de Tours, TOURS, France
| | - F Bonnet-Brilhault
- UMR1253, INSERM, Université de Tours, TOURS, France.,Centre Universitaire de Pédopsychiatrie, CHRU de Tours, TOURS, France
| | - M Latinus
- UMR1253, INSERM, Université de Tours, TOURS, France
| | - M Gomot
- UMR1253, INSERM, Université de Tours, TOURS, France.
| |
Collapse
|
12
|
Neumann K, Euler HA, Kob M, Wolff von Gudenberg A, Giraud AL, Weissgerber T, Kell CA. Assisted and unassisted recession of functional anomalies associated with dysprosody in adults who stutter. JOURNAL OF FLUENCY DISORDERS 2018; 55:120-134. [PMID: 28958627 DOI: 10.1016/j.jfludis.2017.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE Speech in persons who stutter (PWS) is associated with disturbed prosody (speech melody and intonation), which may impact communication. The neural correlates of PWS' altered prosody during speaking are not known, neither is how a speech-restructuring therapy affects prosody at both a behavioral and a cerebral level. METHODS In this fMRI study, we explored group differences in brain activation associated with the production of different kinds of prosody in 13 male adults who stutter (AWS) before, directly after, and at least 1 year after an effective intensive fluency-shaping treatment, in 13 typically fluent-speaking control participants (CP), and in 13 males who had spontaneously recovered from stuttering during adulthood (RAWS), while sentences were read aloud with 'neutral', instructed emotional (happy), and linguistically driven (questioning) prosody. These activations were related to speech production acoustics. RESULTS During pre-treatment prosody generation, the pars orbitalis of the left inferior frontal gyrus and the left anterior insula were activated less in AWS than in CP. The degree of hypo-activation correlated with acoustic measures of dysprosody. Paralleling the near-normalization of free speech melody following fluency-shaping therapy, AWS normalized the inferior frontal hypo-activation, sooner after treatment for generating emotional than linguistic prosody. Unassisted recovery was associated with an additional recruitment of cerebellar resources. CONCLUSIONS Fluency shaping therapy may restructure prosody, which approaches that of typically fluent-speaking people. Such a process may benefit from additional training of instructed emotional and linguistic prosody by inducing plasticity in the inferior frontal region which has developed abnormally during childhood in PWS.
Collapse
Affiliation(s)
- Katrin Neumann
- Department of Phoniatrics and Pediatric Audiology, Clinic of Otorhinolaryngology, Head and Neck Surgery,St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Harald A Euler
- Department of Phoniatrics and Pediatric Audiology, Clinic of Otorhinolaryngology, Head and Neck Surgery,St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Malte Kob
- Erich-Thienhaus-Institute, University of Music Detmold, Detmold, Germany
| | | | - Anne-Lise Giraud
- Département des Neuroscience Fondamentales, Université de Genève, Switzerland
| | - Tobias Weissgerber
- Department of Audiological Acoustics, Clinic of Otorhinolaryngology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian A Kell
- Brain Imaging Center and Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Thye MD, Bednarz HM, Herringshaw AJ, Sartin EB, Kana RK. The impact of atypical sensory processing on social impairments in autism spectrum disorder. Dev Cogn Neurosci 2018; 29:151-167. [PMID: 28545994 PMCID: PMC6987885 DOI: 10.1016/j.dcn.2017.04.010] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/25/2017] [Accepted: 04/18/2017] [Indexed: 02/03/2023] Open
Abstract
Altered sensory processing has been an important feature of the clinical descriptions of autism spectrum disorder (ASD). There is evidence that sensory dysregulation arises early in the progression of ASD and impacts social functioning. This paper reviews behavioral and neurobiological evidence that describes how sensory deficits across multiple modalities (vision, hearing, touch, olfaction, gustation, and multisensory integration) could impact social functions in ASD. Theoretical models of ASD and their implications for the relationship between sensory and social functioning are discussed. Furthermore, neural differences in anatomy, function, and connectivity of different regions underlying sensory and social processing are also discussed. We conclude that there are multiple mechanisms through which early sensory dysregulation in ASD could cascade into social deficits across development. Future research is needed to clarify these mechanisms, and specific focus should be given to distinguish between deficits in primary sensory processing and altered top-down attentional and cognitive processes.
Collapse
Affiliation(s)
- Melissa D Thye
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Haley M Bednarz
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Abbey J Herringshaw
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Emma B Sartin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Rajesh K Kana
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, United States.
| |
Collapse
|
14
|
Exploring a method for evaluation of preschool and school children with autism spectrum disorder through checking their understanding of the speaker's emotions with the help of prosody of the voice. Brain Dev 2017; 39:836-845. [PMID: 28774670 DOI: 10.1016/j.braindev.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 05/12/2017] [Accepted: 07/04/2017] [Indexed: 11/22/2022]
Abstract
PURPOSE We attempted to evaluate the ability of 125 preschool and school children with autism spectrum disorder (ASD children) to understand the intentions of those speaking to them using prosody of the voice, by comparing it with that of 119 typically developing children (TDC) and 51 development-age-matched children with attention deficit hyperactivity disorder (ADHD children), and to explore, based on the results, a method for objective evaluation of children with ASD in the early and later periods of childhood. METHODS Phrases routinely used by children were employed in the task administered to the children, with the prosody of the voice speaking these phrases changed to express the four emotions (acceptance, rejection, bluff and fooling). RESULTS The percentage of children with ASD who could correctly identify the emotion of "fooling" was significantly lower than that of TDC, at each developmental age (corresponding to middle kindergarten class to sixth year of elementary school). On the other hand, in the children with ADHD, while the correct answer rate for identifying the emotion of "fooling" was significantly lower than that in the TDC and higher than that in the ASD children at development ages corresponding to the early years of elementary school, it did not differ significantly from that in the TDC and was higher than that ASD children at development ages corresponding to the later years of elementary school. CONCLUSION These results indicate that children with ASD find it particularly difficult to understand the emotion of fooling by listening to speech with discrepancy between the meaning of the phrases and the emotion expressed by the voice, although the prosody of the voice may serve as a key to understanding the emotion of the speakers. This finding also suggests that the prosody of the voice expressing this emotion (fooling) may be used for objective evaluation of children with ASD.
Collapse
|
15
|
DePriest J, Glushko A, Steinhauer K, Koelsch S. Language and music phrase boundary processing in Autism Spectrum Disorder: An ERP study. Sci Rep 2017; 7:14465. [PMID: 29089535 PMCID: PMC5663964 DOI: 10.1038/s41598-017-14538-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/12/2017] [Indexed: 11/08/2022] Open
Abstract
Autism spectrum disorder (ASD) is frequently associated with communicative impairment, regardless of intelligence level or mental age. Impairment of prosodic processing in particular is a common feature of ASD. Despite extensive overlap in neural resources involved in prosody and music processing, music perception seems to be spared in this population. The present study is the first to investigate prosodic phrasing in ASD in both language and music, combining event-related brain potential (ERP) and behavioral methods. We tested phrase boundary processing in language and music in neuro-typical adults and high-functioning individuals with ASD. We targeted an ERP response associated with phrase boundary processing in both language and music - i.e., the Closure Positive Shift (CPS). While a language-CPS was observed in the neuro-typical group, for ASD participants a smaller response failed to reach statistical significance. In music, we found a boundary-onset music-CPS for both groups during pauses between musical phrases. Our results support the view of preserved processing of musical cues in ASD individuals, with a corresponding prosodic impairment. This suggests that, despite the existence of a domain-general processing mechanism (the CPS), key differences in the integration of features of language and music may lead to the prosodic impairment in ASD.
Collapse
Affiliation(s)
- John DePriest
- Freie Universität Berlin, Berlin, Germany.
- Program in Linguistics, Tulane University, New Orleans, Louisiana, United States of America.
| | - Anastasia Glushko
- Freie Universität Berlin, Berlin, Germany
- The Centre for Research on Brain, Language and Music (CRBLM), Montreal, Quebec, Canada
| | - Karsten Steinhauer
- School of Communication Sciences and Disorders, McGill University, Montreal, Quebec, Canada
- The Centre for Research on Brain, Language and Music (CRBLM), Montreal, Quebec, Canada
| | - Stefan Koelsch
- Freie Universität Berlin, Berlin, Germany
- University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Tryfon A, Foster NEV, Sharda M, Hyde KL. Speech perception in autism spectrum disorder: An activation likelihood estimation meta-analysis. Behav Brain Res 2017; 338:118-127. [PMID: 29074403 DOI: 10.1016/j.bbr.2017.10.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/13/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is often characterized by atypical language profiles and auditory and speech processing. These can contribute to aberrant language and social communication skills in ASD. The study of the neural basis of speech perception in ASD can serve as a potential neurobiological marker of ASD early on, but mixed results across studies renders it difficult to find a reliable neural characterization of speech processing in ASD. To this aim, the present study examined the functional neural basis of speech perception in ASD versus typical development (TD) using an activation likelihood estimation (ALE) meta-analysis of 18 qualifying studies. The present study included separate analyses for TD and ASD, which allowed us to examine patterns of within-group brain activation as well as both common and distinct patterns of brain activation across the ASD and TD groups. Overall, ASD and TD showed mostly common brain activation of speech processing in bilateral superior temporal gyrus (STG) and left inferior frontal gyrus (IFG). However, the results revealed trends for some distinct activation in the TD group showing additional activation in higher-order brain areas including left superior frontal gyrus (SFG), left medial frontal gyrus (MFG), and right IFG. These results provide a more reliable neural characterization of speech processing in ASD relative to previous single neuroimaging studies and motivate future work to investigate how these brain signatures relate to behavioral measures of speech processing in ASD.
Collapse
Affiliation(s)
- Ana Tryfon
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology, University of Montreal, C.P. 6128, Succ. Centre-Ville, Montreal, Quebec, H3C 3J7, Canada; Faculty of Medicine, McIntyre Medical Building, McGill University, 3655 Sir William Osler, Montreal, Quebec H3G 1Y6, Canada.
| | - Nicholas E V Foster
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology, University of Montreal, C.P. 6128, Succ. Centre-Ville, Montreal, Quebec, H3C 3J7, Canada
| | - Megha Sharda
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology, University of Montreal, C.P. 6128, Succ. Centre-Ville, Montreal, Quebec, H3C 3J7, Canada
| | - Krista L Hyde
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology, University of Montreal, C.P. 6128, Succ. Centre-Ville, Montreal, Quebec, H3C 3J7, Canada; Faculty of Medicine, McIntyre Medical Building, McGill University, 3655 Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
17
|
Frühholz S, Staib M. Neurocircuitry of impaired affective sound processing: A clinical disorders perspective. Neurosci Biobehav Rev 2017; 83:516-524. [PMID: 28919431 DOI: 10.1016/j.neubiorev.2017.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/08/2017] [Accepted: 09/05/2017] [Indexed: 12/22/2022]
Abstract
Decoding affective meaning from sensory information is central to accurate and adaptive behavior in many natural and social contexts. Human vocalizations (speech and non-speech), environmental sounds (e.g. thunder, noise, or animal sounds) and human-produced sounds (e.g. technical sounds or music) can carry a wealth of important aversive, threatening, appealing, or pleasurable affective information that sometimes implicitly influences and guides our behavior. A deficit in processing such affective information is detrimental to adaptive environmental behavior, psychological well-being, and social interactive abilities. These deficits can originate from a diversity of psychiatric and neurological disorders, and are associated with neural dysfunctions across largely distributed brain networks. Recent neuroimaging studies in psychiatric and neurological patients outline the cortical and subcortical neurocircuitry of the complimentary and differential functional roles for affective sound processing. This points to and confirms a recently proposed distributed network rather than a single brain region underlying affective sound processing, and highlights the notion of a multi-functional process that can be differentially impaired in clinical disorders.
Collapse
Affiliation(s)
- Sascha Frühholz
- Department of Psychology, University of Zürich, Zürich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland.
| | - Matthias Staib
- Department of Psychology, University of Zürich, Zürich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Lo YC, Chen YJ, Hsu YC, Tseng WYI, Gau SSF. Reduced tract integrity of the model for social communication is a neural substrate of social communication deficits in autism spectrum disorder. J Child Psychol Psychiatry 2017; 58:576-585. [PMID: 27677901 DOI: 10.1111/jcpp.12641] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with social communication deficits as one of the core symptoms. Recently, a five-level model for the social communication has been proposed in which white matter tracts corresponding to each level of the model are identified. Given that the model for social communication subserves social language functions, we hypothesized that the tract integrity of the model for social communication may be reduced in ASD, and the reduction may be related to social communication deficits. METHODS Sixty-two right-handed boys with ASD and 55 typically developing (TD) boys received clinical evaluations, intelligence tests, the Social Communication Questionnaire (SCQ), and MRI scans. Generalized fractional anisotropy (GFA) was measured by diffusion spectrum imaging to indicate the microstructural integrity of the tracts for each level of the social communication model. Group difference in the tract integrity and its relationship with the SCQ subscales of social communication and social interaction were investigated. RESULTS We found that the GFA values of the superior longitudinal fasciculus III (SLF III, level 1) and the frontal aslant tracts (FAT, level 2) were decreased in ASD compared to TD. Moreover, the GFA values of the SLF III and the FAT were associated with the social interaction subscale in ASD. CONCLUSIONS The tract integrity of the model for social communication is reduced in ASD, and the reduction is associated with impaired social interaction. Our results support that reduced tract integrity of the model for social communication might be a neural substrate of social communication deficits in ASD.
Collapse
Affiliation(s)
- Yu-Chun Lo
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jen Chen
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yung-Chin Hsu
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
19
|
Wang X, Wang S, Fan Y, Huang D, Zhang Y. Speech-specific categorical perception deficit in autism: An Event-Related Potential study of lexical tone processing in Mandarin-speaking children. Sci Rep 2017; 7:43254. [PMID: 28225070 PMCID: PMC5320551 DOI: 10.1038/srep43254] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/20/2017] [Indexed: 01/14/2023] Open
Abstract
Recent studies reveal that tonal language speakers with autism have enhanced neural sensitivity to pitch changes in nonspeech stimuli but not to lexical tone contrasts in their native language. The present ERP study investigated whether the distinct pitch processing pattern for speech and nonspeech stimuli in autism was due to a speech-specific deficit in categorical perception of lexical tones. A passive oddball paradigm was adopted to examine two groups (16 in the autism group and 15 in the control group) of Chinese children’s Mismatch Responses (MMRs) to equivalent pitch deviations representing within-category and between-category differences in speech and nonspeech contexts. To further examine group-level differences in the MMRs to categorical perception of speech/nonspeech stimuli or lack thereof, neural oscillatory activities at the single trial level were further calculated with the inter-trial phase coherence (ITPC) measure for the theta and beta frequency bands. The MMR and ITPC data from the children with autism showed evidence for lack of categorical perception in the lexical tone condition. In view of the important role of lexical tones in acquiring a tonal language, the results point to the necessity of early intervention for the individuals with autism who show such a speech-specific categorical perception deficit.
Collapse
Affiliation(s)
- Xiaoyue Wang
- School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Suiping Wang
- School of Psychology, South China Normal University, Guangzhou, 510631, China.,Center for Studies of Psychological Application, South China Normal University, 510631, China.,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yuebo Fan
- Guangzhou Rehabilitation and Research Center for Children with Autism, Guangzhou Cana School, Guangzhou, 510540, China
| | - Dan Huang
- Guangzhou Rehabilitation and Research Center for Children with Autism, Guangzhou Cana School, Guangzhou, 510540, China
| | - Yang Zhang
- Department of Speech-Language-Hearing Science, University of Minnesota, Minneapolis, MN, 55455, USA.,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
20
|
Adults with Asperger syndrome are less sensitive to intonation than control persons when listening to speech. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40167-016-0035-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Perception of Melodic Contour and Intonation in Autism Spectrum Disorder: Evidence From Mandarin Speakers. J Autism Dev Disord 2016; 45:2067-75. [PMID: 25636678 DOI: 10.1007/s10803-015-2370-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Tone language experience benefits pitch processing in music and speech for typically developing individuals. No known studies have examined pitch processing in individuals with autism who speak a tone language. This study investigated discrimination and identification of melodic contour and speech intonation in a group of Mandarin-speaking individuals with high-functioning autism. Individuals with autism showed superior melodic contour identification but comparable contour discrimination relative to controls. In contrast, these individuals performed worse than controls on both discrimination and identification of speech intonation. These findings provide the first evidence for differential pitch processing in music and speech in tone language speakers with autism, suggesting that tone language experience may not compensate for speech intonation perception deficits in individuals with autism.
Collapse
|
22
|
Eigsti IM, Stevens MC, Schultz RT, Barton M, Kelley E, Naigles L, Orinstein A, Troyb E, Fein DA. Language comprehension and brain function in individuals with an optimal outcome from autism. NEUROIMAGE-CLINICAL 2015; 10:182-91. [PMID: 26862477 PMCID: PMC4707189 DOI: 10.1016/j.nicl.2015.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/23/2015] [Accepted: 11/16/2015] [Indexed: 11/30/2022]
Abstract
Although Autism Spectrum Disorder (ASD) is generally a lifelong disability, a minority of individuals with ASD overcome their symptoms to such a degree that they are generally indistinguishable from their typically-developing peers. That is, they have achieved an Optimal Outcome (OO). The question addressed by the current study is whether this normalized behavior reflects normalized brain functioning, or alternatively, the action of compensatory systems. Either possibility is plausible, as most participants with OO received years of intensive therapy that could alter brain networks to align with typical function or work around ASD-related neural dysfunction. Individuals ages 8 to 21 years with high-functioning ASD (n = 23), OO (n = 16), or typical development (TD; n = 20) completed a functional MRI scan while performing a sentence comprehension task. Results indicated similar activations in frontal and temporal regions (left middle frontal, left supramarginal, and right superior temporal gyri) and posterior cingulate in OO and ASD groups, where both differed from the TD group. Furthermore, the OO group showed heightened “compensatory” activation in numerous left- and right-lateralized regions (left precentral/postcentral gyri, right precentral gyrus, left inferior parietal lobule, right supramarginal gyrus, left superior temporal/parahippocampal gyrus, left middle occipital gyrus) and cerebellum, relative to both ASD and TD groups. Behaviorally normalized language abilities in OO individuals appear to utilize atypical brain networks, with increased recruitment of language-specific as well as right homologue and other systems. Early intensive learning and experience may normalize behavioral language performance in OO, but some brain regions involved in language processing may continue to display characteristics that are more similar to ASD than typical development, while others show characteristics not like ASD or typical development. fMRI study of "optimal outcome" (OO) youth with no symptoms of autism spectrum disorder. Results show “compensatory” language activation in some areas in OO. OO youth also had some “residual ASD” patterns of activation (OO, ASD > TD). There was no evidence of areas of normalized brain function (OO, TD ≠ ASD). Early treatment may normalize behavior but not brain in some individuals with ASD.
Collapse
Affiliation(s)
- Inge-Marie Eigsti
- Department of Psychology, University of Connecticut, Storrs, CT, USA
| | | | - Robert T Schultz
- Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marianne Barton
- Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Elizabeth Kelley
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Letitia Naigles
- Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Alyssa Orinstein
- Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Eva Troyb
- Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Deborah A Fein
- Department of Psychology, University of Connecticut, Storrs, CT, USA; Department of Pediatrics, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
23
|
Baum SH, Stevenson RA, Wallace MT. Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Prog Neurobiol 2015; 134:140-60. [PMID: 26455789 PMCID: PMC4730891 DOI: 10.1016/j.pneurobio.2015.09.007] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/21/2015] [Accepted: 09/05/2015] [Indexed: 01/24/2023]
Abstract
Although sensory processing challenges have been noted since the first clinical descriptions of autism, it has taken until the release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) in 2013 for sensory problems to be included as part of the core symptoms of autism spectrum disorder (ASD) in the diagnostic profile. Because sensory information forms the building blocks for higher-order social and cognitive functions, we argue that sensory processing is not only an additional piece of the puzzle, but rather a critical cornerstone for characterizing and understanding ASD. In this review we discuss what is currently known about sensory processing in ASD, how sensory function fits within contemporary models of ASD, and what is understood about the differences in the underlying neural processing of sensory and social communication observed between individuals with and without ASD. In addition to highlighting the sensory features associated with ASD, we also emphasize the importance of multisensory processing in building perceptual and cognitive representations, and how deficits in multisensory integration may also be a core characteristic of ASD.
Collapse
Affiliation(s)
- Sarah H Baum
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Ryan A Stevenson
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
24
|
Lartseva A, Dijkstra T, Buitelaar JK. Emotional language processing in autism spectrum disorders: a systematic review. Front Hum Neurosci 2015; 8:991. [PMID: 25610383 PMCID: PMC4285104 DOI: 10.3389/fnhum.2014.00991] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/20/2014] [Indexed: 12/27/2022] Open
Abstract
In his first description of Autism Spectrum Disorders (ASD), Kanner emphasized emotional impairments by characterizing children with ASD as indifferent to other people, self-absorbed, emotionally cold, distanced, and retracted. Thereafter, emotional impairments became regarded as part of the social impairments of ASD, and research mostly focused on understanding how individuals with ASD recognize visual expressions of emotions from faces and body postures. However, it still remains unclear how emotions are processed outside of the visual domain. This systematic review aims to fill this gap by focusing on impairments of emotional language processing in ASD. We systematically searched PubMed for papers published between 1990 and 2013 using standardized search terms. Studies show that people with ASD are able to correctly classify emotional language stimuli as emotionally positive or negative. However, processing of emotional language stimuli in ASD is associated with atypical patterns of attention and memory performance, as well as abnormal physiological and neural activity. Particularly, younger children with ASD have difficulties in acquiring and developing emotional concepts, and avoid using these in discourse. These emotional language impairments were not consistently associated with age, IQ, or level of development of language skills. We discuss how emotional language impairments fit with existing cognitive theories of ASD, such as central coherence, executive dysfunction, and weak Theory of Mind. We conclude that emotional impairments in ASD may be broader than just a mere consequence of social impairments, and should receive more attention in future research.
Collapse
Affiliation(s)
- Alina Lartseva
- Department of Cognitive Neuroscience, Donders Centre for Neuroscience, Radboud University Medical CentreNijmegen, Netherlands
- International Max Planck Research School for Language Sciences, Max Planck Institute for PsycholinguisticsNijmegen, Netherlands
| | - Ton Dijkstra
- Donders Centre for Cognition, Radboud University NijmegenNijmegen, Netherlands
| | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Centre for Neuroscience, Radboud University Medical CentreNijmegen, Netherlands
| |
Collapse
|
25
|
Hernandez LM, Rudie JD, Green SA, Bookheimer S, Dapretto M. Neural signatures of autism spectrum disorders: insights into brain network dynamics. Neuropsychopharmacology 2015; 40:171-89. [PMID: 25011468 PMCID: PMC4262896 DOI: 10.1038/npp.2014.172] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 12/21/2022]
Abstract
Neuroimaging investigations of autism spectrum disorders (ASDs) have advanced our understanding of atypical brain function and structure, and have recently converged on a model of altered network-level connectivity. Traditional task-based functional magnetic resonance imaging (MRI) and volume-based structural MRI studies have identified widespread atypicalities in brain regions involved in social behavior and other core ASD-related behavioral deficits. More recent advances in MR-neuroimaging methods allow for quantification of brain connectivity using diffusion tensor imaging, functional connectivity, and graph theoretic methods. These newer techniques have moved the field toward a systems-level understanding of ASD etiology, integrating functional and structural measures across distal brain regions. Neuroimaging findings in ASD as a whole have been mixed and at times contradictory, likely due to the vast genetic and phenotypic heterogeneity characteristic of the disorder. Future longitudinal studies of brain development will be crucial to yield insights into mechanisms of disease etiology in ASD sub-populations. Advances in neuroimaging methods and large-scale collaborations will also allow for an integrated approach linking neuroimaging, genetics, and phenotypic data.
Collapse
Affiliation(s)
- Leanna M Hernandez
- Interdepartmental Neuroscience Program, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey D Rudie
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shulamite A Green
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Susan Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Singh L, Harrow MS. Influences of semantic and prosodic cues on word repetition and categorization in autism. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2014; 57:1764-1778. [PMID: 24801807 DOI: 10.1044/2014_jslhr-l-13-0123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 03/23/2014] [Indexed: 06/03/2023]
Abstract
PURPOSE To investigate sensitivity to prosodic and semantic cues to emotion in individuals with high-functioning autism (HFA). METHOD Emotional prosody and semantics were independently manipulated to assess the relative influence of prosody versus semantics on speech processing. A sample of 10-year-old typically developing children (n = 10) and children with HFA (n = 10) were asked to repeat words that were either emotionally congruent or incongruent in form and content (Experiment 1A). In a second task (Experiment 1B), the same participants were asked to classify stimuli on the basis of emotional prosody. A final experiment (Experiment 2) focused on sensitivity to congruence in a non-emotional source of variation: talker gender. RESULTS The results revealed a selective impairment in spontaneous integration of prosodic and semantic cues to emotion in HFA; however, the same participants were able to categorize emotions on the basis of prosody under reduced task demands. Individuals with HFA were highly sensitive to another surface characteristic in speech: talker gender. CONCLUSIONS The study reveals impairment in the spontaneous integration of prosodic and semantic cues to emotion in HFA; however, insensitivity to surface detail, such as prosody, in HFA appears to be highly task dependent and selective to the domain of emotion.
Collapse
|
27
|
Nakai Y, Takashima R, Takiguchi T, Takada S. Speech intonation in children with autism spectrum disorder. Brain Dev 2014; 36:516-22. [PMID: 23973369 DOI: 10.1016/j.braindev.2013.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The prosody of children with autism spectrum disorder (ASD) has several abnormal features. We assessed the speech tone of children with ASD and of children with typical development (TD) by using a new quantitative acoustic analysis. METHODS Our study participants consisted of 63 children (26 with ASD and 37 with TD). The participants were divided into 4 groups based on their developmental features and age. We assessed the variety of the fundamental frequency (F0) pattern quantitatively, using pitch coefficient of variation (CV), considering the different F0 mean for each word. RESULTS (1) No significant difference was observed between the ASD and TD group at pre-school age. However, the TD group exhibited significantly greater pitch CV than the ASD group at school age. (2) In pitch CV, range and standard deviation of the whole speech of each participant, no significant differences were observed between the type of participants and age. (3) No significant correlation was found between the pitch CV of each word and the Japanese Autism Screening Questionnaire total score, or between the pitch CV of each word and the intelligence quotient levels in the ASD group. A significant correlation was observed between the pitch CV of each word and social reciprocal interaction score. CONCLUSIONS We assessed the speech tone of children with ASD by using a new quantitative method. Monotonous speech in school-aged children with ASD was detected. The extent of monotonous speech was related to the extent of social reciprocal interaction in children with ASD.
Collapse
Affiliation(s)
- Yasushi Nakai
- Graduate School of Health Sciences, Kobe University, Kobe, Japan; Department of Nursing Childcare, Kawasaki College of Allied Health Professions, Kurashiki, Japan.
| | | | | | - Satoshi Takada
- Graduate School of Health Sciences, Kobe University, Kobe, Japan
| |
Collapse
|
28
|
Clumeck C, Suarez Garcia S, Bourguignon M, Wens V, Op de Beeck M, Marty B, Deconinck N, Soncarrieu MV, Goldman S, Jousmäki V, Van Bogaert P, De Tiège X. Preserved coupling between the reader's voice and the listener's cortical activity in autism spectrum disorders. PLoS One 2014; 9:e92329. [PMID: 24663673 PMCID: PMC3963898 DOI: 10.1371/journal.pone.0092329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/21/2014] [Indexed: 12/02/2022] Open
Abstract
Purpose Investigating the steadiness of the phase-coupling between the time-course of the reader's voice and brain signals of subjects with autism spectrum disorder (ASD) passively listening to connected speech using magnetoencephalography (MEG). In typically developed subjects, such coupling occurs at the right posterior temporal sulcus (pSTS) for frequencies below 1 Hz, and reflects the neural processing of sentence-level rhythmic prosody at the prelexical level. Methods Cortical neuromagnetic signals were recorded with MEG (Elekta Oy, Finland) while seven right-handed and native French-speaking ASD subjects (six males, one female, range: 13–20 years) listened to live (Live) or recorded (Recorded) voices continuously reading a text in French for five minutes. Coherence was computed between the reader's voice time-course and ASD subjects' MEG signals. Coherent neural sources were subsequently reconstructed using a beamformer. Key findings Significant coupling was found at 0.5 Hz in all ASD subjects in Live and in six subjects in Recorded. Coherent sources were located close to the right pSTS in both conditions. No significant difference was found in coherence levels between Live and Recorded, and between ASD subjects and ten typically developed subjects (right-handed, native French-speaking adults, 5 males, 5 females, age range: 21–38 years) included in a previous study. Significance This study discloses a preserved coupling between the reader's voice and ASD subjects' cortical activity at the right pSTS. These findings support the existence of preserved neural processing of sentence-level rhythmic prosody in ASD. The preservation of early cortical processing of prosodic elements in verbal language might be exploited in therapeutic interventions in ASD.
Collapse
Affiliation(s)
- Catherine Clumeck
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- Laboratoire de Recherches Psychiatriques, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Sarah Suarez Garcia
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Mathieu Bourguignon
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Op de Beeck
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Brice Marty
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Deconinck
- Centre de référence des troubles envahissants du développement et des troubles autistiques, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Brussels, Belgium
| | - Marie-Vincianne Soncarrieu
- Centre de référence des troubles envahissants du développement et des troubles autistiques, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Brussels, Belgium
| | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Veikko Jousmäki
- Brain Research Unit, O.V. Lounasmaa Laboratory and MEG Core, Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Patrick Van Bogaert
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail:
| |
Collapse
|
29
|
Abstract
This review presents an overview of functional magnetic resonance imaging findings in autism spectrum disorders (ASDS), although there is considerable heterogeneity with respect to results across studies, common themes have emerged, including: (i) hypoactivation in nodes of the "social brain" during social processing tasks, including regions within the prefrontal cortex, the posterior superior temporal sulcus, the amygdala, and the fusiform gyrus; (ii) aberrant frontostriatal activation during cognitive control tasks relevant to restricted and repetitive behaviors and interests, including regions within the dorsal prefrontal cortex and the basal ganglia; (iii) differential lateralization and activation of language processing and production regions during communication tasks; (iv) anomalous mesolimbic responses to social and nonsocial rewards; (v) task-based long-range functional hypoconnectivity and short-range hyper-connectivity; and (vi) decreased anterior-posterior functional connectivity during resting states. These findings provide mechanistic accounts of ASD pathophysiology and suggest directions for future research aimed at elucidating etiologic models and developing rationally derived and targeted treatments.
Collapse
Affiliation(s)
- Gabriel S Dichter
- Departments of Psychiatry and Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
30
|
Srinivasan SM, Bhat AN. A review of "music and movement" therapies for children with autism: embodied interventions for multisystem development. Front Integr Neurosci 2013; 7:22. [PMID: 23576962 PMCID: PMC3620584 DOI: 10.3389/fnint.2013.00022] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/21/2013] [Indexed: 12/27/2022] Open
Abstract
The rising incidence of Autism Spectrum Disorders (ASDs) has led to a surge in the number of children needing autism interventions. This paper is a call to clinicians to diversify autism interventions and to promote the use of embodied music-based approaches to facilitate multisystem development. Approximately 12% of all autism interventions and 45% of all alternative treatment strategies in schools involve music-based activities. Musical training impacts various forms of development including communication, social-emotional, and motor development in children with ASDs and other developmental disorders as well as typically developing children. In this review, we will highlight the multisystem impairments of ASDs, explain why music and movement therapies are a powerful clinical tool, as well as describe mechanisms and offer evidence in support of music therapies for children with ASDs. We will support our claims by reviewing results from brain imaging studies reporting on music therapy effects in children with autism. We will also discuss the critical elements and the different types of music therapy approaches commonly used in pediatric neurological populations including autism. We provide strong arguments for the use of music and movement interventions as a multisystem treatment tool for children with ASDs. Finally, we also make recommendations for assessment and treatment of children with ASDs, and provide directions for future research.
Collapse
Affiliation(s)
- Sudha M. Srinivasan
- Department of Kinesiology, Neag School of Education, University of ConnecticutStorrs, CT, USA
- Center for Health, Intervention, and Prevention, University of ConnecticutStorrs, CT, USA
| | - Anjana N. Bhat
- Department of Kinesiology, Neag School of Education, University of ConnecticutStorrs, CT, USA
- Center for Health, Intervention, and Prevention, University of ConnecticutStorrs, CT, USA
- Center for the Ecological Study of Perception and Action, University of ConnecticutStorrs, CT, USA
| |
Collapse
|
31
|
Mody M, Manoach DS, Guenther FH, Kenet T, Bruno KA, McDougle CJ, Stigler KA. Speech and language in autism spectrum disorder: a view through the lens of behavior and brain imaging. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/npy.13.19] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Dickstein DP, Pescosolido MF, Reidy BL, Galvan T, Kim KL, Seymour KE, Laird AR, Di Martino A, Barrett RP. Developmental meta-analysis of the functional neural correlates of autism spectrum disorders. J Am Acad Child Adolesc Psychiatry 2013; 52:279-289.e16. [PMID: 23452684 PMCID: PMC5441228 DOI: 10.1016/j.jaac.2012.12.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 11/26/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE There is a pressing need to elucidate the brain-behavior interactions underlying autism spectrum disorders (ASD) given the marked rise in ASD diagnosis over the past decade. Functional magnetic resonance imaging (fMRI) has begun to address this need, but few fMRI studies have evaluated age-related changes in ASD. Therefore, we conducted a developmental analysis of activation likelihood estimation (ALE) meta-analysis to compare child versus adult ASD fMRI studies. We hypothesized that children and adolescents with ASD (<18 years old) would rely less on prefrontal cortex structures than adults (≥18 years old). METHOD PubMed and PsycInfo literature searches were conducted to identify task-dependent fMRI studies of children or adults with ASD. Then recent GingerALE software improvements were leveraged to perform direct comparisons of child (n = 18) versus adult (n = 24) studies. RESULTS ALE meta-analyses of social tasks showed that children and adolescents with ASD versus adults had significantly greater hyperactivation in the left post-central gyrus, and greater hypoactivation in the right hippocampus and right superior temporal gyrus. ALE meta-analyses of nonsocial tasks showed that children with ASD versus adults had significantly greater hyperactivation in the right insula and left cingulate gyrus, and hypoactivation in the right middle frontal gyrus. CONCLUSION Our data suggest that the neural alterations associated with ASD are not static, occurring only in early childhood. Instead, children with ASD have altered neural activity compared to adults during both social and nonsocial tasks, especially in fronto-temporal structures. Longitudinal neuroimaging studies are required to examine these changes prospectively, as potential targets for brain-based treatments for ASD.
Collapse
Affiliation(s)
- Daniel P. Dickstein
- Bradley Hospital’s PediMIND Program and the Alpert Medical School of Brown University
| | | | - Brooke L. Reidy
- Bradley Hospital’s PediMIND Program and the Alpert Medical School of Brown University
| | - Thania Galvan
- Bradley Hospital’s PediMIND Program and the Alpert Medical School of Brown University
| | - Kerri L. Kim
- Bradley Hospital’s PediMIND Program and the Alpert Medical School of Brown University
| | - Karen E. Seymour
- Bradley Hospital’s PediMIND Program and the Alpert Medical School of Brown University
| | | | | | - Rowland P. Barrett
- Bradley Hospital’s Center for Autism and Developmental Disabilities and the Alpert Medical School of Brown University
| |
Collapse
|
33
|
Nuske HJ, Vivanti G, Dissanayake C. Are emotion impairments unique to, universal, or specific in autism spectrum disorder? A comprehensive review. Cogn Emot 2013; 27:1042-61. [PMID: 23387530 DOI: 10.1080/02699931.2012.762900] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There is widespread belief that individuals with autism spectrum disorders (ASDs) are "emotionally detached" from others. This comprehensive review examines the empirical evidence for this assumption, addressing three critical questions: (1) Are emotion-processing impairments universal in ASD? (2) Are they specific, or can they be explained by deficits in other domains? (3) Is the emotion processing profile seen in ASD unique to these conditions? Upon review of the literature (over 200 studies), we conclude that: (1) emotion-processing impairments might not be universal in ASD, as suggested by variability across participants and across emotion-processing tasks; (2) emotion-processing impairments might not be specific to ASD, as domain-general processes appear to account for some of these impairments; and (3) the specific pattern of emotion-processing strengths and weaknesses observed in ASD, involving difficulties with processing social versus non-social, and complex versus simple emotional information (with impairments more consistently reported on implicit than explicit emotion-processing tasks), appears to be unique to ASD. The emotion-processing profile observed in ASD might be best understood as resulting from heterogeneous vulnerabilities in different components of an "emotional communication system" that, in typical development, emerges from the interplay between domain-general cognitive, social and affective processes.
Collapse
Affiliation(s)
- Heather J Nuske
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
34
|
Becker EBE, Stoodley CJ. Autism spectrum disorder and the cerebellum. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:1-34. [PMID: 24290381 DOI: 10.1016/b978-0-12-418700-9.00001-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cerebellum has been long known for its importance in motor learning and coordination. Recently, anatomical, clinical, and neuroimaging studies strongly suggest that the cerebellum supports cognitive functions, including language and executive functions, as well as affective regulation. Furthermore, the cerebellum has emerged as one of the key brain regions affected in autism. Here, we discuss our current understanding of the role of the cerebellum in autism, including evidence from genetic, molecular, clinical, behavioral, and neuroimaging studies. Cerebellar findings in autism suggest developmental differences at multiple levels of neural structure and function, indicating that the cerebellum is an important player in the complex neural underpinnings of autism spectrum disorder, with behavioral implications beyond the motor domain.
Collapse
Affiliation(s)
- Esther B E Becker
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
35
|
Autism spectrum disorder: does neuroimaging support the DSM-5 proposal for a symptom dyad? A systematic review of functional magnetic resonance imaging and diffusion tensor imaging studies. J Autism Dev Disord 2012; 42:1326-41. [PMID: 21932156 DOI: 10.1007/s10803-011-1360-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with 'autism spectrum disorder' (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported abnormal function and structure of fronto-temporal and limbic networks with social and pragmatic language deficits, of temporo-parieto-occipital networks with syntactic-semantic language deficits, and of fronto-striato-cerebellar networks with repetitive behaviors and restricted interests in ASD patients. Therefore, this review partially supports the DSM-5 proposal for the ASD dyad.
Collapse
|
36
|
Dichter GS. Functional magnetic resonance imaging of autism spectrum disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2012; 14:319-51. [PMID: 23226956 PMCID: PMC3513685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
This review presents an overview of functional magnetic resonance imaging findings in autism spectrum disorders (ASDS), although there is considerable heterogeneity with respect to results across studies, common themes have emerged, including: (i) hypoactivation in nodes of the "social brain" during social processing tasks, including regions within the prefrontal cortex, the posterior superior temporal sulcus, the amygdala, and the fusiform gyrus; (ii) aberrant frontostriatal activation during cognitive control tasks relevant to restricted and repetitive behaviors and interests, including regions within the dorsal prefrontal cortex and the basal ganglia; (iii) differential lateralization and activation of language processing and production regions during communication tasks; (iv) anomalous mesolimbic responses to social and nonsocial rewards; (v) task-based long-range functional hypoconnectivity and short-range hyper-connectivity; and (vi) decreased anterior-posterior functional connectivity during resting states. These findings provide mechanistic accounts of ASD pathophysiology and suggest directions for future research aimed at elucidating etiologic models and developing rationally derived and targeted treatments.
Collapse
Affiliation(s)
- Gabriel S Dichter
- Departments of Psychiatry and Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
37
|
Liemburg EJ, Swart M, Bruggeman R, Kortekaas R, Knegtering H, Curcić-Blake B, Aleman A. Altered resting state connectivity of the default mode network in alexithymia. Soc Cogn Affect Neurosci 2012; 7:660-6. [PMID: 22563009 PMCID: PMC3427871 DOI: 10.1093/scan/nss048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/18/2012] [Indexed: 01/30/2023] Open
Abstract
Alexithymia is a trait characterized by a diminished capacity to describe and distinguish emotions and to fantasize; it is associated with reduced introspection and problems in emotion processing. The default mode network (DMN) is a network of brain areas that is normally active during rest and involved in emotion processing and self-referential mental activity, including introspection. We hypothesized that connectivity of the DMN might be altered in alexithymia. Twenty alexithymic and 18 non-alexithymic healthy volunteers underwent a resting state fMRI scan. Independent component analysis was used to identify the DMN. Differences in connectivity strength were compared between groups. Within the DMN, alexithymic participants showed lower connectivity within areas of the DMN (medial frontal and temporal areas) as compared to non-alexithymic participants. In contrast, connectivity in the high-alexithymic participants was higher for the sensorimotor cortex, occipital areas and right lateral frontal cortex than in the low-alexithymic participants. These results suggest a diminished connectivity within the DMN of alexithymic participants, in brain areas that may also be involved in emotional awareness and self-referential processing. On the other hand, alexithymia was associated with stronger functional connections of the DMN with brain areas involved in sensory input and control of emotion.
Collapse
Affiliation(s)
- Edith J Liemburg
- NeuroImaging Center, Antonius Deusinglaan 2, 9713 AW, Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
38
|
Colich NL, Wang AT, Rudie JD, Hernandez LM, Bookheimer SY, Dapretto M. Atypical Neural Processing of Ironic and Sincere Remarks in Children and Adolescents with Autism Spectrum Disorders. METAPHOR AND SYMBOL 2012; 27:70-92. [PMID: 24497750 PMCID: PMC3909704 DOI: 10.1080/10926488.2012.638856] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Individuals with ASD show consistent impairment in processing pragmatic language when attention to multiple social cues (e.g., facial expression, tone of voice) is often needed to navigate social interactions. Building upon prior fMRI work examining how facial affect and prosodic cues are used to infer a speaker's communicative intent, the authors examined whether children and adolescents with ASD differ from typically developing (TD) controls in their processing of sincere versus ironic remarks. At the behavioral level, children and adolescents with ASD and matched TD controls were able to determine whether a speaker's remark was sincere or ironic equally well, with both groups showing longer response times for ironic remarks. At the neural level, for both sincere and ironic scenarios, an extended cortical network-including canonical language areas in the left hemisphere and their right hemisphere counterparts-was activated in both groups, albeit to a lesser degree in the ASD sample. Despite overall similar patterns of activity observed for the two conditions in both groups, significant modulation of activity was detected when directly comparing sincere and ironic scenarios within and between groups. While both TD and ASD groups showed significantly greater activity in several nodes of this extended network when processing ironic versus sincere remarks, increased activity was largely confined to left language areas in TD controls, whereas the ASD sample showed a more bilateral activation profile which included both language and "theory of mind" areas (i.e., ventromedial prefrontal cortex). These findings suggest that, for high-functioning individuals with ASD, increased activity in right hemisphere homologues of language areas in the left hemisphere, as well as regions involved in social cognition, may reflect compensatory mechanisms supporting normative behavioral task performance.
Collapse
|
39
|
Abstract
This study examines the processing of prosodic cues to linguistic structure and to affect, drawing on fMRI and behavioral data from 16 high-functioning adolescents with autism spectrum disorders (ASD) and 11 typically developing controls. Stimuli were carefully matched on pitch, intensity, and duration, while varying systematically in conditions of affective prosody (angry versus neutral speech) and grammatical prosody (questions versus statement). To avoid conscious attention to prosody, which normalizes responses in young people with ASD, the implicit comprehension task directed attention to semantic aspects of the stimuli. Results showed that when perceiving prosodic cues, both affective and grammatical, activation of neural regions was more generalized in ASD than in typical development, and areas recruited reflect heightened reliance on cognitive control, reading of intentions, attentional management, and visualization. This broader recruitment of executive and "mind-reading" brain areas for a relative simple language-processing task may be interpreted to suggest that speakers with high-functioning autism (HFA) have developed less automaticity in language processing and may also suggest that "mind-reading" or theory of mind deficits are intricately bound up in language processing. Data provide support for both a right-lateralized as well as a bilateral model of prosodic processing in typical individuals, depending upon the function of the prosodic information.
Collapse
Affiliation(s)
- Inge-Marie Eigsti
- Department of Psychology, University of Connecticut, Storrs, CT 06250, USA.
| | | | | | | | | |
Collapse
|
40
|
O'Connor K. Auditory processing in autism spectrum disorder: a review. Neurosci Biobehav Rev 2011; 36:836-54. [PMID: 22155284 DOI: 10.1016/j.neubiorev.2011.11.008] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 10/16/2011] [Accepted: 11/25/2011] [Indexed: 12/26/2022]
Abstract
For individuals with autism spectrum disorder or 'ASD' the ability to accurately process and interpret auditory information is often difficult. Here we review behavioural, neurophysiological and imaging literature pertaining to this field with the aim of providing a comprehensive account of auditory processing in ASD, and thus an effective tool to aid further research. Literature was sourced from peer-reviewed journals published over the last two decades which best represent research conducted in these areas. Findings show substantial evidence for atypical processing of auditory information in ASD at behavioural and neural levels. Abnormalities are diverse, ranging from atypical perception of various low-level perceptual features (i.e. pitch, loudness) to processing of more complex auditory information such as prosody. Trends across studies suggest auditory processing impairments in ASD are most likely to present during processing of complex auditory information and are more severe for speech than for non-speech stimuli. The interpretation of these findings with respect to various cognitive accounts of ASD is discussed and suggestions offered for further research.
Collapse
Affiliation(s)
- K O'Connor
- Department of Communication Disorders, University of Canterbury, Christchurch 8140, New Zealand.
| |
Collapse
|