1
|
O'Leary EM, Bonthuis PJ. Mom genes and dad genes: genomic imprinting in the regulation of social behaviors. Epigenomics 2025:1-19. [PMID: 40249667 DOI: 10.1080/17501911.2025.2491294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/31/2025] [Indexed: 04/20/2025] Open
Abstract
Genomic imprinting is an epigenetic phenomenon in mammals that affects brain development and behavior. Imprinting involves the regulation of allelic expression for some genes in offspring that depends on whether alleles are inherited from mothers compared to fathers, and is thought to provide parental control over offspring social behavior phenotypes. Imprinted gene expression is prevalent in the mammalian brain, and human imprinted gene mutations are associated with neurodevelopmental disorders and neurodivergent social behavior in Prader-Willi Syndrome, Angelman Syndrome, and autism. Here, we provide a review of the evidence that imprinted genes influence social behaviors across major neurodevelopmental stages in humans and mouse animal models that include parent-infant interactions, juvenile sociability, and adult aggression, dominance, and sexual behavior.
Collapse
Affiliation(s)
- Erin M O'Leary
- Neuroscience Program, University of Illinois, Urbana, IL, USA
| | - Paul J Bonthuis
- Neuroscience Program, University of Illinois, Urbana, IL, USA
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Gene Networks in Neural & Development Plasticity Theme at Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Guoynes CD, Pavalko G, Sidorov MS. Courtship and distress ultrasonic vocalizations are disrupted in a mouse model of Angelman syndrome. RESEARCH SQUARE 2025:rs.3.rs-5953744. [PMID: 39989972 PMCID: PMC11844654 DOI: 10.21203/rs.3.rs-5953744/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Angelman syndrome (AS) is a single-gene neurodevelopmental disorder caused by loss of function of the maternal copy of the UBE3A gene. Nearly all individuals with AS lack speech, resulting in major impacts on daily life for patients and caregivers. To evaluate new therapies for AS, it is crucial to have a mouse model that characterizes meaningful clinical features. Vocalizations are used in many contexts in mice, including pup retrieval, social interactions, courtship, and distress. Previous work in the Ube3a m-/p+ mouse model of AS found abnormalities in the number of ultrasonic vocalizations (USVs) mice produced during pup isolation and same-sex social interactions. Here, we evaluated Ube3a m-/p+ vocalizations during courtship and distress. Quantifying USVs in these contexts enables comparison of USVs in social (courtship) and non-social (distress) settings. In addition, we assessed the utility of incorporating USV testing into existing Ube3a m-/p+ mouse behavioral assessments used to evaluate potential AS treatments. Methods We used a three-chamber social preference test for courtship vocalizations and a tail suspension test for distress vocalizations in adult wild-type (WT) and Ube3a m-/p+ littermates, and quantified USV properties using the program DeepSqueak. Next, mice performed an established Ube3a m-/p+ behavioral battery that included rotarod, open field, marble burying, and nest building. We used principal component analysis to evaluate the value of USV testing in the context of other behaviors. Results In both social courtship and nonsocial distress behavioral paradigms, Ube3a m-/p+ mice made fewer USVs compared to WT mice. Spectral properties of USVs were abnormal in Ube3a m-/p+ mice on the courtship test but mostly typical on the distress test. Including USVs in the Ube3a m-/p+ mouse behavior battery increased the distance between Ube3a m-/p+ and WT clusters in principal component space. Conclusions Ube3a m-/p+ mice have difficulty producing USVs in social and nonsocial contexts. Spectral properties of USVs are most impacted in the social courtship context. Adding USVs to the Ube3a m-/p+ behavior battery may improve sensitivity to detect group differences and changes in communication.
Collapse
|
3
|
Inagaki R, Kita S, Niwa N, Fukunaga K, Iwamoto T, Moriguchi S. Aberrant extracellular dopamine clearance in the prefrontal cortex exhibits ADHD-like behavior in NCX3 heterozygous mice. FEBS J 2025; 292:426-444. [PMID: 39624860 PMCID: PMC11734882 DOI: 10.1111/febs.17339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/24/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that involves dopaminergic dysfunction in the prefrontal cortex (PFC), manifesting hyperactivity, inattention, and cognitive deficits. However, the ADHD-associated candidate genes underlying dopaminergic neurotransmission alterations remain poorly defined. Here, we identified the abundant localization of sodium-calcium exchanger 3 (NCX3) levels in the dopaminergic neurons of the ventral tegmental area, a major source of dopaminergic innervation to the PFC. We confirmed that NCX3 knockdown in N27 cells caused aberrant dopamine influx through the strong interaction between calcium/calmodulin-dependent protein kinase II alpha and dopamine transporter. In addition, we assessed behavioral changes and underlying molecular properties in NCX3 heterozygous (NCX3+/-) mice. NCX3+/- mice exhibited hyperactivity, cognitive deficits, and social dysfunction which were alleviated by treating with methylphenidate. Furthermore, NCX3+/- mice displayed a persistent elevation of basal dopamine levels and decreased extracellular levels of dopamine triggered by social stimuli in the PFC of NCX3+/- mice. In agreement with the rise in extracellular dopamine levels in the PFC, NCX3+/- mice showed activation of dopamine D1 receptor signaling pathways in the PFC compared to wild-type mice. Thus, deficiency of NCX3 leads to impaired dopaminergic neurotransmission in the PFC, which likely accounts for the ADHD-like behavior in NCX3+/- mice.
Collapse
Affiliation(s)
- Ryo Inagaki
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Satomi Kita
- Department of Pharmacology, Faculty of Pharmaceutical SciencesTokushima Bunri UniversityJapan
| | - Nozomu Niwa
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Takahiro Iwamoto
- Department of Pharmacology, Faculty of MedicineFukuoka UniversityJapan
| | - Shigeki Moriguchi
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
4
|
Qu S, Wang J, Guan X, Song C, Wang Y. Sleep disturbance in Angelman syndrome patients. Orphanet J Rare Dis 2024; 19:146. [PMID: 38580983 PMCID: PMC10996173 DOI: 10.1186/s13023-024-03154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by abnormal expression of the maternal ubiquitin protein ligase E3A gene (UBE3A). As one of the most challenging symptoms and important focuses of new treatment, sleep disturbance is reported to occur in 70-80% of patients with AS and has a serious impact on the lives of patients and their families. Although clinical studies and animal model studies have provided some clues, recent research into sleep disorders in the context of AS is still very limited. It is generally accepted that there is an interaction between neurodevelopment and sleep; however, there is no recognized mechanism for sleep disorders in AS patients. Accordingly, there are no aetiologically specific clinical treatments for AS-related sleep disorders. The most common approaches involve ameliorating symptoms through methods such as behavioural therapy and symptomatic pharmacotherapy. In recent years, preclinical and clinical studies on the targeted treatment of AS have emerged. Although precision therapy for restoring the UBE3A level and the function of its signalling pathways is inevitably hindered by many remaining obstacles, this approach has the potential to address AS-related sleep disturbance.
Collapse
Affiliation(s)
- Song Qu
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junyi Wang
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xingying Guan
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, China
| | - Cui Song
- Department of Endocrinology and Genetic Metabolism Disease, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| | - Yanyan Wang
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
5
|
Roy B, Amemasor E, Hussain S, Castro K. UBE3A: The Role in Autism Spectrum Disorders (ASDs) and a Potential Candidate for Biomarker Studies and Designing Therapeutic Strategies. Diseases 2023; 12:7. [PMID: 38248358 PMCID: PMC10814747 DOI: 10.3390/diseases12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Published reports from the CDC's Autism and Development Disabilities Monitoring Networks have shown that an average of 1 in every 44 (2.3%) 8-year-old children were estimated to have ASD in 2018. Many of the ASDs exhibiting varying degrees of autism-like phenotypes have chromosomal anomalies in the Chr15q11-q13 region. Numerous potential candidate genes linked with ASD reside in this chromosomal segment. However, several clinical, in vivo, and in vitro studies selected one gene more frequently than others randomly and unbiasedly. This gene codes for UBE3A or Ubiquitin protein ligase E3A [also known as E6AP ubiquitin-protein ligase (E6AP)], an enzyme involved in the cellular degradation of proteins. This gene has been listed as one of the several genes with a high potential of causing ASD in the Autism Database. The gain of function mutations, triplication, or duplication in the UBE3A gene is also associated with ASDs like Angelman Syndrome (AS) and Dup15q Syndrome. The genetic imprinting of UBE3A in the brain and a preference for neuronal maternal-specific expression are the key features of various ASDs. Since the UBE3A gene is involved in two main important diseases associated with autism-like symptoms, there has been widespread research going on in understanding the link between this gene and autism. Additionally, since no universal methodology or mechanism exists for identifying UBE3A-mediated ASD, it continues to be challenging for neurobiologists, neuroscientists, and clinicians to design therapies or diagnostic tools. In this review, we focus on the structure and functional aspects of the UBE3A protein, discuss the primary relevance of the 15q11-q13 region in the cause of ASDs, and highlight the link between UBE3A and ASD. We try to broaden the knowledge of our readers by elaborating on the possible mechanisms underlying UBE3A-mediated ASDs, emphasizing the usage of UBE3A as a prospective biomarker in the preclinical diagnosis of ASDs and discuss the positive outcomes, advanced developments, and the hurdles in the field of therapeutic strategies against UBE3A-mediated ASDs. This review is novel as it lays a very detailed and comprehensive platform for one of the most important genes associated with diseases showing autistic-like symptoms. Additionally, this review also attempts to lay optimistic feedback on the possible steps for the diagnosis, prevention, and therapy of these UBE3A-mediated ASDs in the upcoming years.
Collapse
Affiliation(s)
- Bidisha Roy
- Life Science Centre, Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA; (E.A.); (S.H.); (K.C.)
| | | | | | | |
Collapse
|
6
|
Lau KA, Yang X, Rioult-Pedotti MS, Tang S, Appleman M, Zhang J, Tian Y, Marino C, Yao M, Jiang Q, Tsuda AC, Huang YWA, Cao C, Marshall J. A PSD-95 peptidomimetic mitigates neurological deficits in a mouse model of Angelman syndrome. Prog Neurobiol 2023; 230:102513. [PMID: 37536482 DOI: 10.1016/j.pneurobio.2023.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Angelman Syndrome (AS) is a severe cognitive disorder caused by loss of neuronal expression of the E3 ubiquitin ligase UBE3A. In an AS mouse model, we previously reported a deficit in brain-derived neurotrophic factor (BDNF) signaling, and set out to develop a therapeutic that would restore normal signaling. We demonstrate that CN2097, a peptidomimetic compound that binds postsynaptic density protein-95 (PSD-95), a TrkB associated scaffolding protein, mitigates deficits in PLC-CaMKII and PI3K/mTOR pathways to restore synaptic plasticity and learning. Administration of CN2097 facilitated long-term potentiation (LTP) and corrected paired-pulse ratio. As the BDNF-mTORC1 pathway is critical for inhibition of autophagy, we investigated whether autophagy was disrupted in AS mice. We found aberrantly high autophagic activity attributable to a concomitant decrease in mTORC1 signaling, resulting in decreased levels of synaptic proteins, including Synapsin-1 and Shank3. CN2097 increased mTORC1 activity to normalize autophagy and restore hippocampal synaptic protein levels. Importantly, treatment mitigated cognitive and motor dysfunction. These findings support the use of neurotrophic therapeutics as a valuable approach for treating AS pathology.
Collapse
Affiliation(s)
- Kara A Lau
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Xin Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Mengia S Rioult-Pedotti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Stephen Tang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Mark Appleman
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Jianan Zhang
- Institute of Neuroscience, Soochow University, Suzhou 215000, China.
| | - Yuyang Tian
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Caitlin Marino
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Mudi Yao
- The Fourth School of Clinical Medicine, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Qin Jiang
- The Fourth School of Clinical Medicine, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Ayumi C Tsuda
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Cong Cao
- Institute of Neuroscience, Soochow University, Suzhou 215000, China.
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
7
|
John RM, Higgs MJ, Isles AR. Imprinted genes and the manipulation of parenting in mammals. Nat Rev Genet 2023; 24:783-796. [PMID: 37714957 DOI: 10.1038/s41576-023-00644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/17/2023]
Abstract
Genomic imprinting refers to the parent-of-origin expression of genes, which originates from epigenetic events in the mammalian germ line. The evolution of imprinting may reflect a conflict over resource allocation early in life, with silencing of paternal genes in offspring soliciting increased maternal provision and silencing of maternal genes limiting demands on the mother. Parental caregiving has been identified as an area of potential conflict, with several imprinted genes serendipitously found to directly influence the quality of maternal care. Recent systems biology approaches, based on single-cell RNA sequencing data, support a more deliberate relationship, which is reinforced by the finding that imprinted genes expressed in the offspring influence the quality of maternal caregiving. These bidirectional, reiterative relationships between parents and their offspring are critical both for short-term survival and for lifelong wellbeing, with clear implications for human health.
Collapse
|
8
|
Camões dos Santos J, Appleton C, Cazaux Mateus F, Covas R, Bekman EP, da Rocha ST. Stem cell models of Angelman syndrome. Front Cell Dev Biol 2023; 11:1274040. [PMID: 37928900 PMCID: PMC10620611 DOI: 10.3389/fcell.2023.1274040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Angelman syndrome (AS) is an imprinted neurodevelopmental disorder that lacks a cure, characterized by developmental delay, intellectual impairment, seizures, ataxia, and paroxysmal laughter. The condition arises due to the loss of the maternally inherited copy of the UBE3A gene in neurons. The paternally inherited UBE3A allele is unable to compensate because it is silenced by the expression of an antisense transcript (UBE3A-ATS) on the paternal chromosome. UBE3A, encoding enigmatic E3 ubiquitin ligase variants, regulates target proteins by either modifying their properties/functions or leading them to degradation through the proteasome. Over time, animal models, particularly the Ube3a mat-/pat+ Knock-Out (KO) mice, have significantly contributed to our understanding of the molecular mechanisms underlying AS. However, a shift toward human pluripotent stem cell models (PSCs), such as human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), has gained momentum. These stem cell models accurately capture human genetic and cellular characteristics, offering an alternative or a complement to animal experimentation. Human stem cells possess the remarkable ability to recapitulate neurogenesis and generate "brain-in-a-dish" models, making them valuable tools for studying neurodevelopmental disorders like AS. In this review, we provide an overview of the current state-of-the-art human stem cell models of AS and explore their potential to become the preclinical models of choice for drug screening and development, thus propelling AS therapeutic advancements and improving the lives of affected individuals.
Collapse
Affiliation(s)
- João Camões dos Santos
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Appleton
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Animal Biology, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Francisca Cazaux Mateus
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Covas
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Evguenia Pavlovna Bekman
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- The Egas Moniz Center for Interdisciplinary Research (CiiEM), Caparica, Portugal
| | - Simão Teixeira da Rocha
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Dugger SA, Dhindsa RS, Sampaio GDA, Ressler AK, Rafikian EE, Petri S, Letts VA, Teoh J, Ye J, Colombo S, Peng Y, Yang M, Boland MJ, Frankel WN, Goldstein DB. Neurodevelopmental deficits and cell-type-specific transcriptomic perturbations in a mouse model of HNRNPU haploinsufficiency. PLoS Genet 2023; 19:e1010952. [PMID: 37782669 PMCID: PMC10569524 DOI: 10.1371/journal.pgen.1010952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/12/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Heterozygous de novo loss-of-function mutations in the gene expression regulator HNRNPU cause an early-onset developmental and epileptic encephalopathy. To gain insight into pathological mechanisms and lay the potential groundwork for developing targeted therapies, we characterized the neurophysiologic and cell-type-specific transcriptomic consequences of a mouse model of HNRNPU haploinsufficiency. Heterozygous mutants demonstrated global developmental delay, impaired ultrasonic vocalizations, cognitive dysfunction and increased seizure susceptibility, thus modeling aspects of the human disease. Single-cell RNA-sequencing of hippocampal and neocortical cells revealed widespread, yet modest, dysregulation of gene expression across mutant neuronal subtypes. We observed an increased burden of differentially-expressed genes in mutant excitatory neurons of the subiculum-a region of the hippocampus implicated in temporal lobe epilepsy. Evaluation of transcriptomic signature reversal as a therapeutic strategy highlights the potential importance of generating cell-type-specific signatures. Overall, this work provides insight into HNRNPU-mediated disease mechanisms and provides a framework for using single-cell RNA-sequencing to study transcriptional regulators implicated in disease.
Collapse
Affiliation(s)
- Sarah A. Dugger
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Ryan S. Dhindsa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, Texas, United States of America
| | - Gabriela De Almeida Sampaio
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Andrew K. Ressler
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Elizabeth E. Rafikian
- Mouse Neurobehavioral Core Facility, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Sabrina Petri
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Verity A. Letts
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - JiaJie Teoh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Junqiang Ye
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York, United States of America
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, New York, United States of America
| | - Sophie Colombo
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Yueqing Peng
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Mu Yang
- Mouse Neurobehavioral Core Facility, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Michael J. Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Wayne N. Frankel
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
10
|
Huguenard JR. Adult Gene Therapy for Epilepsy in a Model of Angelman Syndrome: Hope or Hype? Epilepsy Curr 2023; 23:312-314. [PMID: 37901779 PMCID: PMC10601042 DOI: 10.1177/15357597231191885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
Antisense Oligonucleotide Therapy Rescues Disturbed Brain Rhythms and Sleep in Juvenile and Adult Mouse Models of Angelman Syndrome Lee D, Chen W, Kaku HN, Zhuo X, Chao ES, Soriano A, Kuncheria A, Flores S, Kim JH, Rivera A, Rigo F, Jafar-Nejad P, Beaudet AL, Caudill MS, Xue M. Elife . 20233;12:e81892. doi:10.7554/eLife.81892 UBE3A encodes ubiquitin protein ligase E3A, and in neurons its expression from the paternal allele is repressed by the UBE3A antisense transcript (UBE3A-ATS). This leaves neurons susceptible to loss-of-function of maternal UBE3A. Indeed, Angelman syndrome, a severe neurodevelopmental disorder, is caused by maternal UBE3A deficiency. A promising therapeutic approach to treating Angelman syndrome is to reactivate the intact paternal UBE3A by suppressing UBE3A-ATS. Prior studies show that many neurological phenotypes of maternal Ube3a knockout mice can only be rescued by reinstating Ube3a expression in early development, indicating a restricted therapeutic window for Angelman syndrome. Here, we report that reducing Ube3a-ATS by antisense oligonucleotides in juvenile or adult maternal Ube3a knockout mice rescues the abnormal electroencephalogram (EEG) rhythms and sleep disturbance, two prominent clinical features of Angelman syndrome. Importantly, the degree of phenotypic improvement correlates with the increase of Ube3a protein levels. These results indicate that the therapeutic window of genetic therapies for Angelman syndrome is broader than previously thought, and EEG power spectrum and sleep architecture should be used to evaluate the clinical efficacy of therapies.
Collapse
Affiliation(s)
- John R Huguenard
- Neurology and Neurological Sciences, Stanford University School of Medicine
| |
Collapse
|
11
|
Wang SE, Jiang YH. Novel epigenetic molecular therapies for imprinting disorders. Mol Psychiatry 2023; 28:3182-3193. [PMID: 37626134 PMCID: PMC10618104 DOI: 10.1038/s41380-023-02208-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Genomic imprinting disorders are caused by the disruption of genomic imprinting processes leading to a deficit or increase of an active allele. Their unique molecular mechanisms underlying imprinted genes offer an opportunity to investigate epigenetic-based therapy for reactivation of an inactive allele or reduction of an active allele. Current treatments are based on managing symptoms, not targeting the molecular mechanisms underlying imprinting disorders. Here, we highlight molecular approaches of therapeutic candidates in preclinical and clinical studies for individual imprinting disorders. These include the significant progress of discovery and testing of small molecules, antisense oligonucleotides, and CRISPR mediated genome editing approaches as new therapeutic strategies. We discuss the significant challenges of translating these promising therapies from the preclinical stage to the clinic, especially for genome editing based approaches.
Collapse
Affiliation(s)
- Sung Eun Wang
- Department of Genetics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
Aria F, Pandey K, Alberini CM. Excessive Protein Accumulation and Impaired Autophagy in the Hippocampus of Angelman Syndrome Modeled in Mice. Biol Psychiatry 2023; 94:68-83. [PMID: 36764852 PMCID: PMC10276539 DOI: 10.1016/j.biopsych.2022.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Angelman syndrome (AS), a neurodevelopmental disorder caused by abnormalities of the 15q11.2-q13.1 chromosome region, is characterized by impairment of cognitive and motor functions, sleep problems, and seizures. How the genetic defects of AS produce these neurological symptoms is unclear. Mice modeling AS (AS mice) accumulate activity-regulated cytoskeleton-associated protein (ARC/ARG3.1), a neuronal immediate early gene (IEG) critical for synaptic plasticity. This accumulation suggests an altered protein metabolism. METHODS Focusing on the dorsal hippocampus (dHC), a brain region critical for memory formation and cognitive functions, we assessed levels and tissue distribution of IEGs, de novo protein synthesis, and markers of protein synthesis, endosomes, autophagy, and synaptic functions in AS mice at baseline and following learning. We also tested autophagic flux and memory retention following autophagy-promoting treatment. RESULTS AS dHC exhibited accumulation of IEGs ARC, FOS, and EGR1; autophagy proteins MLP3B, SQSTM1, and LAMP1; and reduction of the endosomal protein RAB5A. AS dHC also had increased levels of de novo protein synthesis, impaired autophagic flux with accumulation of autophagosome, and altered synaptic protein levels. Contextual fear conditioning significantly increased levels of IEGs and autophagy proteins, de novo protein synthesis, and autophagic flux in the dHC of normal mice, but not in AS mice. Enhancing autophagy in the dHC alleviated AS-related memory and autophagic flux impairments. CONCLUSIONS A major biological deficit of AS brain is a defective protein metabolism, particularly that dynamically regulated by learning, resulting in stalled autophagy and accumulation of neuronal proteins. Activating autophagy ameliorates AS cognitive impairments and dHC protein accumulation.
Collapse
Affiliation(s)
- Francesca Aria
- Center for Neural Science, New York University, New York, New York
| | - Kiran Pandey
- Center for Neural Science, New York University, New York, New York
| | | |
Collapse
|
13
|
Martinez LA, Born HA, Harris S, Regnier-Golanov A, Grieco JC, Weeber EJ, Anderson AE. Quantitative EEG Analysis in Angelman Syndrome: Candidate Method for Assessing Therapeutics. Clin EEG Neurosci 2023; 54:203-212. [PMID: 33203220 DOI: 10.1177/1550059420973095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The goal of these studies was to use quantitative (q)EEG techniques on data from children with Angelman syndrome (AS) using spectral power analysis, and to evaluate this as a potential biomarker and quantitative method to evaluate therapeutics. Although characteristic patterns are evident in visual inspection, using qEEG techniques has the potential to provide quantitative evidence of treatment efficacy. We first assessed spectral power from baseline EEG recordings collected from children with AS compared to age-matched neurotypical controls, which corroborated the previously reported finding of increased total power driven by elevated delta power in children with AS. We then retrospectively analyzed data collected during a clinical trial evaluating the safety and tolerability of minocycline (3 mg/kg/d) to compare pretreatment recordings from children with AS (4-12 years of age) to EEG activity at the end of treatment and following washout for EEG spectral power and epileptiform events. At baseline and during minocycline treatment, the AS subjects demonstrated increased delta power; however, following washout from minocycline treatment the AS subjects had significantly reduced EEG spectral power and epileptiform activity. Our findings support the use of qEEG analysis in evaluating AS and suggest that this technique may be useful to evaluate therapeutic efficacy in AS. Normalizing EEG power in AS therefore may become an important metric in screening therapeutics to gauge overall efficacy. As therapeutics transition from preclinical to clinical studies, it is vital to establish outcome measures that can quantitatively evaluate putative treatments for AS and neurological disorders with distinctive EEG patterns.
Collapse
Affiliation(s)
- Luis A Martinez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,The Gordon and Mary Cain Pediatric Neurology Research Foundation Laboratories, Texas Children's Hospital, Houston, TX, USA
| | - Heather A Born
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,The Gordon and Mary Cain Pediatric Neurology Research Foundation Laboratories, Texas Children's Hospital, Houston, TX, USA
| | - Sarah Harris
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,The Gordon and Mary Cain Pediatric Neurology Research Foundation Laboratories, Texas Children's Hospital, Houston, TX, USA
| | - Angelique Regnier-Golanov
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,The Gordon and Mary Cain Pediatric Neurology Research Foundation Laboratories, Texas Children's Hospital, Houston, TX, USA
| | - Joseph C Grieco
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Edwin J Weeber
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Anne E Anderson
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,The Gordon and Mary Cain Pediatric Neurology Research Foundation Laboratories, Texas Children's Hospital, Houston, TX, USA.,Departments of Neuroscience and Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Romero LO, Caires R, Kaitlyn Victor A, Ramirez J, Sierra-Valdez FJ, Walsh P, Truong V, Lee J, Mayor U, Reiter LT, Vásquez V, Cordero-Morales JF. Linoleic acid improves PIEZO2 dysfunction in a mouse model of Angelman Syndrome. Nat Commun 2023; 14:1167. [PMID: 36859399 PMCID: PMC9977963 DOI: 10.1038/s41467-023-36818-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability and atypical behaviors. AS results from loss of expression of the E3 ubiquitin-protein ligase UBE3A from the maternal allele in neurons. Individuals with AS display impaired coordination, poor balance, and gait ataxia. PIEZO2 is a mechanosensitive ion channel essential for coordination and balance. Here, we report that PIEZO2 activity is reduced in Ube3a deficient male and female mouse sensory neurons, a human Merkel cell carcinoma cell line and female human iPSC-derived sensory neurons with UBE3A knock-down, and de-identified stem cell-derived neurons from individuals with AS. We find that loss of UBE3A decreases actin filaments and reduces PIEZO2 expression and function. A linoleic acid (LA)-enriched diet increases PIEZO2 activity, mechano-excitability, and improves gait in male AS mice. Finally, LA supplementation increases PIEZO2 function in stem cell-derived neurons from individuals with AS. We propose a mechanism whereby loss of UBE3A expression reduces PIEZO2 function and identified a fatty acid that enhances channel activity and ameliorates AS-associated mechano-sensory deficits.
Collapse
Affiliation(s)
- Luis O Romero
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, Memphis, TN, 38163, USA
| | - Rebeca Caires
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - A Kaitlyn Victor
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain
| | - Francisco J Sierra-Valdez
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico
| | | | | | - Jungsoo Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Lawrence T Reiter
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38104, USA
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38104, USA
| | - Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| | - Julio F Cordero-Morales
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| |
Collapse
|
15
|
Lee D, Chen W, Kaku HN, Zhuo X, Chao ES, Soriano A, Kuncheria A, Flores S, Kim JH, Rivera A, Rigo F, Jafar-nejad P, Beaudet AL, Caudill MS, Xue M. Antisense oligonucleotide therapy rescues disturbed brain rhythms and sleep in juvenile and adult mouse models of Angelman syndrome. eLife 2023; 12:e81892. [PMID: 36594817 PMCID: PMC9904759 DOI: 10.7554/elife.81892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
UBE3A encodes ubiquitin protein ligase E3A, and in neurons its expression from the paternal allele is repressed by the UBE3A antisense transcript (UBE3A-ATS). This leaves neurons susceptible to loss-of-function of maternal UBE3A. Indeed, Angelman syndrome, a severe neurodevelopmental disorder, is caused by maternal UBE3A deficiency. A promising therapeutic approach to treating Angelman syndrome is to reactivate the intact paternal UBE3A by suppressing UBE3A-ATS. Prior studies show that many neurological phenotypes of maternal Ube3a knockout mice can only be rescued by reinstating Ube3a expression in early development, indicating a restricted therapeutic window for Angelman syndrome. Here, we report that reducing Ube3a-ATS by antisense oligonucleotides in juvenile or adult maternal Ube3a knockout mice rescues the abnormal electroencephalogram (EEG) rhythms and sleep disturbance, two prominent clinical features of Angelman syndrome. Importantly, the degree of phenotypic improvement correlates with the increase of Ube3a protein levels. These results indicate that the therapeutic window of genetic therapies for Angelman syndrome is broader than previously thought, and EEG power spectrum and sleep architecture should be used to evaluate the clinical efficacy of therapies.
Collapse
Affiliation(s)
- Dongwon Lee
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Wu Chen
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Heet Naresh Kaku
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Xinming Zhuo
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Eugene S Chao
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | | | - Allen Kuncheria
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Stephanie Flores
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Joo Hyun Kim
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Armando Rivera
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Frank Rigo
- Ionis PharmaceuticalsCarlsbadUnited States
| | | | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Matthew S Caudill
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
16
|
Key AP, Roth S, Jones D, Hunt-Hawkins H. Typical and atypical neural mechanisms support spoken word processing in Angelman syndrome. BRAIN AND LANGUAGE 2023; 236:105215. [PMID: 36502770 PMCID: PMC9839587 DOI: 10.1016/j.bandl.2022.105215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/11/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Angelman syndrome (AS) is known to affect expressive and receptive communication abilities. This study examined individual differences in neural mechanisms underlying speech processing in children with AS (n = 24, M age = 10.01 years) and typical development (n = 30, M age = 10.82 years) using auditory event-related potentials during passive listening to common English words and novel pseudowords. A group of adults with AS (n = 7, M = 31.78 years) provided data about the upper developmental range. The typically developing group demonstrated the expected more negative amplitudes in response to words than pseudowords within 250-500 ms after stimulus onset at the left temporal scalp region. Children and adults with AS exhibited a similar left-lateralized pattern of word-pseudoword differentiation at temporal and parietal regions, but not the midline parietal memory response for known words observed in the typically developing group, suggesting typical-like word-pseudoword differentiation along with possible alterations in the automatic recall of word meaning. These results have important implications for understanding receptive and expressive communication processes in AS and support the use of auditory neural responses for characterizing individual differences in neurodevelopmental disorders with limited speech.
Collapse
Affiliation(s)
- Alexandra P Key
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN 37203, USA; Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Sydney Roth
- Vanderbilt University, Nashville, TN 37235, USA
| | - Dorita Jones
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN 37203, USA; Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
17
|
Tanas JK, Kerr DD, Wang L, Rai A, Wallaard I, Elgersma Y, Sidorov MS. Multidimensional analysis of behavior predicts genotype with high accuracy in a mouse model of Angelman syndrome. Transl Psychiatry 2022; 12:426. [PMID: 36192373 PMCID: PMC9529912 DOI: 10.1038/s41398-022-02206-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of expression of the maternal copy of the UBE3A gene. Individuals with AS have a multifaceted behavioral phenotype consisting of deficits in motor function, epilepsy, cognitive impairment, sleep abnormalities, as well as other comorbidities. Effectively modeling this behavioral profile and measuring behavioral improvement will be crucial for the success of ongoing and future clinical trials. Foundational studies have defined an array of behavioral phenotypes in the AS mouse model. However, no single behavioral test is able to fully capture the complex nature of AS-in mice, or in children. We performed multidimensional analysis (principal component analysis + k-means clustering) to quantify the performance of AS model mice (n = 148) and wild-type littermates (n = 138) across eight behavioral domains. This approach correctly predicted the genotype of mice based on their behavioral profile with ~95% accuracy, and remained effective with reasonable sample sizes (n = ~12-15). Multidimensional analysis was effective using different combinations of behavioral inputs and was able to detect behavioral improvement as a function of treatment in AS model mice. Overall, multidimensional behavioral analysis provides a tool for evaluating the effectiveness of preclinical treatments for AS. Multidimensional analysis of behavior may also be applied to rodent models of related neurodevelopmental disorders, and may be particularly valuable for disorders where individual behavioral tests are less reliable than in AS.
Collapse
Affiliation(s)
- Joseph K Tanas
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Devante D Kerr
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
- Howard University, Washington, DC, USA
| | - Li Wang
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Anika Rai
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Ilse Wallaard
- Department of Clinical Genetics and the ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Ype Elgersma
- Department of Clinical Genetics and the ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Michael S Sidorov
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA.
- Departments of Pediatrics and Pharmacology & Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
18
|
Generation and Characterization of a Novel Angelman Syndrome Mouse Model with a Full Deletion of the Ube3a Gene. Cells 2022; 11:cells11182815. [PMID: 36139390 PMCID: PMC9496699 DOI: 10.3390/cells11182815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by deficits in maternally inherited UBE3A. The disease is characterized by intellectual disability, impaired motor skills, and behavioral deficits, including increased anxiety and autism spectrum disorder features. The mouse models used so far in AS research recapitulate most of the cardinal AS characteristics. However, they do not mimic the situation found in the majority of AS patients who have a large deletion spanning 4–6 Mb. There is also a large variability in phenotypes reported in the available models, which altogether limits development of therapeutics. Therefore, we have generated a mouse model in which the Ube3a gene is deleted entirely from the 5′ UTR to the 3′ UTR of mouse Ube3a isoform 2, resulting in a deletion of 76 kb. To investigate its phenotypic suitability as a model for AS, we employed a battery of behavioral tests directed to reveal AS pathology and to find out whether this model better mirrors AS development compared to other available models. We found that the maternally inherited Ube3a-deficient line exhibits robust motor dysfunction, as seen in the rotarod and DigiGait tests, and displays abnormalities in additional behavioral paradigms, including reduced nest building and hypoactivity, although no apparent cognitive phenotype was observed in the Barnes maze and novel object recognition tests. The AS mice did, however, underperform in more complex cognition tasks, such as place reversal in the IntelliCage system, and exhibited a different circadian rhythm activity pattern. We show that the novel UBE3A-deficient model, based on a whole-gene deletion, is suitable for AS research, as it recapitulates important phenotypes characteristic of AS. This new mouse model provides complementary possibilities to study the Ube3a gene and its function in health and disease as well as possible therapeutic interventions to restore function.
Collapse
|
19
|
Mishra A, Prabha PK, Singla R, Kaur G, Sharma AR, Joshi R, Suroy B, Medhi B. Epigenetic Interface of Autism Spectrum Disorders (ASDs): Implications of Chromosome 15q11-q13 Segment. ACS Chem Neurosci 2022; 13:1684-1696. [PMID: 35635007 DOI: 10.1021/acschemneuro.2c00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASDs) are multifactorial in nature and include both genetic and environmental factors. The increasing evidence advocates an important role of epigenetics in ASD etiology. One of the most common forms of epigenetic changes observed in the case of neurodevelopmental disorders is imprinting which is tightly regulated by developmental and tissue-specific mechanisms. Interestingly, many of these disorders that demonstrate autism-like phenotypes at varying degrees have found involvement of chromosome 15q11-q13 segment. Numerous studies demonstrate occurrence of ASD in the presence of chromosomal abnormalities located mainly in Chr15q11-q13 region. Several plausible candidate genes associated with ASD are in this chromosomal segment, including gamma aminobutyric acid A (GABAA) receptor genes GABRB3, GABRA5 and GABRG3, UBE3A, ATP 10A, MKRN3, ZNF, MAGEL2, Necdin (NDN), and SNRPN. The main objective of this review is to highlight the contribution of epigenetic modulations in chromosome 15q11-q13 segment toward the genetic etiology and pathophysiology of ASD. The present review reports the abnormalities in epigenetic regulation on genes and genomic regions located on chromosome 15 in relation to either syndromic (15q11-q13 maternal duplication) or nonsyndromic forms of ASD. Furthermore, studies reviewed in this article demonstrate conditions in which epigenetic dysregulation has been found to be a pathological factor for ASD development, thereby supporting a role for epigenetics in the multifactorial etiologies of ASD. Also, on the basis of the evidence found so far, we strongly emphasize the need to develop future therapeutic strategies as well as screening procedures for ASD that target mechanisms involving genes located on the chromosomal 15q11-q13 segment.
Collapse
Affiliation(s)
- Abhishek Mishra
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Praisy K Prabha
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rubal Singla
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Gurjeet Kaur
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Amit Raj Sharma
- Dept. of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rupa Joshi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Benjamin Suroy
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Bikash Medhi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
20
|
Isles AR. The contribution of imprinted genes to neurodevelopmental and neuropsychiatric disorders. Transl Psychiatry 2022; 12:210. [PMID: 35597773 PMCID: PMC9124202 DOI: 10.1038/s41398-022-01972-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/15/2022] Open
Abstract
Imprinted genes are a subset of mammalian genes that are subject to germline parent-specific epigenetic modifications leading monoallelic expression. Imprinted gene expression is particularly prevalent in the brain and it is unsurprising that mutations affecting their expression can lead to neurodevelopmental and/or neuropsychiatric disorders in humans. Here I review the evidence for this, detailing key neurodevelopmental disorders linked to imprinted gene clusters on human chromosomes 15q11-q13 and 14q32, highlighting genes and possible regulatory links between these different syndromes. Similarly, rare copy number variant mutations at imprinted clusters also provide strong links between abnormal imprinted gene expression and the predisposition to severe psychiatric illness. In addition to direct links between brain-expressed imprinted genes and neurodevelopmental and/or neuropsychiatric disorders, I outline how imprinted genes that are expressed in another tissue hotspot, the placenta, contribute indirectly to abnormal brain and behaviour. Specifically, altered nutrient provisioning or endocrine signalling by the placenta caused by abnormal expression of imprinted genes may lead to increased prevalence of neurodevelopmental and/or neuropsychiatric problems in both the offspring and the mother.
Collapse
Affiliation(s)
- Anthony R. Isles
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ UK
| |
Collapse
|
21
|
Early Social Enrichment Modulates Tumor Progression and p53 Expression in Adult Mice. Biomolecules 2022; 12:biom12040532. [PMID: 35454121 PMCID: PMC9032412 DOI: 10.3390/biom12040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/07/2022] Open
Abstract
Epidemiological evidence indicates that stress and aversive psychological conditions can affect cancer progression, while well-being protects against it. Although a large set of studies have addressed the impact of stress on cancer, not much is known about the mechanisms that protect from cancer in healthy psychological conditions. C57BL/6J mouse pups were exposed to an environmental enrichment condition consisting of being raised until weaning by the biological lactating mother plus a non-lactating virgin female (LnL = Lactating and non-Lactating mothers). The Control group consisted of mice raised by a single lactating mother (L = Lactating). Four months after weaning, mice from LnL and L conditions were exposed to intramuscular injection of 3-methylcolantrene (3MCA), a potent tumorigenic drug, and onset and progression of 3MCA-induced fibrosarcomas were monitored over time. Pups from the LnL compared to the L group received more parental care and were more resilient to stressful events during the first week of life. In association, the onset of tumors in LnL adults was significantly delayed. At the molecular level, we observed increased levels of wild-type p53 protein in tumor samples of LnL compared to L adults and higher levels of its target p21 in healthy muscles of LnL mice compared to the L group, supporting the hypothesis of potential involvement of p53 in tumor development. Our study sustains the model that early life care protects against tumor susceptibility.
Collapse
|
22
|
Shi SQ, Mahoney CE, Houdek P, Zhao W, Anderson MP, Zhuo X, Beaudet A, Sumova A, Scammell TE, Johnson CH. Circadian Rhythms and Sleep Are Dependent Upon Expression Levels of Key Ubiquitin Ligase Ube3a. Front Behav Neurosci 2022; 16:837523. [PMID: 35401134 PMCID: PMC8989470 DOI: 10.3389/fnbeh.2022.837523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Normal neurodevelopment requires precise expression of the key ubiquitin ligase gene Ube3a. Comparing newly generated mouse models for Ube3a downregulation (models of Angelman syndrome) vs. Ube3a upregulation (models for autism), we find reciprocal effects of Ube3a gene dosage on phenotypes associated with circadian rhythmicity, including the amount of locomotor activity. Consistent with results from neurons in general, we find that Ube3a is imprinted in neurons of the suprachiasmatic nuclei (SCN), the pacemaking circadian brain locus, despite other claims that SCN neurons were somehow exceptional to these imprinting rules. In addition, Ube3a-deficient mice lack the typical drop in wake late in the dark period and have blunted responses to sleep deprivation. Suppression of physical activity by light in Ube3a-deficient mice is not due to anxiety as measured by behavioral tests and stress hormones; quantification of stress hormones may provide a mechanistic link to sleep alteration and memory deficits caused by Ube3a deficiency, and serve as an easily measurable biomarker for evaluating potential therapeutic treatments for Angelman syndrome. We conclude that reduced Ube3a gene dosage affects not only neurodevelopment but also sleep patterns and circadian rhythms.
Collapse
Affiliation(s)
- Shu-qun Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Carrie E. Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Pavel Houdek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Wenling Zhao
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Matthew P. Anderson
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Xinming Zhuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | | | - Alena Sumova
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Thomas E. Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
23
|
Cosgrove JA, Kelly LK, Kiffmeyer EA, Kloth AD. Sex-dependent influence of postweaning environmental enrichment in Angelman syndrome model mice. Brain Behav 2022; 12:e2468. [PMID: 34985196 PMCID: PMC8865162 DOI: 10.1002/brb3.2468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 12/12/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Angelman syndrome (AS) is a rare neurodevelopmental disorder caused by mutation or loss of UBE3A and marked by intellectual disability, ataxia, autism-like symptoms, and other atypical behaviors. One route to treatment may lie in the role that environment plays early in postnatal life. Environmental enrichment (EE) is one manipulation that has shown therapeutic potential in preclinical models of many brain disorders, including neurodevelopmental disorders. Here, we examined whether postweaning EE can rescue behavioral phenotypes in Ube3a maternal deletion mice (AS mice), and whether any improvements are sex-dependent. METHODS Male and female mice (C57BL/6J Ube3atm1Alb mice and wild-type (WT) littermates; ≥10 mice/group) were randomly assigned to standard housing (SH) or EE at weaning. EE had a larger footprint, a running wheel, and a variety of toys that promoted foraging, burrowing, and climbing. Following 6 weeks of EE, animals were submitted to a battery of tests that reliably elicit behavioral deficits in AS mice, including rotarod, open field, marble burying, and forced swim; weights were also monitored. RESULTS In male AS-EE mice, we found complete restoration of motor coordination, marble burying, and forced swim behavior to the level of WT-SH mice. We also observed a complete normalization of exploratory distance traveled in the open field, but we found no rescue of vertical behavior or center time. AS-EE mice also had weights comparable to WT-SH mice. Intriguingly, in the female AS-EE mice, we found a failure of EE to rescue the same behavioral deficits relative to female WT-SH mice. CONCLUSIONS Environmental enrichment is an effective route to correcting the most penetrant phenotypes in male AS mice but not female AS mice. This finding has important implications for the translatability of early behavioral intervention for AS patients, most importantly the potential dependency of treatment response on sex.
Collapse
Affiliation(s)
- Jameson A. Cosgrove
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| | - Lauren K. Kelly
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| | - Elizabeth A. Kiffmeyer
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| | - Alexander D. Kloth
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| |
Collapse
|
24
|
OTHMAN MZ, HASSAN Z, CHE HAS AT. Morris water maze: a versatile and pertinent tool for assessing spatial learning and memory. Exp Anim 2022; 71:264-280. [PMID: 35314563 PMCID: PMC9388345 DOI: 10.1538/expanim.21-0120] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Since its development about 40 years ago (1981–2021), Morris water maze has turned into a very popular tool for assessing spatial learning and memory. Its many advantages have ensured its
pertinence to date. These include its effectiveness in evaluating hippocampal-dependent learning and memory, exemption from motivational differences across diverse experimental
manipulations, reliability in various cross-species studies, and adaptability to many experimental conditions with various test protocols. Nonetheless, throughout its establishment, several
experimental and analysis loopholes have galvanized researchers to assess ways in which it could be improved and adapted to fill this gap. Therefore, in this review, we briefly summarize
these developments since the early years of its establishment through to the most recent advancements in computerized analysis, offering more comprehensive analysis paradigms. In addition,
we discuss the adaptability of the Morris water maze across different test versions and analysis paradigms, providing suggestions with regard to the best paradigms for particular
experimental conditions. Hence, the proper selection of the experimental protocols, analysis paradigms, and consideration of the assay’s limitations should be carefully considered. Given
that appropriate measures are taken, with various adaptations made, the Morris water maze will likely remain a relevant tool to assess the mechanisms of spatial learning and memory.
Collapse
|
25
|
Weston KP, Gao X, Zhao J, Kim KS, Maloney SE, Gotoff J, Parikh S, Leu YC, Wu KP, Shinawi M, Steimel JP, Harrison JS, Yi JJ. Identification of disease-linked hyperactivating mutations in UBE3A through large-scale functional variant analysis. Nat Commun 2021; 12:6809. [PMID: 34815418 PMCID: PMC8635412 DOI: 10.1038/s41467-021-27156-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
The mechanisms that underlie the extensive phenotypic diversity in genetic disorders are poorly understood. Here, we develop a large-scale assay to characterize the functional valence (gain or loss-of-function) of missense variants identified in UBE3A, the gene whose loss-of-function causes the neurodevelopmental disorder Angelman syndrome. We identify numerous gain-of-function variants including a hyperactivating Q588E mutation that strikingly increases UBE3A activity above wild-type UBE3A levels. Mice carrying the Q588E mutation exhibit aberrant early-life motor and communication deficits, and individuals possessing hyperactivating UBE3A variants exhibit affected phenotypes that are distinguishable from Angelman syndrome. Additional structure-function analysis reveals that Q588 forms a regulatory site in UBE3A that is conserved among HECT domain ubiquitin ligases and perturbed in various neurodevelopmental disorders. Together, our study indicates that excessive UBE3A activity increases the risk for neurodevelopmental pathology and suggests that functional variant analysis can help delineate mechanistic subtypes in monogenic disorders. UBE3A gene dysregulation is associated with neurodevelopmental disorders, but predicting the function of UBE3A variants remains difficult. The authors use a high-throughput assay to categorize variants by functional activity, and show that UBE3A hyperactivity increases the risk of neurodevelopmental disease.
Collapse
Affiliation(s)
- Kellan P Weston
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaoyi Gao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jinghan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kwang-Soo Kim
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jill Gotoff
- Department of Pediatrics, Geisinger Medical Center, Danville, PA, 17822, USA
| | - Sumit Parikh
- Department of Neurogenetics, Neurosciences Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Yen-Chen Leu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joshua P Steimel
- Deparment of Mechanical Engineering, University of the Pacific, Stockton, CA, 95211, USA
| | - Joseph S Harrison
- Department of Chemistry, University of the Pacific, Stockton, CA, 95211, USA
| | - Jason J Yi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
26
|
Bosque Ortiz GM, Santana GM, Dietrich MO. Deficiency of the paternally inherited gene Magel2 alters the development of separation-induced vocalization and maternal behavior in mice. GENES, BRAIN, AND BEHAVIOR 2021; 21:e12776. [PMID: 34812568 PMCID: PMC9744533 DOI: 10.1111/gbb.12776] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023]
Abstract
The behavior of offspring results from the combined expression of maternal and paternal genes. Genomic imprinting silences some genes in a parent-of-origin specific manner, a process that, among all animals, occurs only in mammals. How genomic imprinting affects the behavior of mammalian offspring, however, remains poorly understood. Here, we studied how the loss of the paternally inherited gene Magel2 in mouse pups affects the emission of separation-induced ultrasonic vocalizations (USV). Using quantitative analysis of more than 1000 USVs, we characterized the rate of vocalizations as well as their spectral features from postnatal days 6-12 (P6-P12), a critical phase of mouse development that covers the peak of vocal behavior in pups. Our analyses show that Magel2 deficient offspring emit separation-induced vocalizations at lower rates and with altered spectral features mainly at P8. We also show that dams display altered behavior towards their own Magel2 deficient offspring at this age. In a test to compare the retrieval of two pups, dams retrieve wildtype control pups first and faster than Magel2 deficient offspring. These results suggest that the loss of Magel2 impairs the expression of separation-induced vocalization in pups as well as maternal behavior at a specific age of postnatal development, both of which support the pups' growth and development.
Collapse
Affiliation(s)
- Gabriela M. Bosque Ortiz
- Laboratory of Physiology of Behavior, Department of Comparative MedicineYale School of MedicineNew HavenConnecticutUSA,Interdepartmental Neuroscience Program, Biological and Biomedical Sciences Program, Graduate School in Arts and SciencesYale UniversityNew HavenConnecticutUSA
| | - Gustavo M. Santana
- Laboratory of Physiology of Behavior, Department of Comparative MedicineYale School of MedicineNew HavenConnecticutUSA,Interdepartmental Neuroscience Program, Biological and Biomedical Sciences Program, Graduate School in Arts and SciencesYale UniversityNew HavenConnecticutUSA,Graduate Program in Biological Sciences‐BiochemistryFederal University of Rio Grande do SulPorto AlegreBrazil
| | - Marcelo O. Dietrich
- Laboratory of Physiology of Behavior, Department of Comparative MedicineYale School of MedicineNew HavenConnecticutUSA,Interdepartmental Neuroscience Program, Biological and Biomedical Sciences Program, Graduate School in Arts and SciencesYale UniversityNew HavenConnecticutUSA,Yale Center for Molecular and Systems MetabolismYale School of MedicineNew HavenConnecticutUSA,Department of NeuroscienceYale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
27
|
Excessive Laughter-like Vocalizations, Microcephaly, and Translational Outcomes in the Ube3a Deletion Rat Model of Angelman Syndrome. J Neurosci 2021; 41:8801-8814. [PMID: 34475199 PMCID: PMC8528495 DOI: 10.1523/jneurosci.0925-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder characterized by intellectual disabilities, motor and balance deficits, impaired communication, and a happy, excitable demeanor with frequent laughter. We sought to elucidate a preclinical outcome measure in male and female rats that addressed communication abnormalities of AS and other neurodevelopmental disorders in which communication is atypical and/or lack of speech is a core feature. We discovered, and herein report for the first time, excessive laughter-like 50 kHz ultrasonic emissions in the Ube3a mat-/pat+ rat model of AS, which suggests an excitable, playful demeanor and elevated positive affect, similar to the demeanor of individuals with AS. Also in line with the AS phenotype, Ube3a mat-/pat+ rats demonstrated aberrant social interactions with a novel partner, distinctive gait abnormalities, impaired cognition, an underlying LTP deficit, and profound reductions in brain volume. These unique, robust phenotypes provide advantages compared with currently available mouse models and will be highly valuable as outcome measures in the evaluation of therapies for AS.SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a severe neurogenetic disorder for which there is no cure, despite decades of research using mouse models. This study used a recently developed rat model of AS to delineate disease-relevant outcome measures to facilitate therapeutic development. We found the rat to be a strong model of AS, offering several advantages over mouse models by exhibiting numerous AS-relevant phenotypes, including overabundant laughter-like vocalizations, reduced hippocampal LTP, and volumetric anomalies across the brain. These findings are unconfounded by detrimental motor abilities and background strain, issues plaguing mouse models. This rat model represents an important advancement in the field of AS, and the outcome metrics reported herein will be central to the therapeutic pipeline.
Collapse
|
28
|
Berg EL, Petkova SP, Born HA, Adhikari A, Anderson AE, Silverman JL. Insulin-like growth factor-2 does not improve behavioral deficits in mouse and rat models of Angelman Syndrome. Mol Autism 2021; 12:59. [PMID: 34526125 PMCID: PMC8444390 DOI: 10.1186/s13229-021-00467-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Angelman Syndrome (AS) is a rare neurodevelopmental disorder for which there is currently no cure or effective therapeutic. Since the genetic cause of AS is known to be dysfunctional expression of the maternal allele of ubiquitin protein ligase E3A (UBE3A), several genetic animal models of AS have been developed. Both the Ube3a maternal deletion mouse and rat models of AS reliably demonstrate behavioral phenotypes of relevance to AS and therefore offer suitable in vivo systems in which to test potential therapeutics. One promising candidate treatment is insulin-like growth factor-2 (IGF-2), which has recently been shown to ameliorate behavioral deficits in the mouse model of AS and improve cognitive abilities across model systems. METHODS We used both the Ube3a maternal deletion mouse and rat models of AS to evaluate the ability of IGF-2 to improve electrophysiological and behavioral outcomes. RESULTS Acute systemic administration of IGF-2 had an effect on electrophysiological activity in the brain and on a metric of motor ability; however the effects were not enduring or extensive. Additional metrics of motor behavior, learning, ambulation, and coordination were unaffected and IGF-2 did not improve social communication, seizure threshold, or cognition. LIMITATIONS The generalizability of these results to humans is difficult to predict and it remains possible that dosing schemes (i.e., chronic or subchronic dosing), routes, and/or post-treatment intervals other than that used herein may show more efficacy. CONCLUSIONS Despite a few observed effects of IGF-2, our results taken together indicate that IGF-2 treatment does not profoundly improve behavioral deficits in mouse or rat models of AS. These findings shed cautionary light on the potential utility of acute systemic IGF-2 administration in the treatment of AS.
Collapse
Affiliation(s)
- Elizabeth L. Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Stela P. Petkova
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Heather A. Born
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX USA
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Anna Adhikari
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Anne E. Anderson
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX USA
| | - Jill L. Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| |
Collapse
|
29
|
Wu H, Mach J, Gemikonakli G, Tran T, Allore H, Gnjidic D, Howlett SE, de Cabo R, Le Couteur DG, Hilmer SN. Polypharmacy Results in Functional Impairment in Mice: Novel Insights Into Age and Sex Interactions. J Gerontol A Biol Sci Med Sci 2021; 76:1748-1756. [PMID: 33780539 PMCID: PMC8436985 DOI: 10.1093/gerona/glab088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
Males and females may respond differently to medications, yet knowledge about sexual dimorphisms in the effects of polypharmacy remains limited, particularly in aging. This study aimed to assess the effect of high Drug Burden Index (DBI) polypharmacy treatment compared to control on physical function and behavior in young and old, male and female mice. We studied whether age and sex play a role in physical function and behavior following polypharmacy treatment and whether they are paralleled by differences in serum drug levels. Young (2.5 months) and old (21.5 months), C57BL/6 mice were randomized to control or high DBI polypharmacy treatment (simvastatin, metoprolol, oxybutynin, oxycodone, and citalopram; n = 6-8/group) for 4-6 weeks. Compared to control, polypharmacy reduced physical function (grip strength, rotarod latency, gait speed, and total distance), middle zone distance (increased anxiety), and nesting score (reduced activities of daily living) in mice of both ages and sexes (p < .001). Old animals had a greater decline in nesting score (p < .05) and midzone distance (p < .001) than young animals. Grip strength declined more in males than females (p < .05). Drug levels at steady state were not significantly different between polypharmacy-treated animals of both ages and sexes. We observed polypharmacy-induced functional impairment in both age and sex groups, with age and sex interactions in the degree of impairment, which were not explained by serum drug levels. Studies of the pathogenesis of functional impairment from polypharmacy may improve management strategies in both sexes.
Collapse
Affiliation(s)
- Harry Wu
- Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - John Mach
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Gizem Gemikonakli
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Trang Tran
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Heather Allore
- Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut,USA
| | - Danijela Gnjidic
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Susan E Howlett
- Departments of Pharmacology and Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Ageing and Alzheimer’s Institute (AAAI), Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord Hospital, Sydney, New South Wales, Australia
| | - Sarah N Hilmer
- Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
30
|
Keary CJ, Mullett JE, Nowinski L, Wagner K, Walsh B, Saro HK, Erhabor G, Thibert RL, McDougle CJ, Ravichandran CT. Parent Description of Anxiety in Angelman Syndrome. J Autism Dev Disord 2021; 52:3612-3625. [PMID: 34417655 DOI: 10.1007/s10803-021-05238-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 01/17/2023]
Abstract
Anxiety is being increasingly identified in Angelman syndrome (AS). Qualitative questions and quantitative assessments were used to evaluate for anxiety in 50 subjects with AS. In-person evaluations assessed behaviors concerning for anxiety and circumstances wherein they occurred. Caregivers completed anxiety and other behavioral rating scales. Caregiver responses were categorized and compared to items from anxiety rating scales. The most common behavioral manifestation of anxiety was "aggression." The most common circumstance was "separation from caregiver/parent." Subjects had elevated scores on anxiety, irritability and hyperactivity scales with lower mean scores among subjects with a maternal deletion. The Pediatric Anxiety Rating Scale best captured behaviors described by caregivers. Existing anxiety scales should be adapted for use in AS.
Collapse
Affiliation(s)
- Christopher J Keary
- Angelman Syndrome Program, Massachusetts General Hospital for Children, Boston, MA, USA. .,Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA. .,Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Jennifer E Mullett
- Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA
| | - Lisa Nowinski
- Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Karyn Wagner
- Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA
| | - Briana Walsh
- Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA
| | - Hannah K Saro
- Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA
| | - Gillian Erhabor
- Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ronald L Thibert
- Angelman Syndrome Program, Massachusetts General Hospital for Children, Boston, MA, USA.,Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christopher J McDougle
- Angelman Syndrome Program, Massachusetts General Hospital for Children, Boston, MA, USA.,Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Caitlin T Ravichandran
- Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA.,McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Copping NA, McTighe SM, Fink KD, Silverman JL. Emerging Gene and Small Molecule Therapies for the Neurodevelopmental Disorder Angelman Syndrome. Neurotherapeutics 2021; 18:1535-1547. [PMID: 34528170 PMCID: PMC8608975 DOI: 10.1007/s13311-021-01082-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Angelman syndrome (AS) is a rare (~1:15,000) neurodevelopmental disorder characterized by severe developmental delay and intellectual disability, impaired communication skills, and a high prevalence of seizures, sleep disturbances, ataxia, motor deficits, and microcephaly. AS is caused by loss-of-function of the maternally inherited UBE3A gene. UBE3A is located on chromosome 15q11-13 and is biallelically expressed throughout the body but only maternally expressed in the brain due to an RNA antisense transcript that silences the paternal copy. There is currently no cure for AS, but advancements in small molecule drugs and gene therapies offer a promising approach for the treatment of the disorder. Here, we review AS and how loss-of-function of the maternal UBE3A contributes to the disorder. We also discuss the strengths and limitations of current animal models of AS. Furthermore, we examine potential small molecule drug and gene therapies for the treatment of AS and associated challenges faced by the therapeutic design. Finally, gene therapy offers the opportunity for precision medicine in AS and advancements in the treatment of this disorder can serve as a foundation for other single-gene neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nycole A Copping
- School of Medicine, Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Research II Building 96, 4625 2nd Avenue, Suite 1001B, Davis, Sacramento, CA, 95817, USA
- Stem Cell Program and Gene Therapy Center, Department of Neurology, MIND Institute, University of California, Davis, Sacramento, CA, USA
| | | | - Kyle D Fink
- Stem Cell Program and Gene Therapy Center, Department of Neurology, MIND Institute, University of California, Davis, Sacramento, CA, USA
| | - Jill L Silverman
- School of Medicine, Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Research II Building 96, 4625 2nd Avenue, Suite 1001B, Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
32
|
Klenova AV, Volodin IA, Volodina EV, Ranneva SV, Amstislavskaya TG, Lipina TV. Vocal and physical phenotypes of calsyntenin2 knockout mouse pups model early-life symptoms of the autism spectrum disorder. Behav Brain Res 2021; 412:113430. [PMID: 34182007 DOI: 10.1016/j.bbr.2021.113430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
This study discovered a novel acoustic phenotype in Calsyntenin2 deficient knockout (Clstn2-KO) pups in the neurodevelopment period of 5-9 postnatal days (PND 5-9). The narrowband ultrasonic calls (nUSVs) were less complex (mostly one-note, shorter in duration and higher in peak frequency) in Clsnt2-KO than in wild-type (WT) C57BL/6 J pups. The wideband ultrasonic calls (wUSVs) were produced substantially more often by Clstn2-KO than WT pups. The clicks were longer in duration and higher in peak frequency and power quartiles in Clstn2-KO pups. The elevated discomfort due to additional two-minute maternal separation coupled with experimenter's touch, resulted in significantly higher call rates of both nUSVs and clicks in pups of both genotypes and sexes compared to the previous two-minute maternal separation, whereas the call rate of wUSVs was not affected. In Clstn2-KO pups, the prevalence of emission of wUSVs retained at both sex and both degrees of discomfort, thus providing a reliable quantitative acoustic indicator for this genetic line. Besides the acoustic differences, we also detected the increased head-to-body ratio in Clstn2-KO pups. Altogether, this study demonstrated that lack of such synaptic adhesion protein as calsyntenin2 affects neurodevelopment of vocalization in a mouse as a model organism.
Collapse
Affiliation(s)
- Anna V Klenova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Ilya A Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia; Department of Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Elena V Volodina
- Department of Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Svetlana V Ranneva
- Institute of Cytology and Genetics, Department of Genetics, Novosibirsk, Russia.
| | - Tamara G Amstislavskaya
- Federal State Budgetary Scientific Institution «Scientific Research Institute of Neurosciences and Medicine» (SRINM), Novosibirsk, 630117, Russia.
| | - Tatiana V Lipina
- Dementia Research Institute at University College London, London, WC1N 3BG, UK.
| |
Collapse
|
33
|
Early Developmental EEG and Seizure Phenotypes in a Full Gene Deletion of Ubiquitin Protein Ligase E3A Rat Model of Angelman Syndrome. eNeuro 2021; 8:ENEURO.0345-20.2020. [PMID: 33531368 PMCID: PMC8114899 DOI: 10.1523/eneuro.0345-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder with unique behavioral phenotypes, seizures, and distinctive electroencephalographic (EEG) patterns. Recent studies identified motor, social communication, and learning and memory deficits in a CRISPR engineered rat model with a complete maternal deletion of the Ube3a gene. It is unknown whether this model recapitulates other aspects of the clinical disorder. We report here the effect of Ube3a maternal deletion in the rat on epileptiform activity, seizure threshold, and quantitative EEG. Using video-synchronized EEG (vEEG) monitoring, we assessed spectral power and epileptiform activity early postnatally through adulthood. While EEG power was similar to wild-type (WT) at 1.5 weeks postnatally, at all other ages analyzed, our findings were similar to the AS phenotype in mice and humans with significantly increased δ power. Analysis of epileptiform activity in juvenile and adult rats showed increased time spent in epileptiform activity in AS compared with WT rats. We evaluated seizure threshold using pentylenetetrazol (PTZ), audiogenic stimulus, and hyperthermia to provoke febrile seizures (FSs). Behavioral seizure scoring following PTZ induction revealed no difference in seizure threshold in AS rats, however behavioral recovery from the PTZ-induced seizure was longer in the adult group with significantly increased hippocampal epileptiform activity during this phase. When exposed to hyperthermia, AS rat pups showed a significantly lower temperature threshold to first seizure than WT. Our findings highlight an age-dependence for the EEG and epileptiform phenotypes in a preclinical model of AS, and support the use of quantitative EEG and increased δ power as a potential biomarker of AS.
Collapse
|
34
|
Heald M, Adams D, Walls E, Oliver C. Refining the Behavioral Phenotype of Angelman Syndrome: Examining Differences in Motivation for Social Contact Between Genetic Subgroups. Front Behav Neurosci 2021; 15:618271. [PMID: 33664655 PMCID: PMC7921159 DOI: 10.3389/fnbeh.2021.618271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/18/2021] [Indexed: 11/30/2022] Open
Abstract
Angelman syndrome (AS) is caused by loss of information from the 15q11.2-13 region on the maternal chromosome with striking phenotypic difference from Prader–Willi syndrome in which information is lost from the same region on the paternal chromosome. Motivation for social contact and sensory seeking behaviors are often noted as characteristics of the phenotype of AS and it has been argued that the strong drive for social contact supports a kinship theory interpretation of genomic imprinting. In this study we developed an experimental paradigm for quantifying the motivation for social contact in AS and examined differences across the genetic subtypes that cause AS [deletion, imprinting centre defect (ICD), uniparental disomy and UBE3A mutation]. Using single case experimental designs we examined the rate of acquisition of behavioral responses using operant learning paradigms for 21 children with AS whilst systematically varying the nature of social and sensory reinforcement. Variability in rates of acquisition was influenced by the nature of rewarding stimuli. Across the total sample both sensory stimuli and social contact could increase the rate of rewarded behavior with difference between children in the most effective reward. A striking difference in the rewarding properties of social contact across genetic subtypes was evidenced by non-deletion genetic causes of AS showing significantly higher rates of responding than the deletion cause in the social reinforcement paradigm. The results indicate that reinforcer assessment can beneficially inform behavioral interventions and that within syndrome variability in the behavioral phenotype of AS is likely driven by genetic difference. The non-deletion cause of AS, and particularly the ICD group, may be the optimal group for further study of genomic imprinting.
Collapse
Affiliation(s)
- Mary Heald
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Dawn Adams
- Autism Centre of Excellence, Griffith University, Mount Gravatt, QLD, Australia
| | - Emily Walls
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Christopher Oliver
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
35
|
Lytic Cell Death in Specific Microglial Subsets Is Required for Preventing Atypical Behavior in Mice. eNeuro 2021; 8:ENEURO.0342-20.2020. [PMID: 33414187 PMCID: PMC7877467 DOI: 10.1523/eneuro.0342-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/25/2022] Open
Abstract
Microglial cells are known to contribute to brain development and behaviors, but the mechanisms behind such functions are not fully understood. Here, we show that mice deficient in inflammasome regulators, including caspase-1 (Casp1), NLR family pyrin domain containing 3 (Nlrp3), IL-1 receptor (Il-1r), and gasdermin D (Gsdmd), exhibit behavior abnormalities characterized by hyperactivity and low anxiety levels. Furthermore, we found that expression of Casp1 in CX3CR1+ myeloid cells, which includes microglia, is required for preventing these abnormal behaviors. Through tissue clearing and 3D imaging, we discovered that small numbers of Cx3cr1-GFP+ fetal microglial cells formed clusters and underwent lytic cell death in the primitive thalamus and striatum between embryonic day (E)12.5 and E14.5. This lytic cell death was diminished in Casp1-deficient mice. Further analysis of the microglial clusters showed the presence of Pax6+ neural progenitor cells (NPCs); thus, we hypothesized that microglial lytic cell death is important for proper neuronal development. Indeed, increased numbers of neurons were observed in the thalamic subset in adult Casp1−/− brains. Finally, injection of drug inhibitors of NLRP3 and CASP1 into wild-type (WT) pregnant mice from E12.5 to E14.5, the period when lytic cell death was detected, was sufficient to induce atypical behaviors in offspring. Taken together, our data suggests that the inflammasome cascade in microglia is important for regulating neuronal development and normal behaviors, and that genetic or pharmacological inhibition of this pathway can induce atypical behaviors in mice.
Collapse
|
36
|
Gandhi T, Lee CC. Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Front Cell Neurosci 2021; 14:592710. [PMID: 33519379 PMCID: PMC7840495 DOI: 10.3389/fncel.2020.592710] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is comprised of several conditions characterized by alterations in social interaction, communication, and repetitive behaviors. Genetic and environmental factors contribute to the heterogeneous development of ASD behaviors. Several rodent models display ASD-like phenotypes, including repetitive behaviors. In this review article, we discuss the potential neural mechanisms involved in repetitive behaviors in rodent models of ASD and related neuropsychiatric disorders. We review signaling pathways, neural circuits, and anatomical alterations in rodent models that display robust stereotypic behaviors. Understanding the mechanisms and circuit alterations underlying repetitive behaviors in rodent models of ASD will inform translational research and provide useful insight into therapeutic strategies for the treatment of repetitive behaviors in ASD and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
37
|
Perrino PA, Chamberlain SJ, Eigsti IM, Fitch RH. Communication-related assessments in an Angelman syndrome mouse model. Brain Behav 2021; 11:e01937. [PMID: 33151040 PMCID: PMC7821623 DOI: 10.1002/brb3.1937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/06/2020] [Accepted: 10/18/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Angelman syndrome (AS) is a neurodevelopmental disorder characterized by motor deficits, seizures, some autistic-like behaviors, and severe impairment of speech. A dysfunction of the maternally imprinted UBE3A gene, coupled with a functional yet silenced paternal copy, results in AS. Although studies of transgenic mouse models have revealed a great deal about neural populations and rescue timeframes for specific features of AS, these studies have largely failed to examine intermediate phenotypes that contribute to the profound communicative disabilities associated with AS. METHODS Here, we use a variety of tasks, including assessments of rapid auditory processing and social communication. Expressive vocalizations were directly assessed and correlated against other core behavioral measures (motor, social, acoustic perception) to model putative influences on communication. RESULTS AS mice displayed the characteristic phenotypes associated with Angelman syndrome (i.e., social and motor deficits), as well as marginal enhancements in rapid auditory processing ability. Our characterization of adult ultrasonic vocalizations further showed that AS mice produce fewer vocalizations and vocalized for a shorter amount of time when compared to controls. Additionally, a strong correlation between motor indices and ultrasonic vocalization output was shown, suggesting that the motor impairments in AS may contribute heavily to communication impairments. CONCLUSION In summary, the combination of motor deficits, social impairment, marginal rapid auditory enhancements, and altered ultrasonic vocalizations reported in a mouse model of AS clearly parallel the human symptoms of the disorder. This mouse model offers a novel route to interrogate the underlying genetic, physiologic, and behavioral influences on the under-studied topic of impaired communication in AS.
Collapse
Affiliation(s)
- Peter A Perrino
- Department of Psychological Science/Behavioral Neuroscience, University of Connecticut, Storrs, CT, USA
| | - Stormy J Chamberlain
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Inge-Marie Eigsti
- Department of Psychological Science/Clinical Psychology, University of Connecticut, Storrs, CT, USA
| | - Roslyn Holly Fitch
- Department of Psychological Science/Behavioral Neuroscience, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
38
|
Dutta R, Crawley JN. Behavioral Evaluation of Angelman Syndrome Mice at Older Ages. Neuroscience 2020; 445:163-171. [PMID: 31730795 PMCID: PMC7214203 DOI: 10.1016/j.neuroscience.2019.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
Angelman syndrome is a neurodevelopmental disorder presenting with severe deficits in motor, speech, and cognitive abilities. The primary genetic cause of Angelman syndrome is a maternally transmitted mutation in the Ube3a gene, which has been successfully modeled in Ube3a mutant mice. Phenotypes have been extensively reported in young adult Ube3a mice. Because symptoms continue throughout life in Angelman syndrome, we tested multiple behavioral phenotypes of male Ube3a mice and WT littermate controls at older adult ages. Social behaviors on both the 3-chambered social approach and male-female social interaction tests showed impairments in Ube3a at 12 months of age. Anxiety-related scores on both the elevated plus-maze and the light ↔ dark transitions assays indicated anxiety-like phenotypes in 12 month old Ube3a mice. Open field locomotion parameters were consistently lower at 12 months. Reduced general exploratory locomotion at this age prevented the interpretation of an anxiety-like phenotype, and likely impacted social tasks. Robust phenotypes in middle-aged Ube3a mice appear to result from continued motor decline. Motor deficits may provide the best outcome measures for preclinical testing of pharmacological targets, towards reductions of symptoms in adults with Angelman syndrome.
Collapse
Affiliation(s)
- Rebecca Dutta
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
39
|
Caruso A, Ricceri L, Scattoni ML. Ultrasonic vocalizations as a fundamental tool for early and adult behavioral phenotyping of Autism Spectrum Disorder rodent models. Neurosci Biobehav Rev 2020; 116:31-43. [DOI: 10.1016/j.neubiorev.2020.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/08/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
|
40
|
Schultz MN, Crawley JN. Evaluation of a TrkB agonist on spatial and motor learning in the Ube3a mouse model of Angelman syndrome. Learn Mem 2020; 27:346-354. [PMID: 32817301 PMCID: PMC7433657 DOI: 10.1101/lm.051201.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/11/2020] [Indexed: 12/21/2022]
Abstract
Angelman syndrome is a rare neurodevelopmental disorder caused by a mutation in the maternal allele of the gene Ube3a The primary symptoms of Angelman syndrome are severe cognitive deficits, impaired motor functions, and speech disabilities. Analogous phenotypes have been detected in young adult Ube3a mice. Here, we investigate cognitive phenotypes of Ube3a mice as compared to wild-type littermate controls at an older adult age. Water maze spatial learning, swim speed, and rotarod motor coordination and balance were impaired at 6 mo of age, as predicted. Based on previous findings of reduced brain-derived neurotrophic factor in Ube3a mice, a novel therapeutic target, the TrkB agonist 7,8-DHF, was interrogated. Semichronic daily treatment with 7,8-DHF, 5 mg/kg i.p., did not significantly improve the impairments in performance during the acquisition of the water maze hidden platform location in Ube3a mice, after training with either massed or spaced trials, and had no effect on the swim speed and rotarod deficits. Robust behavioral phenotypes in middle-aged Ube3a mice appear to result from continued motor decline. Our results suggest that motor deficits could offer useful outcome measures for preclinical testing of many pharmacological targets, with the goal of reducing symptoms in adults with Angelman syndrome.
Collapse
Affiliation(s)
- Maria N Schultz
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California 95821, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California 95821, USA
| |
Collapse
|
41
|
Javed S, Selliah T, Lee YJ, Huang WH. Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy. Neurosci Biobehav Rev 2020; 118:538-567. [PMID: 32858083 DOI: 10.1016/j.neubiorev.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of heterogenous neurodevelopmental disorders affecting 1 in 59 children. Syndromic ASDs are commonly associated with chromosomal rearrangements or dosage imbalance involving a single gene. Many of these genes are dosage-sensitive and regulate transcription, protein homeostasis, and synaptic function in the brain. Despite vastly different molecular perturbations, syndromic ASDs share core symptoms including social dysfunction and repetitive behavior. However, each ASD subtype has a unique pathogenic mechanism and combination of comorbidities that require individual attention. We have learned a great deal about how these dosage-sensitive genes control brain development and behaviors from genetically-engineered mice. Here we describe the clinical features of eight monogenic neurodevelopmental disorders caused by dosage imbalance of four genes, as well as recent advances in using genetic mouse models to understand their pathogenic mechanisms and develop intervention strategies. We propose that applying newly developed quantitative molecular and neuroscience technologies will advance our understanding of the unique neurobiology of each disorder and enable the development of personalized therapy.
Collapse
Affiliation(s)
- Sehrish Javed
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Tharushan Selliah
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
42
|
Lopez SJ, Laufer BI, Beitnere U, Berg EL, Silverman JL, O'Geen H, Segal DJ, LaSalle JM. Imprinting effects of UBE3A loss on synaptic gene networks and Wnt signaling pathways. Hum Mol Genet 2020; 28:3842-3852. [PMID: 31625566 DOI: 10.1093/hmg/ddz221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin E3 ligase 3A (UBE3A) encodes an E3 ubiquitin ligase whose loss from the maternal allele causes the neurodevelopmental disorder Angelman syndrome (AS). Previous studies of UBE3A function have not examined full Ube3a deletion in mouse, the complexity of imprinted gene networks in brain nor the molecular basis of systems-level cognitive dysfunctions in AS. We therefore utilized a systems biology approach to elucidate how UBE3A loss impacts the early postnatal brain in a novel CRISPR/Cas9-engineered rat Angelman model of a complete Ube3a deletion. Strand-specific transcriptome analysis of offspring from maternally or paternally inherited Ube3a deletions revealed the expected parental expression patterns of Ube3a sense and antisense transcripts by postnatal day 2 (P2) in hypothalamus and day 9 (P9) in cortex, compared to wild-type littermates. The dependency of genome-wide effects on parent-of-origin, Ube3a genotype and time (P2 and P9) was investigated through transcriptome (RNA sequencing of cortex and hypothalamus) and methylome (whole-genome bisulfite sequencing of hypothalamus). Weighted gene co-expression and co-methylation network analyses identified co-regulated networks in maternally inherited Ube3a deletion offspring enriched in postnatal developmental processes including Wnt signaling, synaptic regulation, neuronal and glial functions, epigenetic regulation, ubiquitin, circadian entrainment and splicing. Furthermore, we showed that loss of the paternal Ube3a antisense transcript resulted in both unique and overlapping dysregulated gene pathways with maternal loss, predominantly at the level of differential methylation. Together, these results provide a holistic examination of the molecular impacts of UBE3A loss in brain, supporting the existence of interactive epigenetic networks between maternal and paternal transcripts at the Ube3a locus.
Collapse
Affiliation(s)
- S Jesse Lopez
- Medical Immunology and Microbiology, University of California (UC) Davis School of Medicine, Davis, CA 95616, USA.,Genome Center, UC Davis, Davis, CA, USA.,Integrative Genetics and Genomics, UC Davis, Davis, CA 95616, USA.,Biochemistry and Molecular Medicine, UC Davis School of Medicine, Davis, CA 95616, USA.,Medical Investigation of Neurodevelopmental Disorders Institute, UC Davis Health, Sacramento, CA 95817, USA
| | - Benjamin I Laufer
- Medical Immunology and Microbiology, University of California (UC) Davis School of Medicine, Davis, CA 95616, USA.,Genome Center, UC Davis, Davis, CA, USA.,Medical Investigation of Neurodevelopmental Disorders Institute, UC Davis Health, Sacramento, CA 95817, USA
| | - Ulrika Beitnere
- Genome Center, UC Davis, Davis, CA, USA.,Biochemistry and Molecular Medicine, UC Davis School of Medicine, Davis, CA 95616, USA.,Medical Investigation of Neurodevelopmental Disorders Institute, UC Davis Health, Sacramento, CA 95817, USA
| | - Elizabeth L Berg
- Medical Investigation of Neurodevelopmental Disorders Institute, UC Davis Health, Sacramento, CA 95817, USA.,Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacromento, CA 95817, USA
| | - Jill L Silverman
- Medical Investigation of Neurodevelopmental Disorders Institute, UC Davis Health, Sacramento, CA 95817, USA.,Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacromento, CA 95817, USA
| | - Henriette O'Geen
- Genome Center, UC Davis, Davis, CA, USA.,Biochemistry and Molecular Medicine, UC Davis School of Medicine, Davis, CA 95616, USA.,Medical Investigation of Neurodevelopmental Disorders Institute, UC Davis Health, Sacramento, CA 95817, USA
| | - David J Segal
- Genome Center, UC Davis, Davis, CA, USA.,Integrative Genetics and Genomics, UC Davis, Davis, CA 95616, USA.,Biochemistry and Molecular Medicine, UC Davis School of Medicine, Davis, CA 95616, USA.,Medical Investigation of Neurodevelopmental Disorders Institute, UC Davis Health, Sacramento, CA 95817, USA
| | - Janine M LaSalle
- Medical Immunology and Microbiology, University of California (UC) Davis School of Medicine, Davis, CA 95616, USA.,Genome Center, UC Davis, Davis, CA, USA.,Integrative Genetics and Genomics, UC Davis, Davis, CA 95616, USA.,Medical Investigation of Neurodevelopmental Disorders Institute, UC Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
43
|
Yang X. Characterizing spine issues: If offers novel therapeutics to Angelman syndrome. Dev Neurobiol 2020; 80:200-209. [PMID: 32378784 DOI: 10.1002/dneu.22757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/01/2020] [Indexed: 12/28/2022]
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by severe mental retardation, microcephaly, speech impairment, frequent epilepsy, EEG abnormalities, ataxic movements, tongue protrusion, bursts of laughter, sleep abruptions, and hyperactivity. AS results from loss of function of the imprinted UBE3A (ubiquitin-protein ligase E3A) gene on chromosome 15q11-q13, including a mutation on the maternal allele of Ube3a, a large deletion of the maternally inherited chromosomal region 15q11-13, paternal uniparental disomy of chromosome 15q11-13, or an imprinting defect. The Ube3a maternal deleted mouse model recaptured the major phenotypes of AS patients include seizure, learning and memory impairments, sleep disturbance, and motor problems. Owing to the activity-dependent structural and functional plasticity, dendritic spines are believed as the basic subcellular compartment for learning and memory and the sites where LTP and LTD are induced. Defects of spine formation and dynamics are common among several neurodevelopmental disorders and neuropsychiatric disorders including AS and reflect the underlying synaptopathology, which drives clinically relevant behavioral deficits. This review will summarize the impaired spine density, morphology, and synaptic plasticity in AS and propose that future explorations on spine dynamics and synaptic plasticity may help develop novel interventions and therapy for neurodevelopmental disorders like AS.
Collapse
Affiliation(s)
- Xin Yang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
44
|
Maranga C, Fernandes TG, Bekman E, da Rocha ST. Angelman syndrome: a journey through the brain. FEBS J 2020; 287:2154-2175. [PMID: 32087041 DOI: 10.1111/febs.15258] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/31/2022]
Abstract
Angelman syndrome (AS) is an incurable neurodevelopmental disease caused by loss of function of the maternally inherited UBE3A gene. AS is characterized by a defined set of symptoms, namely severe developmental delay, speech impairment, uncontrolled laughter, and ataxia. Current understanding of the pathophysiology of AS relies mostly on studies using the murine model of the disease, although alternative models based on patient-derived stem cells are now emerging. Here, we summarize the literature of the last decade concerning the three major brain areas that have been the subject of study in the context of AS: hippocampus, cortex, and the cerebellum. Our comprehensive analysis highlights the major phenotypes ascribed to the different brain areas. Moreover, we also discuss the major drawbacks of current models and point out future directions for research in the context of AS, which will hopefully lead us to an effective treatment of this condition in humans.
Collapse
Affiliation(s)
- Carina Maranga
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Evguenia Bekman
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Simão Teixeira da Rocha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
45
|
Casamassa A, Ferrari D, Gelati M, Carella M, Vescovi AL, Rosati J. A Link between Genetic Disorders and Cellular Impairment, Using Human Induced Pluripotent Stem Cells to Reveal the Functional Consequences of Copy Number Variations in the Central Nervous System-A Close Look at Chromosome 15. Int J Mol Sci 2020; 21:ijms21051860. [PMID: 32182809 PMCID: PMC7084702 DOI: 10.3390/ijms21051860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Recent cutting-edge human genetics technology has allowed us to identify copy number variations (CNVs) and has provided new insights for understanding causative mechanisms of human diseases. A growing number of studies show that CNVs could be associated with physiological mechanisms linked to evolutionary trigger, as well as to the pathogenesis of various diseases, including cancer, autoimmune disease and mental disorders such as autism spectrum disorders, schizophrenia, intellectual disabilities or attention-deficit/hyperactivity disorder. Their incomplete penetrance and variable expressivity make diagnosis difficult and hinder comprehension of the mechanistic bases of these disorders. Additional elements such as co-presence of other CNVs, genomic background and environmental factors are involved in determining the final phenotype associated with a CNV. Genetically engineered animal models are helpful tools for understanding the behavioral consequences of CNVs. However, the genetic background and the biology of these animal model systems have sometimes led to confusing results. New cellular models obtained through somatic cellular reprogramming technology that produce induced pluripotent stem cells (iPSCs) from human subjects are being used to explore the mechanisms involved in the pathogenic consequences of CNVs. Considering the vast quantity of CNVs found in the human genome, we intend to focus on reviewing the current literature on the use of iPSCs carrying CNVs on chromosome 15, highlighting advantages and limits of this system with respect to mouse model systems.
Collapse
Affiliation(s)
- Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Viale Abramo Lincoln 5, 81100 Caserta, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
| | - Maurizio Gelati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Massimo Carella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
- Correspondence: (A.L.V.); (J.R.)
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Correspondence: (A.L.V.); (J.R.)
| |
Collapse
|
46
|
Hitchcock TJ, Paracchini S, Gardner A. Genomic Imprinting As a Window into Human Language Evolution. Bioessays 2020; 41:e1800212. [PMID: 31132171 DOI: 10.1002/bies.201800212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/22/2019] [Indexed: 01/20/2023]
Abstract
Humans spend large portions of their time and energy talking to one another, yet it remains unclear whether this activity is primarily selfish or altruistic. Here, it is shown how parent-of-origin specific gene expression-or "genomic imprinting"-may provide an answer to this question. First, it is shown why, regarding language, only altruistic or selfish scenarios are expected. Second, it is pointed out that an individual's maternal-origin and paternal-origin genes may have different evolutionary interests regarding investment into language, and that this intragenomic conflict may drive genomic imprinting which-as the direction of imprint depends upon whether investment into language is relatively selfish or altruistic-may be used to discriminate between these two possibilities. Third, predictions concerning the impact of various mutations and epimutations at imprinted loci on language pathologies are derived. In doing so, a framework is developed that highlights avenues for using intragenomic conflicts to investigate the evolutionary drivers of language.
Collapse
Affiliation(s)
- Thomas J Hitchcock
- School of Biology, University of St Andrews, Dyers Brae, St Andrews, KY16 9TH, UK
| | - Silvia Paracchini
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - Andy Gardner
- School of Biology, University of St Andrews, Dyers Brae, St Andrews, KY16 9TH, UK
| |
Collapse
|
47
|
Rotaru DC, Mientjes EJ, Elgersma Y. Angelman Syndrome: From Mouse Models to Therapy. Neuroscience 2020; 445:172-189. [PMID: 32088294 DOI: 10.1016/j.neuroscience.2020.02.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
The UBE3A gene is part of the chromosome 15q11-q13 region that is frequently deleted or duplicated, leading to several neurodevelopmental disorders (NDD). Angelman syndrome (AS) is caused by the absence of functional maternally derived UBE3A protein, while the paternal UBE3A gene is present but silenced specifically in neurons. Patients with AS present with severe neurodevelopmental delay, with pronounced motor deficits, absence of speech, intellectual disability, epilepsy, and sleep problems. The pathophysiology of AS is still unclear and a treatment is lacking. Animal models of AS recapitulate the genotypic and phenotypic features observed in AS patients, and have been invaluable for understanding the disease process as well as identifying apropriate drug targets. Using these AS mouse models we have learned that loss of UBE3A probably affects many areas of the brain, leading to increased neuronal excitability and a loss of synaptic spines, along with changes in a number of distinct behaviours. Inducible AS mouse models have helped to identify the critical treatment windows for the behavioral and physiological phenotypes. Additionally, AS mouse models indicate an important role for the predominantly nuclear UBE3A isoform in generating the characteristic AS pathology. Last, but not least, the AS mice have been crucial in guiding Ube3a gene reactivation treatments, which present a very promising therapy to treat AS.
Collapse
Affiliation(s)
- Diana C Rotaru
- Department of Neuroscience, The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Edwin J Mientjes
- Department of Neuroscience, The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience, The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Berg EL, Pride MC, Petkova SP, Lee RD, Copping NA, Shen Y, Adhikari A, Fenton TA, Pedersen LR, Noakes LS, Nieman BJ, Lerch JP, Harris S, Born HA, Peters MM, Deng P, Cameron DL, Fink KD, Beitnere U, O'Geen H, Anderson AE, Dindot SV, Nash KR, Weeber EJ, Wöhr M, Ellegood J, Segal DJ, Silverman JL. Translational outcomes in a full gene deletion of ubiquitin protein ligase E3A rat model of Angelman syndrome. Transl Psychiatry 2020; 10:39. [PMID: 32066685 PMCID: PMC7026078 DOI: 10.1038/s41398-020-0720-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022] Open
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by developmental delay, impaired communication, motor deficits and ataxia, intellectual disabilities, microcephaly, and seizures. The genetic cause of AS is the loss of expression of UBE3A (ubiquitin protein ligase E6-AP) in the brain, typically due to a deletion of the maternal 15q11-q13 region. Previous studies have been performed using a mouse model with a deletion of a single exon of Ube3a. Since three splice variants of Ube3a exist, this has led to a lack of consistent reports and the theory that perhaps not all mouse studies were assessing the effects of an absence of all functional UBE3A. Herein, we report the generation and functional characterization of a novel model of Angelman syndrome by deleting the entire Ube3a gene in the rat. We validated that this resulted in the first comprehensive gene deletion rodent model. Ultrasonic vocalizations from newborn Ube3am-/p+ were reduced in the maternal inherited deletion group with no observable change in the Ube3am+/p- paternal transmission cohort. We also discovered Ube3am-/p+ exhibited delayed reflex development, motor deficits in rearing and fine motor skills, aberrant social communication, and impaired touchscreen learning and memory in young adults. These behavioral deficits were large in effect size and easily apparent in the larger rodent species. Low social communication was detected using a playback task that is unique to rats. Structural imaging illustrated decreased brain volume in Ube3am-/p+ and a variety of intriguing neuroanatomical phenotypes while Ube3am+/p- did not exhibit altered neuroanatomy. Our report identifies, for the first time, unique AS relevant functional phenotypes and anatomical markers as preclinical outcomes to test various strategies for gene and molecular therapies in AS.
Collapse
Affiliation(s)
- E L Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - M C Pride
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - S P Petkova
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - R D Lee
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - N A Copping
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Y Shen
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - A Adhikari
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - T A Fenton
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - L R Pedersen
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - L S Noakes
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - B J Nieman
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - J P Lerch
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
| | - S Harris
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX, USA
| | - H A Born
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX, USA
| | - M M Peters
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - P Deng
- Stem Cell Program, Institute for Regenerative Cures, and Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - D L Cameron
- Stem Cell Program, Institute for Regenerative Cures, and Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - K D Fink
- Stem Cell Program, Institute for Regenerative Cures, and Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - U Beitnere
- MIND Institute, Genome Center, and Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - H O'Geen
- MIND Institute, Genome Center, and Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - A E Anderson
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX, USA
| | - S V Dindot
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - K R Nash
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - E J Weeber
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - M Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - J Ellegood
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - D J Segal
- MIND Institute, Genome Center, and Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - J L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
49
|
|
50
|
Thamban T, Agarwaal V, Khosla S. Role of genomic imprinting in mammalian development. J Biosci 2020; 45:20. [PMID: 31965998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Non-mendelian inheritance refers to the group of phenomena and observations related to the inheritance of genetic information that cannot be merely explained by Mendel's laws of inheritance. Phenomenon including Genomic imprinting, X-chromosome Inactivation, Paramutations are some of the best studied examples of non-mendelian inheritance. Genomic imprinting is a process that reversibly marks one of the two homologous loci, chromosome or chromosomal sets during development, resulting in functional non-equivalence of gene expression. Genomic imprinting is known to occur in a few insect species, plants, and placental mammals. Over the years, studies on imprinted genes have contributed immensely to highlighting the role of epigenetic modifications and the epigenetic circuitry during gene expression and development. In this review, we discuss the phenomenon of genomic imprinting in mammals and the role it plays especially during fetoplacental growth and early development.
Collapse
Affiliation(s)
- Thushara Thamban
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | | | | |
Collapse
|