1
|
Dong Y, Fu C, Zhang T, Dong F, Zhu X, Jiang Y, Hu L, Pan L, Li J, Zhang X. Abnormal hippocampal neurogenesis and impaired social recognition memory in two neurodevelopmental models of schizophrenia. FASEB J 2024; 38:e70138. [PMID: 39485229 DOI: 10.1096/fj.202401258rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Schizophrenia is a mental disorder characterized by cognitive impairments, specifically deficits in social recognition memory (SRM). Abnormal hippocampal neurogenesis has been implicated in these deficits. Due to the pathogenetic heterogeneity of schizophrenia, studying the hippocampal neurogenesis and SRM in two models with prenatal and postnatal defects could enhance our understanding of the developmental aspects of the biological susceptibility to schizophrenia. Here, we examined SRM and hippocampal neurogenesis in two developmental models of schizophrenia: gestational exposure to methylazoxymethanol acetate (MAM) and postweaning social isolation (SI). Our findings revealed that gestational MAM exposure induced a decay of social memory while postweaning SI led to impaired social memory formation and decay. In both models, we observed a correlation between impaired SRM and reduced number, and abnormal differentiation and less complex morphology of hippocampal neurons. These results indicate that aberrant hippocampal neurogenesis may contribute to the deficits of SRM in both models, and these abnormalities may be a shared underlying pathogenic factor in developmental models of schizophrenia, regardless of prenatal and postnatal pathogenesis.
Collapse
Affiliation(s)
- Yibei Dong
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chuxian Fu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Ting Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Feiyuan Dong
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xinyi Zhu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yingke Jiang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Linbo Hu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Luhui Pan
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jiawen Li
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoqin Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Simard S, Rahimian R, Davoli MA, Théberge S, Matosin N, Turecki G, Nagy C, Mechawar N. Spatial transcriptomic analysis of adult hippocampal neurogenesis in the human brain. J Psychiatry Neurosci 2024; 49:E319-E333. [PMID: 39414359 PMCID: PMC11495544 DOI: 10.1503/jpn.240026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/21/2024] [Accepted: 08/18/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Adult hippocampal neurogenesis has been extensively characterized in rodent models, but its existence in humans remains controversial. We sought to assess the phenomenon in postmortem human hippocampal samples by combining spatial transcriptomics and multiplexed fluorescent in situ hybridization. METHODS We computationally examined the spatial expression of various canonical neurogenesis markers in postmortem dentate gyrus (DG) sections from young and middle-aged sudden-death males. We conducted in situ assessment of markers expressed in neural stem cells, proliferative cells, and immature granule neurons in postmortem DG sections from infant, adolescent, and middle-aged males. RESULTS We examined frozen DG tissue from infant (n = 1, age 2 yr), adolescent (n = 1, age 16 yr), young adult (n = 2, mean age 23.5 yr), and middle-aged (n = 2, mean age 42.5 yr) males, and frozen-fixed DG tissue from middle-aged males (n = 6, mean age 43.5 yr). We detected very few cells expressing neural stem cell and proliferative markers in the human DG from childhood to middle age. However, at all ages, we observed a substantial number of DG cells expressing the immature neuronal marker DCX. Most DCX + cells displayed an inhibitory phenotype, while the remainder were non-committed or excitatory in nature. LIMITATIONS The study was limited by small sample sizes and included samples only from males. CONCLUSION Our findings indicate very low levels of hippocampal neurogenesis throughout life and the existence of a local reserve of plasticity in the adult human hippocampus. Overall, our study provides important insight into the distribution and phenotype of cells expressing neurogenesis markers in the adult human hippocampus.
Collapse
Affiliation(s)
- Sophie Simard
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar)
| | - Reza Rahimian
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar)
| | - Maria Antonietta Davoli
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar)
| | - Stéphanie Théberge
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar)
| | - Natalie Matosin
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar)
| | - Gustavo Turecki
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar)
| | - Corina Nagy
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar)
| | - Naguib Mechawar
- From the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Que. (Simard, Rahimian, Antonietta, Théberge, Turecki, Nagy, Mechawar); the School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, Australia (Matosin); the Department of Psychiatry, McGill University, Montréal, Que. (Turecki, Nagy, Mechawar).
| |
Collapse
|
3
|
Kang YJ, Lee SH, Boychuk JA, Butler CR, Juras JA, Cloyd RA, Smith BN. Adult Born Dentate Granule Cell Mediated Upregulation of Feedback Inhibition in a Mouse Model of Traumatic Brain Injury. J Neurosci 2022; 42:7077-7093. [PMID: 36002261 PMCID: PMC9480876 DOI: 10.1523/jneurosci.2263-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Post-traumatic epilepsy (PTE) and behavioral comorbidities frequently develop after traumatic brain injury (TBI). Aberrant neurogenesis of dentate granule cells (DGCs) after TBI may contribute to the synaptic reorganization that occurs in PTE, but how neurogenesis at different times relative to the injury contributes to feedback inhibition and recurrent excitation in the dentate gyrus is unknown. Thus, we examined whether DGCs born at different postnatal ages differentially participate in feedback inhibition and recurrent excitation in the dentate gyrus using the controlled cortical impact (CCI) model of TBI. Both sexes of transgenic mice expressing channelrhodopsin2 (ChR2) in postnatally born DGCs were used for optogenetic activation of three DGC cohorts: postnatally early born DGCs, or those born just before or after CCI. We performed whole-cell patch-clamp recordings from ChR2-negative, mature DGCs and parvalbumin-expressing basket cells (PVBCs) in hippocampal slices to determine whether optogenetic activation of postnatally born DGCs increases feedback inhibition and/or recurrent excitation in mice 8-10 weeks after CCI and whether PVBCs are targets of ChR2-positive DGCs. In the dentate gyrus ipsilateral to CCI, activation of ChR2-expressing DGCs born before CCI produced increased feedback inhibition in ChR2-negative DGCs and increased excitation in PVBCs compared with those from sham controls. This upregulated feedback inhibition was less prominent in DGCs born early in life or after CCI. Surprisingly, ChR2-positive DGC activation rarely evoked recurrent excitation in mature DGCs from any cohort. These results support that DGC birth date-related increased feedback inhibition in of DGCs may contribute to altered excitability after TBI.SIGNIFICANCE STATEMENT Dentate granule cells (DGCs) control excitability of the dentate gyrus through synaptic interactions with inhibitory GABAergic interneurons. Persistent changes in DGC synaptic connectivity develop after traumatic brain injury, contributing to hyperexcitability in post-traumatic epilepsy (PTE). However, the impact of DGC neurogenesis on synaptic reorganization, especially on inhibitory circuits, after brain injury is not adequately described. Here, upregulation of feedback inhibition in mature DGCs from male and female mice was associated with increased excitation of parvalbumin-expressing basket cells by postnatally born DGCs, providing novel insights into underlying mechanisms of altered excitability after brain injury. A better understanding of these inhibitory circuit changes can help formulate hypotheses for development of novel, evidence-based treatments for post-traumatic epilepsy by targeting birth date-specific subsets of DGCs.
Collapse
Affiliation(s)
- Young-Jin Kang
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Sang-Hun Lee
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Epilepsy Research Center, University of Kentucky, Lexington, Kentucky 40536
| | - Jeffery A Boychuk
- Epilepsy Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Corwin R Butler
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - J Anna Juras
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Ryan A Cloyd
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Bret N Smith
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Epilepsy Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
4
|
Porcu A, Nilsson A, Booreddy S, Barnes SA, Welsh DK, Dulcis D. Seasonal changes in day length induce multisynaptic neurotransmitter switching to regulate hypothalamic network activity and behavior. SCIENCE ADVANCES 2022; 8:eabn9867. [PMID: 36054362 PMCID: PMC10848959 DOI: 10.1126/sciadv.abn9867] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/19/2022] [Indexed: 05/18/2023]
Abstract
Seasonal changes in day length (photoperiod) affect numerous physiological functions. The suprachiasmatic nucleus (SCN)-paraventricular nucleus (PVN) axis plays a key role in processing photoperiod-related information. Seasonal variations in SCN and PVN neurotransmitter expression have been observed in humans and animal models. However, the molecular mechanisms by which the SCN-PVN network responds to altered photoperiod is unknown. Here, we show in mice that neuromedin S (NMS) and vasoactive intestinal polypeptide (VIP) neurons in the SCN display photoperiod-induced neurotransmitter plasticity. In vivo recording of calcium dynamics revealed that NMS neurons alter PVN network activity in response to winter-like photoperiod. Chronic manipulation of NMS neurons is sufficient to induce neurotransmitter switching in PVN neurons and affects locomotor activity. Our findings reveal previously unidentified molecular adaptations of the SCN-PVN network in response to seasonality and the role for NMS neurons in adjusting hypothalamic function to day length via a coordinated multisynaptic neurotransmitter switching affecting behavior.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Anna Nilsson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sathwik Booreddy
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Samuel A. Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - David K. Welsh
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
6
|
Huckleberry KA, Shansky RM. The unique plasticity of hippocampal adult-born neurons: Contributing to a heterogeneous dentate. Hippocampus 2021; 31:543-556. [PMID: 33638581 DOI: 10.1002/hipo.23318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
The dentate gyrus (DG) of the hippocampus is evolutionarily conserved as one of the few sites of adult neurogenesis in mammals. Although there is clear evidence that neurogenesis is necessary for healthy hippocampal function, whether adult-born neurons are simply integrated into existing hippocampal networks to serve a similar purpose to that of developmentally born neurons or whether they represent a discrete cell population with unique functions remains less clear. In this review, we consider evidence for discrete cellular, synaptic, and structural features of adult-born DG neurons, suggesting that neurogenesis contributes to the formation of a heterogeneous DG. We therefore propose that hippocampal neurogenesis creates a specialized neuronal subpopulation that may play a key role in hippocampal functions like episodic memory. We note critical gaps in this extensive body of work, including a general failure to include female animals in relevant research and a need for more precise consideration of intrahippocampal neuroanatomy.
Collapse
Affiliation(s)
- Kylie A Huckleberry
- Behavioral Neuroscience Program, Department of Psychology, Northeastern University, Boston, Massachusetts, USA
| | - Rebecca M Shansky
- Behavioral Neuroscience Program, Department of Psychology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Clark LR, Yun S, Acquah NK, Kumar PL, Metheny HE, Paixao RCC, Cohen AS, Eisch AJ. Mild Traumatic Brain Injury Induces Transient, Sequential Increases in Proliferation, Neuroblasts/Immature Neurons, and Cell Survival: A Time Course Study in the Male Mouse Dentate Gyrus. Front Neurosci 2021; 14:612749. [PMID: 33488351 PMCID: PMC7817782 DOI: 10.3389/fnins.2020.612749] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Mild traumatic brain injuries (mTBIs) are prevalent worldwide. mTBIs can impair hippocampal-based functions such as memory and cause network hyperexcitability of the dentate gyrus (DG), a key entry point to hippocampal circuitry. One candidate for mediating mTBI-induced hippocampal cognitive and physiological dysfunction is injury-induced changes in the process of DG neurogenesis. There are conflicting results on how TBI impacts the process of DG neurogenesis; this is not surprising given that both the neurogenesis process and the post-injury period are dynamic, and that the quantification of neurogenesis varies widely in the literature. Even within the minority of TBI studies focusing specifically on mild injuries, there is disagreement about if and how mTBI changes the process of DG neurogenesis. Here we utilized a clinically relevant rodent model of mTBI (lateral fluid percussion injury, LFPI), gold-standard markers and quantification of the neurogenesis process, and three time points post-injury to generate a comprehensive picture of how mTBI affects adult hippocampal DG neurogenesis. Male C57BL/6J mice (6-8 weeks old) received either sham surgery or mTBI via LFPI. Proliferating cells, neuroblasts/immature neurons, and surviving cells were quantified via stereology in DG subregions (subgranular zone [SGZ], outer granule cell layer [oGCL], molecular layer, and hilus) at short-term (3 days post-injury, dpi), intermediate (7 dpi), and long-term (31 dpi) time points. The data show this model of mTBI induces transient, sequential increases in ipsilateral SGZ/GCL proliferating cells, neuroblasts/immature neurons, and surviving cells which is suggestive of mTBI-induced neurogenesis. In contrast to these ipsilateral hemisphere findings, measures in the contralateral hemisphere were not increased in key neurogenic DG subregions after LFPI. Our work in this mTBI model is in line with most literature on other and more severe models of TBI in showing TBI stimulates the process of DG neurogenesis. However, as our DG data in mTBI provide temporal, subregional, and neurogenesis-stage resolution, these data are important to consider in regard to the functional importance of TBI-induction of the neurogenesis process and future work assessing the potential of replacing and/or repairing DG neurons in the brain after TBI.
Collapse
Affiliation(s)
- Lyles R. Clark
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| | - Nana K. Acquah
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Biological Basis of Behavior Program, University of Pennsylvania, Philadelphia, PA, United States
| | - Priya L. Kumar
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Biomechanical Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Hannah E. Metheny
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
| | - Rikley C. C. Paixao
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
| | - Akivas S. Cohen
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Torromino G, Maggi A, De Leonibus E. Estrogen-dependent hippocampal wiring as a risk factor for age-related dementia in women. Prog Neurobiol 2020; 197:101895. [PMID: 32781107 DOI: 10.1016/j.pneurobio.2020.101895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Women are more prone than men to develop age-related dementia, such as Alzheimer's disease (AD). This has been linked to the marked decrease in circulating estrogens during menopause. This review proposes to change this perspective and consider women's vulnerability to developing AD as a consequence of sex differences in the neurobiology of memory, focusing on the hippocampus. The hippocampus of cognitively impaired subjects tends to shrink with age; however, in many cases, this can be prevented by exercise or cognitive training, suggesting that if you do not use the hippocampus you lose it. We will review the developmental trajectory of sex steroids-regulated differences on the hippocampus, proposing that the overall shaping action of sex-steroids results in a lower usage of the hippocampus in females, which in turn makes them more vulnerable to the effects of ageing, the "network fragility hypothesis". To explain why women rely less on hippocampus-dependent strategies, we propose a "computational hypothesis" that is based on experimental evidence suggesting that the direct effects of estrogens on hippocampal synaptic and structural plasticity during the estrous-cycle confers instability to the memory-dependent hippocampal network. Finally, we propose to counteract AD with training and/or treatments, such as orienteering, which specifically favour the use of the hippocampus.
Collapse
Affiliation(s)
- Giulia Torromino
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy.
| |
Collapse
|
9
|
Kumar D, Koyanagi I, Carrier-Ruiz A, Vergara P, Srinivasan S, Sugaya Y, Kasuya M, Yu TS, Vogt KE, Muratani M, Ohnishi T, Singh S, Teixeira CM, Chérasse Y, Naoi T, Wang SH, Nondhalee P, Osman BAH, Kaneko N, Sawamoto K, Kernie SG, Sakurai T, McHugh TJ, Kano M, Yanagisawa M, Sakaguchi M. Sparse Activity of Hippocampal Adult-Born Neurons during REM Sleep Is Necessary for Memory Consolidation. Neuron 2020; 107:552-565.e10. [PMID: 32502462 DOI: 10.1016/j.neuron.2020.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 03/21/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
The occurrence of dreaming during rapid eye movement (REM) sleep prompts interest in the role of REM sleep in hippocampal-dependent episodic memory. Within the mammalian hippocampus, the dentate gyrus (DG) has the unique characteristic of exhibiting neurogenesis persisting into adulthood. Despite their small numbers and sparse activity, adult-born neurons (ABNs) in the DG play critical roles in memory; however, their memory function during sleep is unknown. Here, we investigate whether young ABN activity contributes to memory consolidation during sleep using Ca2+ imaging in freely moving mice. We found that contextual fear learning recruits a population of young ABNs that are reactivated during subsequent REM sleep against a backdrop of overall reduced ABN activity. Optogenetic silencing of this sparse ABN activity during REM sleep alters the structural remodeling of spines on ABN dendrites and impairs memory consolidation. These findings provide a causal link between ABN activity during REM sleep and memory consolidation.
Collapse
Affiliation(s)
- Deependra Kumar
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Iyo Koyanagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Alvaro Carrier-Ruiz
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo 113-0033, Japan
| | - Pablo Vergara
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Sakthivel Srinivasan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo 113-0033, Japan
| | - Masatoshi Kasuya
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Tzong-Shiue Yu
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Takaaki Ohnishi
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Sima Singh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Yoan Chérasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Toshie Naoi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Szu-Han Wang
- Centre for Clinical Brain Sciences, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Pimpimon Nondhalee
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Boran A H Osman
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Biology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Steven G Kernie
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Thomas J McHugh
- RIKEN Center for Brain Science, Wako, Saitama 351-0106, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo 113-0033, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan.
| |
Collapse
|
10
|
Zheng T, Feng Z, Wang X, Jiang T, Jin R, Zhao P, Luo T, Gong H, Luo Q, Yuan J. Review of micro-optical sectioning tomography (MOST): technology and applications for whole-brain optical imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2019; 10:4075-4096. [PMID: 31452996 PMCID: PMC6701528 DOI: 10.1364/boe.10.004075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 05/14/2023]
Abstract
Elucidating connectivity and functionality at the whole-brain level is one of the most challenging research goals in neuroscience. Various whole-brain optical imaging technologies with submicron lateral resolution have been developed to reveal the fine structures of brain-wide neural and vascular networks at the mesoscopic level. Among them, micro-optical sectioning tomography (MOST) is attracting increasing attention, as a variety of technological variations and solutions tailored toward different biological applications have been optimized. Here, we summarize the recent development of MOST technology in whole-brain imaging and anticipate future improvements.
Collapse
Affiliation(s)
- Ting Zheng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Equal contribution
| | - Zhao Feng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Equal contribution
| | - Xiaojun Wang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tao Jiang
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| | - Rui Jin
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peilin Zhao
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ting Luo
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Gong
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| | - Qingming Luo
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| | - Jing Yuan
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| |
Collapse
|
11
|
Zhang H, He X, Mei Y, Ling Q. Ablation of ErbB4 in parvalbumin-positive interneurons inhibits adult hippocampal neurogenesis through down-regulating BDNF/TrkB expression. J Comp Neurol 2018; 526:2482-2492. [PMID: 30329159 DOI: 10.1002/cne.24506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
Abstract
Parvalbumin (PV) positive interneurons in the subgranular zone (SGZ) can regulate adult hippocampal neurogenesis. ErbB4 is mainly expressed in PV neurons in the hippocampus and is crucial for keeping normal function of PV neurons. However, whether ErbB4 in PV interneurons affects the adult hippocampal neurogenesis remains unknown. In the present study, we deleted ErbB4 specifically in PV neurons by crossing PV-Cre mice with ErbB4f/f mice. Results of BrdU labeling and NeuN staining revealed that the proliferation of neural progenitors was increased but the survival and maturation of newborn neurons were decreased in the hippocampus of mice after deleting ErbB4 in PV neurons, suggesting that ErbB4 in PV neurons is closely associated with the process of adult hippocampal neurogenesis. Interestingly, the expression of brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), was significantly decreased in the hippocampus of ErbB4-deleted mice. Together, our data suggested that ErbB4 in PV neurons might modulate adult hippocampal neurogenesis by affecting BDNF-TrkB signaling pathway.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China.,Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao He
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University Medical PET Center, Hangzhou, Zhejiang, China
| | - Yufei Mei
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingzhou Ling
- Human resources office, Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
12
|
Constitutive and Synaptic Activation of GIRK Channels Differentiates Mature and Newborn Dentate Granule Cells. J Neurosci 2018; 38:6513-6526. [PMID: 29915136 DOI: 10.1523/jneurosci.0674-18.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022] Open
Abstract
Sparse neural activity in the dentate gyrus is enforced by powerful networks of inhibitory GABAergic interneurons in combination with low intrinsic excitability of the principal neurons, the dentate granule cells (GCs). Although the cellular and circuit properties that dictate synaptic inhibition are well studied, less is known about mechanisms that confer low GC intrinsic excitability. Here we demonstrate that intact G protein-mediated signaling contributes to the characteristic low resting membrane potential that differentiates mature dentate GCs from CA1 pyramidal cells and developing adult-born GCs. In mature GCs from male and female mice, intact G protein signaling robustly reduces intrinsic excitability, whereas deletion of G protein-activated inwardly rectifying potassium channel 2 (GIRK2) increases excitability and blocks the effects of G protein signaling on intrinsic properties. Similarly, pharmacological manipulation of GABAB receptors (GABABRs) or GIRK channels alters intrinsic excitability and GC spiking behavior. However, adult-born new GCs lack functional GIRK activity, with phasic and constitutive GABABR-mediated GIRK signaling appearing after several weeks of maturation. Phasic activation is interneuron specific, arising primarily from nNOS-expressing interneurons rather than parvalbumin- or somatostatin-expressing interneurons. Together, these results demonstrate that G protein signaling contributes to the intrinsic excitability that differentiates mature and developing dentate GCs and further suggest that late maturation of GIRK channel activity is poised to convert early developmental functions of GABAB receptor signaling into GABABR-mediated inhibition.SIGNIFICANCE STATEMENT The dentate gyrus exhibits sparse neural activity that is essential for the computational function of pattern separation. Sparse activity is ascribed to strong local inhibitory circuits in combination with low intrinsic excitability of the principal neurons, the granule cells. Here we show that constitutive activity of G protein-coupled inwardly rectifying potassium channels (GIRKs) underlies to the hallmark low resting membrane potential and input resistance of mature dentate neurons. Adult-born neurons initially lack functional GIRK channels, with constitutive and phasic GABAB receptor-mediated GIRK inhibition developing in tandem after several weeks of maturation. Our results reveal that GABAB/GIRK activity is an important determinant of low excitability of mature dentate granule cells that may contribute to sparse DG activity in vivo.
Collapse
|
13
|
Encinas JM, Fitzsimons CP. Gene regulation in adult neural stem cells. Current challenges and possible applications. Adv Drug Deliv Rev 2017; 120:118-132. [PMID: 28751200 DOI: 10.1016/j.addr.2017.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Adult neural stem and progenitor cells (NSPCs) offer a unique opportunity for neural regeneration and niche modification in physiopathological conditions, harnessing the capability to modify from neuronal circuits to glial scar. Findings exposing the vast plasticity and potential of NSPCs have accumulated over the past years and we currently know that adult NSPCs can naturally give rise not only to neurons but also to astrocytes and reactive astrocytes, and eventually to oligodendrocytes through genetic manipulation. We can consider NSPCs as endogenous flexible tools to fight against neurodegenerative and neurological disorders and aging. In addition, NSPCs can be considered as active agents contributing to chronic brain alterations and as relevant cell populations to be preserved, so that their main function, neurogenesis, is not lost in damage or disease. Altogether we believe that learning to manipulate NSPC is essential to prevent, ameliorate or restore some of the cognitive deficits associated with brain disease and injury, and therefore should be considered as target for future therapeutic strategies. The first step to accomplish this goal is to target them specifically, by unveiling and understanding their unique markers and signaling pathways.
Collapse
Affiliation(s)
- Juan Manuel Encinas
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 205, 48170 Zamudio, Spain; Ikerbasque, The Basque Science Foundation, María Díaz de Haro 3, 6(th) Floor, 48013 Bilbao, Spain; University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Carlos P Fitzsimons
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Enikolopov G, Overstreet-Wadiche L, Ge S. Viral and transgenic reporters and genetic analysis of adult neurogenesis. Cold Spring Harb Perspect Biol 2015; 7:a018804. [PMID: 26238354 DOI: 10.1101/cshperspect.a018804] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stem and progenitor cells of the developing and adult brain can be effectively identified and manipulated using reporter genes, introduced into transgenic reporter mouse lines or recombinant viruses. Such reporters rely on an ever-increasing variety of fluorescent proteins and a continuously expanding list of regulatory elements and of mouse lines engineered for cell- or time-specific recombination. An important extension of stem-cell-based genetic strategies is an opportunity to explore the properties of newly generated neurons and their contribution to synaptic plasticity. Here, we review available strategies for marking and quantifying various classes of stem and progenitor cells in the adult brain, genetically tracing their progeny, and studying the properties of stem cells and new neurons. We compare various experimental approaches to labeling and investigating stem cells and their progeny and discuss caveats and limitations inherent to each approach.
Collapse
Affiliation(s)
| | | | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
15
|
Teh DBL, Ishizuka T, Yawo H. Regulation of later neurogenic stages of adult-derived neural stem/progenitor cells by L-type Ca2+ channels. Dev Growth Differ 2014; 56:583-94. [PMID: 25283796 DOI: 10.1111/dgd.12158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 08/15/2014] [Accepted: 08/15/2014] [Indexed: 11/30/2022]
Abstract
In the adult hippocampus, new neurons are continuously generated and incorporated into the local circuitry in a manner dependent on the network activity. Depolarization evoked by neurotransmitters has been assumed to activate L-type Ca2+ channels (LTCC) which regulate the intracellular Ca2+ -dependent signaling cascades. The process of neurogenesis contains several stages such as proliferation, fate determination, selective death/survival and maturation. Here, we investigated which stage of neurogenesis is under the regulation of LTCC using a clonal line of neural stem/progenitor cells, PZ5, which was derived from adult rat hippocampus. Although undifferentiated PZ5 cells were type 1-like cells expressing both nestin and glial fibrillary acidic protein, they generated neuronal, astrocytic and oligodendrocytic populations in differentiation medium containing retinoic acid. Proliferation of undifferentiated PZ5 cells was dependent on neither the LTCC antagonist, nimodipine (Nimo) nor the LTCC agonists, Bay K 8644 (BayK) or FPL 64176 (FPL), whereas the fraction of neuronal population that expressed both βIII-tubulin and MAP2 was reduced by Nimo but increased by BayK or FPL. At an earlier period of differentiation (e.g., day 4), the fraction of PZ5 cells expressing HuC/D, pan-neuronal marker, was not affected either by the LTCC activation or inhibition. At a later period of differentiation (e.g., day 9), the fraction of dying neurons was decreased by LTCC activation and increased by LTCC inhibition. It is suggested that the LTCC activation facilitates the survival and maturation of immature neurons, and that its inhibition facilitates the neuronal death.
Collapse
Affiliation(s)
- Daniel B L Teh
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Tokyo, Japan
| | | | | |
Collapse
|
16
|
Wei D, Yang F, Wang Y, Yang F, Wu C, Wu SX, Jiang W. Degeneration and regeneration of GABAergic interneurons in the dentate gyrus of adult mice in experimental models of epilepsy. CNS Neurosci Ther 2014; 21:52-60. [PMID: 25272022 DOI: 10.1111/cns.12330] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/15/2022] Open
Abstract
AIMS Mounting evidence showed that GABAergic interneurons play an important role in the generation of seizures by regulating excitatory/inhibitory balance in the hippocampus; however, there is a continuous debate regarding the alteration in the number of hippocampal GABAergic interneurons during epileptogenesis. Here, we investigated the degeneration and regeneration of GABAergic interneurons in the dentate gyrus during epileptogenesis using glutamic acid decarboxylase-green fluorescence protein (GAD67-GFP) knock-in mice. METHODS AND RESULTS Pentylenetetrazol (PTZ)-induced chronic kindling model and lithium-pilocarpine-induced status epilepticus (SE) model were used in this study. We found a progressive loss of GABAergic interneurons in the dentate gyrus during post-SE epileptogenesis rather than PTZ kindling. Both types of epileptogenic insults significantly promoted the proliferation of neural progenitor cells in the dentate gyrus; however, compared to 80% neuronal differentiation ratio in the control group, there was a remarkable decrease in PTZ kindling and pilocarpine models, that is 58% and 29%, respectively. Double/triple immunofluorescence labeling revealed no newborn neurons colabeled with GFP in both intact and epileptic dentate gyrus. In addition, valproate (a first-line antiepileptic drug) treatment prevented the loss of GABAergic interneurons but still failed to induce the regeneration of GAD67-positive interneurons in the dentate gyrus during post-SE epileptogenesis. CONCLUSIONS These results indicate that degeneration of GABAergic interneurons may depend on the type of epileptogenic insult and that no newborn GABAergic interneurons occur in the adult dentate gyrus during epileptogenesis.
Collapse
Affiliation(s)
- Dong Wei
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Pallotto M, Deprez F. Regulation of adult neurogenesis by GABAergic transmission: signaling beyond GABAA-receptors. Front Cell Neurosci 2014; 8:166. [PMID: 24999317 PMCID: PMC4064292 DOI: 10.3389/fncel.2014.00166] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/02/2014] [Indexed: 01/09/2023] Open
Abstract
In the adult mammalian brain, neurogenesis occurs in the olfactory bulb (OB) and in the dentate gyrus (DG) of the hippocampus. Several studies have shown that multiple stages of neurogenesis are regulated by GABAergic transmission with precise spatio-temporal selectivity, and involving mechanisms common to both systems or specific only to one. In the subgranular zone (SGZ) of the DG, GABA neurotransmitter, released by a specific population of interneurons, regulates stem cell quiescence and neuronal cell fate decisions. Similarly, in the subventricular zone (SVZ), OB neuroblast production is modulated by ambient GABA. Ambient GABA, acting on extrasynaptic GABAA receptors (GABAAR), is also crucial for proper adult-born granule cell (GC) maturation and synaptic integration in the OB as well as in the DG. Throughout adult-born neuron development, various GABA receptors and receptor subunits play specific roles. Previous work has demonstrated that adult-born GCs in both the OB and the DG show a time window of increased plasticity in which adult-born cells are more prone to modification by external stimuli. One mechanism that controls this "critical period" is GABAergic modulation. Indeed, depleting the main phasic GABAergic inputs in adult-born neurons results in dramatic effects, such as reduction of spine density and dendritic branching in adult-born OB GCs. In this review, we systematically compare the role of GABAergic transmission in the regulation of adult neurogenesis between the OB and the hippocampus, focusing on the role of GABA in modulating plasticity and critical periods of adult-born neuron development. Finally, we discuss signaling pathways that might mediate some of the deficits observed upon targeted deletion of postsynaptic GABAARs in adult-born neurons.
Collapse
Affiliation(s)
- Marta Pallotto
- Circuit Dynamics and Connectivity Unit, National Institute Neurological Disorders and Stroke, National Institute of Health Bethesda, MD, USA
| | - Francine Deprez
- Neuroscience Center Zurich, Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| |
Collapse
|
18
|
Watanabe Y, Khodosevich K, Monyer H. Dendrite development regulated by the schizophrenia-associated gene FEZ1 involves the ubiquitin proteasome system. Cell Rep 2014; 7:552-564. [PMID: 24726361 DOI: 10.1016/j.celrep.2014.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/05/2014] [Accepted: 03/07/2014] [Indexed: 02/06/2023] Open
Abstract
Downregulation of the schizophrenia-associated gene DISC1 and its interacting protein FEZ1 positively regulates dendrite growth in young neurons. However, little is known about the mechanism that controls these molecules during neuronal development. Here, we identify several components of the ubiquitin proteasome system and the cell-cycle machinery that act upstream of FEZ1. We demonstrate that the ubiquitin ligase cell division cycle 20/anaphase-promoting complex (Cdc20/APC) controls dendrite growth by regulating the degradation of FEZ1. Furthermore, dendrite growth is modulated by BubR1, whose known function so far has been restricted to control Cdc20/APC activity during the cell cycle. The modulatory function of BubR1 is dependent on its acetylation status. We show that BubR1 is deacetylated by Hdac11, thereby disinhibiting the Cdc20/APC complex. Because dendrite growth is affected both in hippocampal dentate granule cells and olfactory bulb neurons upon modifying expression of these genes, we conclude that the proposed mechanism governs neuronal development in a general fashion.
Collapse
Affiliation(s)
- Yasuhito Watanabe
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of Heidelberg University, Heidelberg 69120, Germany
| | - Konstantin Khodosevich
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of Heidelberg University, Heidelberg 69120, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of Heidelberg University, Heidelberg 69120, Germany.
| |
Collapse
|
19
|
Green HF, Nolan YM. Inflammation and the developing brain: Consequences for hippocampal neurogenesis and behavior. Neurosci Biobehav Rev 2014; 40:20-34. [DOI: 10.1016/j.neubiorev.2014.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 02/06/2023]
|
20
|
Pedroni A, Minh DD, Mallamaci A, Cherubini E. Electrophysiological characterization of granule cells in the dentate gyrus immediately after birth. Front Cell Neurosci 2014; 8:44. [PMID: 24592213 PMCID: PMC3924035 DOI: 10.3389/fncel.2014.00044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/30/2014] [Indexed: 11/13/2022] Open
Abstract
Granule cells (GCs) in the dentate gyrus are generated mainly postnatally. Between embryonic day 10 and 14, neural precursors migrate from the primary dentate matrix to the dentate gyrus where they differentiate into neurons. Neurogenesis reaches a peak at the end of the first postnatal week and it is completed at the end of the first postnatal month. This process continues at a reduced rate throughout life. Interestingly, immediately after birth, GCs exhibit a clear GABAergic phenotype. Only later they integrate the classical glutamatergic trisynaptic hippocampal circuit. Here, whole cell patch clamp recordings, in current clamp mode, were performed from immature GCs, intracellularly loaded with biocytin (in hippocampal slices from P0 to P3 old rats) in order to compare their morphological characteristics with their electrophysiological properties. The vast majority of GCs were very immature with small somata, few dendritic branches terminating with small varicosities and growth cones. In spite of their immaturity their axons reached often the cornu ammonis 3 area. Immature GCs generated, upon membrane depolarization, either rudimentary sodium spikes or more clear overshooting action potentials that fired repetitively. They exhibited also low threshold calcium spikes. In addition, most spiking neurons showed spontaneous synchronized network activity, reminiscent of giant depolarizing potentials (GDPs) generated in the hippocampus by the synergistic action of glutamate and GABA, both depolarizing and excitatory. This early synchronized activity, absent during adult neurogenesis, may play a crucial role in the refinement of local neuronal circuits within the developing dentate gyrus.
Collapse
Affiliation(s)
- Andrea Pedroni
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Do Duc Minh
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Antonello Mallamaci
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Enrico Cherubini
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy ; European Brain Research Institute Rome, Italy
| |
Collapse
|
21
|
Abstract
Adult neurogenesis continually produces a small population of immature granule cells (GCs) within the dentate gyrus. The physiological properties of immature GCs distinguish them from the more numerous mature GCs and potentially enables distinct network functions. To test how the changing properties of developing GCs affect spiking behavior, we examined synaptic responses of mature and immature GCs in hippocampal slices from adult mice. Whereas synaptic inhibition restricted GC spiking at most stages of maturation, the relative influence of inhibition, excitatory synaptic drive, and intrinsic excitability shifted over the course of maturation. Mature GCs received profuse afferent innervation such that spiking was suppressed primarily by inhibition, whereas immature GC spiking was also limited by the strength of excitatory drive. Although the input resistance was a reliable indicator of maturation, it did not determine spiking probability at immature stages. Our results confirm the existence of a transient period during GC maturation when perforant path stimulation can generate a high probability of spiking, but also reveal that immature GC excitability is tempered by functional synaptic inhibition and reduced excitatory innervation, likely maintaining the sparse population activity observed in vivo.
Collapse
|
22
|
Abstract
In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity after the perinatal period suggests that unique aspects of the structure and function of DG and olfactory bulb circuits allow them to benefit from the adult generation of neurons. In this review, we consider the distinctive features of the DG that may account for it being able to profit from this singular form of neural plasticity. Approaches to the problem of neurogenesis are grouped as "bottom-up," where the phenotype of adult-born granule cells is contrasted to that of mature developmentally born granule cells, and "top-down," where the impact of altering the amount of neurogenesis on behavior is examined. We end by considering the primary implications of these two approaches and future directions.
Collapse
Affiliation(s)
- Liam J Drew
- Division of Integrative Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York 10032, USA
| | | | | |
Collapse
|
23
|
Tirone F, Farioli-Vecchioli S, Micheli L, Ceccarelli M, Leonardi L. Genetic control of adult neurogenesis: interplay of differentiation, proliferation and survival modulates new neurons function, and memory circuits. Front Cell Neurosci 2013; 7:59. [PMID: 23734097 PMCID: PMC3653098 DOI: 10.3389/fncel.2013.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/15/2013] [Indexed: 01/23/2023] Open
Abstract
Within the hippocampal circuitry, the basic function of the dentate gyrus is to transform the memory input coming from the enthorinal cortex into sparse and categorized outputs to CA3, in this way separating related memory information. New neurons generated in the dentate gyrus during adulthood appear to facilitate this process, allowing a better separation between closely spaced memories (pattern separation). The evidence underlying this model has been gathered essentially by ablating the newly adult-generated neurons. This approach, however, does not allow monitoring of the integration of new neurons into memory circuits and is likely to set in motion compensatory circuits, possibly leading to an underestimation of the role of new neurons. Here we review the background of the basic function of the hippocampus and of the known properties of new adult-generated neurons. In this context, we analyze the cognitive performance in mouse models generated by us and others, with modified expression of the genes Btg2 (PC3/Tis21), Btg1, Pten, BMP4, etc., where new neurons underwent a change in their differentiation rate or a partial decrease of their proliferation or survival rate rather than ablation. The effects of these modifications are equal or greater than full ablation, suggesting that the architecture of circuits, as it unfolds from the interaction between existing and new neurons, can have a greater functional impact than the sheer number of new neurons. We propose a model which attempts to measure and correlate the set of cellular changes in the process of neurogenesis with the memory function.
Collapse
Affiliation(s)
- Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa LuciaRome, Italy
| | | | | | | | | |
Collapse
|
24
|
Schizas N, Rojas R, Kootala S, Andersson B, Pettersson J, Hilborn J, Hailer NP. Hyaluronic acid-based hydrogel enhances neuronal survival in spinal cord slice cultures from postnatal mice. J Biomater Appl 2013; 28:825-36. [DOI: 10.1177/0885328213483636] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Numerous biomaterials based on extracellular matrix-components have been developed. It was our aim to investigate whether a hyaluronic acid–based hydrogel improves neuronal survival and tissue preservation in organotypic spinal cord slice cultures. Organotypic spinal cord slice cultures were cultured for 4 days in vitro (div), either on hyaluronic acid–based hydrogel (hyaluronic acid–gel group), collagen gel (collagen group), directly on polyethylene terephthalate membrane inserts (control group), or in the presence of soluble hyaluronic acid (soluble hyaluronic acid group). Cultures were immunohistochemically stained against neuronal antigen NeuN and analyzed by confocal laser scanning microscopy. Histochemistry for choline acetyltransferance, glial fibrillary acidic protein, and Griffonia simplicifolia isolectin B4 followed by quantitative analysis was performed to assess motorneurons and different glial populations. Confocal microscopic analysis showed a 4-fold increase in the number of NeuN-positive neurons in the hyaluronic acid–gel group compared to both collagen ( p < 0.001) and control groups ( p < 0.001). Compared to controls, organotypic spinal cord slice cultures maintained on hyaluronic acid–based hydrogel showed 5.9-fold increased survival of choline acetyltransferance-positive motorneurons ( p = 0.008), 2-fold more numerous resting microglial cells in the white matter ( p = 0.031), and a 61.4% reduction in the number of activated microglial cells within the grey matter ( p = 0.05). Hyaluronic acid–based hydrogel had a shear modulus (G′) of ≈1200 Pascals (Pa), which was considerably higher than the ≈25 Pa measured for collagen gel. Soluble hyaluronic acid failed to improve tissue preservation. In conclusion, hyaluronic acid–based hydrogel improves neuronal and – most notably – motorneuron survival in organotypic spinal cord slice cultures and microglial activation is limited. The positive effects of hyaluronic acid–based hydrogel may at least in part be due to its mechanical properties.
Collapse
Affiliation(s)
- Nikos Schizas
- The SpineLab, Institute of Surgical Sciences, Department of Orthopaedics, Uppsala University, Uppsala, Sweden
| | - Ramiro Rojas
- Division of Polymer Chemistry, Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Sujit Kootala
- Division of Polymer Chemistry, Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Brittmarie Andersson
- The SpineLab, Institute of Surgical Sciences, Department of Orthopaedics, Uppsala University, Uppsala, Sweden
| | - Jennie Pettersson
- The SpineLab, Institute of Surgical Sciences, Department of Orthopaedics, Uppsala University, Uppsala, Sweden
| | - Jons Hilborn
- Division of Polymer Chemistry, Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Nils P Hailer
- The SpineLab, Institute of Surgical Sciences, Department of Orthopaedics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Functional implications of hippocampal adult neurogenesis in intellectual disabilities. Amino Acids 2013; 45:113-31. [DOI: 10.1007/s00726-013-1489-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/19/2022]
|
26
|
Schnorbusch K, Lembrechts R, Pintelon I, Timmermans JP, Brouns I, Adriaensen D. GABAergic signaling in the pulmonary neuroepithelial body microenvironment: functional imaging in GAD67-GFP mice. Histochem Cell Biol 2013; 140:549-66. [PMID: 23568330 DOI: 10.1007/s00418-013-1093-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2013] [Indexed: 01/15/2023]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system (CNS) of vertebrates, but has also been reported in multiple cell types outside the CNS. A GABAergic system has been proposed in neuroepithelial bodies (NEBs) in monkey lungs. Pulmonary NEBs are known as complex intraepithelial sensory airway receptors and are part of the NEB microenvironment. Aim of the present study was to unravel a GABAergic signaling system in the NEB microenvironment in mouse lungs, enabling the use of genetically modified animals for future functional studies. Immunostaining of mouse lungs revealed that glutamic acid decarboxylase 65/67 (GAD65/67), a rate-limiting enzyme in the biosynthesis of GABA, and the vesicular GABA transporter (VGAT) were exclusively expressed in NEB cells. In GAD67-green fluorescent protein (GFP) knock-in mice, all pulmonary NEBs appeared to express GFP. For confocal live cell imaging, ex vivo vibratome lung slices of GAD67-GFP mice can be directly loaded with fluorescent functional probes, e.g. a red-fluorescent calcium dye, without the necessity of time-consuming prior live visualization of NEBs. RT-PCR of the NEB microenvironment obtained by laser microdissection revealed the presence of both GABAA and GABAB (R1 and R2) receptors, which was confirmed by immunostaining. In conclusion, the present study not only revealed the presence of a GABAergic signaling pathway, but also the very selective expression of GFP in pulmonary NEBs in a GAD67-GFP mouse model. Different proof of concept experiments have clearly shown that adoption of the GAD67-GFP mouse model will certainly boost future functional imaging and gene expression analysis of the mouse NEB microenvironment.
Collapse
Affiliation(s)
- Kathy Schnorbusch
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
27
|
Cabezas C, Irinopoulou T, Cauli B, Poncer JC. Molecular and functional characterization of GAD67-expressing, newborn granule cells in mouse dentate gyrus. Front Neural Circuits 2013; 7:60. [PMID: 23565079 PMCID: PMC3613764 DOI: 10.3389/fncir.2013.00060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/14/2013] [Indexed: 11/13/2022] Open
Abstract
Dentate gyrus granule cells (GCs) have been suggested to synthesize both GABA and glutamate immediately after birth and under pathological conditions in the adult. Expression of the GABA synthesizing enzyme GAD67 by GCs during the first few weeks of postnatal development may then allow for transient GABA synthesis and synaptic release from these cells. Here, using the GAD67-EGFP transgenic strain G42, we explored the phenotype of GAD67-expressing GCs in the mouse dentate gyrus. We report a transient, GAD67-driven EGFP expression in differentiating GCs throughout ontogenesis. EGFP expression correlates with the expression of GAD and molecular markers of GABA release and uptake in 2–4 weeks post-mitotic GCs. These rather immature cells are able to fire action potentials (APs) and are synaptically integrated in the hippocampal network. Yet they show physiological properties that differentiate them from mature GCs. Finally, GAD67-expressing GCs express a specific complement of GABAA receptor subunits as well as distinctive features of synaptic and tonic GABA signaling. Our results reveal that GAD67 expression in dentate gyrus GCs is a transient marker of late differentiation that persists throughout life and the G42 strain may be used to visualize newborn GCs at a specific, well-defined differentiation stage.
Collapse
Affiliation(s)
- Carolina Cabezas
- INSERM, UMR-S 839 Paris, France ; Université Pierre et Marie Curie Paris, France ; Institut du Fer à Moulin Paris, France
| | | | | | | |
Collapse
|
28
|
Abstract
Dentate gyrus granule cells have been suggested to corelease GABA and glutamate both in juvenile animals and under pathological conditions in adults. Although mossy fiber terminals (MFTs) are known to express glutamic acid decarboxylase (GAD) in early postnatal development, the functional role of GABA synthesis in MFTs remains controversial, and direct evidence for synaptic GABA release from MFTs is missing. Here, using GAD67-GFP transgenic mice, we show that GAD67 is expressed only in a population of immature granule cells in juvenile animals. We demonstrate that GABA can be released from these cells and modulate mossy fiber excitability through activation of GABAB autoreceptors. However, unitary postsynaptic currents generated by individual, GAD67-expressing granule cells are purely glutamatergic in all postsynaptic cell types tested. Thus GAD67 expression does not endow dentate gyrus granule cells with a full GABAergic phenotype and GABA primarily instructs the pre- rather than the postsynaptic element.
Collapse
|
29
|
Snyder JS, Ferrante SC, Cameron HA. Late maturation of adult-born neurons in the temporal dentate gyrus. PLoS One 2012; 7:e48757. [PMID: 23144957 PMCID: PMC3492442 DOI: 10.1371/journal.pone.0048757] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 10/02/2012] [Indexed: 12/28/2022] Open
Abstract
Hippocampal function varies along its septotemporal axis, with the septal (dorsal) pole more frequently involved in spatial learning and memory and the temporal (ventral) pole playing a greater role in emotional behaviors. One feature that varies across these subregions is adult neurogenesis. New neurons are more numerous in the septal hippocampus but are more active in the temporal hippocampus during water maze training. However, many other aspects of adult neurogenesis remain unexplored in the context of septal versus temporal subregions. In addition, the dentate gyrus contains another functionally important anatomical division along the transverse axis, with the suprapyramidal blade showing greater experience-related activity than the infrapyramidal blade. Here we ask whether new neurons differ in their rates of survival and maturation along the septotemporal and transverse axes. We found that neurogenesis is initially higher in the infrapyramidal than suprapyramidal blade, but these cells are less likely to survive, resulting in similar densities of neurons in the two blades by four weeks. Across the septotemporal axis, neurogenesis was higher in septal than temporal pole, while the survival rate of new neurons did not differ. Maturation was assessed by immunostaining for the neuronal marker, NeuN, which increases in expression level with maturation, and for the immediate-early gene, Arc, which suggests a neuron is capable of undergoing activity-dependent synaptic plasticity. Maturation occurred approximately 1-2 weeks earlier in the septal pole than in the temporal pole. This suggests that septal neurons may contribute to function sooner; however, the prolonged maturation of new temporal neurons may endow them with a longer window of plasticity during which their functions could be distinct from those of the mature granule cell population. These data point to subregional differences in new neuron maturation and suggest that changes in neurogenesis could alter different hippocampus-dependent behaviors with different time courses.
Collapse
Affiliation(s)
- Jason S Snyder
- Unit on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | |
Collapse
|
30
|
Veena J, Rao BSS, Srikumar BN. Regulation of adult neurogenesis in the hippocampus by stress, acetylcholine and dopamine. J Nat Sci Biol Med 2012; 2:26-37. [PMID: 22470231 PMCID: PMC3312696 DOI: 10.4103/0976-9668.82312] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neurogenesis is well-established to occur during adulthood in two regions of the brain, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. Research for more than two decades has implicated a role for adult neurogenesis in several brain functions including learning and effects of antidepressants and antipsychotics. Clear understanding of the players involved in the regulation of adult neurogenesis is emerging. We review evidence for the role of stress, dopamine (DA) and acetylcholine (ACh) as regulators of neurogenesis in the SGZ. Largely, stress decreases neurogenesis, while the effects of ACh and DA depend on the type of receptors mediating their action. Increasingly, the new neurons formed in adulthood are potentially linked to crucial brain processes such as learning and memory. In brain disorders like Alzheimer and Parkinson disease, stress-induced cognitive dysfunction, depression and age-associated dementia, the necessity to restore brain functions is enormous. Activation of the resident stem cells in the adult brain to treat neuropsychiatric disorders has immense potential and understanding the mechanisms of regulation of adult neurogenesis by endogenous and exogenous factors holds the key to develop therapeutic strategies for the debilitating neurological and psychiatric disorders.
Collapse
Affiliation(s)
- J Veena
- Laboratoire Psynugen, Université Bordeaux 2, Bordeaux, France
| | | | | |
Collapse
|
31
|
Spampanato J, Sullivan RK, Turpin FR, Bartlett PF, Sah P. Properties of doublecortin expressing neurons in the adult mouse dentate gyrus. PLoS One 2012; 7:e41029. [PMID: 22957010 PMCID: PMC3434174 DOI: 10.1371/journal.pone.0041029] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 06/16/2012] [Indexed: 12/04/2022] Open
Abstract
The dentate gyrus is a neurogenic zone where neurons continue to be born throughout life, mature and integrate into the local circuitry. In adults, this generation of new neurons is thought to contribute to learning and memory formation. As newborn neurons mature, they undergo a developmental sequence in which different stages of development are marked by expression of different proteins. Doublecortin (DCX) is an early marker that is expressed in immature granule cells that are beginning migration and dendritic growth but is turned off before neurons reach maturity. In the present study, we use a mouse strain in which enhanced green fluorescent protein (EGFP) is expressed under the control of the DCX promoter. We show that these neurons have high input resistances and some cells can discharge trains of action potentials. In mature granule cells, action potentials are followed by a slow afterhyperpolarization that is absent in EGFP-positive neurons. EGFP-positive neurons had a lower spine density than mature neurons and stimulation of either the medial or lateral perforant pathway activated dual component glutamatergic synapses that had both AMPA and NMDA receptors. NMDA receptors present at these synapses had slow kinetics and were blocked by ifenprodil, indicative of high GluN2B subunit content. These results show that EGFP-positive neurons in the DCX-EGFP mice are functionally immature both in their firing properties and excitatory synapses.
Collapse
Affiliation(s)
- Jay Spampanato
- The Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Robert K. Sullivan
- The Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Fabrice R. Turpin
- The Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Perry F. Bartlett
- The Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Pankaj Sah
- The Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- * E-mail:
| |
Collapse
|
32
|
Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, Augustine GJ, Deisseroth K, Luo M, Graybiel AM, Feng G. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 2011; 8:745-52. [PMID: 21985008 PMCID: PMC3191888 DOI: 10.1038/nmeth.1668] [Citation(s) in RCA: 480] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optogenetic methods have emerged as powerful tools for dissecting neural circuit connectivity, function and dysfunction. We used a bacterial artificial chromosome (BAC) transgenic strategy to express the H134R variant of channelrhodopsin-2, ChR2(H134R), under the control of cell type–specific promoter elements. We performed an extensive functional characterization of the newly established VGAT-ChR2(H134R)-EYFP, ChAT-ChR2(H134R)-EYFP, Tph2-ChR2(H134R)-EYFP and Pvalb(H134R)-ChR2-EYFP BAC transgenic mouse lines and demonstrate the utility of these lines for precisely controlling action-potential firing of GABAergic, cholinergic, serotonergic and parvalbumin-expressing neuron subsets using blue light. This resource of cell type–specific ChR2(H134R) mouse lines will facilitate the precise mapping of neuronal connectivity and the dissection of the neural basis of behavior.
Collapse
Affiliation(s)
- Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Snyder JS, Cameron HA. Could adult hippocampal neurogenesis be relevant for human behavior? Behav Brain Res 2011; 227:384-90. [PMID: 21736900 DOI: 10.1016/j.bbr.2011.06.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/02/2011] [Accepted: 06/20/2011] [Indexed: 12/21/2022]
Abstract
Although the function of adult neurogenesis is still unclear, tools for directly studying the behavioral role of new hippocampal neurons now exist in rodents. Since similar studies are impossible to do in humans, it is important to assess whether the role of new neurons in rodents is likely to be similar to that in humans. One feature of adult neurogenesis that varies tremendously across species is the number of neurons that are generated, so a key question is whether there are enough neurons generated in humans to impact function. In this review we examine neuroanatomy and circuit function in the hippocampus to ask how many granule neurons are needed to impact hippocampal function and then discuss what is known about numbers of new neurons produced in adult rats and humans. We conclude that relatively small numbers of neurons could affect hippocampal circuits and that the magnitude of adult neurogenesis in adult rats and humans is probably larger than generally believed.
Collapse
Affiliation(s)
- Jason S Snyder
- Unit on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Building 35/3C911, MSC3718, Bethesda, MD 20892, USA.
| | | |
Collapse
|
34
|
Dhaliwal J, Lagace DC. Visualization and genetic manipulation of adult neurogenesis using transgenic mice. Eur J Neurosci 2011; 33:1025-36. [PMID: 21395845 DOI: 10.1111/j.1460-9568.2011.07600.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many laboratories have focused efforts on the creation of transgenic mouse models to study adult neurogenesis. In the last decade several constitutive reporter, as well as inducible transgenic lines have been published that allowed for visualization, tracking and alteration of specific neurogenic cell populations in the adult brain. Given the popularity of this approach, multiple mouse lines are available, and this review summarizes the differences in the basic techniques that have been used to create these mice, highlighting the different constructs and reporter proteins used, as well as the strengths and limitations of each of these models. Representative examples from the literature demonstrate some of the diverse and seminal findings that have come to fruition through the laborious, yet highly rewarding work of creating transgenic mouse lines for adult neurogenesis research.
Collapse
Affiliation(s)
- Jagroop Dhaliwal
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|