1
|
Togra C, Dhage R, Rajyaguru PI. Tdh3 and Rom2 are functional modulators of a conserved condensate-resident RNA-binding protein, Scd6, in Saccharomyces cerevisiae. Genetics 2024; 228:iyae127. [PMID: 39093296 DOI: 10.1093/genetics/iyae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/07/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Arginine-glycine-glycine motif proteins play a crucial role in determining mRNA fate. Suppressor of clathrin deficiency 6 (Scd6) is a conserved arginine-glycine-glycine motif containing ribonucleoprotein (RNP) condensate-resident, translation repressor, and decapping activator protein in Saccharomyces cerevisiae. Identifying protein factors that can modulate Scd6 function is critical to understanding the regulation of mRNA fate by Scd6. In this study, using an approach that combined mRNA tethering assay with flow cytometry, we screened 50 genes for their role in modulating the translation repression activity of Scd6. We identified 8 conserved modulators with human homologs. Of these, we further characterized in detail guanine nucleotide exchange factor Rho1 multicopy suppressor 2 (Rom2) and glycolytic enzyme triose phosphate dehydrogenase 3 (Tdh3), which, respectively, impede and promote translation repression activity of Scd6. Our study reveals that Rom2 negatively regulates the arginine methylation of Scd6 and antagonizes its localization to P-bodies. Tdh3, on the other hand, promotes Scd6 interaction with Hmt1, thereby promoting the arginine methylation of Scd6 and enhanced eIF4G1 interaction, which is known to promote its repression activity. Identifying these novel modulators provides exciting new insights into the role of a metabolic enzyme of the glycolytic pathway and guanine nucleotide exchange factor implicated in the cell wall integrity pathway in regulating Scd6 function and, thereby, cytoplasmic mRNA fate.
Collapse
Affiliation(s)
- Chitra Togra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Riya Dhage
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
2
|
Koster CC, Kleefeldt AA, van den Broek M, Luttik M, Daran JM, Daran-Lapujade P. Long-read direct RNA sequencing of the mitochondrial transcriptome of Saccharomyces cerevisiae reveals condition-dependent intron abundance. Yeast 2024; 41:256-278. [PMID: 37642136 DOI: 10.1002/yea.3893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
Mitochondria fulfil many essential roles and have their own genome, which is expressed as polycistronic transcripts that undergo co- or posttranscriptional processing and splicing. Due to the inherent complexity and limited technical accessibility of the mitochondrial transcriptome, fundamental questions regarding mitochondrial gene expression and splicing remain unresolved, even in the model eukaryote Saccharomyces cerevisiae. Long-read sequencing could address these fundamental questions. Therefore, a method for the enrichment of mitochondrial RNA and sequencing using Nanopore technology was developed, enabling the resolution of splicing of polycistronic genes and the quantification of spliced RNA. This method successfully captured the full mitochondrial transcriptome and resolved RNA splicing patterns with single-base resolution and was applied to explore the transcriptome of S. cerevisiae grown with glucose or ethanol as the sole carbon source, revealing the impact of growth conditions on mitochondrial RNA expression and splicing. This study uncovered a remarkable difference in the turnover of Group II introns between yeast grown in either mostly fermentative or fully respiratory conditions. Whether this accumulation of introns in glucose medium has an impact on mitochondrial functions remains to be explored. Combined with the high tractability of the model yeast S. cerevisiae, the developed method enables to monitor mitochondrial transcriptome responses in a broad range of relevant contexts, including oxidative stress, apoptosis and mitochondrial diseases.
Collapse
Affiliation(s)
- Charlotte C Koster
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Askar A Kleefeldt
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Marijke Luttik
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
3
|
Jiang Y, Conradt B. A genetic screen identifies C. elegans eif-3.H and hrpr-1 as pro-apoptotic genes and potential activators of egl-1 expression. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001126. [PMID: 38434221 PMCID: PMC10905296 DOI: 10.17912/micropub.biology.001126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
During C. elegans development, 1090 somatic cells are generated of which 131 reproducibly die, many through apoptosis. The C. elegans BH3-only gene egl-1 is the key activator of apoptosis in somatic tissues, and it is predominantly expressed in 'cell death' lineages i.e. lineages in which apoptotic cell death occurs. egl-1 expression is regulated at the transcriptional and post-transcriptional level. For example, we previously showed that the miR-35 and miR-58 families of miRNAs repress egl-1 expression in mothers of 'unwanted' cells by binding to the 3' UTR of egl-1 mRNA, thereby increasing egl-1 mRNA turnover. In a screen for RNA-binding proteins with a role in the post-transcriptional control of egl-1 expression, we identified EIF-3.H (ortholog of human eIF3H) and HRPR-1 (ortholog human hnRNP R/Q) as potential activators of egl-1 expression. In addition, we demonstrate that the knockdown of the eif-3.H or hrpr-1 gene by RNA-mediated interference (RNAi) results in the inappropriate survival of unwanted cells during C. elegans development. Our study provides novel insight into how egl-1 expression is controlled to cause the reproducible pattern of cell death observed during C. elegans development.
Collapse
Affiliation(s)
- Yanwen Jiang
- Cell and Developmental Biology, University College London
| | | |
Collapse
|
4
|
Curtis NJ, Patel KJ, Rizwan A, Jeffery CJ. Moonlighting Proteins: Diverse Functions Found in Fungi. J Fungi (Basel) 2023; 9:1107. [PMID: 37998912 PMCID: PMC10672435 DOI: 10.3390/jof9111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Moonlighting proteins combine multiple functions in one polypeptide chain. An increasing number of moonlighting proteins are being found in diverse fungal taxa that vary in morphology, life cycle, and ecological niche. In this mini-review we discuss examples of moonlighting proteins in fungi that illustrate their roles in transcription and DNA metabolism, translation and RNA metabolism, protein folding, and regulation of protein function, and their interaction with other cell types and host proteins.
Collapse
Affiliation(s)
- Nicole J. Curtis
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| | - Krupa J. Patel
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| | | | - Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| |
Collapse
|
5
|
Williams TC, Kroukamp H, Xu X, Wightman EL, Llorente B, Borneman AR, Carpenter AC, Van Wyk N, Meier F, Collier TR, Espinosa MI, Daniel EL, Walker RS, Cai Y, Nevalainen HK, Curach NC, Deveson IW, Mercer TR, Johnson DL, Mitchell LA, Bader JS, Stracquadanio G, Boeke JD, Goold HD, Pretorius IS, Paulsen IT. Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects. CELL GENOMICS 2023; 3:100379. [PMID: 38020977 PMCID: PMC10667330 DOI: 10.1016/j.xgen.2023.100379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 12/01/2023]
Abstract
Synthetic chromosome engineering is a complex process due to the need to identify and repair growth defects and deal with combinatorial gene essentiality when rearranging chromosomes. To alleviate these issues, we have demonstrated novel approaches for repairing and rearranging synthetic Saccharomyces cerevisiae genomes. We have designed, constructed, and restored wild-type fitness to a synthetic 753,096-bp version of S. cerevisiae chromosome XIV as part of the Synthetic Yeast Genome project. In parallel to the use of rational engineering approaches to restore wild-type fitness, we used adaptive laboratory evolution to generate a general growth-defect-suppressor rearrangement in the form of increased TAR1 copy number. We also extended the utility of the synthetic chromosome recombination and modification by loxPsym-mediated evolution (SCRaMbLE) system by engineering synthetic-wild-type tetraploid hybrid strains that buffer against essential gene loss, highlighting the plasticity of the S. cerevisiae genome in the presence of rational and non-rational modifications.
Collapse
Affiliation(s)
- Thomas C. Williams
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia
| | - Heinrich Kroukamp
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Xin Xu
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Elizabeth L.I. Wightman
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Briardo Llorente
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia
- The Australian Genome Foundry, Sydney, NSW, Australia
| | - Anthony R. Borneman
- The Australian Wine Research Institute, Adelaide, SA 5064, Australia
- School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Alexander C. Carpenter
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia
| | - Niel Van Wyk
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Felix Meier
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Thomas R.V. Collier
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Monica I. Espinosa
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Elizabeth L. Daniel
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Roy S.K. Walker
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Yizhi Cai
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Helena K.M. Nevalainen
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Natalie C. Curach
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Bioplatforms Australia, Research Park Drive, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Ira W. Deveson
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
- The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Timothy R. Mercer
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
- The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Daniel L. Johnson
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- The Australian Wine Research Institute, Adelaide, SA 5064, Australia
| | - Leslie A. Mitchell
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Joel S. Bader
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Giovanni Stracquadanio
- Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jef D. Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Hugh D. Goold
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- New South Wales Department of Primary Industries, Orange, NSW 2800, Australia
| | - Isak S. Pretorius
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Ian T. Paulsen
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- The Australian Genome Foundry, Sydney, NSW, Australia
| |
Collapse
|
6
|
Klein T, Funke F, Rossbach O, Lehmann G, Vockenhuber M, Medenbach J, Suess B, Meister G, Babinger P. Investigating the Prevalence of RNA-Binding Metabolic Enzymes in E. coli. Int J Mol Sci 2023; 24:11536. [PMID: 37511294 PMCID: PMC10380284 DOI: 10.3390/ijms241411536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
An open research field in cellular regulation is the assumed crosstalk between RNAs, metabolic enzymes, and metabolites, also known as the REM hypothesis. High-throughput assays have produced extensive interactome data with metabolic enzymes frequently found as hits, but only a few examples have been biochemically validated, with deficits especially in prokaryotes. Therefore, we rationally selected nineteen Escherichia coli enzymes from such datasets and examined their ability to bind RNAs using two complementary methods, iCLIP and SELEX. Found interactions were validated by EMSA and other methods. For most of the candidates, we observed no RNA binding (12/19) or a rather unspecific binding (5/19). Two of the candidates, namely glutamate-5-kinase (ProB) and quinone oxidoreductase (QorA), displayed specific and previously unknown binding to distinct RNAs. We concentrated on the interaction of QorA to the mRNA of yffO, a grounded prophage gene, which could be validated by EMSA and MST. Because the physiological function of both partners is not known, the biological relevance of this interaction remains elusive. Furthermore, we found novel RNA targets for the MS2 phage coat protein that served us as control. Our results indicate that RNA binding of metabolic enzymes in procaryotes is less frequent than suggested by the results of high-throughput studies, but does occur.
Collapse
Affiliation(s)
- Thomas Klein
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Franziska Funke
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Faculty of Biology and Chemistry, University of Giessen, D-35392 Giessen, Germany
| | - Gerhard Lehmann
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Michael Vockenhuber
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Jan Medenbach
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Beatrix Suess
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Gunter Meister
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
7
|
Fradera-Sola A, Nischwitz E, Bayer ME, Luck K, Butter F. RNA-dependent interactome allows network-based assignment of RNA-binding protein function. Nucleic Acids Res 2023; 51:5162-5176. [PMID: 37070168 PMCID: PMC10250244 DOI: 10.1093/nar/gkad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
RNA-binding proteins (RBPs) form highly diverse and dynamic ribonucleoprotein complexes, whose functions determine the molecular fate of the bound RNA. In the model organism Sacchromyces cerevisiae, the number of proteins identified as RBPs has greatly increased over the last decade. However, the cellular function of most of these novel RBPs remains largely unexplored. We used mass spectrometry-based quantitative proteomics to systematically identify protein-protein interactions (PPIs) and RNA-dependent interactions (RDIs) to create a novel dataset for 40 RBPs that are associated with the mRNA life cycle. Domain, functional and pathway enrichment analyses revealed an over-representation of RNA functionalities among the enriched interactors. Using our extensive PPI and RDI networks, we revealed putative new members of RNA-associated pathways, and highlighted potential new roles for several RBPs. Our RBP interactome resource is available through an online interactive platform as a community tool to guide further in-depth functional studies and RBP network analysis (https://www.butterlab.org/RINE).
Collapse
Affiliation(s)
- Albert Fradera-Sola
- Quantitative Proteomics, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Emily Nischwitz
- Quantitative Proteomics, Institute of Molecular Biology, D-55128 Mainz, Germany
| | | | - Katja Luck
- Integrative Systems Biology, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology, D-55128 Mainz, Germany
| |
Collapse
|
8
|
Reynaud K, McGeachy AM, Noble D, Meacham ZA, Ingolia NT. Surveying the global landscape of post-transcriptional regulators. Nat Struct Mol Biol 2023; 30:740-752. [PMID: 37231154 PMCID: PMC10279529 DOI: 10.1038/s41594-023-00999-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Numerous proteins regulate gene expression by modulating mRNA translation and decay. To uncover the full scope of these post-transcriptional regulators, we conducted an unbiased survey that quantifies regulatory activity across the budding yeast proteome and delineates the protein domains responsible for these effects. Our approach couples a tethered function assay with quantitative single-cell fluorescence measurements to analyze ~50,000 protein fragments and determine their effects on a tethered mRNA. We characterize hundreds of strong regulators, which are enriched for canonical and unconventional mRNA-binding proteins. Regulatory activity typically maps outside the RNA-binding domains themselves, highlighting a modular architecture that separates mRNA targeting from post-transcriptional regulation. Activity often aligns with intrinsically disordered regions that can interact with other proteins, even in core mRNA translation and degradation factors. Our results thus reveal networks of interacting proteins that control mRNA fate and illuminate the molecular basis for post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Kendra Reynaud
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Anna M McGeachy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - David Noble
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Zuriah A Meacham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nicholas T Ingolia
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
9
|
Asencio C, Schwarzl T, Sahadevan S, Hentze MW. Small noncoding RNA interactome capture reveals pervasive, carbon source-dependent tRNA engagement of yeast glycolytic enzymes. RNA (NEW YORK, N.Y.) 2023; 29:330-345. [PMID: 36574981 PMCID: PMC9945440 DOI: 10.1261/rna.079408.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Small noncoding RNAs fulfill key functions in cellular and organismal biology, typically working in concert with RNA-binding proteins (RBPs). While proteome-wide methodologies have enormously expanded the repertoire of known RBPs, these methods do not distinguish RBPs binding to small noncoding RNAs from the rest. To specifically identify this relevant subclass of RBPs, we developed small noncoding RNA interactome capture (snRIC2C) based on the differential RNA-binding capacity of silica matrices (2C). We define the S. cerevisiae proteome of nearly 300 proteins that specifically binds to RNAs smaller than 200 nt in length (snRBPs), identifying informative distinctions from the total RNA-binding proteome determined in parallel. Strikingly, the snRBPs include most glycolytic enzymes from yeast. With further methodological developments using silica matrices, 12 tRNAs were identified as specific binders of the glycolytic enzyme GAPDH. We show that tRNA engagement of GAPDH is carbon source-dependent and regulated by the RNA polymerase III repressor Maf1, suggesting a regulatory interaction between glycolysis and RNA polymerase III activity. We conclude that snRIC2C and other 2C-derived methods greatly facilitate the study of RBPs, revealing previously unrecognized interactions.
Collapse
Affiliation(s)
- Claudio Asencio
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Thomas Schwarzl
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sudeep Sahadevan
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | |
Collapse
|
10
|
Wegener M, Dietz KJ. The mutual interaction of glycolytic enzymes and RNA in post-transcriptional regulation. RNA (NEW YORK, N.Y.) 2022; 28:1446-1468. [PMID: 35973722 PMCID: PMC9745834 DOI: 10.1261/rna.079210.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
About three decades ago, researchers suggested that metabolic enzymes participate in cellular processes that are unrelated to their catalytic activity, and the term "moonlighting functions" was proposed. Recently developed advanced technologies in the field of RNA interactome capture now unveil the unexpected RNA binding activity of many metabolic enzymes, as exemplified here for the enzymes of glycolysis. Although for most of these proteins a precise binding mechanism, binding conditions, and physiological relevance of the binding events still await in-depth clarification, several well explored examples demonstrate that metabolic enzymes hold crucial functions in post-transcriptional regulation of protein synthesis. This widely conserved RNA-binding function of glycolytic enzymes plays major roles in controlling cell activities. The best explored examples are glyceraldehyde 3-phosphate dehydrogenase, enolase, phosphoglycerate kinase, and pyruvate kinase. This review summarizes current knowledge about the RNA-binding activity of the ten core enzymes of glycolysis in plant, yeast, and animal cells, its regulation and physiological relevance. Apparently, a tight bidirectional regulation connects core metabolism and RNA biology, forcing us to rethink long established functional singularities.
Collapse
Affiliation(s)
- Melanie Wegener
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
11
|
Cornelius VA, Naderi-Meshkin H, Kelaini S, Margariti A. RNA-Binding Proteins: Emerging Therapeutics for Vascular Dysfunction. Cells 2022; 11:2494. [PMID: 36010571 PMCID: PMC9407011 DOI: 10.3390/cells11162494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Vascular diseases account for a significant number of deaths worldwide, with cardiovascular diseases remaining the leading cause of mortality. This ongoing, ever-increasing burden has made the need for an effective treatment strategy a global priority. Recent advances in regenerative medicine, largely the derivation and use of induced pluripotent stem cell (iPSC) technologies as disease models, have provided powerful tools to study the different cell types that comprise the vascular system, allowing for a greater understanding of the molecular mechanisms behind vascular health. iPSC disease models consequently offer an exciting strategy to deepen our understanding of disease as well as develop new therapeutic avenues with clinical translation. Both transcriptional and post-transcriptional mechanisms are widely accepted to have fundamental roles in orchestrating responses to vascular damage. Recently, iPSC technologies have increased our understanding of RNA-binding proteins (RBPs) in controlling gene expression and cellular functions, providing an insight into the onset and progression of vascular dysfunction. Revelations of such roles within vascular disease states have therefore allowed for a greater clarification of disease mechanisms, aiding the development of novel therapeutic interventions. Here, we discuss newly discovered roles of RBPs within the cardio-vasculature aided by iPSC technologies, as well as examine their therapeutic potential, with a particular focus on the Quaking family of isoforms.
Collapse
Affiliation(s)
| | | | | | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
12
|
Gopan G, Ghaemi Z, Davis CM, Gruebele M. Spliceosomal SL1 RNA binding to U1-70K: the role of the extended RRM. Nucleic Acids Res 2022; 50:8193-8206. [PMID: 35876068 PMCID: PMC9371917 DOI: 10.1093/nar/gkac599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
The RNA recognition motif (RRM) occurs widely in RNA-binding proteins, but does not always by itself support full binding. For example, it is known that binding of SL1 RNA to the protein U1-70K in the U1 spliceosomal particle is reduced when a region flanking the RRM is truncated. How the RRM flanking regions that together with the RRM make up an ‘extended RRM’ (eRRM) contribute to complex stability and structural organization is unknown. We study the U1-70K eRRM bound to SL1 RNA by thermal dissociation and laser temperature jump kinetics; long-time molecular dynamics simulations interpret the experiments with atomistic resolution. Truncation of the helix flanking the RRM on its N-terminal side, ‘N-helix,’ strongly reduces overall binding, which is further weakened under higher salt and temperature conditions. Truncating the disordered region flanking the RRM on the C-terminal side, ‘C-IDR’, affects the local binding site. Surprisingly, all-atom simulations show that protein truncation enhances base stacking interactions in the binding site and leaves the overall number of hydrogen bonds intact. Instead, the flanking regions of the eRRM act in a distributed fashion via collective interactions with the RNA when external stresses such as temperature or high salt mimicking osmotic imbalance are applied.
Collapse
Affiliation(s)
- Gopika Gopan
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Zhaleh Ghaemi
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Caitlin M Davis
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA.,Department of Physics, University of Illinois, Urbana, IL 61801, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA.,Department of Physics, University of Illinois, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Lisy S, Rothamel K, Ascano M. RNA Binding Proteins as Pioneer Determinants of Infection: Protective, Proviral, or Both? Viruses 2021; 13:2172. [PMID: 34834978 PMCID: PMC8625426 DOI: 10.3390/v13112172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022] Open
Abstract
As the first intracellular host factors that directly interact with the genomes of RNA viruses, RNA binding proteins (RBPs) have a profound impact on the outcome of an infection. Recent discoveries brought about by new methodologies have led to an unprecedented ability to peer into the earliest events between viral RNA and the RBPs that act upon them. These discoveries have sparked a re-evaluation of current paradigms surrounding RBPs and post-transcriptional gene regulation. Here, we highlight questions that have bloomed from the implementation of these novel approaches. Canonical RBPs can impact the fates of both cellular and viral RNA during infection, sometimes in conflicting ways. Noncanonical RBPs, some of which were first characterized via interactions with viral RNA, may encompass physiological roles beyond viral pathogenesis. We discuss how these RBPs might discriminate between an RNA of either cellular or viral origin and thus exert either pro- or antiviral effects-which is a particular challenge as viruses contain mechanisms to mimic molecular features of cellular RNA.
Collapse
Affiliation(s)
- Samantha Lisy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (S.L.); (K.R.)
| | - Katherine Rothamel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (S.L.); (K.R.)
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (S.L.); (K.R.)
| |
Collapse
|
14
|
The expanding world of metabolic enzymes moonlighting as RNA binding proteins. Biochem Soc Trans 2021; 49:1099-1108. [PMID: 34110361 DOI: 10.1042/bst20200664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022]
Abstract
RNA binding proteins play key roles in many aspects of RNA metabolism and function, including splicing, transport, translation, localization, stability and degradation. Within the past few years, proteomics studies have identified dozens of enzymes in intermediary metabolism that bind to RNA. The wide occurrence and conservation of RNA binding ability across distant branches of the evolutionary tree suggest that these moonlighting enzymes are involved in connections between intermediary metabolism and gene expression that comprise far more extensive regulatory networks than previously thought. There are many outstanding questions about the molecular structures and mechanisms involved, the effects of these interactions on enzyme and RNA functions, and the factors that regulate the interactions. The effects on RNA function are likely to be wider than regulation of translation, and some enzyme-RNA interactions have been found to regulate the enzyme's catalytic activity. Several enzyme-RNA interactions have been shown to be affected by cellular factors that change under different intracellular and environmental conditions, including concentrations of substrates and cofactors. Understanding the molecular mechanisms involved in the interactions between the enzymes and RNA, the factors involved in regulation, and the effects of the enzyme-RNA interactions on both the enzyme and RNA functions will lead to a better understanding of the role of the many newly identified enzyme-RNA interactions in connecting intermediary metabolism and gene expression.
Collapse
|
15
|
Chang Y, Lim G, Huh WK. Analysis of the TORC1 interactome reveals a spatially distinct function of TORC1 in mRNP complexes. J Cell Biol 2021; 220:211781. [PMID: 33566094 PMCID: PMC7879482 DOI: 10.1083/jcb.201912060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 11/15/2020] [Accepted: 01/06/2021] [Indexed: 11/22/2022] Open
Abstract
The target of rapamycin complex 1 (TORC1) is mainly localized to the vacuolar membrane and regulates eukaryotic cell growth in response to nutrient availability. To obtain deeper insights into the functional roles of TORC1, we performed a genome-wide analysis of the TORC1 interactome in yeast using the bimolecular fluorescence complementation (BiFC) assay. We found that while most of the BiFC signals are observed at the vacuolar membrane, a fraction of them are detected at cytoplasmic messenger ribonucleoprotein (mRNP) granules. Moreover, mRNA-binding proteins are enriched in the TORC1 interactome, suggesting a functional relationship between TORC1 and mRNA metabolism. We show that a portion of TORC1 is consistently associated with mRNP complexes and interacts with a specific subset of mRNAs. We also demonstrate that TORC1 directly targets a translational repressor Scd6 and that the activity of Scd6 is inhibited by TORC1-dependent phosphorylation. Collectively, our data suggest that TORC1 plays a novel role in posttranscriptional regulation by controlling the activity of Scd6.
Collapse
Affiliation(s)
- Yeonji Chang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Gyubum Lim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Gerber AP. RNA-Centric Approaches to Profile the RNA-Protein Interaction Landscape on Selected RNAs. Noncoding RNA 2021; 7:ncrna7010011. [PMID: 33671874 PMCID: PMC7930960 DOI: 10.3390/ncrna7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
RNA–protein interactions frame post-transcriptional regulatory networks and modulate transcription and epigenetics. While the technological advances in RNA sequencing have significantly expanded the repertoire of RNAs, recently developed biochemical approaches combined with sensitive mass-spectrometry have revealed hundreds of previously unrecognized and potentially novel RNA-binding proteins. Nevertheless, a major challenge remains to understand how the thousands of RNA molecules and their interacting proteins assemble and control the fate of each individual RNA in a cell. Here, I review recent methodological advances to approach this problem through systematic identification of proteins that interact with particular RNAs in living cells. Thereby, a specific focus is given to in vivo approaches that involve crosslinking of RNA–protein interactions through ultraviolet irradiation or treatment of cells with chemicals, followed by capture of the RNA under study with antisense-oligonucleotides and identification of bound proteins with mass-spectrometry. Several recent studies defining interactomes of long non-coding RNAs, viral RNAs, as well as mRNAs are highlighted, and short reference is given to recent in-cell protein labeling techniques. These recent experimental improvements could open the door for broader applications and to study the remodeling of RNA–protein complexes upon different environmental cues and in disease.
Collapse
Affiliation(s)
- André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
17
|
Identification of new proteins related with cisplatin resistance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:1965-1977. [PMID: 33576883 DOI: 10.1007/s00253-021-11137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
The aim of this study is to select a cisplatin-resistant Saccharomyces cerevisiae strain to look for new molecular markers of resistance and the identification of mechanisms/interactions involved. A resistant strain was obtained after 80 days of cisplatin exposure. Then, total protein extraction, purification, and identification were carried out, in wild-type (wt) and resistant strains, by tandem mass spectrometry using a "nano HPLC-ESI-MS/MS" ion trap system. The increase in the exponentially modified protein abundance index (emPAI) (resistant vs wt strains) was calculated to study the increase in protein expression. "Genemania" software ( http://www.Genemania.org/ ) was used to compare the effects, functions, and protein interactions. KEGG tool was used for metabolic pathway analysis. Data are available via ProteomeXchange with identifier PXD020665. The cisplatin-resistant strain showed 2.5 times more resistance than the wt strain for the inhibitory dose 50% (ID50) value (224 μg/ml vs 89.68 μg/ml) and 2.78 times more resistant for the inhibitory dose 90% (ID90) value (735.2 μg/ml vs 264.04 μg/ml). Multiple deregulated proteins were found in the glutathione and carbon metabolism, oxidative phosphorylation, proteasome, glycolysis and gluconeogenesis, glyoxylate metabolism, fatty acid degradation pathway, citric acid cycle, and ribosome. The most overexpressed proteins in the cisplatin-resistant strain were related to growth and metabolism (QCR2, QCR1, ALDH4, ATPB, ATPA, ATPG, and PCKA), cell structure (SCW10), and thermal shock (HSP26). The results suggest that these proteins could be involved in cisplatin resistance. The resistance acquisition process is complex and involves the activation of multiple mechanisms that interact together. KEY POINTS: • Identification of new proteins/genes related to cisplatin resistance • Increased expression of QCR2/QCR1/ALDH4/ATPB/ATPA/SCW10/HSP26/ATPG and PCKA proteins • Multiple molecular mechanisms that interact together are involved in resistance.
Collapse
|
18
|
Mitchell SF. In Vivo Cross-Linking Followed by polyA Enrichment to Identify Yeast mRNA Binding Proteins. Methods Mol Biol 2021; 2209:235-249. [PMID: 33201473 DOI: 10.1007/978-1-0716-0935-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
mRNA binding proteins regulate gene expression by controlling the processing, localization, decay, and translation of messenger RNAs (mRNAs). To fully understand these mechanisms of posttranscriptional gene regulation, it is necessary to identify the complete set of mRNA binding proteins. In recent years, several assays have been developed to accomplish this goal in a wide variety of organisms. This work describes a method for the systematic identification of mRNA binding proteins in Saccharomyces cerevisiae. This method applies in vivo UV cross-linking, affinity pull-down of polyA(+) mRNAs, and analysis by mass spectrometry to identify proteins that directly bind to mRNAs.
Collapse
Affiliation(s)
- Sarah F Mitchell
- Department of Chemistry and Biochemistry, Loyola Marymount University, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Nocua PA, Requena JM, Puerta CJ. Identification of the interactomes associated with SCD6 and RBP42 proteins in Leishmania braziliensis. J Proteomics 2020; 233:104066. [PMID: 33296709 DOI: 10.1016/j.jprot.2020.104066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 02/04/2023]
Abstract
Leishmania are protozoan parasites responsible for leishmaniasis. These parasites present a precise gene regulation that allows them to survive different environmental conditions during their digenetic life cycle. This adaptation depends on the regulation of the expression of a wide variety of genes, which occurs, mainly at the post-transcriptional level. This differential gene expression is achieved by mechanisms based mainly in RNA binding proteins that regulate the translation and/or stability of mRNA targets by interaction with cis elements principally located in the untranslated regions (UTR). In recent studies, our group identified and characterized two proteins, SCD6 and RBP42, as RNA binding proteins in Leishmania braziliensis. To find clues about the cellular processes in which these proteins are involved, this work was aimed to determine the SCD6- and RBP42-interacting proteins (interactome) in L. braziliensis promastigotes. For this purpose, after an in vivo UV cross-linking, cellular extracts were used to immunoprecipitated, by specific antibodies, protein complexes in which SCD6 or RBP42 were present. Protein mass spectrometry analysis of the immunoprecipitated proteins identified 96 proteins presumably associated with SCD6 and 173 proteins associated with RBP42. Notably, a significant proportion of the identified proteins were shared in both interactomes, indicating a possible functional relationship between SCD6 and RBP42. Remarkably, many of the proteins identified in the SCD6 and RBP42 interactomes are related to RNA metabolism and translation processes, and many of them have been described as components of ribonucleoprotein (RNP) granules in Leishmania and related trypanosomatids. Thus, these results support a role of SCD6 and RBP42 in the assembly and/or function of mRNA-protein complexes, participating in the fate (decay/accumulation/translation) of L. braziliensis transcripts. SIGNIFICANCE: Parasites of the Leishmania genus present a particular regulation of gene expression, operating mainly at the post-transcriptional level, surely aimed to modulate quickly both mRNA and protein levels to survive the sudden environmental changes that occur during a parasite's life cycle as it moves from one host to another. This regulation of gene expression processes would be governed by the interaction of mRNA with RNA binding proteins. Nevertheless, the entirety of protein networks involved in these regulatory processes is far from being understood. In this regard, our work is contributing to stablish protein networks in which the L. braziliensis SCD6 and RBP42 proteins are involved; these proteins, in previous works, have been described as RNA binding proteins and found to participate in gene regulation in different cells and organisms. Additionally, our data point out a possible functional relationship between SCD6 and RBP42 proteins as constituents of mRNA granules, like processing bodies or stress granules, which are essential structures in the regulation of gene expression. This knowledge could provide a new approach for the development of therapeutic targets to control Leishmania infections.
Collapse
Affiliation(s)
- Paola A Nocua
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - José M Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Concepción J Puerta
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
20
|
Muleya V, Marondedze C. Functional Roles of RNA-Binding Proteins in Plant Signaling. Life (Basel) 2020; 10:life10110288. [PMID: 33217949 PMCID: PMC7698727 DOI: 10.3390/life10110288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) are typical proteins that bind RNA through single or multiple RNA-binding domains (RBDs). These proteins have a functional role in determining the fate or function of the bound RNAs. A few hundred RBPs were known through in silico prediction based on computational assignment informed by structural similarity and the presence of classical RBDs. However, RBPs lacking such conventional RBDs were omitted. Owing to the recent mRNA interactome capture technology based on UV-crosslinking and fixing proteins to their mRNA targets followed by affinity capture purification and identification of RBPs by tandem mass spectrometry, several hundreds of RBPs have recently been discovered. These proteome-wide studies have colossally increased the number of proteins implicated in RNA binding and unearthed hundreds of novel RBPs lacking classical RBDs, such as proteins involved in intermediary metabolism. These discoveries provide wide insights into the post-transcriptional gene regulation players and their role in plant signaling, such as environmental stress conditions. In this review, novel discoveries of RBPs are explored, particularly on the evolving knowledge of their role in stress responses. The molecular functions of these RBPs, particularly focusing on those that do not have classical RBDs, are also elucidated at the systems level.
Collapse
Affiliation(s)
- Victor Muleya
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Main Campus, Senga Road, Gweru P Bag 9055, Zimbabwe;
| | - Claudius Marondedze
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Main Campus, Senga Road, Gweru P Bag 9055, Zimbabwe;
- Rijk Zwaan, 2678 ZG De Lier, The Netherlands
- Correspondence: or or
| |
Collapse
|
21
|
Garg M, Poornima G, Rajyaguru PI. Elucidation of the RNA-granule inducing sodium azide stress response through transcriptome analysis. Genomics 2020; 112:2978-2989. [PMID: 32437849 PMCID: PMC7116212 DOI: 10.1016/j.ygeno.2020.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/27/2022]
Abstract
Sodium azide is a commonly used cytochrome oxidase inhibitor that leads to translation repression and RNA granule assembly. The global changes in mRNA abundance in response to this stressor are unknown. RGG-motif proteins Scd6 and Sbp1 are translation-repressors and decapping-activators that localize to and affect the assembly of RNA granules in response to sodium azide stress. Transcriptome-wide effects of these proteins remain unknown. To address this, we have sequenced transcriptome of the: a) wild type strain under unstressed and sodium azide stress, b) Δscd6 and Δsbp1 strains under unstressed and sodium azide stress. Transcriptome analysis identified altered abundance of many transcripts belonging to stress-responsive pathways which were further validated by qRT-PCR results. Abundance of several transcripts was altered in Δscd6/Δsbp1 under normal conditions and upon stress. Overall, this study provides critical insights into transcriptome changes in response to sodium azide stress and the role of RGG-motif proteins in these changes.
Collapse
Affiliation(s)
- Mani Garg
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
22
|
Liang Z, Wang X, Bao X, Wei T, Hou J, Liu W, Shen Y. Newly identified genes contribute to vanillin tolerance in Saccharomyces cerevisiae. Microb Biotechnol 2020; 14:503-516. [PMID: 32729986 PMCID: PMC7936312 DOI: 10.1111/1751-7915.13643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Exploring the mechanisms of tolerance in microorganisms to vanillin, which is derived from lignin, will benefit the design of robust cell factories that produce biofuels and chemicals using lignocellulosic materials. Our objective was to identify the genes related to vanillin tolerance in Saccharomyces cerevisiae. We investigated the effects on vanillin tolerance of several genes that have site mutations in the highly vanillin‐tolerant strain EMV‐8 compared to its parental line NAN‐27. The results showed that overexpression of GCY1, a gene that encodes an aldo‐keto reductase that also has mRNA‐binding activity, YPR1, a paralog of GCY1 that encodes an aldo‐keto reductase, PEX5, a gene that encodes a peroxisomal membrane signal receptor and MBF1, a gene that encodes a multiprotein bridging factor increase the specific growth rates (μ) by 49%, 41%, 44% and 48 %, respectively, in medium containing 6 mmol l−1 vanillin. Among these gene products, Gcy1p and Ypr1p showed NADPH‐dependent and NAD(P)H‐dependent vanillin reductase activity, respectively. The reductase‐inactive mutant Gcy1pY56F also increased vanillin tolerance in S. cerevisiae, suggesting that other mechanisms exist. Although TRS85 and PEX5, genes for which the mRNAs are binding targets of Gcy1p, were shown to be related to vanillin tolerance, both the mRNA and protein levels of these genes were not changed by overexpression of GCY1. The relationship between the mRNA‐binding activity of Gcy1p and its positive effect on vanillin tolerance is still not clear. Finally, we found that the point mutation D112A in Mbf1p, which disrupts the binding of Mbf1p and the TATA element‐binding protein (TBP), did not decrease the positive effect of Mbf1p on vanillin tolerance. This indicates that the binding of Mbf1p and TBP is not necessary for the positive effect on vanillin tolerance mediated by Mbf1p. We have successfully identified new genes related to vanillin tolerance and provided novel targets that can be used to improve the vanillin tolerance of S. cerevisiae. Moreover, we have extended our understanding of the proteins encoded by these genes.
Collapse
Affiliation(s)
- Zhenzhen Liang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xinning Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China.,State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qi Lu University of Technology, Jinan, 250353, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China.,State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qi Lu University of Technology, Jinan, 250353, China
| | - Tiandi Wei
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
23
|
Bach-Pages M, Homma F, Kourelis J, Kaschani F, Mohammed S, Kaiser M, van der Hoorn RAL, Castello A, Preston GM. Discovering the RNA-Binding Proteome of Plant Leaves with an Improved RNA Interactome Capture Method. Biomolecules 2020; 10:E661. [PMID: 32344669 PMCID: PMC7226388 DOI: 10.3390/biom10040661] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
RNA-binding proteins (RBPs) play a crucial role in regulating RNA function and fate. However, the full complement of RBPs has only recently begun to be uncovered through proteome-wide approaches such as RNA interactome capture (RIC). RIC has been applied to various cell lines and organisms, including plants, greatly expanding the repertoire of RBPs. However, several technical challenges have limited the efficacy of RIC when applied to plant tissues. Here, we report an improved version of RIC that overcomes the difficulties imposed by leaf tissue. Using this improved RIC method in Arabidopsis leaves, we identified 717 RBPs, generating a deep RNA-binding proteome for leaf tissues. While 75% of these RBPs can be linked to RNA biology, the remaining 25% were previously not known to interact with RNA. Interestingly, we observed that a large number of proteins related to photosynthesis associate with RNA in vivo, including proteins from the four major photosynthetic supercomplexes. As has previously been reported for mammals, a large proportion of leaf RBPs lack known RNA-binding domains, suggesting unconventional modes of RNA binding. We anticipate that this improved RIC method will provide critical insights into RNA metabolism in plants, including how cellular RBPs respond to environmental, physiological and pathological cues.
Collapse
Affiliation(s)
- Marcel Bach-Pages
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Felix Homma
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Jiorgos Kourelis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Farnusch Kaschani
- Fakultät für Biologie, Universität Duisburg-Essen, North Rhine-Westphalia, 45117 Essen, Germany; (F.K.); (M.K.)
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Markus Kaiser
- Fakultät für Biologie, Universität Duisburg-Essen, North Rhine-Westphalia, 45117 Essen, Germany; (F.K.); (M.K.)
| | - Renier A. L. van der Hoorn
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| |
Collapse
|
24
|
Smith T, Villanueva E, Queiroz RML, Dawson CS, Elzek M, Urdaneta EC, Willis AE, Beckmann BM, Krijgsveld J, Lilley KS. Organic phase separation opens up new opportunities to interrogate the RNA-binding proteome. Curr Opin Chem Biol 2020; 54:70-75. [PMID: 32131038 DOI: 10.1016/j.cbpa.2020.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/08/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
Protein-RNA interactions regulate all aspects of RNA metabolism and are crucial to the function of catalytic ribonucleoproteins. Until recently, the available technologies to capture RNA-bound proteins have been biased toward poly(A) RNA-binding proteins (RBPs) or involve molecular labeling, limiting their application. With the advent of organic-aqueous phase separation-based methods, we now have technologies that efficiently enrich the complete suite of RBPs and enable quantification of RBP dynamics. These flexible approaches to study RBPs and their bound RNA open up new research avenues for systems-level interrogation of protein-RNA interactions.
Collapse
Affiliation(s)
- Tom Smith
- Cambridge Center for Proteomics, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - Eneko Villanueva
- Cambridge Center for Proteomics, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Rayner M L Queiroz
- Cambridge Center for Proteomics, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Charlotte S Dawson
- Cambridge Center for Proteomics, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Mohamed Elzek
- Cambridge Center for Proteomics, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Erika C Urdaneta
- Humboldt University Berlin, IRI Life Sciences, Philippstr. 13 10115 Berlin, Germany
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Leicester, LE1 7BH, UK
| | - Benedikt M Beckmann
- Humboldt University Berlin, IRI Life Sciences, Philippstr. 13 10115 Berlin, Germany
| | - Jeroen Krijgsveld
- German Cancer Research Center, Im Neuenheimer Feld 581, Heidelberg, Germany; Heidelberg University, Medical Faculty, Im Neuenheimer Feld 672, Heidelberg, Germany
| | - Kathryn S Lilley
- Cambridge Center for Proteomics, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK.
| |
Collapse
|
25
|
Telekawa C, Boisvert FM, Bachand F. Proteomic profiling and functional characterization of post-translational modifications of the fission yeast RNA exosome. Nucleic Acids Res 2019; 46:11169-11183. [PMID: 30321377 PMCID: PMC6265454 DOI: 10.1093/nar/gky915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022] Open
Abstract
The RNA exosome is a conserved multi-subunit complex essential for processing and degradation of several types of RNAs. Although many of the functions of the RNA exosome are well established, whether the activity of this complex is regulated remains unclear. Here we performed a proteomic analysis of the RNA exosome complex purified from Schizosaccharomyces pombe and identified 39 post-translational modifications (PTMs), including phosphorylation, methylation, and acetylation sites. Interestingly, most of the modifications were identified in Dis3, a catalytic subunit of the RNA exosome, as well as in the exosome-associated RNA helicase, Mtr4. Functional analysis of selected PTM sites using modification-deficient and -mimetic versions of exosome subunits revealed substitutions that affected cell growth and exosome functions. Notably, our results suggest that site-specific phosphorylation in the catalytic center of Dis3 and in the helical bundle domain of Mtr4 control their activity. Our findings support a view in which post-translational modifications fine-tune exosome activity and add a layer of regulation to RNA degradation.
Collapse
Affiliation(s)
- Caroline Telekawa
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
26
|
Sahu PK, Chauhan S, Tomar RS. The Crg1 N-Terminus Is Essential for Methyltransferase Activity and Cantharidin Resistance in Saccharomyces cerevisiae. Biochemistry 2019; 58:1799-1809. [PMID: 30830767 DOI: 10.1021/acs.biochem.8b01277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crg1 is an S-adenosylmethionine (SAM)-dependent methyltransferase required for cantharidin resistance in yeast. Crg1 has a well-characterized methyltransferase domain that inactivates cantharidin by methylation. However, the remaining part of the Crg1 protein is yet to be functionally characterized. In this study, we identified an essential role of the N-terminus of Crg1 in methyltransferase activity and cantharidin resistance. Yeast cells lacking 41 residues of the N-terminus of Crg1 ( crg1ΔN) showed hypersensitivity to cantharidin as same as the null mutant, crg1. The mass spectrometry-based biochemical enzyme assay revealed a loss of methyltransferase activity in Crg1ΔN, which justifies the loss of cantharidin resistance, as well. The subcellular distribution of Crg1ΔN-daGFP showed cytoplasmic aggregates, whereas wild-type Crg1-daGFP was distributed normally in the cytoplasm. Interestingly, the Crg1-methyltransferase domain point mutants (D44A, D67A, and E105A/D108A) also showed the same cytoplasmic aggregates as Crg1ΔN-daGFP. In silico prediction of the tertiary structures of these mutants indicated an altered protein conformation. Altogether, these observations suggest that the N-terminal truncation, as well as the point mutations in the methyltransferase domain, alters the native folding of Crg1 methyltransferase, resulting in a loss of enzyme activity. Furthermore, the crg1ΔN mutant showed the same phenotypes as the crg1 null mutant in the presence of cantharidin, i.e., lethal cell growth, PE auxotrophy, temperature sensitivity, endoplasmic reticulum stress, GPI anchor missorting, and cell wall damage. Overall, this study identifies an essential role of the N-terminus of Crg1 in methyltransferase activity and cantharidin resistance.
Collapse
Affiliation(s)
- Pushpendra Kumar Sahu
- Laboratory of Chromatin Biology, Department of Biological Sciences , Indian Institute of Science Education and Research Bhopal , Bhopal 462066 , Madhya Pradesh , India
| | - Sakshi Chauhan
- Laboratory of Chromatin Biology, Department of Biological Sciences , Indian Institute of Science Education and Research Bhopal , Bhopal 462066 , Madhya Pradesh , India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences , Indian Institute of Science Education and Research Bhopal , Bhopal 462066 , Madhya Pradesh , India
| |
Collapse
|
27
|
Liu L, Li T, Song G, He Q, Yin Y, Lu J, Bi X, Wang K, Luo S, Chen YS, Yang Y, Sun BF, Yang YG, Wu J, Zhu H, Shen X. Insight into novel RNA-binding activities via large-scale analysis of lncRNA-bound proteome and IDH1-bound transcriptome. Nucleic Acids Res 2019; 47:2244-2262. [PMID: 30698743 PMCID: PMC6412114 DOI: 10.1093/nar/gkz032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) play pivotal roles in directing RNA fate and function. Yet the current annotation of RBPs is largely limited to proteins carrying known RNA-binding domains. To systematically reveal dynamic RNA-protein interactions, we surveyed the human proteome by a protein array-based approach and identified 671 proteins with RNA-binding activity. Among these proteins, 525 lack annotated RNA-binding domains and are enriched in transcriptional and epigenetic regulators, metabolic enzymes, and small GTPases. Using an improved CLIP (crosslinking and immunoprecipitation) method, we performed genome-wide target profiling of isocitrate dehydrogenase 1 (IDH1), a novel RBP. IDH1 binds to thousands of RNA transcripts with enriched functions in transcription and chromatin regulation, cell cycle and RNA processing. Purified IDH1, but not an oncogenic mutant, binds directly to GA- or AU-rich RNA that are also enriched in IDH1 CLIP targets. Our study provides useful resources of unconventional RBPs and IDH1-bound transcriptome, and convincingly illustrates, for the first time, the in vivo and in vitro RNA targets and binding preferences of IDH1, revealing an unanticipated complexity of RNA regulation in diverse cellular processes.
Collapse
Affiliation(s)
- Lichao Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Li
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guang Song
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qingxia He
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yafei Yin
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - J Yuyang Lu
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xianju Bi
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaili Wang
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sai Luo
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu-Sheng Chen
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, CAS Center for Excellence in Molecular Cell Science, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, CAS Center for Excellence in Molecular Cell Science, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao-Fa Sun
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, CAS Center for Excellence in Molecular Cell Science, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, CAS Center for Excellence in Molecular Cell Science, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiawei Wu
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiaohua Shen
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Abstract
RNA-binding proteins (RBPs) function in all aspects of RNA processes including stability, structure, export, localization and translation, and control gene expression at the posttranscriptional level. To investigate the roles of RBPs and their direct RNA ligands in vivo, recent global approaches combining RNA immunoprecipitation and deep sequencing (RIP-seq) as well as UV-cross-linking (CLIP-seq) have become instrumental in dissecting RNA-protein interactions. However, the computational analysis of these high-throughput sequencing data is still challenging. Here, we provide a computational pipeline to analyze CLIP-seq and RIP-seq datasets. This generic analytic procedure may help accelerate the identification of direct RNA-protein interactions from high-throughput RBP profiling experiments in a variety of bacterial species.
Collapse
|
29
|
Beckmann BM, Granneman S. Probing the RNA-Binding Proteome from Yeast to Man: Major Advances and Challenges. Methods Mol Biol 2019; 2049:213-231. [PMID: 31602614 DOI: 10.1007/978-1-4939-9736-7_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA-binding proteins are important for core cellular processes such as mRNA transcription, splicing, transport, translation, and degradation. Recently, hundreds of novel RNA-binders have been identified in vivo in various organisms and cell types. We discuss the RNA interactome capture technique which enabled this boost in identifying new RNA-binding proteins in eukaryotes. A focus of this chapter, however, is the presentation of different challenges and problems that need to be addressed to be able to understand the conserved mRNA-bound proteomes from yeast to man.
Collapse
Affiliation(s)
- Benedikt M Beckmann
- Molecular Infection Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Sander Granneman
- Centre for Systems and Synthetic Biology (SynthSys), University of Edinburgh, Edinburgh, UK
| |
Collapse
|
30
|
Crawford RA, Pavitt GD. Translational regulation in response to stress in Saccharomyces cerevisiae. Yeast 2018; 36:5-21. [PMID: 30019452 PMCID: PMC6492140 DOI: 10.1002/yea.3349] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae must dynamically alter the composition of its proteome in order to respond to diverse stresses. The reprogramming of gene expression during stress typically involves initial global repression of protein synthesis, accompanied by the activation of stress‐responsive mRNAs through both translational and transcriptional responses. The ability of specific mRNAs to counter the global translational repression is therefore crucial to the overall response to stress. Here we summarize the major repressive mechanisms and discuss mechanisms of translational activation in response to different stresses in S. cerevisiae. Taken together, a wide range of studies indicate that multiple elements act in concert to bring about appropriate translational responses. These include regulatory elements within mRNAs, altered mRNA interactions with RNA‐binding proteins and the specialization of ribosomes that each contribute towards regulating protein expression to suit the changing environmental conditions.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| |
Collapse
|
31
|
Iadevaia V, Matia-González AM, Gerber AP. An Oligonucleotide-based Tandem RNA Isolation Procedure to Recover Eukaryotic mRNA-Protein Complexes. J Vis Exp 2018. [PMID: 30176020 PMCID: PMC6128116 DOI: 10.3791/58223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RNA-binding proteins (RBPs) play key roles in the post-transcriptional control of gene expression. Therefore, biochemical characterization of mRNA-protein complexes is essential to understanding mRNA regulation inferred by interacting proteins or non-coding RNAs. Herein, we describe a tandem RNA isolation procedure (TRIP) that enables the purification of endogenously formed mRNA-protein complexes from cellular extracts. The two-step protocol involves the isolation of polyadenylated mRNAs with antisense oligo(dT) beads and subsequent capture of an mRNA of interest with 3'-biotinylated 2'-O-methylated antisense RNA oligonucleotides, which can then be isolated with streptavidin beads. TRIP was used to recover in vivo crosslinked mRNA-ribonucleoprotein (mRNP) complexes from yeast, nematodes and human cells for further RNA and protein analysis. Thus, TRIP is a versatile approach that can be adapted to all types of polyadenylated RNAs across organisms to study the dynamic re-arrangement of mRNPs imposed by intracellular or environmental cues.
Collapse
Affiliation(s)
- Valentina Iadevaia
- Dept. of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey
| | - Ana M Matia-González
- Dept. of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey
| | - André P Gerber
- Dept. of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey;
| |
Collapse
|
32
|
The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock. PLoS Genet 2018; 14:e1007563. [PMID: 30059503 PMCID: PMC6085073 DOI: 10.1371/journal.pgen.1007563] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/09/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022] Open
Abstract
RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5’ end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered. When confronted with external physical or chemical stress, cells respond by increasing the mRNA output of a small number of genes required for stress survival, while shutting down the majority of other genes. Moreover, each mRNA is regulated under stress to either enhance or diminish its translation into proteins. The overall purpose is for the cell to optimize gene expression for survival and recovery during rapidly changing conditions. Much of this regulation is mediated by RNA-binding proteins. We have isolated proteins binding to specific mRNAs induced by stress, to investigate how they affect the stress response. We found members of one protein complex to be bound to stress-induced mRNAs. When mutants lacking these proteins were exposed to stress, ribosomes were more engaged with translating mRNAs than in the wild-type. In the mutants, it was also possible to trigger expression of stress proteins with only minimal stress levels. Tracing the passage of ribosomes over mRNAs, we saw that ribosomes accumulated around the start codon in the mutants. These findings indicate that the protein complex is required to moderate the stress response and prevent it from overreacting, which would be harmful for the cell.
Collapse
|
33
|
Albihlal WS, Gerber AP. Unconventional
RNA
‐binding proteins: an uncharted zone in
RNA
biology. FEBS Lett 2018; 592:2917-2931. [DOI: 10.1002/1873-3468.13161] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Waleed S. Albihlal
- Department of Microbial Sciences School of Biosciences and Medicine Faculty of Health and Medical Sciences University of Surrey Guildford UK
| | - André P. Gerber
- Department of Microbial Sciences School of Biosciences and Medicine Faculty of Health and Medical Sciences University of Surrey Guildford UK
| |
Collapse
|
34
|
Chowdhury S, Zhang J, Kurgan L. In Silico Prediction and Validation of Novel RNA Binding Proteins and Residues in the Human Proteome. Proteomics 2018; 18:e1800064. [PMID: 29806170 DOI: 10.1002/pmic.201800064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/05/2018] [Indexed: 12/22/2022]
Abstract
Deciphering a complete landscape of protein-RNA interactions in the human proteome remains an elusive challenge. We computationally elucidate RNA binding proteins (RBPs) using an approach that complements previous efforts. We employ two modern complementary sequence-based methods that provide accurate predictions from the structured and the intrinsically disordered sequences, even in the absence of sequence similarity to the known RBPs. We generate and analyze putative RNA binding residues on the whole proteome scale. Using a conservative setting that ensures low, 5% false positive rate, we identify 1511 putative RBPs that include 281 known RBPs and 166 RBPs that were previously predicted. We empirically demonstrate that these overlaps are statistically significant. We also validate the putative RBPs based on two major hallmarks of their RNA binding residues: high levels of evolutionary conservation and enrichment in charged amino acids. Moreover, we show that the novel RBPs are significantly under-annotated functionally which coincides with the fact that they were not yet found to interact with RNAs. We provide two examples of our novel putative RBPs for which there is recent evidence of their interactions with RNAs. The dataset of novel putative RBPs and RNA binding residues for the future hypothesis generation is provided in the Supporting Information.
Collapse
Affiliation(s)
- Shomeek Chowdhury
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Maharaja Sayajirao University of Baroda, Gujarat, 390005, India.,Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Jian Zhang
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA.,School of Computer and Information Technology, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
35
|
Roy D, Rajyaguru PI. Suppressor of clathrin deficiency (Scd6)-An emerging RGG-motif translation repressor. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1479. [DOI: 10.1002/wrna.1479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Debadrita Roy
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| | | |
Collapse
|
36
|
Perez-Pepe M, Fernández-Alvarez AJ, Boccaccio GL. Life and Work of Stress Granules and Processing Bodies: New Insights into Their Formation and Function. Biochemistry 2018; 57:2488-2498. [PMID: 29595960 DOI: 10.1021/acs.biochem.8b00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The dynamic formation of stress granules (SGs), processing bodies (PBs), and related RNA organelles regulates diverse cellular processes, including the coordination of functionally connected messengers, the translational regulation at the synapse, and the control of viruses and retrotransposons. Recent studies have shown that pyruvate kinase and other enzymes localize in SGs and PBs, where they become protected from stress insults. These observations may have implications for enzyme regulation and metabolic control exerted by RNA-based organelles. The formation of these cellular bodies is governed by liquid-liquid phase separation (LLPS) processes, and it needs to be strictly controlled to prevent pathogenic aggregation. The intracellular concentration of key metabolites, such as ATP and sterol derivatives, may influence protein solubility, thus affecting the dynamics of liquid organelles. LLPS in vitro depends on the thermal diffusion of macromolecules, which is limited inside cells, where the condensation and dissolution of membrane-less organelles are helped by energy-driven processes. The active transport by the retrograde motor dynein helps SG assembly, whereas the anterograde motor kinesin mediates SG dissolution; a tug of war between these two molecular motors allows transient SG formation. There is evidence that the efficiency of dynein-mediated transport increases with the number of motor molecules associated with the cargo. The dynein-dependent transport may be influenced by cargo size as larger cargos can load a larger number of motors. We propose a model based on this emergent property of dynein motors, which would be collectively stronger during SG condensation and weaker during SG breakdown, thus allowing kinesin-mediated dispersion.
Collapse
Affiliation(s)
- Marcelo Perez-Pepe
- Instituto Leloir and Instituto de Investigaciones Bioquı́micas de Buenos Aires (IIBBA)-CONICET , Buenos Aires , Argentina
| | - Ana J Fernández-Alvarez
- Instituto Leloir and Instituto de Investigaciones Bioquı́micas de Buenos Aires (IIBBA)-CONICET , Buenos Aires , Argentina
| | - Graciela L Boccaccio
- Instituto Leloir and Instituto de Investigaciones Bioquı́micas de Buenos Aires (IIBBA)-CONICET , Buenos Aires , Argentina
| |
Collapse
|
37
|
Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc Natl Acad Sci U S A 2018; 115:E3879-E3887. [PMID: 29636419 DOI: 10.1073/pnas.1718406115] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transcriptome-wide identification of RNA-binding proteins (RBPs) is a prerequisite for understanding the posttranscriptional gene regulation networks. However, proteomic profiling of RBPs has been mostly limited to polyadenylated mRNA-binding proteins, leaving RBPs on nonpoly(A) RNAs, including most noncoding RNAs (ncRNAs) and pre-mRNAs, largely undiscovered. Here we present a click chemistry-assisted RNA interactome capture (CARIC) strategy, which enables unbiased identification of RBPs, independent of the polyadenylation state of RNAs. CARIC combines metabolic labeling of RNAs with an alkynyl uridine analog and in vivo RNA-protein photocross-linking, followed by click reaction with azide-biotin, affinity enrichment, and proteomic analysis. Applying CARIC, we identified 597 RBPs in HeLa cells, including 130 previously unknown RBPs. These newly discovered RBPs can likely bind ncRNAs, thus uncovering potential involvement of ncRNAs in processes previously unknown to be ncRNA-related, such as proteasome function and intermediary metabolism. The CARIC strategy should be broadly applicable across various organisms to complete the census of RBPs.
Collapse
|
38
|
|
39
|
Abstract
RNA-binding proteins (RBPs) are typically thought of as proteins that bind RNA through one or multiple globular RNA-binding domains (RBDs) and change the fate or function of the bound RNAs. Several hundred such RBPs have been discovered and investigated over the years. Recent proteome-wide studies have more than doubled the number of proteins implicated in RNA binding and uncovered hundreds of additional RBPs lacking conventional RBDs. In this Review, we discuss these new RBPs and the emerging understanding of their unexpected modes of RNA binding, which can be mediated by intrinsically disordered regions, protein-protein interaction interfaces and enzymatic cores, among others. We also discuss the RNA targets and molecular and cellular functions of the new RBPs, as well as the possibility that some RBPs may be regulated by RNA rather than regulate RNA.
Collapse
|
40
|
CAN1 Arginine Permease Deficiency Extends Yeast Replicative Lifespan via Translational Activation of Stress Response Genes. Cell Rep 2017; 18:1884-1892. [PMID: 28228255 DOI: 10.1016/j.celrep.2017.01.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/27/2016] [Accepted: 01/29/2017] [Indexed: 12/18/2022] Open
Abstract
Transcriptional regulation plays an important role in the control of gene expression during aging. However, translation efficiency likely plays an equally important role in determining protein abundance, but it has been relatively understudied in this context. Here, we used RNA sequencing (RNA-seq) and ribosome profiling to investigate the role of translational regulation in lifespan extension by CAN1 gene deletion in yeast. Through comparison of the transcriptional and translational changes in cells lacking CAN1 with other long-lived mutants, we were able to identify critical regulatory factors, including transcription factors and mRNA-binding proteins, that coordinate transcriptional and translational responses. Together, our data support a model in which deletion of CAN1 extends replicative lifespan through increased translation of proteins that facilitate cellular response to stress. This study extends our understanding of the importance of translational control in regulating stress resistance and longevity.
Collapse
|
41
|
Abstract
3'-untranslated regions (3'-UTRs) are the noncoding parts of mRNAs. Compared to yeast, in humans, median 3'-UTR length has expanded approximately tenfold alongside an increased generation of alternative 3'-UTR isoforms. In contrast, the number of coding genes, as well as coding region length, has remained similar. This suggests an important role for 3'-UTRs in the biology of higher organisms. 3'-UTRs are best known to regulate diverse fates of mRNAs, including degradation, translation, and localization, but they can also function like long noncoding or small RNAs, as has been shown for whole 3'-UTRs as well as for cleaved fragments. Furthermore, 3'-UTRs determine the fate of proteins through the regulation of protein-protein interactions. They facilitate cotranslational protein complex formation, which establishes a role for 3'-UTRs as evolved eukaryotic operons. Whereas bacterial operons promote the interaction of two subunits, 3'-UTRs enable the formation of protein complexes with diverse compositions. All of these 3'-UTR functions are accomplished by effector proteins that are recruited by RNA-binding proteins that bind to 3'-UTR cis-elements. In summary, 3'-UTRs seem to be major players in gene regulation that enable local functions, compartmentalization, and cooperativity, which makes them important tools for the regulation of phenotypic diversity of higher organisms.
Collapse
Affiliation(s)
- Christine Mayr
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
42
|
Sharma V, Kohli S, Brahmachari V. Correlation between desiccation stress response and epigenetic modifications of genes in Drosophila melanogaster: An example of environment-epigenome interaction. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1058-1068. [PMID: 28801151 DOI: 10.1016/j.bbagrm.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/05/2017] [Accepted: 08/05/2017] [Indexed: 01/12/2023]
Abstract
Animals from different phyla including arthropods tolerate water stress to different extent. This tolerance is accompanied by biochemical changes which in turn are due to transcriptional alteration. The changes in transcription can be an indirect effect on some of the genes, ensuing from the effect of stress on the regulators of transcription including epigenetic regulators. Within this paradigm, we investigated the correlation between stress response and epigenetic modification underlying gene expression modulation during desiccation stress in Canton-S. We report altered resistance of flies in desiccation stress for heterozygote mutants of PcG and TrxG members. Pc/+ mutant shows lower survival, while ash1/+ mutants show higher survival under desiccation stress as compared to Canton-S. We detect expression alteration in stress related genes as well the genes of the Polycomb and trithorax complex in Canton-S subjected to desiccation stress. Concomitant with this, there is an altered enrichment of H3K27me3 and H3K4me3 at the upstream regions of the stress responsive genes. The enrichment of activating mark, H3K4me3, is higher in non-stress condition. H3K27me3, the repressive mark, is more pronounced under stress condition, which in turn, can be correlated with the binding of Pc. Our results show that desiccation stress induces dynamic switching in expression and enrichment of PcG and TrxG in the upstream region of genes, which correlates with histone modifications. We provide evidence that epigenetic modulation could be one of the mechanisms to adapt to the desiccation stress in Drosophila. Thus, our study proposes the interaction of epigenome and environmental factors.
Collapse
Affiliation(s)
- Vineeta Sharma
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110 007, India.
| | - Surbhi Kohli
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110 007, India
| | - Vani Brahmachari
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110 007, India
| |
Collapse
|
43
|
Foley SW, Kramer MC, Gregory BD. RNA structure, binding, and coordination in Arabidopsis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28660659 DOI: 10.1002/wrna.1426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/08/2017] [Accepted: 04/13/2017] [Indexed: 11/05/2022]
Abstract
From the moment of transcription, up through degradation, each RNA transcript is bound by an ever-changing cohort of RNA binding proteins. The binding of these proteins is regulated by both the primary RNA sequence, as well as the intramolecular RNA folding, or secondary structure, of the transcript. Thus, RNA secondary structure regulates many post-transcriptional processes. With the advent of next generation sequencing, several techniques have been developed to generate global landscapes of both RNA-protein interactions and RNA secondary structure. In this review, we describe the current state of the field detailing techniques to globally interrogate RNA secondary structure and/or RNA-protein interaction sites, as well as our current understanding of these features in the transcriptome of the model plant Arabidopsis thaliana. WIREs RNA 2017, 8:e1426. doi: 10.1002/wrna.1426 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Shawn W Foley
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Marianne C Kramer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Identification and characterization of roles for Puf1 and Puf2 proteins in the yeast response to high calcium. Sci Rep 2017; 7:3037. [PMID: 28596535 PMCID: PMC5465220 DOI: 10.1038/s41598-017-02873-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Members of the yeast family of PUF proteins bind unique subsets of mRNA targets that encode proteins with common functions. They therefore became a paradigm for post-transcriptional gene control. To provide new insights into the roles of the seemingly redundant Puf1 and Puf2 members, we monitored the growth rates of their deletions under many different stress conditions. A differential effect was observed at high CaCl2 concentrations, whereby puf1Δ growth was affected much more than puf2Δ, and inhibition was exacerbated in puf1Δpuf2Δ double knockout. Transcriptome analyses upon CaCl2 application for short and long terms defined the transcriptional response to CaCl2 and revealed distinct expression changes for the deletions. Intriguingly, mRNAs known to be bound by Puf1 or Puf2 were affected mainly in the double knockout. We focused on the cell wall regulator Zeo1 and observed that puf1Δpuf2Δ fails to maintain low levels of its mRNA. Complementarily, puf1Δpuf2Δ growth defect in CaCl2 was repaired upon further deletion of the Zeo1 gene. Thus, these proteins probably regulate the cell-wall integrity pathway by regulating Zeo1 post-transcriptionally. This work sheds new light on the roles of Puf proteins during the cellular response to environmental stress.
Collapse
|
45
|
Comprehensive and quantitative mapping of RNA-protein interactions across a transcribed eukaryotic genome. Proc Natl Acad Sci U S A 2017; 114:3619-3624. [PMID: 28325876 DOI: 10.1073/pnas.1618370114] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
RNA-binding proteins (RBPs) control the fate of nearly every transcript in a cell. However, no existing approach for studying these posttranscriptional gene regulators combines transcriptome-wide throughput and biophysical precision. Here, we describe an assay that accomplishes this. Using commonly available hardware, we built a customizable, open-source platform that leverages the inherent throughput of Illumina technology for direct biophysical measurements. We used the platform to quantitatively measure the binding affinity of the prototypical RBP Vts1 for every transcript in the Saccharomyces cerevisiae genome. The scale and precision of these measurements revealed many previously unknown features of this well-studied RBP. Our transcribed genome array (TGA) assayed both rare and abundant transcripts with equivalent proficiency, revealing hundreds of low-abundance targets missed by previous approaches. These targets regulated diverse biological processes including nutrient sensing and the DNA damage response, and implicated Vts1 in de novo gene "birth." TGA provided single-nucleotide resolution for each binding site and delineated a highly specific sequence and structure motif for Vts1 binding. Changes in transcript levels in vts1Δ cells established the regulatory function of these binding sites. The impact of Vts1 on transcript abundance was largely independent of where it bound within an mRNA, challenging prevailing assumptions about how this RBP drives RNA degradation. TGA thus enables a quantitative description of the relationship between variant RNA structures, affinity, and in vivo phenotype on a transcriptome-wide scale. We anticipate that TGA will provide similarly comprehensive and quantitative insights into the function of virtually any RBP.
Collapse
|
46
|
Nandan D, Thomas SA, Nguyen A, Moon KM, Foster LJ, Reiner NE. Comprehensive Identification of mRNA-Binding Proteins of Leishmania donovani by Interactome Capture. PLoS One 2017; 12:e0170068. [PMID: 28135300 PMCID: PMC5279761 DOI: 10.1371/journal.pone.0170068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Leishmania are unicellular eukaryotes responsible for leishmaniasis in humans. Like other trypanosomatids, leishmania regulate protein coding gene expression almost exclusively at the post-transcriptional level with the help of RNA binding proteins (RBPs). Due to the presence of polycystronic transcription units, leishmania do not regulate RNA polymerase II-dependent transcription initiation. Recent evidence suggests that the main control points in gene expression are mRNA degradation and translation. Protein-RNA interactions are involved in every aspect of RNA biology, such as mRNA splicing, polyadenylation, localization, degradation, and translation. A detailed picture of these interactions would likely prove to be highly informative in understanding leishmania biology and virulence. We developed a strategy involving covalent UV cross-linking of RBPs to mRNA in vivo, followed by interactome capture using oligo(dT) magnetic beads to define comprehensively the mRNA interactome of growing L. donovani amastigotes. The protein mass spectrometry analysis of captured proteins identified 79 mRNA interacting proteins which withstood very stringent washing conditions. Strikingly, we found that 49 of these mRNA interacting proteins had no orthologs or homologs in the human genome. Consequently, these may represent high quality candidates for selective drug targeting leading to novel therapeutics. These results show that this unbiased, systematic strategy has the promise to be applicable to study the mRNA interactome during various biological settings such as metabolic changes, stress (low pH environment, oxidative stress and nutrient deprivation) or drug treatment.
Collapse
Affiliation(s)
- Devki Nandan
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sneha A. Thomas
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anne Nguyen
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kyung-Mee Moon
- University of British Columbia, Centre for High-Throughput Biology and Department of Biochemistry & Molecular Biology, Vancouver, BC, Canada
| | - Leonard J. Foster
- University of British Columbia, Centre for High-Throughput Biology and Department of Biochemistry & Molecular Biology, Vancouver, BC, Canada
| | - Neil E. Reiner
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
47
|
Walia RR, El-Manzalawy Y, Honavar VG, Dobbs D. Sequence-Based Prediction of RNA-Binding Residues in Proteins. Methods Mol Biol 2017; 1484:205-235. [PMID: 27787829 PMCID: PMC5796408 DOI: 10.1007/978-1-4939-6406-2_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Identifying individual residues in the interfaces of protein-RNA complexes is important for understanding the molecular determinants of protein-RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein-RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein-RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner.
Collapse
Affiliation(s)
| | - Yasser El-Manzalawy
- College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Vasant G Honavar
- College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Drena Dobbs
- Genetics, Development and Cell Biology Department, Iowa State University, 3112 Molecular Biology Building, Ames, IA, 50011-3650, USA.
| |
Collapse
|
48
|
Beckmann BM. RNA interactome capture in yeast. Methods 2016; 118-119:82-92. [PMID: 27993706 PMCID: PMC5421583 DOI: 10.1016/j.ymeth.2016.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) are key players in post-transcriptional regulation of gene expression in eukaryotic cells. To be able to unbiasedly identify RBPs in Saccharomyces cerevisiae, we developed a yeast RNA interactome capture protocol which employs RNA labeling, covalent UV crosslinking of RNA and proteins at 365 nm wavelength (photoactivatable-ribonucleoside-enhanced crosslinking, PAR-CL) and finally purification of the protein-bound mRNA. The method can be easily implemented in common workflows and takes about 3 days to complete. Next to a comprehensive explanation of the method, we focus on our findings about the choice of crosslinking in yeast and discuss the rationale of individual steps in the protocol.
Collapse
Affiliation(s)
- Benedikt M Beckmann
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; IRI for Life Sciences & Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany.
| |
Collapse
|
49
|
Mitchell SF, Parker R. Identification of Endogenous mRNA-Binding Proteins in Yeast Using Crosslinking and PolyA Enrichment. Methods Mol Biol 2016; 1421:153-63. [PMID: 26965264 DOI: 10.1007/978-1-4939-3591-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The maturation, localization, stability, and translation of messenger RNAs (mRNAs) are regulated by a wide variety of mRNA-binding proteins. Identification of the complete set of mRNA-binding proteins is a key step in understanding the regulation of gene expression. Herein, we describe a method for identifying yeast mRNA-binding proteins in a systematic manner using UV crosslinking, purification of polyA(+) mRNAs under denaturing conditions, and mass spectrometry to identify covalently bound proteins.
Collapse
Affiliation(s)
- Sarah F Mitchell
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Jennie Smoly Caruthers Biotech Bldg., 3415 Colorado Avenue, Boulder, CO, 80303, USA.
| | - Roy Parker
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Jennie Smoly Caruthers Biotech Bldg., 3415 Colorado Avenue, Boulder, CO, 80303, USA
| |
Collapse
|
50
|
Tsvetanova NG, Trester-Zedlitz M, Newton BW, Riordan DP, Sundaram AB, Johnson JR, Krogan NJ, von Zastrow M. G Protein-Coupled Receptor Endocytosis Confers Uniformity in Responses to Chemically Distinct Ligands. Mol Pharmacol 2016; 91:145-156. [PMID: 27879340 DOI: 10.1124/mol.116.106369] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/18/2016] [Indexed: 12/19/2022] Open
Abstract
The ability of chemically distinct ligands to produce different effects on the same G protein-coupled receptor (GPCR) has interesting therapeutic implications, but, if excessively propagated downstream, would introduce biologic noise compromising cognate ligand detection. We asked whether cells have the ability to limit the degree to which chemical diversity imposed at the ligand-GPCR interface is propagated to the downstream signal. We carried out an unbiased analysis of the integrated cellular response elicited by two chemically and pharmacodynamically diverse β-adrenoceptor agonists, isoproterenol and salmeterol. We show that both ligands generate an identical integrated response, and that this stereotyped output requires endocytosis. We further demonstrate that the endosomal β2-adrenergic receptor signal confers uniformity on the downstream response because it is highly sensitive and saturable. Based on these findings, we propose that GPCR signaling from endosomes functions as a biologic noise filter to enhance reliability of cognate ligand detection.
Collapse
Affiliation(s)
- Nikoleta G Tsvetanova
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| | - Michelle Trester-Zedlitz
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| | - Billy W Newton
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| | - Daniel P Riordan
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| | - Aparna B Sundaram
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| | - Jeffrey R Johnson
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| | - Nevan J Krogan
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| | - Mark von Zastrow
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| |
Collapse
|