1
|
Tsumaki K, Bertens CJF, Nakayama M, Kato S, Jonao Y, Kuribayashi A, Sato K, Ishiyama S, Asakawa M, Aihara R, Yoshioka Y, Homma H, Tanaka H, Fujita K, Okazawa H, Sone M. Loss of function of VCP/TER94 causes neurodegeneration. Dis Model Mech 2024; 17:dmm050359. [PMID: 39629589 PMCID: PMC11698056 DOI: 10.1242/dmm.050359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Variants in several genes are linked to human frontotemporal lobar degeneration (FTLD) associated with TDP43- and/or ubiquitin-positive inclusions. However, it is not yet clear whether the underlying mechanism is a gain-of-function or a loss-of-function one. To answer this question, we used Drosophila expressing double-stranded RNA against the FTLD-associated gene TER94 (an ortholog of VCP/p97) and found that the knockdown (KD) of this gene caused premature lethality, reduction in brain volume and alterations in the morphology of mushroom bodies. The changes caused by TER94 KD were rescued by wild-type TER94 but not by the human disease-linked A229E mutant, indicating that this mutant causes loss of function. Alterations were also observed in pupal brains and were partially rescued by co-expression of Mcm2, which is involved in control of the cell cycle, suggesting that dysregulation of neuronal proliferation caused the phenotypes. TER94 KD also caused the disappearance of TBPH (an ortholog of TDP43/TARDBP) from nuclei. These data from Drosophila genetics suggest that VCP-linked FTLD is caused by loss-of-function of VCP.
Collapse
Affiliation(s)
- Kohei Tsumaki
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Christian J. F. Bertens
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
- University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6202AZ Maastricht, The Netherlands
- Department of Neuropathology, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Minoru Nakayama
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Saya Kato
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Yuki Jonao
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Ayu Kuribayashi
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Konosuke Sato
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Shota Ishiyama
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Momoko Asakawa
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Riko Aihara
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Yuki Yoshioka
- Department of Neuropathology, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Hidenori Homma
- Department of Neuropathology, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
- Department of Neuropathology, Institute of Science Tokyo, Tokyo 113-8510, Japan
| |
Collapse
|
2
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Pontifex CS, Zaman M, Fanganiello RD, Shutt TE, Pfeffer G. Valosin-Containing Protein (VCP): A Review of Its Diverse Molecular Functions and Clinical Phenotypes. Int J Mol Sci 2024; 25:5633. [PMID: 38891822 PMCID: PMC11172259 DOI: 10.3390/ijms25115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
In this review we examine the functionally diverse ATPase associated with various cellular activities (AAA-ATPase), valosin-containing protein (VCP/p97), its molecular functions, the mutational landscape of VCP and the phenotypic manifestation of VCP disease. VCP is crucial to a multitude of cellular functions including protein quality control, endoplasmic reticulum-associated degradation (ERAD), autophagy, mitophagy, lysophagy, stress granule formation and clearance, DNA replication and mitosis, DNA damage response including nucleotide excision repair, ATM- and ATR-mediated damage response, homologous repair and non-homologous end joining. VCP variants cause multisystem proteinopathy, and pathology can arise in several tissue types such as skeletal muscle, bone, brain, motor neurons, sensory neurons and possibly cardiac muscle, with the disease course being challenging to predict.
Collapse
Affiliation(s)
- Carly S. Pontifex
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.S.P.); (M.Z.); (T.E.S.)
| | - Mashiat Zaman
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.S.P.); (M.Z.); (T.E.S.)
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Timothy E. Shutt
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.S.P.); (M.Z.); (T.E.S.)
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.S.P.); (M.Z.); (T.E.S.)
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Heritage Medical Research Building 155, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
4
|
Zhong J, Wang C, Zhang D, Yao X, Zhao Q, Huang X, Lin F, Xue C, Wang Y, He R, Li XY, Li Q, Wang M, Zhao S, Afridi SK, Zhou W, Wang Z, Xu Y, Xu Z. PCDHA9 as a candidate gene for amyotrophic lateral sclerosis. Nat Commun 2024; 15:2189. [PMID: 38467605 PMCID: PMC10928119 DOI: 10.1038/s41467-024-46333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. To identify additional genetic factors, we analyzed exome sequences in a large cohort of Chinese ALS patients and found a homozygous variant (p.L700P) in PCDHA9 in three unrelated patients. We generated Pcdhα9 mutant mice harboring either orthologous point mutation or deletion mutation. These mice develop progressive spinal motor loss, muscle atrophy, and structural/functional abnormalities of the neuromuscular junction, leading to paralysis and early lethality. TDP-43 pathology is detected in the spinal motor neurons of aged mutant mice. Mechanistically, we demonstrate that Pcdha9 mutation causes aberrant activation of FAK and PYK2 in aging spinal cord, and dramatically reduced NKA-α1 expression in motor neurons. Our single nucleus multi-omics analysis reveals disturbed signaling involved in cell adhesion, ion transport, synapse organization, and neuronal survival in aged mutant mice. Together, our results present PCDHA9 as a potential ALS gene and provide insights into its pathogenesis.
Collapse
Affiliation(s)
- Jie Zhong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disease, Beijing, 100053, China.
| | - Dan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Quanzhen Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xusheng Huang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Feng Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Chun Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruojie He
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xu-Ying Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disease, Beijing, 100053, China
| | - Qibin Li
- Shenzhen Clabee Biotechnology Incorporation, Shenzhen, 518057, China
| | - Mingbang Wang
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, 201102, China
| | - Shaoli Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shabbir Khan Afridi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenhao Zhou
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, 201102, China
| | - Zhanjun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disease, Beijing, 100053, China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Jensen BK. Astrocyte-Neuron Interactions Contributing to Amyotrophic Lateral Sclerosis Progression. ADVANCES IN NEUROBIOLOGY 2024; 39:285-318. [PMID: 39190080 DOI: 10.1007/978-3-031-64839-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease impacting motor neurons of the brain, brainstem, and spinal cord. Disease etiology is quite heterogeneous with over 40 genes causing the disease and a vast ~90% of patients having no prior family history. Astrocytes are major contributors to ALS, particularly through involvement in accelerating disease progression. Through study of genetic forms of disease including SOD1, TDP43, FUS, C9orf72, VCP, TBK1, and more recently patient-derived cells from sporadic individuals, many biological mechanisms have been identified to cause intrinsic or glial-mediated neurotoxicity to motor neurons. Overall, many of the normally supportive and beneficial roles that astrocytes contribute to neuronal health and survival instead switch to become deleterious and neurotoxic. While the exact pathways may differ based on disease-origin, altered astrocyte-neuron communication is a common feature of ALS. Within this chapter, distinct genetic forms are examined in detail, along with what is known from sporadic patient-derived cells. Overall, this chapter highlights the interplay between astrocytes and neurons in this complex disease and describes the key features underlying: astrocyte-mediated motor neuron toxicity, excitotoxicity, oxidative/nitrosative stress, protein dyshomeostasis, metabolic imbalance, inflammation, trophic factor withdrawal, blood-brain/blood-spinal cord barrier involvement, disease spreading, and the extracellular matrix/cell adhesion/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Brigid K Jensen
- Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Luzzi A, Wang F, Li S, Iacovino M, Chou TF. Skeletal muscle cell protein dysregulation highlights the pathogenesis mechanism of myopathy-associated p97/VCP R155H mutations. Front Neurol 2023; 14:1211635. [PMID: 37602234 PMCID: PMC10435852 DOI: 10.3389/fneur.2023.1211635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
p97/VCP, a hexametric member of the AAA-ATPase superfamily, has been associated with a wide range of cellular protein pathways, such as proteasomal degradation, the unfolding of polyubiquitinated proteins, and autophagosome maturation. Autosomal dominant p97/VCP mutations cause a rare hereditary multisystem disorder called IBMPFD/ALS (Inclusion Body Myopathy with Paget's Disease and Frontotemporal Dementia/Amyotrophic Lateral Sclerosis), characterized by progressive weakness and subsequent atrophy of skeletal muscles, and impacting bones and brains, such as Parkinson's disease, Lewy body disease, Huntington's disease, and amyotrophic lateral ALS. Among all disease-causing mutations, Arginine 155 to Histidine (R155H/+) was reported to be the most common one, affecting over 50% of IBMPFD patients, resulting in disabling muscle weakness, which might eventually be life-threatening due to cardiac and respiratory muscle involvement. Induced pluripotent stem cells (iPSCs) offer an unlimited resource of cells to study pathology's underlying molecular mechanism, perform drug screening, and investigate regeneration. Using R155H/+ patients' fibroblasts, we generated IPS cells and corrected the mutation (Histidine to Arginine, H155R) to generate isogenic control cells before differentiating them into myotubes. The further proteomic analysis allowed us to identify differentially expressed proteins associated with the R155H mutation. Our results showed that R155H/+ cells were associated with dysregulated expression of several proteins involved in skeletal muscle function, cytoskeleton organization, cell signaling, intracellular organelles organization and function, cell junction, and cell adhesion. Our findings provide molecular evidence of dysfunctional protein expression in R155H/+ myotubes and offer new therapeutic targets for treating IBMPFD/ALS.
Collapse
Affiliation(s)
- Anna Luzzi
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Feng Wang
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Shan Li
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Michelina Iacovino
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Tsui-Fen Chou
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
7
|
Ferrari V, Cristofani R, Cicardi ME, Tedesco B, Crippa V, Chierichetti M, Casarotto E, Cozzi M, Mina F, Galbiati M, Piccolella M, Carra S, Vaccari T, Nalbandian A, Kimonis V, Fortuna TR, Pandey UB, Gagliani MC, Cortese K, Rusmini P, Poletti A. Pathogenic variants of Valosin-containing protein induce lysosomal damage and transcriptional activation of autophagy regulators in neuronal cells. Neuropathol Appl Neurobiol 2022; 48:e12818. [PMID: 35501124 PMCID: PMC10588520 DOI: 10.1111/nan.12818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
AIM Mutations in the valosin-containing protein (VCP) gene cause various lethal proteinopathies that mainly include inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) and amyotrophic lateral sclerosis (ALS). Different pathological mechanisms have been proposed. Here, we define the impact of VCP mutants on lysosomes and how cellular homeostasis is restored by inducing autophagy in the presence of lysosomal damage. METHODS By electron microscopy, we studied lysosomal morphology in VCP animal and motoneuronal models. With the use of western blotting, real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence and filter trap assay, we evaluated the effect of selected VCP mutants in neuronal cells on lysosome size and activity, lysosomal membrane permeabilization and their impact on autophagy. RESULTS We found that VCP mutants induce the formation of aberrant multilamellar organelles in VCP animal and cell models similar to those found in patients with VCP mutations or with lysosomal storage disorders. In neuronal cells, we found altered lysosomal activity characterised by membrane permeabilization with galectin-3 redistribution and activation of PPP3CB. This selectively activated the autophagy/lysosomal transcriptional regulator TFE3, but not TFEB, and enhanced both SQSTM1/p62 and lipidated MAP1LC3B levels inducing autophagy. Moreover, we found that wild type VCP, but not the mutants, counteracted lysosomal damage induced either by trehalose or by a mutant form of SOD1 (G93A), also blocking the formation of its insoluble intracellular aggregates. Thus, chronic activation of autophagy might fuel the formation of multilamellar bodies. CONCLUSION Together, our findings provide insights into the pathogenesis of VCP-related diseases, by proposing a novel mechanism of multilamellar body formation induced by VCP mutants that involves lysosomal damage and induction of lysophagy.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Maria E. Cicardi
- Department of Neuroscience, Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS – Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | - Virginia Kimonis
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - Tyler R. Fortuna
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Udai B. Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria C. Gagliani
- Department of Experimental Medicine (DIMES), Cellular Electron Microscopy Lab, University of Genoa, Genova
| | - Katia Cortese
- Department of Experimental Medicine (DIMES), Cellular Electron Microscopy Lab, University of Genoa, Genova
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan
| |
Collapse
|
8
|
Wang F, Li S, Wang TY, Lopez GA, Antoshechkin I, Chou TF. P97/VCP ATPase inhibitors can rescue p97 mutation-linked motor neuron degeneration. Brain Commun 2022; 4:fcac176. [PMID: 35865348 PMCID: PMC9294923 DOI: 10.1093/braincomms/fcac176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/11/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in p97/VCP cause two motor neuron diseases: inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia and familial amyotrophic lateral sclerosis. How p97 mutations lead to motor neuron degeneration is, however, unknown. Here we used patient-derived induced pluripotent stem cells to generate p97 mutant motor neurons. We reduced the genetic background variation by comparing mutant motor neurons to its isogenic wild type lines. Proteomic analysis reveals that p97R155H/+ motor neurons upregulate several cell cycle proteins at Day 14, but this effect diminishes by Day 20. Molecular changes linked to delayed cell cycle exit are observed in p97 mutant motor neurons. We also find that two p97 inhibitors, CB-5083 and NMS-873, restore some dysregulated protein levels. In addition, two p97 inhibitors and a food and drug administration-approved cyclin-dependent kinase 4/6 inhibitor, Abemaciclib, can rescue motor neuron death. Overall, we successfully used iPSC-derived motor neurons, identified dysregulated proteome and transcriptome and showed that p97 inhibitors rescue phenotypes in this disease model.
Collapse
Affiliation(s)
- F Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - S Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - T Y Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - G A Lopez
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - I Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - T F Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Krause LJ, Herrera MG, Winklhofer KF. The Role of Ubiquitin in Regulating Stress Granule Dynamics. Front Physiol 2022; 13:910759. [PMID: 35694405 PMCID: PMC9174786 DOI: 10.3389/fphys.2022.910759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Stress granules (SGs) are dynamic, reversible biomolecular condensates, which assemble in the cytoplasm of eukaryotic cells under various stress conditions. Formation of SGs typically occurs upon stress-induced translational arrest and polysome disassembly. The increase in cytoplasmic mRNAs triggers the formation of a protein-RNA network that undergoes liquid-liquid phase separation when a critical interaction threshold has been reached. This adaptive stress response allows a transient shutdown of several cellular processes until the stress is removed. During the recovery from stress, SGs disassemble to re-establish cellular activities. Persistent stress and disease-related mutations in SG components favor the formation of aberrant SGs that are impaired in disassembly and prone to aggregation. Recently, posttranslational modifications of SG components have been identified as major regulators of SG dynamics. Here, we summarize new insights into the role of ubiquitination in affecting SG dynamics and clearance and discuss implications for neurodegenerative diseases linked to aberrant SG formation.
Collapse
Affiliation(s)
- Laura J. Krause
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| | - Maria G. Herrera
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Johnson MA, Klickstein JA, Khanna R, Gou Y, Raman M. The Cure VCP Scientific Conference 2021: Molecular and clinical insights into neurodegeneration and myopathy linked to multisystem proteinopathy-1 (MSP-1). Neurobiol Dis 2022; 169:105722. [PMID: 35405261 PMCID: PMC9169230 DOI: 10.1016/j.nbd.2022.105722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022] Open
Abstract
The 2021 VCP Scientific Conference took place virtually from September 9–10, 2021. This conference, planned and organized by the nonprofit patient advocacy group Cure VCP Disease, Inc. (https://www.curevcp.org), was the first VCP focused meeting since the 215th ENMC International Workshop VCP-related multi-system proteinopathy in 2016 (Evangelista et al., 2016). Mutations in VCP cause a complex and heterogenous disease termed inclusion body myopathy (IBM) with Paget’s disease of the bone (PDB) and frontotemporal dementia (FTD) (IBMPFD), or multisystem proteinopathy 1 (MSP-1) Kimonis (n.d.), Kovach et al. (2001), Kimonis et al. (2000). In addition, VCP mutations also cause other age-related neurodegenerative disorders including amyptrophic lateral sclerosis (ALS), Parkinsonism, Charcot-Marie type II-B, vacuolar tauopathy among others (Korb et al., 2022). The objectives of this conference were as follows: (1) to provide a forum that facilitates sharing of published and unpublished information on physiological roles of p97/VCP, and on how mutations of VCP lead to diseases; (2) to bolster understanding of mechanisms involved in p97/VCP-relevant diseases and to enable identification of therapeutics to treat these conditions; (3) to identify gaps and barriers of further discoveries and translational research in the p97/VCP field; (4) to set a concrete basic and translational research agenda for future studies including crucial discussions on biomarker discoveries and patient longitudinal studies to facilitate near-term clinical trials; (5) to accelerate cross-disciplinary research collaborations among p97/VCP researchers; (6) to enable attendees to learn about new tools and reagents with the potential to facilitate p97/VCP research; (7) to assist trainees in propelling their research and to foster mentorship from leaders in the field; and (8) to promote diversity and inclusion of under-represented minorities in p97/VCP research as diversity is critically important for strong scientific research. Given the range of topics, the VCP Scientific Conference brought together over one hundred and forty individuals representing a diverse group of research scientists, trainees, medical practitioners, industry representatives, and patient advocates. Twenty-five institutions with individuals from thirteen countries attended this virtual meeting. In this report, we summarize the major topics presented at this conference by a range of experts.
Collapse
Affiliation(s)
- Michelle A Johnson
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Jacob A Klickstein
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Richa Khanna
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Yunzi Gou
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, United States of America
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
11
|
Todd TW, Petrucelli L. Modelling amyotrophic lateral sclerosis in rodents. Nat Rev Neurosci 2022; 23:231-251. [PMID: 35260846 DOI: 10.1038/s41583-022-00564-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
The efficient study of human disease requires the proper tools, one of the most crucial of which is an accurate animal model that faithfully recapitulates the human condition. The study of amyotrophic lateral sclerosis (ALS) is no exception. Although the majority of ALS cases are considered sporadic, most animal models of this disease rely on genetic mutations identified in familial cases. Over the past decade, the number of genes associated with ALS has risen dramatically and, with each new genetic variant, there is a drive to develop associated animal models. Rodent models are of particular importance as they allow for the study of ALS in the context of a living mammal with a comparable CNS. Such models not only help to verify the pathogenicity of novel mutations but also provide critical insight into disease mechanisms and are crucial for the testing of new therapeutics. In this Review, we aim to summarize the full spectrum of ALS rodent models developed to date.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| |
Collapse
|
12
|
Ferrari V, Cristofani R, Tedesco B, Crippa V, Chierichetti M, Casarotto E, Cozzi M, Mina F, Piccolella M, Galbiati M, Rusmini P, Poletti A. Valosin Containing Protein (VCP): A Multistep Regulator of Autophagy. Int J Mol Sci 2022; 23:1939. [PMID: 35216053 PMCID: PMC8878954 DOI: 10.3390/ijms23041939] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Valosin containing protein (VCP) has emerged as a central protein in the regulation of the protein quality control (PQC) system. VCP mutations are causative of multisystem proteinopathies, which include neurodegenerative diseases (NDs), and share various signs of altered proteostasis, mainly associated with autophagy malfunctioning. Autophagy is a complex multistep degradative system essential for the maintenance of cell viability, especially in post-mitotic cells as neurons and differentiated skeletal muscle cells. Interestingly, many studies concerning NDs have focused on autophagy impairment as a pathological mechanism or autophagy activity boosting to rescue the pathological phenotype. The role of VCP in autophagy has been widely debated, but recent findings have defined new mechanisms associated with VCP activity in the regulation of autophagy, showing that VCP is involved in different steps of this pathway. Here we will discuss the multiple activity of VCP in the autophagic pathway underlying its leading role either in physiological or pathological conditions. A better understanding of VCP complexes and mechanisms in regulating autophagy could define the altered mechanisms by which VCP directly or indirectly causes or modulates different human diseases and revealing possible new therapeutic approaches for NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Barbara Tedesco
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS—Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy;
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| |
Collapse
|
13
|
Cheng C, Weiss L, Leinonen H, Shmara A, Yin HZ, Ton T, Do A, Lee J, Ta L, Mohanty E, Vargas J, Weiss J, Palczewski K, Kimonis V. VCP/p97 inhibitor CB-5083 modulates muscle pathology in a mouse model of VCP inclusion body myopathy. J Transl Med 2022; 20:21. [PMID: 34998409 PMCID: PMC8742393 DOI: 10.1186/s12967-021-03186-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Pathogenic gain of function variants in Valosin-containing protein (VCP) cause a unique disease characterized by inclusion body myopathy with early-onset Paget disease of bone and frontotemporal dementia (also known as Multisystem proteinopathy (MSP)). Previous studies in drosophila models of VCP disease indicate treatment with VCP inhibitors mitigates disease pathology. Earlier-generation VCP inhibitors display off-target effects and relatively low therapeutic potency. New generation of VCP inhibitors needs to be evaluated in a mouse model of VCP disease. In this study, we tested the safety and efficacy of a novel and potent VCP inhibitor, CB-5083 using VCP patient-derived myoblast cells and an animal model of VCP disease. METHODS First, we analyzed the effect of CB-5083 in patient-derived myoblasts on the typical disease autophagy and TDP-43 profile by Western blot. Next, we determined the maximum tolerated dosage of CB-5083 in mice and treated the 2-month-old VCPR155H/R155H mice for 5 months with 15 mg/kg CB-5083. We analyzed motor function monthly by Rotarod; and we assessed the end-point blood toxicology, and the muscle and brain pathology, including autophagy and TDP-43 profile, using Western blot and immunohistochemistry. We also treated 12-month-old VCPR155H/+ mice for 6 months and performed similar analysis. Finally, we assessed the potential side effects of CB-5083 on retinal function, using electroretinography in chronically treated VCPR155H/155H mice. RESULTS In vitro analyses using patient-derived myoblasts confirmed that CB-5083 can modulate expression of the proteins in the autophagy pathways. We found that chronic CB-5083 treatment is well tolerated in the homozygous mice harboring patient-specific VCP variant, R155H, and can ameliorate the muscle pathology characteristic of the disease. VCP-associated pathology biomarkers, such as elevated TDP-43 and p62 levels, were significantly reduced. Finally, to address the potential adverse effect of CB-5083 on visual function observed in a previous oncology clinical trial, we analyzed retinal function in mice treated with moderate doses of CB-5083 for 5 months and documented the absence of permanent ocular toxicity. CONCLUSIONS Altogether, these findings suggest that long-term use of CB-5083 by moderate doses is safe and can improve VCP disease-associated muscle pathology. Our results provide translationally relevant evidence that VCP inhibitors could be beneficial in the treatment of VCP disease.
Collapse
Affiliation(s)
- Cheng Cheng
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Lan Weiss
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Henri Leinonen
- Gavin Herbert Eye Institute, and the Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA, USA
| | - Alyaa Shmara
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Hong Z Yin
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Timothy Ton
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Annie Do
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Jonathan Lee
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Lac Ta
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Eshanee Mohanty
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Jesse Vargas
- Cleave Therapeutics, Inc., San Francisco, CA, USA
| | - John Weiss
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, and the Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA, USA
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA
- Department of Chemistry, Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA.
- Department of Neurology, University of California, Irvine, Irvine, CA, USA.
- Department of Pathology, University of California, Irvine, Irvine, CA, USA.
- Department of Environmental Medicine, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
14
|
TDP-43 pathology: from noxious assembly to therapeutic removal. Prog Neurobiol 2022; 211:102229. [DOI: 10.1016/j.pneurobio.2022.102229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
|
15
|
Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, Bonanno G, Milanese M. Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212236. [PMID: 34830115 PMCID: PMC8619465 DOI: 10.3390/ijms222212236] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to ALS development and many emerging gene mutations have been discovered in recent years. Over the decades since 1990, several animal models have been generated to study ALS pathology including both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the development of new promising therapeutics. In this review, we describe the up to date and available ALS genetic animal models, classified by the different genetic mutations and divided per species, pointing out their features in modeling, the onset and progression of the pathology, as well as their specific pathological hallmarks. Moreover, we highlight similarities, differences, advantages, and limitations, aimed at helping the researcher to select the most appropriate experimental animal model, when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| | - Roberta Arianna Zerbo
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Matilde Balbi
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Giulia Frumento
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
16
|
Leinonen H, Cheng C, Pitkänen M, Sander CL, Zhang J, Saeid S, Turunen T, Shmara A, Weiss L, Ta L, Ton T, Koskelainen A, Vargas JD, Kimonis V, Palczewski K. A p97/Valosin-Containing Protein Inhibitor Drug CB-5083 Has a Potent but Reversible Off-Target Effect on Phosphodiesterase-6. J Pharmacol Exp Ther 2021; 378:31-41. [PMID: 33931547 DOI: 10.1124/jpet.120.000486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/29/2021] [Indexed: 12/16/2022] Open
Abstract
CB-5083 is an inhibitor of p97/valosin-containing protein (VCP), for which phase I trials for cancer were terminated because of adverse effects on vision, such as photophobia and dyschromatopsia. Lower dose CB-5083 could combat inclusion body myopathy with early-onset Paget disease and frontotemporal dementia or multisystem proteinopathy caused by gain-of-function mutations in VCP. We hypothesized that the visual impairment in the cancer trial was due to CB-5083's inhibition of phosphodiesterase (PDE)-6, which mediates signal transduction in photoreceptors. To test our hypothesis, we used in vivo and ex vivo electroretinography (ERG) in mice and a PDE6 activity assay of bovine rod outer segment (ROS) extracts. Additionally, histology and optical coherence tomography were used to assess CB-5083's long-term ocular toxicity. A single administration of CB-5083 led to robust ERG signal deterioration, specifically in photoresponse kinetics. Similar recordings with known PDE inhibitors sildenafil, tadalafil, vardenafil, and zaprinast showed that only vardenafil had as strong an effect on the ERG signal in vivo as did CB-5083. In the biochemical assay, CB-5083 inhibited PDE6 activity with a potency higher than sildenafil but lower than that of vardenafil. Ex vivo ERG revealed a PDE6 inhibition constant of 80 nM for CB-5083, which is 7-fold smaller than that for sildenafil. Finally, we showed that the inhibitory effect of CB-5083 on visual function is reversible, and its chronic administration does not cause permanent retinal anomalies in aged VCP-disease model mice. Our results warrant re-evaluation of CB-5083 as a clinical therapeutic agent. We recommend preclinical ERG recordings as a routine drug safety screen. SIGNIFICANCE STATEMENT: This report supports the use of a valosin-containing protein (VCP) inhibitor drug, CB-5083, for the treatment of neuromuscular VCP disease despite CB-5083's initial clinical failure for cancer treatment due to side effects on vision. The data show that CB-5083 displays a dose-dependent but reversible inhibitory action on phosphodiesterase-6, an essential enzyme in retinal photoreceptor function, but no long-term consequences on retinal function or structure.
Collapse
Affiliation(s)
- Henri Leinonen
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Cheng Cheng
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Marja Pitkänen
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Christopher L Sander
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Jianye Zhang
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Sama Saeid
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Teemu Turunen
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Alyaa Shmara
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Lan Weiss
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Lac Ta
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Timothy Ton
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Ari Koskelainen
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Jesse D Vargas
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Virginia Kimonis
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| |
Collapse
|
17
|
Qiu Y, Wang J, Li H, Yang B, Wang J, He Q, Weng Q. Emerging views of OPTN (optineurin) function in the autophagic process associated with disease. Autophagy 2021; 18:73-85. [PMID: 33783320 DOI: 10.1080/15548627.2021.1908722] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy/autophagy is a highly conserved process in eukaryotic cells. It plays a critical role in cellular homeostasis by delivering cytoplasmic cargos to lysosomes for selective degradation. OPTN (optineurin), a well-recognized autophagy receptor, has received considerable attention due to its multiple roles in the autophagic process. OPTN is associated with many human disorders that are closely related to autophagy, such as rheumatoid arthritis, osteoporosis, and nephropathy. Here, we review the function of OPTN as an autophagy receptor at different stages of autophagy, focusing on cargo recognition, autophagosome formation, autophagosome maturation, and lysosomal quality control. OPTN tends to be protective in most autophagy associated diseases, though the molecular mechanism of OPTN regulation in these diseases is not well understood. A comprehensive review of the function of OPTN in autophagy provides valuable insight into the pathogenesis of human diseases related to OPTN and facilitates the discovery of potential key regulators and novel therapeutic targets for disease intervention in patients with autophagic diseases.Abbreviations: ATG: autophagy-related; APAP: acetaminophen; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CC: coiled-coil; HACE1: HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1; MYO6: myosin VI; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; IKK: IκB kinase; LIR: LC3-interacting region; LZ: leucine zipper; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NFKB/NF-κB: nuclear factor kappa B subunit; OPTN: optineurin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RTECs: renal tubular epithelial cells; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TOM1: target of myb1 membrane trafficking protein; UBD: ubiquitin-binding domain; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2; ZF: zinc finger.
Collapse
Affiliation(s)
- Yueping Qiu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Li
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Abstract
RNA-binding proteins (RBPs) are essential factors required for the physiological function of neurons, muscle, and other tissue types. In keeping with this, a growing body of genetic, clinical, and pathological evidence indicates that RBP dysfunction and/or gene mutation leads to neurodegeneration and myopathy. Here, we summarize the current understanding of matrin 3 (MATR3), a poorly understood RBP implicated not only in ALS and frontotemporal dementia but also in distal myopathy. We begin by reviewing MATR3's functions, its regulation, and how it may be involved in both sporadic and familial neuromuscular disease. We also discuss insights gleaned from cellular and animal models of MATR3 pathogenesis, the links between MATR3 and other disease-associated RBPs, and the mechanisms underlying RBP-mediated disorders.
Collapse
Affiliation(s)
- Ahmed M. Malik
- Medical Scientist Training Program
- Neuroscience Graduate Program, and
| | - Sami J. Barmada
- Neuroscience Graduate Program, and
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Huang TN, Shih YT, Lin SC, Hsueh YP. Social behaviors and contextual memory of Vcp mutant mice are sensitive to nutrition and can be ameliorated by amino acid supplementation. iScience 2020; 24:101949. [PMID: 33437936 PMCID: PMC7786123 DOI: 10.1016/j.isci.2020.101949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/01/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Both genetic variations and nutritional deficiency are associated with autism spectrum disorders and other neurological disorders. However, it is less clear whether or how nutritional deficiency and genetic variations influence each other under pathogenic conditions. "Valosin-containing protein" (VCP, also known as p97) is associated with multiple neurological disorders and regulates dendritic spine formation by controlling endoplasmic reticulum formation and protein synthesis efficiency. Increased protein synthesis ameliorates the dendritic spine defects of Vcp-deficient neurons. Therefore, we investigated if Vcp-deficient mice are sensitive to nutritional conditions. Here, we show that social interaction and contextual memory of Vcp-deficient mice are indeed influenced by different dietary protein levels. Moreover, leucine supplementation ameliorates the behavioral deficits and dendritic spine density of Vcp-deficient mice, strengthening evidence for the role of protein synthesis in VCP function. Our study illustrates that genetic variation and nutrient factors cross-talk to influence neuronal and behavioral phenotypes.
Collapse
Affiliation(s)
- Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, 128, Academia Road, Section 2, Taipei 11529, Taiwan, Republic of China
| | - Yu-Tzu Shih
- Institute of Molecular Biology, Academia Sinica, 128, Academia Road, Section 2, Taipei 11529, Taiwan, Republic of China
| | - Si-Cih Lin
- Institute of Molecular Biology, Academia Sinica, 128, Academia Road, Section 2, Taipei 11529, Taiwan, Republic of China
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, 128, Academia Road, Section 2, Taipei 11529, Taiwan, Republic of China
| |
Collapse
|
20
|
The Role of iPSC Modeling Toward Projection of Autophagy Pathway in Disease Pathogenesis: Leader or Follower. Stem Cell Rev Rep 2020; 17:539-561. [PMID: 33245492 DOI: 10.1007/s12015-020-10077-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is responsible for degradation of non-essential or damaged cellular constituents and damaged organelles. The autophagy pathway maintains efficient cellular metabolism and reduces cellular stress by removing additional and pathogenic components. Dysfunctional autophagy underlies several diseases. Thus, several research groups have worked toward elucidating key steps in this pathway. Autophagy can be studied by animal modeling, chemical modulators, and in vitro disease modeling with induced pluripotent stem cells (iPSC) as a loss-of-function platform. The introduction of iPSC technology, which has the capability to maintain the genetic background, has facilitated in vitro modeling of some diseases. Furthermore, iPSC technology can be used as a platform to study defective cellular and molecular pathways during development and unravel novel steps in signaling pathways of health and disease. Different studies have used iPSC technology to explore the role of autophagy in disease pathogenesis which could not have been addressed by animal modeling or chemical inducers/inhibitors. In this review, we discuss iPSC models of autophagy-associated disorders where the disease is caused due to mutations in autophagy-related genes. We classified this group as "primary autophagy induced defects (PAID)". There are iPSC models of diseases in which the primary cause is not dysfunctional autophagy, but autophagy is impaired secondary to disease phenotypes. We call this group "secondary autophagy induced defects (SAID)" and discuss them. Graphical abstract.
Collapse
|
21
|
Korb MK, Kimonis VE, Mozaffar T. Multisystem proteinopathy: Where myopathy and motor neuron disease converge. Muscle Nerve 2020; 63:442-454. [PMID: 33145792 DOI: 10.1002/mus.27097] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Multisystem proteinopathy (MSP) is a pleiotropic group of inherited disorders that cause neurodegeneration, myopathy, and bone disease, and share common pathophysiology. Originally referred to as inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), attributed to mutations in the gene encoding valosin-containing protein (VCP), it has more recently been discovered that there are several other genes responsible for similar clinical and pathological phenotypes with muscle, brain, nerve, and bone involvement, in various combinations. These include heterogeneous nuclear ribonucleoprotein A2B1 and A1 (hnRNPA2B1, hnRNPA1), sequestosome 1 (SQSTM1), matrin 3 (MATR3), T-cell restricted intracellular antigen 1 (TIA1), and optineurin (OPTN), all of which share disruption of RNA stress granule function and autophagic degradation. This review will discuss each of the genes implicated in MSP, exploring the molecular pathogenesis, clinical features, current standards of care, and future directions for this diverse yet mechanistically linked spectrum of disorders.
Collapse
Affiliation(s)
- Manisha K Korb
- Departments of Neurology, University of California Irvine, Orange, California, USA
| | - Virginia E Kimonis
- Departments of Pediatrics, University of California Irvine, Orange, California, USA
| | - Tahseen Mozaffar
- Departments of Neurology, University of California Irvine, Orange, California, USA.,Departments of Orthopedic Surgery, University of California Irvine, Orange, California, USA.,Departments of Pathology & Laboratory Medicine, University of California Irvine, Orange, California, USA
| |
Collapse
|
22
|
Solomon DA, Mitchell JC, Salcher-Konrad MT, Vance CA, Mizielinska S. Review: Modelling the pathology and behaviour of frontotemporal dementia. Neuropathol Appl Neurobiol 2020; 45:58-80. [PMID: 30582188 DOI: 10.1111/nan.12536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia (FTD) encompasses a collection of clinically and pathologically diverse neurological disorders. Clinical features of behavioural and language dysfunction are associated with neurodegeneration, predominantly of frontal and temporal cortices. Over the past decade, there have been significant advances in the understanding of the genetic aetiology and neuropathology of FTD which have led to the creation of various disease models to investigate the molecular pathways that contribute to disease pathogenesis. The generation of in vivo models of FTD involves either targeting genes with known disease-causative mutations such as GRN and C9orf72 or genes encoding proteins that form the inclusions that characterize the disease pathologically, such as TDP-43 and FUS. This review provides a comprehensive summary of the different in vivo model systems used to understand pathomechanisms in FTD, with a focus on disease models which reproduce aspects of the wide-ranging behavioural phenotypes seen in people with FTD. We discuss the emerging disease pathways that have emerged from these in vivo models and how this has shaped our understanding of disease mechanisms underpinning FTD. We also discuss the challenges of modelling the complex clinical symptoms shown by people with FTD, the confounding overlap with features of motor neuron disease, and the drive to make models more disease-relevant. In summary, in vivo models can replicate many pathological and behavioural aspects of clinical FTD, but robust and thorough investigations utilizing shared features and variability between disease models will improve the disease-relevance of findings and thus better inform therapeutic development.
Collapse
Affiliation(s)
- D A Solomon
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - J C Mitchell
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - M-T Salcher-Konrad
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - C A Vance
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - S Mizielinska
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| |
Collapse
|
23
|
Cheng C, Weiss L, Ta L, Kimonis V. Expression level of R155H mRNA in the knock-in mouse model. Biochem Biophys Res Commun 2020; 523:985-986. [PMID: 31973812 DOI: 10.1016/j.bbrc.2020.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 10/25/2022]
Affiliation(s)
- Cheng Cheng
- Department of Pediatrics, University of California, Irvine, USA
| | - Lan Weiss
- Department of Pediatrics, University of California, Irvine, USA
| | - Lac Ta
- Department of Pediatrics, University of California, Irvine, USA
| | - Virginia Kimonis
- Department of Pediatrics, University of California, Irvine, USA.
| |
Collapse
|
24
|
Shimazaki R, Uruha A, Kimura H, Nagaoka U, Kawazoe T, Yamashita S, Komori T, Miyamoto K, Matsubara S, Sugaya K, Nagao M, Isozaki E. Rimmed Vacuoles in Myositis Associated with Antimitochondrial Antibody. J Clin Neurol 2020; 16:510-512. [PMID: 32657078 PMCID: PMC7354972 DOI: 10.3988/jcn.2020.16.3.510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Rui Shimazaki
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.
| | - Akinori Uruha
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.,Department of Neuropathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Hideki Kimura
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Utako Nagaoka
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Tomoya Kawazoe
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Satoshi Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kazuhito Miyamoto
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Shiro Matsubara
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Masahiro Nagao
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Eiji Isozaki
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
25
|
Mori F, Tada M, Kon T, Miki Y, Tanji K, Kurotaki H, Tomiyama M, Ishihara T, Onodera O, Kakita A, Wakabayashi K. Phosphorylated TDP-43 aggregates in skeletal and cardiac muscle are a marker of myogenic degeneration in amyotrophic lateral sclerosis and various conditions. Acta Neuropathol Commun 2019; 7:165. [PMID: 31661037 PMCID: PMC6816170 DOI: 10.1186/s40478-019-0824-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is characterized pathologically by the occurrence of phosphorylated TDP-43 (pTDP-43)-immunoreactive neuronal and glial inclusions in the central nervous system. Recent studies have shown that pTDP-43 aggregates also occur in the skeletal muscles in a certain proportion of ALS patients. AIM The aim of this study was to clarify the distribution and incidence of pTDP-43 aggregates in the skeletal and cardiac muscles of patients with ALS, and also those of patients with neuromuscular diseases (NMDs) and non-NMDs. MATERIAL AND METHODS Five regions of muscle (tongue, cervical muscle, diaphragm, iliopsoas muscle and heart) were examined histologically and immunohistochemically in patients with ALS (n = 30), NMDs (n = 13) and non-NMDs (n = 7). RESULTS Two types of pTDP-43 aggregates were distinguishable morphologically: dense filamentous and short linear inclusions. These inclusions were found in at least one of the five muscle regions in all 30 cases of ALS; skeletal muscles in 28 cases and myocardium in 12. pTDP-43 aggregates were also found in 9 of 13 patients with NMDs, including myositis, muscular dystrophy and mitochondrial myopathy, as well as in 3 of 7 patients with non-NMDs. In ALS, pTDP-43 aggregates were most frequent in the diaphragm (19 cases). The mean density of pTDP-43 aggregates in ALS was significantly higher than that in NMDs and non-NMDs. In contiguous sections stained with hematoxylin and eosin and anti-pTDP-43, muscle fibers with dense filamentous inclusions demonstrated single-fiber atrophy with vacuolar degeneration. CONCLUSION The present findings indicate that pTDP-43 aggregates in skeletal and cardiac muscle are a myogenic pathological marker in multiple diseases including ALS.
Collapse
|
26
|
Wang B, Maxwell BA, Joo JH, Gwon Y, Messing J, Mishra A, Shaw TI, Ward AL, Quan H, Sakurada SM, Pruett-Miller SM, Bertorini T, Vogel P, Kim HJ, Peng J, Taylor JP, Kundu M. ULK1 and ULK2 Regulate Stress Granule Disassembly Through Phosphorylation and Activation of VCP/p97. Mol Cell 2019; 74:742-757.e8. [PMID: 30979586 PMCID: PMC6859904 DOI: 10.1016/j.molcel.2019.03.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/08/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
Disturbances in autophagy and stress granule dynamics have been implicated as potential mechanisms underlying inclusion body myopathy (IBM) and related disorders. Yet the roles of core autophagy proteins in IBM and stress granule dynamics remain poorly characterized. Here, we demonstrate that disrupted expression of the core autophagy proteins ULK1 and ULK2 in mice causes a vacuolar myopathy with ubiquitin and TDP-43-positive inclusions; this myopathy is similar to that caused by VCP/p97 mutations, the most common cause of familial IBM. Mechanistically, we show that ULK1/2 localize to stress granules and phosphorylate VCP, thereby increasing VCP's activity and ability to disassemble stress granules. These data suggest that VCP dysregulation and defective stress granule disassembly contribute to IBM-like disease in Ulk1/2-deficient mice. In addition, stress granule disassembly is accelerated by an ULK1/2 agonist, suggesting ULK1/2 as targets for exploiting the higher-order regulation of stress granules for therapeutic intervention of IBM and related disorders.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian A Maxwell
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joung Hyuck Joo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Youngdae Gwon
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - James Messing
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ashutosh Mishra
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Timothy I Shaw
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amber L Ward
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Honghu Quan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sadie Miki Sakurada
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tulio Bertorini
- Department of Neurology, University of Tennessee Heath Science Center, Memphis, TN 38163, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Mondira Kundu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
27
|
Ralston SH, Taylor JP. Rare Inherited forms of Paget's Disease and Related Syndromes. Calcif Tissue Int 2019; 104:501-516. [PMID: 30756140 PMCID: PMC6779132 DOI: 10.1007/s00223-019-00520-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
Several rare inherited disorders have been described that show phenotypic overlap with Paget's disease of bone (PDB) and in which PDB is a component of a multisystem disorder affecting muscle and the central nervous system. These conditions are the subject of this review article. Insertion mutations within exon 1 of the TNFRSF11A gene, encoding the receptor activator of nuclear factor kappa B (RANK), cause severe PDB-like disorders including familial expansile osteolysis, early-onset familial PDB and expansile skeletal hyperphosphatasia. The mutations interfere with normal processing of RANK and cause osteoclast activation through activation of nuclear factor kappa B (NFκB) independent of RANK ligand stimulation. Recessive, loss-of-function mutations in the TNFRSF11B gene, which encodes osteoprotegerin, cause juvenile PDB and here the bone disease is due to unopposed activation of RANK by RANKL. Multisystem proteinopathy is a disorder characterised by myopathy and neurodegeneration in which PDB is often an integral component. It may be caused by mutations in several genes including VCP, HNRNPA1, HNRNPA2B1, SQSTM1, MATR3, and TIA1, some of which are involved in classical PDB. The mechanisms of osteoclast activation in these conditions are less clear but may involve NFκB activation through sequestration of IκB. The evidence base for management of these disorders is somewhat limited due to the fact they are extremely rare. Bisphosphonates have been successfully used to gain control of elevated bone remodelling but as yet, no effective treatment exists for the treatment of the muscle and neurological manifestations of MSP syndromes.
Collapse
Affiliation(s)
- Stuart H Ralston
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.
| | - J Paul Taylor
- Howard Hughes Medical Institute and Department of Cell and Molecular Biology, St Jude's Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
28
|
Brody MJ, Vanhoutte D, Bakshi CV, Liu R, Correll RN, Sargent MA, Molkentin JD. Disruption of valosin-containing protein activity causes cardiomyopathy and reveals pleiotropic functions in cardiac homeostasis. J Biol Chem 2019; 294:8918-8929. [PMID: 31006653 DOI: 10.1074/jbc.ra119.007585] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Indexed: 01/14/2023] Open
Abstract
Valosin-containing protein (VCP), also known as p97, is an ATPase with diverse cellular functions, although the most highly characterized is targeting of misfolded or aggregated proteins to degradation pathways, including the endoplasmic reticulum-associated degradation (ERAD) pathway. However, how VCP functions in the heart has not been carefully examined despite the fact that human mutations in VCP cause Paget disease of bone and frontotemporal dementia, an autosomal dominant multisystem proteinopathy that includes disease in the heart, skeletal muscle, brain, and bone. Here we generated heart-specific transgenic mice overexpressing WT VCP or a VCPK524A mutant with deficient ATPase activity. Transgenic mice overexpressing WT VCP exhibit normal cardiac structure and function, whereas mutant VCP-overexpressing mice develop cardiomyopathy. Mechanistically, mutant VCP-overexpressing hearts up-regulate ERAD complex components and have elevated levels of ubiquitinated proteins prior to manifestation of cardiomyopathy, suggesting dysregulation of ERAD and inefficient clearance of proteins targeted for proteasomal degradation. The hearts of mutant VCP transgenic mice also exhibit profound defects in cardiomyocyte nuclear morphology with increased nuclear envelope proteins and nuclear lamins. Proteomics revealed overwhelming interactions of endogenous VCP with ribosomal, ribosome-associated, and RNA-binding proteins in the heart, and impairment of cardiac VCP activity resulted in aggregation of large ribosomal subunit proteins. These data identify multifactorial functions and diverse mechanisms whereby VCP regulates cardiomyocyte protein and RNA quality control that are critical for cardiac homeostasis, suggesting how human VCP mutations negatively affect the heart.
Collapse
Affiliation(s)
- Matthew J Brody
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Davy Vanhoutte
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Chinmay V Bakshi
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Ruije Liu
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039.,the Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan 49401, and
| | - Robert N Correll
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039.,the Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487-0344
| | - Michelle A Sargent
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Jeffery D Molkentin
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039, .,the Howard Hughes Medical Institute, Cincinnati, Ohio 45229-3039
| |
Collapse
|
29
|
De Giorgio F, Maduro C, Fisher EMC, Acevedo-Arozena A. Transgenic and physiological mouse models give insights into different aspects of amyotrophic lateral sclerosis. Dis Model Mech 2019; 12:dmm037424. [PMID: 30626575 PMCID: PMC6361152 DOI: 10.1242/dmm.037424] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A wide range of genetic mouse models is available to help researchers dissect human disease mechanisms. Each type of model has its own distinctive characteristics arising from the nature of the introduced mutation, as well as from the specific changes to the gene of interest. Here, we review the current range of mouse models with mutations in genes causative for the human neurodegenerative disease amyotrophic lateral sclerosis. We focus on the two main types of available mutants: transgenic mice and those that express mutant genes at physiological levels from gene targeting or from chemical mutagenesis. We compare the phenotypes for genes in which the two classes of model exist, to illustrate what they can teach us about different aspects of the disease, noting that informative models may not necessarily mimic the full trajectory of the human condition. Transgenic models can greatly overexpress mutant or wild-type proteins, giving us insight into protein deposition mechanisms, whereas models expressing mutant genes at physiological levels may develop slowly progressing phenotypes but illustrate early-stage disease processes. Although no mouse models fully recapitulate the human condition, almost all help researchers to understand normal and abnormal biological processes, providing that the individual characteristics of each model type, and how these may affect the interpretation of the data generated from each model, are considered and appreciated.
Collapse
Affiliation(s)
- Francesca De Giorgio
- Department of Neuromuscular Diseases, UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, University College London, Queen Square, London WC1N 3BG, UK
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, University College London, Queen Square, London WC1N 3BG, UK
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, University College London, Queen Square, London WC1N 3BG, UK
| | - Abraham Acevedo-Arozena
- Unidad de Investigación Hospital Universitario de Canarias, Fundación Canaria de Investigación Sanitaria and Instituto de Tecnologías Biomédicas (ITB), La Laguna, 38320 Tenerife, Spain
| |
Collapse
|
30
|
Kustermann M, Manta L, Paone C, Kustermann J, Lausser L, Wiesner C, Eichinger L, Clemen CS, Schröder R, Kestler HA, Sandri M, Rottbauer W, Just S. Loss of the novel Vcp (valosin containing protein) interactor Washc4 interferes with autophagy-mediated proteostasis in striated muscle and leads to myopathy in vivo. Autophagy 2018; 14:1911-1927. [PMID: 30010465 PMCID: PMC6152520 DOI: 10.1080/15548627.2018.1491491] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
VCP/p97 (valosin containing protein) is a key regulator of cellular proteostasis. It orchestrates protein turnover and quality control in vivo, processes fundamental for proper cell function. In humans, mutations in VCP lead to severe myo- and neuro-degenerative disorders such as inclusion body myopathy with Paget disease of the bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS) or and hereditary spastic paraplegia (HSP). We analyzed here the in vivo role of Vcp and its novel interactor Washc4/Swip (WASH complex subunit 4) in the vertebrate model zebrafish (Danio rerio). We found that targeted inactivation of either Vcp or Washc4, led to progressive impairment of cardiac and skeletal muscle function, structure and cytoarchitecture without interfering with the differentiation of both organ systems. Notably, loss of Vcp resulted in compromised protein degradation via the proteasome and the macroautophagy/autophagy machinery, whereas Washc4 deficiency did not affect the function of the ubiquitin-proteasome system (UPS) but caused ER stress and interfered with autophagy function in vivo. In summary, our findings provide novel insights into the in vivo functions of Vcp and its novel interactor Washc4 and their particular and distinct roles during proteostasis in striated muscle cells.
Collapse
Affiliation(s)
- Monika Kustermann
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Linda Manta
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Christoph Paone
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Jochen Kustermann
- b Institute of Molecular Genetics and Cell Biology, Department of Biology , University of Ulm , Ulm , Germany
| | - Ludwig Lausser
- c Institute of Medical Systems Biology , University of Ulm , Ulm , Germany
| | - Cora Wiesner
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Ludwig Eichinger
- d Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty , University of Cologne , Cologne , Germany
| | - Christoph S Clemen
- d Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty , University of Cologne , Cologne , Germany.,e Department of Neurology, Heimer Institute for Muscle Research , University Hospital Bergmannsheil, Ruhr-University Bochum , Bochum , Germany
| | - Rolf Schröder
- f Institute of Neuropathology , University Hospital Erlangen , Erlangen , Germany
| | - Hans A Kestler
- c Institute of Medical Systems Biology , University of Ulm , Ulm , Germany
| | - Marco Sandri
- g Department of Biomedical Science, Venetian Institute of Molecular Medicine (VIMM) , University of Padova , Padova , Italy
| | - Wolfgang Rottbauer
- h Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Steffen Just
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| |
Collapse
|
31
|
Clemen CS, Winter L, Strucksberg KH, Berwanger C, Türk M, Kornblum C, Florin A, Aguilar-Pimentel JA, Amarie OV, Becker L, Garrett L, Hans W, Moreth K, Neff F, Pingen L, Rathkolb B, Rácz I, Rozman J, Treise I, Fuchs H, Gailus-Durner V, de Angelis MH, Vorgerd M, Eichinger L, Schröder R. The heterozygous R155C VCP mutation: Toxic in humans! Harmless in mice? Biochem Biophys Res Commun 2018; 503:2770-2777. [PMID: 30100055 DOI: 10.1016/j.bbrc.2018.08.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022]
Abstract
Heterozygous missense mutations in the human VCP gene cause inclusion body myopathy associated with Paget disease of bone and fronto-temporal dementia (IBMPFD) and amyotrophic lateral sclerosis (ALS). The exact molecular mechanisms by which VCP mutations cause disease manifestation in different tissues are incompletely understood. In the present study, we report the comprehensive analysis of a newly generated R155C VCP knock-in mouse model, which expresses the ortholog of the second most frequently occurring human pathogenic VCP mutation. Heterozygous R155C VCP knock-in mice showed decreased plasma lactate, serum albumin and total protein concentrations, platelet numbers, and liver to body weight ratios, and increased oxygen consumption and CD8+/Ly6C + T-cell fractions, but none of the typical human IBMPFD or ALS pathologies. Breeding of heterozygous mice did not yield in the generation of homozygous R155C VCP knock-in animals. Immunoblotting showed identical total VCP protein levels in human IBMPFD and murine R155C VCP knock-in tissues as compared to wild-type controls. However, while in human IBMPFD skeletal muscle tissue 70% of the total VCP mRNA was derived from the mutant allele, in R155C VCP knock-in mice only 5% and 7% mutant mRNA were detected in skeletal muscle and brain tissue, respectively. The lack of any obvious IBMPFD or ALS pathology could thus be a consequence of the very low expression of mutant VCP. We conclude that the increased and decreased fractions of the R155C mutant VCP mRNA in man and mice, respectively, are due to missense mutation-induced, divergent alterations in the biological half-life of the human and murine mutant mRNAs. Furthermore, our work suggests that therapy approaches lowering the expression of the mutant VCP mRNA below a critical threshold may ameliorate the intrinsic disease pathology.
Collapse
Affiliation(s)
- Christoph S Clemen
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany; Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany.
| | - Lilli Winter
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054, Erlangen, Germany; Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Karl-Heinz Strucksberg
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Carolin Berwanger
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany; Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Matthias Türk
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Cornelia Kornblum
- Department of Neurology, University Hospital Bonn, 53125, Bonn, Germany; Center for Rare Diseases Bonn, University Hospital Bonn, 53127, Bonn, Germany
| | - Alexandra Florin
- Institute for Pathology, University Hospital Cologne, 50937, Cologne, Germany
| | - Juan Antonio Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Oana Veronica Amarie
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Wolfgang Hans
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Frauke Neff
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Laura Pingen
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, 81377, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Ildikó Rácz
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany; Clinic of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, 53127, Bonn, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Irina Treise
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85354, Freising, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany
| | - Ludwig Eichinger
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054, Erlangen, Germany.
| |
Collapse
|
32
|
Next-Generation Sequencing to Diagnose Muscular Dystrophy, Rhabdomyolysis, and HyperCKemia. Can J Neurol Sci 2018; 45:262-268. [DOI: 10.1017/cjn.2017.286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractBackground:Neuromuscular disorders are a phenotypically and genotypically diverse group of diseases that can be difficult to diagnose accurately because of overlapping clinical features and nonspecific muscle pathology. Next-generation sequencing (NGS) is a high-throughput technology that can be used as a more time- and cost-effective tool for identifying molecular diagnoses for complex genetic conditions, such as neuromuscular disorders.Methods:One hundred and sixty-nine patients referred to a Canadian neuromuscular clinic for evaluation of possible muscle disease were screened with an NGS panel of muscular dystrophy–associated genes. Patients were categorized by the reason of referral (1) muscle weakness (n=135), (2) recurrent episodes of rhabdomyolysis (n=18), or (3) idiopathic hyperCKemia (n=16).Results:Pathogenic and likely pathogenic variants were identified in 36.09% of patients (61/169). The detection rate was 37.04% (50/135) in patients with muscle weakness, 33.33% (6/18) with rhabdomyolysis, and 31.25% (5/16) in those with idiopathic hyperCKemia.Conclusions:This study shows that NGS can be a useful tool in the molecular workup of patients seen in a neuromuscular clinic. Evaluating the utility of large panels of a muscle disease-specific NGS panel to investigate the genetic susceptibilities of rhabdomyolysis and/or idiopathic hyperCKemia is a relatively new field. Twenty-eight of the pathogenic and likely pathogenic variants reported here are novel and have not previously been associated with disease.
Collapse
|
33
|
Alzheimer’s Disease and Frontotemporal Lobar Degeneration: Mouse Models. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
34
|
Llewellyn KJ, Nalbandian A, Weiss LN, Chang I, Yu H, Khatib B, Tan B, Scarfone V, Kimonis VE. Myogenic differentiation of VCP disease-induced pluripotent stem cells: A novel platform for drug discovery. PLoS One 2017; 12:e0176919. [PMID: 28575052 PMCID: PMC5456028 DOI: 10.1371/journal.pone.0176919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 04/19/2017] [Indexed: 02/07/2023] Open
Abstract
Valosin Containing Protein (VCP) disease is an autosomal dominant multisystem proteinopathy caused by mutations in the VCP gene, and is primarily associated with progressive muscle weakness, including atrophy of the pelvic and shoulder girdle muscles. Currently, no treatments are available and cardiac and respiratory failures can lead to mortality at an early age. VCP is an AAA ATPase multifunction complex protein and mutations in the VCP gene resulting in disrupted autophagic clearance. Due to the rarity of the disease, the myopathic nature of the disorder, ethical and practical considerations, VCP disease muscle biopsies are difficult to obtain. Thus, disease-specific human induced pluripotent stem cells (hiPSCs) now provide a valuable resource for the research owing to their renewable and pluripotent nature. In the present study, we report the differentiation and characterization of a VCP disease-specific hiPSCs into precursors expressing myogenic markers including desmin, myogenic factor 5 (MYF5), myosin and heavy chain 2 (MYH2). VCP disease phenotype is characterized by high expression of TAR DNA Binding Protein-43 (TDP-43), ubiquitin (Ub), Light Chain 3-I/II protein (LC3-I/II), and p62/SQSTM1 (p62) protein indicating disruption of the autophagy cascade. Treatment of hiPSC precursors with autophagy stimulators Rapamycin, Perifosine, or AT101 showed reduction in VCP pathology markers TDP-43, LC3-I/II and p62/SQSTM1. Conversely, autophagy inhibitors chloroquine had no beneficial effect, and Spautin-1 or MHY1485 had modest effects. Our results illustrate that hiPSC technology provide a useful platform for a rapid drug discovery and hence constitutes a bridge between clinical and bench research in VCP and related diseases.
Collapse
Affiliation(s)
- Katrina J. Llewellyn
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Angèle Nalbandian
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Lan N. Weiss
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Isabela Chang
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Howard Yu
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Bibo Khatib
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Baichang Tan
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Vanessa Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Virginia E. Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| |
Collapse
|
35
|
Dutta K, Patel P, Rahimian R, Phaneuf D, Julien JP. Withania somnifera Reverses Transactive Response DNA Binding Protein 43 Proteinopathy in a Mouse Model of Amyotrophic Lateral Sclerosis/Frontotemporal Lobar Degeneration. Neurotherapeutics 2017; 14:447-462. [PMID: 27928708 PMCID: PMC5398980 DOI: 10.1007/s13311-016-0499-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abnormal cytoplasmic mislocalization of transactive response DNA binding protein 43 (TARDBP or TDP-43) in degenerating neurons is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Our previous work suggested that nuclear factor kappa B (NF-κB) may constitute a therapeutic target for TDP-43-mediated disease. Here, we investigated the effects of root extract of Withania somnifera (Ashwagandha), an herbal medicine with anti-inflammatory properties, in transgenic mice expressing a genomic fragment encoding human TDP-43A315T mutant. Ashwagandha extract was administered orally to hTDP-43A315T mice for a period of 8 weeks starting at 64 and 48 weeks of age for males and females, respectively. The treatment of hTDP-43A315T mice ameliorated their motor performance on rotarod test and cognitive function assessed by the passive avoidance test. Microscopy examination of tissue samples revealed that Ashwagandha treatment of hTDP-43A315T mice improved innervation at neuromuscular junctions, attenuated neuroinflammation, and reduced NF-κB activation. Remarkably, Ashwagandha treatment reversed the cytoplasmic mislocalization of hTDP-43 in spinal motor neurons and in brain cortical neurons of hTDP-43A315T mice and it reduced hTDP-43 aggregation. In vitro evidence is presented that the neuronal rescue of TDP-43 mislocalization may be due to the indirect effect of factors released from microglial cells exposed to Ashwagandha. These results suggest that Ashwagandha and its constituents might represent promising therapeutics for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Kallol Dutta
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec City, G1J 2G3, Canada
| | - Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Reza Rahimian
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec City, G1J 2G3, Canada
| | - Daniel Phaneuf
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec City, G1J 2G3, Canada
| | - Jean-Pierre Julien
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec City, G1J 2G3, Canada.
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, G1V 0A6, Canada.
| |
Collapse
|
36
|
p97/VCP promotes degradation of CRBN substrate glutamine synthetase and neosubstrates. Proc Natl Acad Sci U S A 2017; 114:3565-3571. [PMID: 28320958 DOI: 10.1073/pnas.1700949114] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glutamine synthetase (GS) plays an essential role in metabolism by catalyzing the synthesis of glutamine from glutamate and ammonia. Our recent study showed that CRBN, a direct protein target for the teratogenic and antitumor activities of immunomodulatory drugs such as thalidomide, lenalidomide, and pomalidomide, recognizes an acetyl degron of GS, resulting in ubiquitylation and degradation of GS in response to glutamine. Here, we report that valosin-containing protein (VCP)/p97 promotes the degradation of ubiquitylated GS, resulting in its accumulation in cells with compromised p97 function. Notably, p97 is also required for the degradation of all four known CRBN neo-substrates [Ikaros family zinc finger proteins 1 (IKZF1) and 3 (IKZF3), casein kinase 1α (CK1α), and the translation termination factor GSPT1] whose ubiquitylation is induced by immunomodulatory drugs. Together, these data point to an unexpectedly intimate relationship between the E3 ubiquitin ligase CRL4CRBN and p97 pathways.
Collapse
|
37
|
Nalbandian A, Khan AA, Srivastava R, Llewellyn KJ, Tan B, Shukr N, Fazli Y, Kimonis VE, BenMohamed L. Activation of the NLRP3 Inflammasome Is Associated with Valosin-Containing Protein Myopathy. Inflammation 2017; 40:21-41. [PMID: 27730320 PMCID: PMC5800525 DOI: 10.1007/s10753-016-0449-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant activation of the NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, triggers a pathogenic inflammatory response in many inherited neurodegenerative disorders. Inflammation has recently been associated with valosin-containing protein (VCP)-associated diseases, caused by missense mutations in the VCP gene. This prompted us to investigate whether NLRP3 inflammasome plays a role in VCP-associated diseases, which classically affects the muscles, bones, and brain. In this report, we demonstrate (i) an elevated activation of the NLRP3 inflammasome in VCP myoblasts, derived from induced pluripotent stem cells (iPSCs) of VCP patients, which was significantly decreased following in vitro treatment with the MCC950, a potent and specific inhibitor of NLRP3 inflammasome; (ii) a significant increase in the expression of NLRP3, caspase 1, IL-1β, and IL-18 in the quadriceps muscles of VCPR155H/+ heterozygote mice, an experimental mouse model that has many clinical features of human VCP-associated myopathy; (iii) a significant increase of number of IL-1β(+)F4/80(+)Ly6C(+) inflammatory macrophages that infiltrate the muscles of VCPR155H/+ mice; (iv) NLRP3 inflammasome activation and accumulation IL-1β(+)F4/80(+)Ly6C(+) macrophages positively correlated with high expression of TDP-43 and p62/SQSTM1 markers of VCP pathology in damaged muscle; and (v) treatment of VCPR155H/+ mice with MCC950 inhibitor suppressed activation of NLRP3 inflammasome, reduced the F4/80(+)Ly6C(+)IL-1β(+) macrophage infiltrates in the muscle, and significantly ameliorated muscle strength. Together, these results suggest that (i) NLRP3 inflammasome and local IL-1β(+)F4/80(+)Ly6C(+) inflammatory macrophages contribute to pathogenesis of VCP-associated myopathy and (ii) identified MCC950 specific inhibitor of the NLRP3 inflammasome with promising therapeutic potential for the treatment of VCP-associated myopathy.
Collapse
Affiliation(s)
- Angèle Nalbandian
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Institute, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA.
- Division of Genetics and Genomics Medicine, Department of Pediatrics, University of California Irvine, Irvine, CA, 92697, USA.
- Division of Genetics and Metabolism, Department of Pediatrics, University of California Irvine, Irvine, CA, USA.
| | - Arif A Khan
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Institute, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Institute, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Katrina J Llewellyn
- Division of Genetics and Genomics Medicine, Department of Pediatrics, University of California Irvine, Irvine, CA, 92697, USA
| | - Baichang Tan
- Division of Genetics and Genomics Medicine, Department of Pediatrics, University of California Irvine, Irvine, CA, 92697, USA
| | - Nora Shukr
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Institute, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Yasmin Fazli
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Institute, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Virginia E Kimonis
- Division of Genetics and Genomics Medicine, Department of Pediatrics, University of California Irvine, Irvine, CA, 92697, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Institute, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA.
- Institute for Immunology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
38
|
Tan RH, Ke YD, Ittner LM, Halliday GM. ALS/FTLD: experimental models and reality. Acta Neuropathol 2017; 133:177-196. [PMID: 28058507 DOI: 10.1007/s00401-016-1666-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is characterised by a loss of upper and lower motor neurons and characteristic muscle weakness and wasting, the most common form being sporadic disease with neuronal inclusions containing the tar DNA-binding protein 43 (TDP-43). Frontotemporal lobar degeneration is characterised by atrophy of the frontal and/or temporal lobes, the most common clinical form being the behavioural variant, in which neuronal inclusions containing either TDP-43 or 3-repeat tau are most prevalent. Although the genetic mutations associated with these diseases have allowed various experimental models to be developed, the initial genetic forms identified remain the most common models employed to date. It is now known that these first models faithfully recapitulate only some aspects of these diseases and do not represent the majority of cases or the most common overlapping pathologies. Newer models targeting the main molecular pathologies are still rare and in some instances, lack significant aspects of the molecular pathology. However, these diseases are complex and multigenic, indicating that experimental models may need to be targeted to different disease aspects. This would allow information to be gleaned from a variety of different yet relevant models, each of which has the capacity to capture a certain aspect of the disease, and together will enable a more complete understanding of these complex and multi-layered diseases.
Collapse
Affiliation(s)
- Rachel H Tan
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Medical Sciences, University of NSW, Sydney, NSW, 2052, Australia
- Brain and Mind Centre, Sydney Medical School, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Yazi D Ke
- Motor Neuron Disease Unit, Department of Anatomy, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Lars M Ittner
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia.
- Dementia Research Unit, Department of Anatomy, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia.
| | - Glenda M Halliday
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia.
- School of Medical Sciences, University of NSW, Sydney, NSW, 2052, Australia.
- Brain and Mind Centre, Sydney Medical School, the University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
39
|
Götzl JK, Lang CM, Haass C, Capell A. Impaired protein degradation in FTLD and related disorders. Ageing Res Rev 2016; 32:122-139. [PMID: 27166223 DOI: 10.1016/j.arr.2016.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/21/2016] [Accepted: 04/23/2016] [Indexed: 12/12/2022]
Abstract
Impaired protein degradation has been discussed as a cause or consequence of various neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's disease. More recently, evidence accumulated that dysfunctional protein degradation may play a role in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Since in almost all neurodegenerative diseases, protein aggregates are disease-defining hallmarks, it is most likely that impaired protein degradation contributes to disease onset and progression. In the majority of FTD cases, the pathological protein aggregates contain either microtubuleassociated protein tau or TAR DNA-binding protein (TDP)-43. Aggregates are also positive for ubiquitin and p62/sequestosome 1 (SQSTM1) indicating that these aggregates are targeted for degradation. FTD-linked mutations in genes encoding three autophagy adaptor proteins, p62/SQSTM1, ubiquilin 2 and optineurin, indicate that impaired autophagy might cause FTD. Furthermore, the strongest evidence for lysosomal impairment in FTD is provided by the progranulin (GRN) gene, which is linked to FTD and neuronal ceroid lipofuscinosis. In this review, we summarize the observations that have been made during the last years linking the accumulation of disease-associated proteins in FTD to impaired protein degradation pathways. In addition, we take resent findings for nucleocytoplasmic transport defects of TDP-43, as discussed for hexanucleotide repeat expansions in C9orf72 into account and provide a hypothesis how the interplay of altered nuclear transport and protein degradation leads to the accumulation of protein deposits.
Collapse
|
40
|
Tang WK, Xia D. Mutations in the Human AAA + Chaperone p97 and Related Diseases. Front Mol Biosci 2016; 3:79. [PMID: 27990419 PMCID: PMC5131264 DOI: 10.3389/fmolb.2016.00079] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
A number of neurodegenerative diseases have been linked to mutations in the human protein p97, an abundant cytosolic AAA+ (ATPase associated with various cellular activities) ATPase, that functions in a large number of cellular pathways. With the assistance of a variety of cofactors and adaptor proteins, p97 couples the energy of ATP hydrolysis to conformational changes that are necessary for its function. Disease-linked mutations, which are found at the interface between two main domains of p97, have been shown to alter the function of the protein, although the pathogenic mutations do not appear to alter the structure of individual subunit of p97 or the formation of the hexameric biological unit. While exactly how pathogenic mutations alter the cellular function of p97 remains unknown, functional, biochemical and structural differences between wild-type and pathogenic mutants of p97 are being identified. Here, we summarize recent progress in the study of p97 pathogenic mutants.
Collapse
Affiliation(s)
- Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
41
|
Evangelista T, Weihl CC, Kimonis V, Lochmüller H. 215th ENMC International Workshop VCP-related multi-system proteinopathy (IBMPFD) 13-15 November 2015, Heemskerk, The Netherlands. Neuromuscul Disord 2016; 26:535-47. [PMID: 27312024 DOI: 10.1016/j.nmd.2016.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Teresinha Evangelista
- John Walton Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, UK
| | - Conrad C Weihl
- Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO, USA
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, University of California - Irvine Medical Centre, Irvine, USA
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, UK.
| | | |
Collapse
|
42
|
The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1623-34. [PMID: 27106764 DOI: 10.1016/j.ajpath.2016.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/20/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Abstract
Valosin-containing protein (VCP) mutations cause inclusion body myopathy with Paget disease and frontotemporal dementia. However, the mechanisms by which mutant VCP triggers degeneration remain unknown. Here, we investigated the role of VCP in cellular stress and found that the oxidative stressor arsenite and heat shock-activated stress responses evident by T-intracellular antigen-1-positive granules in C2C12 myoblasts. Granules also contained phosphorylated transactive response DNA-binding protein 43, ubiquitin, microtubule-associated protein 1A/1B light chains 3, and lysosome-associated membrane protein 2. Mutant VCP produced more T-intracellular antigen-1-positive granules than wild-type in the postarsenite exposure period. Similar results were observed for other granule components, indicating that mutant VCP delayed clearance of stress granules. Furthermore, stress granule resolution was impaired on differentiated C2C12 cells expressing mutant VCP. To address whether mutant VCP triggers dysregulation of the stress granule pathway in vivo, we analyzed skeletal muscle of aged VCPR155H-knockin mice. We found significant increments in oxidated proteins but observed the stress granule markers RasGAP SH3-binding protein and phosphorylated eukaryotic translation initiation factor 2α unchanged. The mixed results indicate that mutant VCP together with aging lead to higher oxidative stress in skeletal muscle but were insufficient to disrupt the stress granule pathway. Our findings support that deficiencies in recovery from stressors may result in attenuated tolerance to stress that could trigger muscle degeneration.
Collapse
|
43
|
Abstract
Paget's disease of bone is generally diagnosed in individuals aged >50 years, usually manifests in one or several bones and is initiated by osteoclast-induced osteolytic lesions. Subsequently, over a period of many years, osteoblastic activity can result in sclerosis and deformation of bone. The prevalence of Paget's disease is highest in the UK and in countries where a large number of residents have ancestors from the UK. Currently, in many countries, the prevalence of the disorder has decreased. A considerable number of affected patients have a family history of Paget's disease and the disorder has an autosomal dominant pattern of inheritance but with incomplete penetrance. A large number of mutations in SQSTM1 (which encodes sequestosome-1; also known as ubiquitin-binding protein p62) seem to account for the susceptibility to develop Paget's disease in some families; the involvement of other genes is currently under investigation. In addition to a genetic cause, environmental factors have been proposed to have a role in the pathogenesis of Paget's disease. Although most evidence has been presented for measles virus as an aetiologic factor, some studies have not confirmed its involvement. The decreasing incidence of Paget's disease, which could be attributed to measles vaccination along with the measles virus nucleocapsid protein induction of Paget's disease lesions in transgenic mice, supports an aetiologic role of the virus.
Collapse
Affiliation(s)
- Frederick R Singer
- John Wayne Cancer Institute, Providence Saint Johns Health Center, 2200 Santa Monica Boulevard, Santa Monica, CA 90404, USA
| |
Collapse
|
44
|
Picher-Martel V, Dutta K, Phaneuf D, Sobue G, Julien JP. Ubiquilin-2 drives NF-κB activity and cytosolic TDP-43 aggregation in neuronal cells. Mol Brain 2015; 8:71. [PMID: 26521126 PMCID: PMC4628361 DOI: 10.1186/s13041-015-0162-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022] Open
Abstract
Background Mutations in the gene encoding Ubiquilin-2 (UBQLN2) are linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). UBQLN2 plays a central role in ubiquitin proteasome system (UPS) and UBQLN2 mutants can form cytoplasmic aggregates in vitro and in vivo. Results Here, we report that overexpression of WT or mutant UBQLN2 species enhanced nuclear factor κB (NF-κB) activation in Neuro2A cells. The inhibition of NF-κB stress-mediated activation with SB203580, a p38 MAPK inhibitor, demonstrated a role for MAPK in NF-κB activation by UBQLN2 species. Live cell imaging and microscopy showed that UBQLN2 aggregates are dynamic structures that promote cytoplasmic accumulation of TAR DNA-binding protein (TDP-43), a major component of ALS inclusion bodies. Furthermore, up-regulation of UBQLN2 species in neurons caused an ER-stress response and increased their vulnerability to death by toxic mediator TNF-α. Withaferin A, a known NF-κB inhibitor, reduced mortality of Neuro2A cells overexpressing UBQLN2 species. Conclusions These results suggest that UBQLN2 dysregulation in neurons can drive NF-κB activation and cytosolic TDP-43 aggregation, supporting the concept of pathway convergence in ALS pathogenesis. These Ubiquilin-2 pathogenic pathways might represent suitable therapeutic targets for future ALS treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0162-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vincent Picher-Martel
- Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.,Department of Psychiatry and Neuroscience, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Kallol Dutta
- Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.,Department of Psychiatry and Neuroscience, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Daniel Phaneuf
- Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.,Department of Psychiatry and Neuroscience, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, 466-8550, Japan
| | - Jean-Pierre Julien
- Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada. .,Department of Psychiatry and Neuroscience, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
| |
Collapse
|
45
|
Nalbandian A, Llewellyn KJ, Nguyen C, Monuki ES, Kimonis VE. Targeted excision of VCP R155H mutation by Cre-LoxP technology as a promising therapeutic strategy for valosin-containing protein disease. Hum Gene Ther Methods 2015; 26:13-24. [PMID: 25545721 DOI: 10.1089/hgtb.2014.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia is attributed to mutations in the valosin-containing protein (VCP) gene, mapped to chromosomal region 9p13.3-12. Affected individuals exhibit scapular winging and die from progressive muscle weakness and cardiac and respiratory failure in their 40s to 50s. Mutations in the VCP gene have also been associated with amyotrophic lateral sclerosis in 10-15% of individuals with hereditary inclusion body myopathy and 2-3% of isolated familial amyotrophic lateral sclerosis. Currently, there are no effective treatments for VCP-related myopathy or dementia. To determine the effects of targeted excision of the most common R155H mutation in VCP disease, we generated the Cre-ER™-VCPR155H/+ tamoxifen-inducible model. We administered tamoxifen (0.12 mg/g body weight) or corn oil (vehicle) to the pregnant dams by oral gavage and monitored survival and muscle strength measurements of the pups until 18 months of age. We confirmed efficient removal of exons 4 and 5 and recombination of the mutant/floxed VCP copies by Q-PCR analyses. The activity and specificity of Cre recombinase was confirmed by immunostaining. Herein, we report that Cre-ER™-VCPR155H/+ mice demonstrated improved muscle strength and quadriceps fibers architecture, autophagy signaling pathway, reduced brain neuropathology, decreased apoptosis, and less severe Paget-like bone changes. The Cre-ER™-VCPR155H/+ mouse model provides proof of principle by demonstrating that removal of the mutated exons could be beneficial to patients with VCP-related neurodegenerative diseases, and serves as an excellent platform in understanding the underlying pathophysiological mechanism(s) in the hopes of a promising therapeutic approach.
Collapse
Affiliation(s)
- Angèle Nalbandian
- 1 Division of Genetics and Genomics Medicine, Department of Pediatrics, University of California-Irvine , Irvine, CA 92697
| | | | | | | | | |
Collapse
|
46
|
Barthelme D, Jauregui R, Sauer RT. An ALS disease mutation in Cdc48/p97 impairs 20S proteasome binding and proteolytic communication. Protein Sci 2015; 24:1521-7. [PMID: 26134898 DOI: 10.1002/pro.2740] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022]
Abstract
Cdc48 (also known as p97 or VCP) is an essential and highly abundant, double-ring AAA+ ATPase, which is ubiquitous in archaea and eukaryotes. In archaea, Cdc48 ring hexamers play a direct role in quality control by unfolding and translocating protein substrates into the degradation chamber of the 20S proteasome. Whether Cdc48 and 20S cooperate directly in protein degradation in eukaryotic cells is unclear. Two regions of Cdc48 are important for 20S binding, the pore-2 loop at the bottom of the D2 AAA+ ring and a C-terminal tripeptide. Here, we identify an aspartic acid in the pore-2 loop as an important element in 20S recognition. Importantly, mutation of this aspartate in human Cdc48 has been linked to familial amyotrophic lateral sclerosis (ALS). In archaeal or human Cdc48 variants, we find that mutation of this pore-2 residue impairs 20S binding and proteolytic communication but does not affect the stability of the hexamer or rates of ATP hydrolysis and protein unfolding. These results suggest that human Cdc48 interacts functionally with the 20S proteasome.
Collapse
Affiliation(s)
- Dominik Barthelme
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Ruben Jauregui
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
47
|
Llewellyn KJ, Walker N, Nguyen C, Tan B, BenMohamed L, Kimonis VE, Nalbandian A. A Fine Balance of Dietary Lipids Improves Pathology of a Murine Model of VCP-Associated Multisystem Proteinopathy. PLoS One 2015; 10:e0131995. [PMID: 26134519 PMCID: PMC4489713 DOI: 10.1371/journal.pone.0131995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
The discovery of effective therapies and of disease mechanisms underlying valosin containing protein (VCP)-associated myopathies and neurodegenerative disorders remains elusive. VCP disease, caused by mutations in the VCP gene, are a clinically and genetically heterogeneous group of disorders with manifestations varying from hereditary inclusion body myopathy, Paget’s disease of bone, frontotemporal dementia (IBMPFD), and amyotrophic lateral sclerosis (ALS). In the present study, we examined the effects of higher dietary lipid percentages on VCPR155H/R155H, VCPR155H/+ and Wild Type (WT) mice from birth until 15 months of age by immunohistochemical and biochemical assays. Findings illustrated improvement in the muscle strength, histology, and autophagy signaling pathway in the heterozygote mice when fed 9% lipid-enriched diets (LED). However, increasing the LED by 12%, 30%, and 48% showed no improvement in homozygote and heterozygote survival, muscle pathology, lipid accumulation or the autophagy cascade. These findings suggest that a balanced lipid supplementation may have a therapeutic strategy for patients with VCP-associated multisystem proteinopathies.
Collapse
Affiliation(s)
- Katrina J. Llewellyn
- Department of Pediatrics, Division of Genetics and Genomics Medicine, University of California Irvine, Irvine, CA, 92697, United States of America
- Sue and Bill Gross Stem Institute, University of California Irvine, Irvine, CA, 92697, United States of America
| | - Naomi Walker
- Department of Pediatrics, Division of Genetics and Genomics Medicine, University of California Irvine, Irvine, CA, 92697, United States of America
| | - Christopher Nguyen
- Department of Pediatrics, Division of Genetics and Genomics Medicine, University of California Irvine, Irvine, CA, 92697, United States of America
| | - Baichang Tan
- Department of Pediatrics, Division of Genetics and Genomics Medicine, University of California Irvine, Irvine, CA, 92697, United States of America
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697, United States of America
- Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CA, 92697, United States of America
| | - Virginia E. Kimonis
- Department of Pediatrics, Division of Genetics and Genomics Medicine, University of California Irvine, Irvine, CA, 92697, United States of America
- Sue and Bill Gross Stem Institute, University of California Irvine, Irvine, CA, 92697, United States of America
| | - Angèle Nalbandian
- Department of Pediatrics, Division of Genetics and Genomics Medicine, University of California Irvine, Irvine, CA, 92697, United States of America
- Sue and Bill Gross Stem Institute, University of California Irvine, Irvine, CA, 92697, United States of America
- * E-mail:
| |
Collapse
|
48
|
|
49
|
Bohovych I, Chan SS, Khalimonchuk O. Mitochondrial protein quality control: the mechanisms guarding mitochondrial health. Antioxid Redox Signal 2015; 22:977-94. [PMID: 25546710 PMCID: PMC4390190 DOI: 10.1089/ars.2014.6199] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/20/2014] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Mitochondria are complex dynamic organelles pivotal for cellular physiology and human health. Failure to maintain mitochondrial health leads to numerous maladies that include late-onset neurodegenerative diseases and cardiovascular disorders. Furthermore, a decline in mitochondrial health is prevalent with aging. A set of evolutionary conserved mechanisms known as mitochondrial quality control (MQC) is involved in recognition and correction of the mitochondrial proteome. RECENT ADVANCES Here, we review current knowledge and latest developments in MQC. We particularly focus on the proteolytic aspect of MQC and its impact on health and aging. CRITICAL ISSUES While our knowledge about MQC is steadily growing, critical gaps remain in the mechanistic understanding of how MQC modules sense damage and preserve mitochondrial welfare, particularly in higher organisms. FUTURE DIRECTIONS Delineating how coordinated action of the MQC modules orchestrates physiological responses on both organellar and cellular levels will further elucidate the current picture of MQC's role and function in health, cellular stress, and degenerative diseases.
Collapse
Affiliation(s)
- Iryna Bohovych
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Sherine S.L. Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
50
|
Nalbandian A, Llewellyn KJ, Nguyen C, Yazdi PG, Kimonis VE. Rapamycin and chloroquine: the in vitro and in vivo effects of autophagy-modifying drugs show promising results in valosin containing protein multisystem proteinopathy. PLoS One 2015; 10:e0122888. [PMID: 25884947 PMCID: PMC4401571 DOI: 10.1371/journal.pone.0122888] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/21/2015] [Indexed: 12/12/2022] Open
Abstract
Mutations in the valosin containing protein (VCP) gene cause hereditary Inclusion body myopathy (hIBM) associated with Paget disease of bone (PDB), frontotemporal dementia (FTD), more recently termed multisystem proteinopathy (MSP). Affected individuals exhibit scapular winging and die from progressive muscle weakness, and cardiac and respiratory failure, typically in their 40s to 50s. Histologically, patients show the presence of rimmed vacuoles and TAR DNA-binding protein 43 (TDP-43)-positive large ubiquitinated inclusion bodies in the muscles. We have generated a VCPR155H/+ mouse model which recapitulates the disease phenotype and impaired autophagy typically observed in patients with VCP disease. Autophagy-modifying agents, such as rapamycin and chloroquine, at pharmacological doses have previously shown to alter the autophagic flux. Herein, we report results of administration of rapamycin, a specific inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, and chloroquine, a lysosomal inhibitor which reverses autophagy by accumulating in lysosomes, responsible for blocking autophagy in 20-month old VCPR155H/+ mice. Rapamycin-treated mice demonstrated significant improvement in muscle performance, quadriceps histological analysis, and rescue of ubiquitin, and TDP-43 pathology and defective autophagy as indicated by decreased protein expression levels of LC3-I/II, p62/SQSTM1, optineurin and inhibiting the mTORC1 substrates. Conversely, chloroquine-treated VCPR155H/+ mice revealed progressive muscle weakness, cytoplasmic accumulation of TDP-43, ubiquitin-positive inclusion bodies and increased LC3-I/II, p62/SQSTM1, and optineurin expression levels. Our in vitro patient myoblasts studies treated with rapamycin demonstrated an overall improvement in the autophagy markers. Targeting the mTOR pathway ameliorates an increasing list of disorders, and these findings suggest that VCP disease and related neurodegenerative multisystem proteinopathies can now be included as disorders that can potentially be ameliorated by rapalogs.
Collapse
Affiliation(s)
- Angèle Nalbandian
- Department of Pediatrics, Division of Genetics and Metabolism, University of California, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, United States of America
- * E-mail: (AN); (VEK)
| | - Katrina J. Llewellyn
- Department of Pediatrics, Division of Genetics and Metabolism, University of California, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, United States of America
| | - Christopher Nguyen
- Department of Pediatrics, Division of Genetics and Metabolism, University of California, Irvine, California, United States of America
| | - Puya G. Yazdi
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, United States of America
- Systomic Health LLC, Los Angeles, California, United States of America
| | - Virginia E. Kimonis
- Department of Pediatrics, Division of Genetics and Metabolism, University of California, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, United States of America
- * E-mail: (AN); (VEK)
| |
Collapse
|