1
|
Haas J, Kim BJ, Atamer Z, Wu C, Dallas DC. Effects of high-temperature, short-time pasteurization on milk and whey during commercial whey protein concentrate production. J Dairy Sci 2025; 108:257-271. [PMID: 39343217 DOI: 10.3168/jds.2024-25493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
Two pasteurization steps are often used in the preparation of whey protein concentrate (WPC) before evaporation into a dry product. The Pasteurized Milk Ordinance in the United States requires that raw bovine milk be pasteurized using a process that meets minimum heat treatment requirements to achieve reductions in pertinent microorganisms. In addition, WPC produced from USDA-approved plants must comply with CFR subpart B §58.809, which dictates that all fluid whey used in the manufacture of dry whey products shall be pasteurized before being condensed. These heat treatments are effective at inactivating the most thermally resistant bacterium, such as Coxiella burnetii; however, they can also alter milk proteins, inducing denaturation, aggregation, and reduced bioactivity. Though the impact of thermal treatments on whey proteins has been examined, the specific influence of 2 HTST pasteurization steps on the retention of proteins in WPC remains unknown. This study aimed to investigate the effect of commercial-scale HTST pasteurization of both raw milk and the resulting sweet whey on the products' overall protein profile. We analyzed 3 distinct batches of raw milk (RM) and the corresponding pasteurized milk (PM), resulting whey (RW), and pasteurized whey (PW) produced at commercial scale. Assessments of denaturation were conducted through solubility testing at pH 4.6 and hydrophobicity evaluation via anilinonaphthalene-1-sulfonic acid assay. Additionally, ELISA, PAGE, and liquid chromatography tandem MS (LC-MS/MS) were employed to compare the retention of key bioactive proteins before and after each HTST pasteurization step. The percentage of soluble whey protein decreased from RM to PM and from RW to PW, but no significant differences were observed via hydrophobicity assay. The ELISA revealed a significant reduction in key bioactive proteins, such as lactoferrin, IgA, and IgM, but not IgG, after HTST pasteurization of RM and RW. The PAGE and LC-MS/MS results revealed a significant decrease in the retention of lactoferrin and key milk fat globular membrane proteins, such as xanthine dehydrogenase oxidase/xanthine oxidase, lactadherin, and fatty acid binding protein. Additionally, xanthine oxidase activity was significantly reduced after HTST pasteurization of milk and whey. This research helps to identify the limitations of the current processing techniques used in the dairy industry and could lead to innovation in improving the retention of bioactive proteins.
Collapse
Affiliation(s)
- Joanna Haas
- Department of Food Science and Technology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331
| | - Bum Jin Kim
- Nutrition Program, School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR 97331
| | - Zeynep Atamer
- Department of Food Science and Technology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331
| | - Chao Wu
- Hilmar Cheese Company, Hilmar, CA 95324
| | - David C Dallas
- Department of Food Science and Technology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331; Nutrition Program, School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR 97331.
| |
Collapse
|
2
|
Haas J, Kim BJ, Atamer Z, Wu C, Dallas DC. Effects of spray drying and freeze drying on the protein profile of whey protein concentrate. J Food Sci 2024; 89:7477-7493. [PMID: 39366780 PMCID: PMC11560623 DOI: 10.1111/1750-3841.17349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 10/06/2024]
Abstract
Whey protein concentrate (WPC) is consumed for its high protein content. The structure and biological functionality of whey proteins in WPC powders may be affected by the drying technique applied. However, the specific impact of spray drying and freeze drying on the overall protein profile of whey protein derived from sweet whey streams at scale is unknown. Herein, we examine the effects of commercial-scale freeze drying and spray drying on WPC to determine which method better preserves bioactive whey proteins, with the goal of helping the dairy industry create high-value products that meet the growing consumer demand for functional dairy products. WPCs were produced from pasteurized liquid whey using either a commercial spray dryer or freeze dryer. A variety of analytical techniques, including enzyme-linked immunosorbent assay, polyacrylamide gel electrophoresis, and bottom-up proteomics using liquid chromatography-tandem mass spectroscopy were used to identify, quantify, and compare the retention of bioactive proteins in WPC before and after spray drying and freeze drying. In addition, the extent of denaturation was studied via solubility testing, differential scanning calorimetry, and hydrophobicity assessment. There was little to no difference in the retention or denaturation of key bioactive proteins between spray-dried and freeze-dried WPC powders. There was a higher percentage of select Maillard modifications in freeze-dried and spray-dried powders than in the control. The lack of significant differences between spray drying and freeze drying identified herein indicates that freeze drying does not meaningfully improve retention of bioactive proteins compared with spray drying when performed after multiple pasteurization steps. PRACTICAL APPLICATION: This study aimed to provide insight into the impacts of spray drying versus freeze drying on whey proteins. Overall, our results indicate that for commercial dairy processing that involves multiple rounds of pasteurization, freeze drying does not meaningfully improve the retention of bioactive proteins compared with spray drying. These findings may help the food and dairy industry make informed decisions regarding the processing of its whey protein products to optimize nutritional value.
Collapse
Affiliation(s)
- Joanna Haas
- Department of Food Science and Technology, College of Agricultural Sciences, Oregon State University
| | - Bum Jin Kim
- Nutrition Program, School of Nutrition and Public Health, College of Health, Oregon State University
| | - Zeynep Atamer
- Department of Food Science and Technology, College of Agricultural Sciences, Oregon State University
| | - Chao Wu
- Hilmar Cheese Company (Hilmar, CA)
| | - David C. Dallas
- Department of Food Science and Technology, College of Agricultural Sciences, Oregon State University
- Nutrition Program, School of Nutrition and Public Health, College of Health, Oregon State University
| |
Collapse
|
3
|
Duman H, Karav S. Bovine colostrum and its potential contributions for treatment and prevention of COVID-19. Front Immunol 2023; 14:1214514. [PMID: 37908368 PMCID: PMC10613682 DOI: 10.3389/fimmu.2023.1214514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Bovine colostrum (BC) is the initial milk an animal produces after giving birth, particularly in the first few days. Numerous bioactive substances found in BC, including proteins, enzymes, growth factors, immunoglobulins, etc., are beneficial to human health. BC has a significant role to play as part of a healthy diet, with well-documented health and nutritional advantages for people. Therefore, the use of BC and its crucial derivatives in the development of functional food and pharmaceuticals for the prevention of several diseases such as gastrointestinal and respiratory system disorders is becoming increasingly popular around the world. A novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of a cluster of pneumonia cases that is called Coronavirus Disease 2019 (COVID-19) in China. After the first SARS-CoV-2 virus-related fatality was announced, the illness quickly spread throughout China and to other continents, causing a pandemic. Since then, numerous studies have been initiated to develop safe and efficient treatments. To prevent viral infection and potential lingering effects, it is important to investigate alternative treatments for COVID-19. Due to its effective bioactive profile and its immunomodulatory roles in biological processes, BC might be considered a promising approach to assist in combating people affected by the SARS-CoV-2 or prevention from the virus. BC has immunomodulatory effects because to its high concentration of bioactive components such as immunoglobulins, lactoferrin, cytokines, and growth factors, etc., which might help control immunological responses, potentially fostering a balanced immune response. Furthermore, its bioactive components have a potential cross-reactivity against SARS-CoV-2, aiding in virus neutralization and its comprehensive food profile also supplies important vitamins, minerals, and amino acids, fostering a healthy immune system. Hence, the possible contributions of BC to the management of COVID-19 were reviewed in this article based on the most recent research on the subject. Additionally, the key BC components that influence immune system modulation were evaluated. These components may serve as potential mediators or therapeutic advantages in COVID-19.
Collapse
Affiliation(s)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| |
Collapse
|
4
|
Saied AA, Nascimento MSL, do Nascimento Rangel AH, Skowron K, Grudlewska‐Buda K, Dhama K, Shah J, Abdeen A, El‐Mayet FS, Ahmed H, Metwally AA. Transchromosomic bovines-derived broadly neutralizing antibodies as potent biotherapeutics to counter important emerging viral pathogens with a special focus on SARS-CoV-2, MERS-CoV, Ebola, Zika, HIV-1, and influenza A virus. J Med Virol 2022; 94:4599-4610. [PMID: 35655326 PMCID: PMC9347534 DOI: 10.1002/jmv.27907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Historically, passive immunotherapy is an approved approach for protecting and treating humans against various diseases when other alternative therapeutic options are unavailable. Human polyclonal antibodies (hpAbs) can be made from convalescent human donor serum, although it is considered limited due to pandemics and the urgent requirement. Additionally, polyclonal antibodies (pAbs) could be generated from animals, but they may cause severe immunoreactivity and, once "humanized," may have lower neutralization efficiency. Transchromosomic bovines (TcBs) have been developed to address these concerns by creating robust neutralizing hpAbs, which are useful in preventing and/or curing human infections in response to hyperimmunization with vaccines holding adjuvants and/or immune stimulators over an extensive period. Unlike other animal-derived pAbs, potent hpAbs could be promptly produced from TcB in large amounts to assist against an outbreak scenario. Some of these highly efficacious TcB-derived antibodies have already neutralized and blocked diseases in clinical studies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has numerous variants classified into variants of concern (VOCs), variants of interest (VOIs), and variants under monitoring. Although these variants possess different mutations, such as N501Y, E484K, K417N, K417T, L452R, T478K, and P681R, SAB-185 has shown broad neutralizing activity against VOCs, such as Alpha, Beta, Gamma, Delta, and Omicron variants, and VOIs, such as Epsilon, Iota, Kappa, and Lambda variants. This article highlights recent developments in the field of bovine-derived biotherapeutics, which are seen as a practical platform for developing safe and effective antivirals with broad activity, particularly considering emerging viral infections such as SARS-CoV-2, Ebola, Middle East respiratory syndrome coronavirus, Zika, human immunodeficiency virus type 1, and influenza A virus. Antibodies in the bovine serum or colostrum, which have been proved to be more protective than their human counterparts, are also reviewed.
Collapse
Affiliation(s)
- AbdulRahman A. Saied
- National Food Safety Authority (NFSA)AswanEgypt
- Ministry of Tourism and AntiquitiesAswanEgypt
| | - Manuela Sales Lima Nascimento
- Department of Microbiology and Parasitology, Biosciences CenterFederal University of Rio Grande do NorteNatalRio Grande do NorteBrazil
| | | | - Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in ToruńL. Rydygier Collegium Medicum in BydgoszczBydgoszczPoland
| | - Katarzyna Grudlewska‐Buda
- Department of Microbiology, Nicolaus Copernicus University in ToruńL. Rydygier Collegium Medicum in BydgoszczBydgoszczPoland
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research Institute (IVRI)IzatnagarUttar PradeshIndia
| | - Jaffer Shah
- Medical Research CenterKateb UniversityKabulAfghanistan
- New York State Department of HealthNew York CityNew YorkUSA
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary MedicineBenha UniversityToukhEgypt
| | - Fouad S. El‐Mayet
- Department of Virology, Faculty of Veterinary MedicineBenha UniversityToukhEgypt
| | - Hassan Ahmed
- Department of Physiology, Faculty of Veterinary MedicineSouth Valley UniversityQenaEgypt
| | - Asmaa A. Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary MedicineAswan UniversityAswanEgypt
| |
Collapse
|
5
|
Nili H, Bouzari M, Attaran HR, Ghalegolab N, Rabani M, Mahmoudian A. Hyper-Immune Bovine Milk as an Immunological and Nutritional Supplement for COVID-19. Front Nutr 2022; 9:868964. [PMID: 35799590 PMCID: PMC9254720 DOI: 10.3389/fnut.2022.868964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Many different strategies have been used to fight against the Coronavirus disease (COVID-19) pandemic as a therapeutics or prophylaxis approaches. However, not enough attention has been paid to general and specific immune factors and nutritional components found in hyper-immunized dairy products. Hyper-immune bovine colostrum (HBC) has been used against many different respiratory and gastrointestinal tracts infections during past decades. An isolated dairy farm was established, and nine mixed Holstein X Simmental dairy cattle in their 6-7 months of gestation period were chosen for hyper-immunization with inactivated Severe acute respiratory syndrome corona virus-2 (SARS-CoV-2). For this, six cows were inoculated with 2 ml of 109.4/ml (TCID50) of the virus. As a control group, three cows were inoculated with the carrier without virus. Specific IgG level against the SARS-CoV-2 was measured before and after immunization in the sera, and in the colostrum and milk following parturition in hyper-immunized cows using indirect Enzyme-linked immunosorbent assay (ELISA). Neutralizing antibodies in the serum and colostrum was measured by a quantitative ELISA. The safety of the product was determined in40 healthy volunteers aged between 18-65 years old (13 females and 27 males) in the phase 1 clinical trial (https://www.irct.ir/trial/51259). No adverse effects were observed in the experimental cows. A very high level of IgG was observed in the first colostrum that sharply decreased in the following 7 days in the milk. The titer of specific neutralizing antibody in the colostrum samples was 69 times higher than the sera. No adverse effects and clinical complications were reported by the authorized ethics committee, and an official certificate on the safety of the product was issued. Beside other strategies, this approach could be used for large-scale and low-cost production of immune components to be used as a nutritional supplement to confront current SARS-CoV-2 and future pandemics. Clinical Trial Registration [https://www.irct.ir/trial/51259].
Collapse
Affiliation(s)
- Hassan Nili
- Virology Research Center, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
- Zeitoon Isfahan Vaccine Innovators Company, Isfahan Sciences and Technology Town, Isfahan, Iran
| | - Majid Bouzari
- Virology Research Center, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
- Zeitoon Isfahan Vaccine Innovators Company, Isfahan Sciences and Technology Town, Isfahan, Iran
| | - Hamid Reza Attaran
- Virology Research Center, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Nader Ghalegolab
- Razi Serum and Vaccine Research Institute, Agricultural Research, Education and Extension (AREEO), Shiraz, Iran
| | - Mohammad Rabani
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Ahmad Mahmoudian
- Department of Community Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
6
|
Kangro K, Kurašin M, Gildemann K, Sankovski E, Žusinaite E, Lello LS, Pert R, Kavak A, Poikalainen V, Lepasalu L, Kuusk M, Pau R, Piiskop S, Rom S, Oltjer R, Tiirik K, Kogermann K, Plaas M, Tiirats T, Aasmäe B, Plaas M, Mumm K, Krinka D, Talpsep E, Kadaja M, Gerhold JM, Planken A, Tover A, Merits A, Männik A, Ustav M, Ustav M. Bovine colostrum-derived antibodies against SARS-CoV-2 show great potential to serve as prophylactic agents. PLoS One 2022; 17:e0268806. [PMID: 35687549 PMCID: PMC9187060 DOI: 10.1371/journal.pone.0268806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/08/2022] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to impose a serious burden on health systems globally. Despite worldwide vaccination, social distancing and wearing masks, the spread of the virus is ongoing. One of the mechanisms by which neutralizing antibodies (NAbs) block virus entry into cells encompasses interaction inhibition between the cell surface receptor angiotensin-converting enzyme 2 (ACE2) and the spike (S) protein of SARS-CoV-2. SARS-CoV-2-specific NAb development can be induced in the blood of cattle. Pregnant cows produce NAbs upon immunization, and antibodies move into the colostrum immediately before calving. Here, we immunized cows with SARS-CoV-2 S1 receptor binding domain (RBD) protein in proper adjuvant solutions, followed by one boost with SARS-CoV-2 trimeric S protein and purified immunoglobulins from colostrum. We demonstrate that this preparation indeed blocks the interaction between the trimeric S protein and ACE2 in different in vitro assays. Moreover, we describe the formulation of purified immunoglobulin preparation into a nasal spray. When administered to human subjects, the formulation persisted on the nasal mucosa for at least 4 hours, as determined by a clinical study. Therefore, we are presenting a solution that shows great potential to serve as a prophylactic agent against SARS-CoV-2 infection as an additional measure to vaccination and wearing masks. Moreover, our technology allows for rapid and versatile adaptation for preparing prophylactic treatments against other diseases using the defined characteristics of antibody movement into the colostrum.
Collapse
Affiliation(s)
- Kadri Kangro
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Tartumaa, Estonia
| | - Mihhail Kurašin
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Tartumaa, Estonia
| | - Kiira Gildemann
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Tartumaa, Estonia
| | - Eve Sankovski
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Tartumaa, Estonia
| | - Eva Žusinaite
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | - Raini Pert
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Tartumaa, Estonia
| | - Ants Kavak
- Department of Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | | | | | - Marilin Kuusk
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Tartumaa, Estonia
| | - Robin Pau
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Tartumaa, Estonia
| | | | - Siimu Rom
- Chemi-Pharm AS, Tänassilma, Harjumaa, Estonia
| | - Ruth Oltjer
- Chemi-Pharm AS, Tänassilma, Harjumaa, Estonia
| | - Kairi Tiirik
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Karin Kogermann
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Mario Plaas
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Centre, University of Tartu, Tartu, Estonia
| | - Toomas Tiirats
- Department of Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Birgit Aasmäe
- Department of Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Mihkel Plaas
- Ear Clinic of Tartu University Hospital, Tartu, Estonia
| | - Karl Mumm
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Tartumaa, Estonia
| | - Dagni Krinka
- Icosagen AS, Õssu, Kambja vald, Tartumaa, Estonia
| | - Ene Talpsep
- Icosagen AS, Õssu, Kambja vald, Tartumaa, Estonia
| | - Meelis Kadaja
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Tartumaa, Estonia
| | | | - Anu Planken
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Tartumaa, Estonia
- North-Estonian Medical Centre, Tallinn, Estonia
| | - Andres Tover
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Tartumaa, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andres Männik
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Tartumaa, Estonia
| | - Mart Ustav
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Tartumaa, Estonia
- * E-mail: (MU); (MUJ)
| | - Mart Ustav
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Tartumaa, Estonia
- * E-mail: (MU); (MUJ)
| |
Collapse
|
7
|
Ceniti C, Costanzo N, Morittu VM, Tilocca B, Roncada P, Britti D. Review: Colostrum as an Emerging food: Nutraceutical Properties and Food Supplement. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2034165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlotta Ceniti
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Nicola Costanzo
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Valeria Maria Morittu
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| |
Collapse
|
8
|
Ianevski A, Ahmad S, Anunnitipat K, Oksenych V, Zusinaite E, Tenson T, Bjørås M, Kainov DE. Seven classes of antiviral agents. Cell Mol Life Sci 2022; 79:605. [PMID: 36436108 PMCID: PMC9701656 DOI: 10.1007/s00018-022-04635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022]
Abstract
The viral epidemics and pandemics have stimulated the development of known and the discovery of novel antiviral agents. About a hundred mono- and combination antiviral drugs have been already approved, whereas thousands are in development. Here, we briefly reviewed 7 classes of antiviral agents: neutralizing antibodies, neutralizing recombinant soluble human receptors, antiviral CRISPR/Cas systems, interferons, antiviral peptides, antiviral nucleic acid polymers, and antiviral small molecules. Interferons and some small molecules alone or in combinations possess broad-spectrum antiviral activity, which could be beneficial for treatment of emerging and re-emerging viral infections.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Shahzaib Ahmad
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Kraipit Anunnitipat
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Denis E. Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway ,Institute of Technology, University of Tartu, 50411 Tartu, Estonia ,Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
9
|
Batista da Silva Galdino A, do Nascimento Rangel AH, Buttar HS, Sales Lima Nascimento M, Cristina Gavioli E, Oliveira RDP, Cavalcanti Sales D, Urbano SA, Anaya K. Bovine colostrum: benefits for the human respiratory system and potential contributions for clinical management of COVID-19. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1892594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Alyne Batista da Silva Galdino
- Unidade Acadêmica Especializada em Ciências Agrárias – UAECA, Universidade Federal do Rio Grande do Norte – UFRN, Macaíba, Brasil
| | | | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, School of Medicine, Ottawa, Canada
| | - Manuela Sales Lima Nascimento
- Departamento de Microbiologia e Parasitologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte – UFRN, Natal, Brasil
| | - Elaine Cristina Gavioli
- Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte – UFRN, Natal, Brasil
| | - Riva de Paula Oliveira
- Departamento de Ciências Biológicas, Centro de Biociências, Universidade Federal do Rio Grande do Norte – UFRN, Natal, Brasil
| | - Danielle Cavalcanti Sales
- Unidade Acadêmica Especializada em Ciências Agrárias – UAECA, Universidade Federal do Rio Grande do Norte – UFRN, Macaíba, Brasil
| | - Stela Antas Urbano
- Unidade Acadêmica Especializada em Ciências Agrárias – UAECA, Universidade Federal do Rio Grande do Norte – UFRN, Macaíba, Brasil
| | - Katya Anaya
- Faculdade de Ciências da Saúde do Trairi – FACISA, Universidade Federal do Rio Grande do Norte – UFRN, Santa Cruz, Brasil
| |
Collapse
|
10
|
Jawhara S. Can Drinking Microfiltered Raw Immune Milk From Cows Immunized Against SARS-CoV-2 Provide Short-Term Protection Against COVID-19? Front Immunol 2020; 11:1888. [PMID: 32849647 PMCID: PMC7399080 DOI: 10.3389/fimmu.2020.01888] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes severe respiratory tract infections in humans (COVID-19), has become a global health concern. Currently, several vaccine candidates against SARS-CoV-2 are in clinical trials but approval of these vaccines is likely to take a long time before they are available for public use. In a previous report, the importance of passive immunity and how immunoglobulin (Ig)G collected from recovered coronavirus patients could help in the protection against COVID-19 and boost the immune system of new patients was reported. Passive immunity by immunoglobulin transfer is a concept employed by most mammals and bovine IgG has a role to play in human therapy. IgG is one of the major components of the immunological activity found in cow's milk and colostrum. Heterologous transfer of passive immunity associated with the consumption of bovine immune milk by humans has been investigated for decades for its immunological activity against infections. This short review focuses on passive immunity and how microfiltered raw immune milk or colostrum collected from cows vaccinated against SARS-CoV-2 could provide short-term protection against SARS-CoV-2 infection in humans and could be used as an option until a vaccine becomes commercially available.
Collapse
Affiliation(s)
- Samir Jawhara
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, Lille, France
- Medicine Faculty, University of Lille, Lille, France
| |
Collapse
|
11
|
Burke MJ, Stockley PG, Boyes J. Broadly Neutralizing Bovine Antibodies: Highly Effective New Tools against Evasive Pathogens? Viruses 2020; 12:v12040473. [PMID: 32331321 PMCID: PMC7232318 DOI: 10.3390/v12040473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Potent antibody-mediated neutralization is critical for an organism to combat the vast array of pathogens it will face during its lifetime. Due to the potential genetic diversity of some viruses, such as HIV-1 and influenza, standard neutralizing antibodies are often ineffective or easily evaded as their targets are masked or rapidly mutated. This has thwarted efforts to both prevent and treat HIV-1 infections and means that entirely new formulations are required to vaccinate against influenza each year. However, some rare antibodies isolated from infected individuals confer broad and potent neutralization. A subset of these broadly neutralizing antibodies possesses a long complementarity-determining 3 region of the immunoglobulin heavy chain (CDR H3). This feature generates unique antigen binding site configurations that can engage conserved but otherwise inaccessible epitope targets thus neutralizing many viral variants. Remarkably, ultralong CDR H3s are a common feature of the cow antibody repertoire and are encoded by a single variable, diversity, joining (VDJ) recombination that is extensively diversified prior to antigen exposure. Recently, it was shown that cows rapidly generate a broadly neutralizing response upon exposure to HIV-1 and this is primarily mediated by these novel ultralong antibody types. This review summarises the current knowledge of these unusual CDR H3 structures and discusses their known and potential future uses.
Collapse
Affiliation(s)
- Matthew J. Burke
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (P.G.S.)
| | - Peter G. Stockley
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (P.G.S.)
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Joan Boyes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (P.G.S.)
- Correspondence:
| |
Collapse
|
12
|
Funatogawa K, Tada T, Kuwahara‐Arai K, Kirikae T, Takahashi M. Enriched bovine IgG fraction prevents infections with Enterohaemorrhagic Escherichia coli O157:H7, Salmonella enterica serovar Enteritidis, and Mycobacterium avium. Food Sci Nutr 2019; 7:2726-2730. [PMID: 31428360 PMCID: PMC6694433 DOI: 10.1002/fsn3.1134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
A bovine IgG-enriched whey fraction contains antibodies against various bacterial antigens. We investigated the protective effects of a bovine whey fraction preparation against infections with Enterohaemorrhagic Escherichia coli O157:H7, Salmonella enterica serovar Enteritidis, and Mycobacterium avium in mouse models. After infection with these pathogens, the IgG-enriched fraction or skim milk was given ad libitum at a 5% solution instead of water. The mice given the IgG-enriched fraction were significantly resistant to orally challenged EHEC O157:H7 (LD50: 4.0 × 105 CFU/mouse) infections compared with the mice given skim milk (LD50: <1.5 × 102 CFU/mouse). The mice given the IgG-enriched fraction were also significantly resistant to orally challenged S. Enteritidis (LD50: 5.0 × 106 CFU/mouse) infections compared with the mice given skim milk (LD50: <2.5 × 101 CFU/mouse). When the mice were nasally infected with M. avium, the numbers of the bacteria in lungs of mice given the IgG-enriched fraction were significantly lower than those given skim milk 2 and 3 weeks after infection. These results strongly indicate that oral administration of the bovine IgG-enriched whey fraction protects mice against food-borne infection and also that it partially protects mice against respiratory tract infection.
Collapse
Affiliation(s)
- Keiji Funatogawa
- Tochigi Prefectural Institute of Public Health and Environmental ScienceUtsunomiyaJapan
| | - Tatsuya Tada
- Department of MicrobiologyJuntendo University School of MedicineTokyoJapan
| | | | - Teruo Kirikae
- Department of MicrobiologyJuntendo University School of MedicineTokyoJapan
| | | |
Collapse
|
13
|
Sreenivasan CC, Thomas M, Kaushik RS, Wang D, Li F. Influenza A in Bovine Species: A Narrative Literature Review. Viruses 2019; 11:v11060561. [PMID: 31213032 PMCID: PMC6631717 DOI: 10.3390/v11060561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
It is quite intriguing that bovines were largely unaffected by influenza A, even though most of the domesticated and wild animals/birds at the human-animal interface succumbed to infection over the past few decades. Influenza A occurs on a very infrequent basis in bovine species and hence bovines were not considered to be susceptible hosts for influenza until the emergence of influenza D. This review describes a multifaceted chronological review of literature on influenza in cattle which comprises mainly of the natural infections/outbreaks, experimental studies, and pathological and seroepidemiological aspects of influenza A that have occurred in the past. The review also sheds light on the bovine models used in vitro and in vivo for influenza-related studies over recent years. Despite a few natural cases in the mid-twentieth century and seroprevalence of human, swine, and avian influenza viruses in bovines, the evolution and host adaptation of influenza A virus (IAV) in this species suffered a serious hindrance until the novel influenza D virus (IDV) emerged recently in cattle across the world. Supposedly, certain bovine host factors, particularly some serum components and secretory proteins, were reported to have anti-influenza properties, which could be an attributing factor for the resilient nature of bovines to IAV. Further studies are needed to identify the host-specific factors contributing to the differential pathogenetic mechanisms and disease progression of IAV in bovines compared to other susceptible mammalian hosts.
Collapse
Affiliation(s)
- Chithra C Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Milton Thomas
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- BioSystems Networks and Translational Research Center (BioSNTR), Brookings, SD 57007, USA.
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- BioSystems Networks and Translational Research Center (BioSNTR), Brookings, SD 57007, USA.
| |
Collapse
|
14
|
Civra A, Altomare A, Francese R, Donalisio M, Aldini G, Lembo D. Colostrum from cows immunized with a veterinary vaccine against bovine rotavirus displays enhanced in vitro anti-human rotavirus activity. J Dairy Sci 2019; 102:4857-4869. [PMID: 30981494 PMCID: PMC7127701 DOI: 10.3168/jds.2018-16016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/24/2019] [Indexed: 12/31/2022]
Abstract
Human rotaviruses represent a major cause of severe diarrheal disease in infants and young children. The limited impact of oral vaccines on global estimates of rotavirus mortality and the suboptimal use of oral rehydration justify the need for alternative prophylactic and therapeutic strategies, especially for immunocompromised hosts. The protective effects of colostrum-the first milk produced during the initial 24 to 48 h after parturition-are well documented in the literature. In particular, the ingestion of hyperimmune bovine colostrum has been proposed as an alternative preventive approach against human rotavirus gastroenteritis. Although the immunization of pregnant cows with human rotavirus boosts the release of specific immunoglobulin G in bovine colostrum, it raises regulatory and safety issues. In this study, we demonstrated that the conventional bovine rotavirus vaccine is sufficient to enhance the anti-human rotavirus protective efficacy of bovine colostrum, thus providing a conservative approach to produce hyperimmune bovine colostrum, making it exploitable as a functional food.
Collapse
Affiliation(s)
- Andrea Civra
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Rachele Francese
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| |
Collapse
|
15
|
Heidebrecht HJ, Weiss WJ, Pulse M, Lange A, Gisch K, Kliem H, Mann S, Pfaffl MW, Kulozik U, von Eichel-Streiber C. Treatment and Prevention of Recurrent Clostridium difficile Infection with Functionalized Bovine Antibody-Enriched Whey in a Hamster Primary Infection Model. Toxins (Basel) 2019; 11:toxins11020098. [PMID: 30736358 PMCID: PMC6409564 DOI: 10.3390/toxins11020098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/17/2022] Open
Abstract
Toxin-induced Clostridium difficile infection (CDI) is a major disease characterized by severe diarrhea and high morbidity rates. The aim with this study was to develop an alternative drug for the treatment of CDI. Cows were repeatedly immunized to establish specific immunoglobulin G and A titers against toxins A (TcdA) and B (TcdB) and against C. difficile cells in mature milk or colostrum. The effect of three different concentrations of anti-C. difficile whey protein isolates (anti-CD-WPI) and the standard of care antibiotic vancomycin were investigated in an animal model of CD infected hamsters (6 groups, with 10 hamsters each). WPI obtained from the milk of exactly the same cows pre-immunization and a vehicle group served as negative controls. The survival of hamsters receiving anti-CD-WPI was 50, 80 and 100% compared to 10 and 0% for the control groups, respectively. Vancomycin suppressed the growth of C. difficile and thus protected the hamsters at the time of administration, but 90% of these hamsters nevertheless died shortly after discontinuation of treatment. In contrast, the surviving hamsters of the anti-CD-WPI groups survived the entire study period, although they were treated for only 75 h. The specific antibodies not only inactivated the toxins for initial suppression of CDI, but also provoked the inhibition of C. difficile growth after discontinuation, thus preventing recurrence. Oral administration of anti-CD-WPI is a functional therapy of CDI in infected hamsters for both primary treatment and prevention of recurrence. Thus, anti-CD-WPI could address the urgent unmet medical need for treating and preventing recurrent CDI in humans.
Collapse
Affiliation(s)
- Hans-Jürgen Heidebrecht
- Chair of Food and Bioprocess Engineering, Technical University of Munich, 85354 Freising, Germany.
- ZIEL Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
| | - William J Weiss
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA.
| | - Mark Pulse
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA.
| | | | | | - Heike Kliem
- Chair of Animal Physiology and Immunology, Technical University of Munich, 85354 Freising, Germany.
| | - Sacha Mann
- Biosys UK Limited, London, SW1H, 9BP, UK.
| | - Michael W Pfaffl
- Chair of Animal Physiology and Immunology, Technical University of Munich, 85354 Freising, Germany.
- School of Life Science, Technical University of Munich, 85354 Freising, Germany.
| | - Ulrich Kulozik
- Chair of Food and Bioprocess Engineering, Technical University of Munich, 85354 Freising, Germany.
- ZIEL Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
| | | |
Collapse
|
16
|
Ulfman LH, Leusen JHW, Savelkoul HFJ, Warner JO, van Neerven RJJ. Effects of Bovine Immunoglobulins on Immune Function, Allergy, and Infection. Front Nutr 2018; 5:52. [PMID: 29988421 PMCID: PMC6024018 DOI: 10.3389/fnut.2018.00052] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022] Open
Abstract
This review aims to provide an in depth overview of the current knowledge of the effects of bovine immunoglobulins on the human immune system. The stability and functional effects of orally ingested bovine immunoglobulins in milk products are described and potential mechanisms of action are discussed. Orally ingested bovine IgG (bovine IgG) can be recovered from feces, ranging from very low levels up to 50% of the ingested IgG that has passed through the gastrointestinal tract. In infants the recovered levels are higher than in adults most likely due to differences in stomach and intestinal conditions such as pH. This indicates that bovine IgG can be functionally active throughout the gastrointestinal tract. Indeed, a large number of studies in infants and adults have shown that bovine IgG (or colostrum as a rich source thereof) can prevent gastrointestinal tract infections, upper respiratory tract infections, and LPS-induced inflammation. These studies vary considerably in target group, design, source of bovine IgG, dosage, and endpoints measured making it hard to draw general conclusions on effectiveness of bovine immunoglobulin rich preparations. Typical sources of bovine IgG used in human studies are serum-derived IgG, colostrum, colostrum-derived IgG, or milk-derived immunoglobulins. In addition, many studies have used IgG from vaccinated cows, but studies using IgG from nonimmunized animals have also been reported to be effective. Mechanistically, bovine IgG binds to many human pathogens and allergens, can neutralize experimental infection of human cells, and limits gastrointestinal inflammation. Furthermore, bovine IgG binds to human Fc receptors which, enhances phagocytosis, killing of bacteria and antigen presentation and bovine IgG supports gastrointestinal barrier function in in vitro models. These mechanisms are becoming more and more established and explain why bovine IgG can have immunological effects in vivo. The inclusion of oral bovine immunoglobulins in specialized dairy products and infant nutrition may therefore be a promising approach to support immune function in vulnerable groups such as infants, children, elderly and immunocompromised patients.
Collapse
Affiliation(s)
| | - Jeanette H W Leusen
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Huub F J Savelkoul
- Wageningen University & Research, Cell Biology and Immunology, Wageningen, Netherlands.,Allergy Consortium Wageningen, Wageningen, Netherlands
| | - John O Warner
- National Institute of Health Research, Collaboration for Leadership in Applied Health Research and Care for NW London, Imperial College, London, United Kingdom
| | - R J Joost van Neerven
- FrieslandCampina, Amersfoort, Netherlands.,Wageningen University & Research, Cell Biology and Immunology, Wageningen, Netherlands
| |
Collapse
|
17
|
A Sialylated Voltage-Dependent Ca 2+ Channel Binds Hemagglutinin and Mediates Influenza A Virus Entry into Mammalian Cells. Cell Host Microbe 2018; 23:809-818.e5. [PMID: 29779930 DOI: 10.1016/j.chom.2018.04.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022]
Abstract
Influenza A virus (IAV) infection is initiated by the attachment of the viral glycoprotein hemagglutinin (HA) to sialic acid on the host cell surface. However, the sialic acid-containing receptor crucial for IAV infection has remained unidentified. Here, we show that HA binds to the voltage-dependent Ca2+ channel Cav1.2 to trigger intracellular Ca2+ oscillations and subsequent IAV entry and replication. IAV entry was inhibited by Ca2+ channel blockers (CCBs) or by knockdown of Cav1.2. The CCB diltiazem also inhibited virus replication in vivo. Reintroduction of wild-type but not the glycosylation-deficient mutants of Cav1.2 restored Ca2+ oscillations and virus infection in Cav1.2-depleted cells, demonstrating the significance of Cav1.2 sialylation. Taken together, we identify Cav1.2 as a sialylated host cell surface receptor that binds HA and is critical for IAV entry.
Collapse
|
18
|
Asgarov K, Balland J, Tirole C, Bouard A, Mougey V, Ramos D, Barroso A, Zangiacomi V, Jary M, Kim S, Gonzalez-Pajuelo M, Royer B, de Haard H, Clark A, Wijdenes J, Borg C. A new anti-mesothelin antibody targets selectively the membrane-associated form. MAbs 2017; 9:567-577. [PMID: 28353419 DOI: 10.1080/19420862.2017.1288770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesothelin is a glycosylphosphatidylinositol (GPI)-anchored membrane protein that shows promise as a target for antibody-directed cancer therapy. High levels of soluble forms of the antigen represent a barrier to directing therapy to cellular targets. The ability to develop antibodies that can selectively discriminate between membrane-bound and soluble conformations of a specific protein, and thus target only the membrane-associated antigen, is a substantive issue. We show that use of a tolerance protocol provides a route to such discrimination. Mice were tolerized with soluble mesothelin and a second round of immunizations was performed using mesothelin transfected P815 cells. RNA extracted from splenocytes was used in phage display to obtain mesothelin-specific antigen-binding fragments (Fabs) that were subsequently screened by flow cytometry and ELISA. This approach generated 147 different Fabs in 34 VH-CDR3 families. Utilizing competition assays with soluble protein and mesothelin-containing serum obtained from metastatic cancer patients, 10 of these 34 VH-CDR3 families were found to bind exclusively to the membrane-associated form of mesothelin. Epitope mapping performed for the 1H7 clone showed that it does not recognize GPI anchor. VH-CDR3 sequence analysis of all Fabs showed significant differences between Fabs selective for the membrane-associated form of the antigen and those that recognize both membrane bound and soluble forms. This work demonstrates the potential to generate an antibody specific to the membrane-bound form of mesothelin. 1H7 offers potential for therapeutic application against mesothelin-bearing tumors, which would be largely unaffected by the presence of the soluble antigen.
Collapse
Affiliation(s)
- Kamal Asgarov
- a University of Bourgogne-Franche-Comte , Besançon Cedex , France.,b ITAC Platform of Clinical Investigation Center-Biotherapy , Besançon Cedex , France
| | - Jeremy Balland
- a University of Bourgogne-Franche-Comte , Besançon Cedex , France.,b ITAC Platform of Clinical Investigation Center-Biotherapy , Besançon Cedex , France
| | - Charline Tirole
- a University of Bourgogne-Franche-Comte , Besançon Cedex , France.,b ITAC Platform of Clinical Investigation Center-Biotherapy , Besançon Cedex , France
| | - Adeline Bouard
- a University of Bourgogne-Franche-Comte , Besançon Cedex , France.,b ITAC Platform of Clinical Investigation Center-Biotherapy , Besançon Cedex , France
| | - Virginie Mougey
- a University of Bourgogne-Franche-Comte , Besançon Cedex , France.,c Blood Bank Bourgogne-Franche-comté , Porto , Portugal
| | | | | | - Vincent Zangiacomi
- b ITAC Platform of Clinical Investigation Center-Biotherapy , Besançon Cedex , France
| | - Marine Jary
- e J.Minjoz University Hospital , Besançon Cedex , France
| | - Stefano Kim
- e J.Minjoz University Hospital , Besançon Cedex , France
| | | | - Bernard Royer
- a University of Bourgogne-Franche-Comte , Besançon Cedex , France.,b ITAC Platform of Clinical Investigation Center-Biotherapy , Besançon Cedex , France.,e J.Minjoz University Hospital , Besançon Cedex , France
| | | | | | | | - Christophe Borg
- a University of Bourgogne-Franche-Comte , Besançon Cedex , France.,b ITAC Platform of Clinical Investigation Center-Biotherapy , Besançon Cedex , France.,c Blood Bank Bourgogne-Franche-comté , Porto , Portugal.,e J.Minjoz University Hospital , Besançon Cedex , France
| |
Collapse
|
19
|
Campbell IK, Leong D, Edwards KM, Rayzman V, Ng M, Goldberg GL, Wilson NJ, Scalzo-Inguanti K, Mackenzie-Kludas C, Lawlor KE, Wicks IP, Brown LE, Baz Morelli A, Panousis C, Wilson MJ, Nash AD, McKenzie BS, Andrews AE. Therapeutic Targeting of the G-CSF Receptor Reduces Neutrophil Trafficking and Joint Inflammation in Antibody-Mediated Inflammatory Arthritis. THE JOURNAL OF IMMUNOLOGY 2016; 197:4392-4402. [DOI: 10.4049/jimmunol.1600121] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023]
|
20
|
Stevens NE, Hatjopolous A, Fraser CK, Alsharifi M, Diener KR, Hayball JD. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection. Sci Rep 2016; 6:29154. [PMID: 27380890 PMCID: PMC4933909 DOI: 10.1038/srep29154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus.
Collapse
Affiliation(s)
- Natalie E Stevens
- Experimental Therapeutics Laboratory, Hanson Institute, and Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
| | - Antoinette Hatjopolous
- Experimental Therapeutics Laboratory, Hanson Institute, and Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
| | - Cara K Fraser
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Gilles Plains, Adelaide, SA, Australia
| | - Mohammed Alsharifi
- Vaccine Research Group, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Hanson Institute, and Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia.,Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, Hanson Institute, and Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia.,Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
21
|
Bagwe S, Tharappel LJP, Kaur G, Buttar HS. Bovine colostrum: an emerging nutraceutical. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2016; 12:175-85. [PMID: 25781716 DOI: 10.1515/jcim-2014-0039] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/29/2015] [Indexed: 02/02/2023]
Abstract
Nutraceutical, a term combining the words "nutrition" and "pharmaceuticals", is a food or food product that provides health benefits as an adjuvant or alternative therapy, including the treatment and prevention of infectious diseases in children and adults. There is emerging evidence that bovine colostrum (BC) may be one of the promising nutraceuticals which can prevent or mitigate various diseases in newborns and adults. Immunity-related disorders are one of the leading causes of mortality in the world. BC is rich in immunity, growth and antimicrobial factors, which promote tissue growth and the maturation of digestive tract and immune function in neonatal animals and humans. The immunoglobulins and lactoferrin present in colostrum are known to build natural immunity in newborns which helps to reduce the mortality rate in this population. Also, the side-effect profile of colostrum proteins and possible lactose intolerance is relatively less in comparison with milk. In general, BC is considered safe and well tolerated. Since colostrum has several important nutritional constituents, well-designed, double-blind, placebo-controlled studies with colostrum products should be conducted to widen its therapeutic use. The objectives of this review are to create awareness about the nutraceutical properties of colostrum and to discuss the various ongoing alternative treatments of colostrum and its active ingredients as well as to address colostrum's future nutraceutical and therapeutic implications in humans.
Collapse
|
22
|
Dixit R, Herz J, Dalton R, Booy R. Benefits of using heterologous polyclonal antibodies and potential applications to new and undertreated infectious pathogens. Vaccine 2016; 34:1152-61. [PMID: 26802604 PMCID: PMC7131169 DOI: 10.1016/j.vaccine.2016.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Passive immunotherapy using polyclonal antibodies (immunoglobulins) has been used for over a century in the treatment and post-exposure prophylaxis of various infections and toxins. Heterologous polyclonal antibodies are obtained from animals hyperimmunised with a pathogen or toxin. AIMS The aims of this review are to examine the history of animal polyclonal antibody therapy use, their development into safe and effective products and the potential application to humans for emerging and neglected infectious diseases. METHODS A literature search of OVID Medline and OVID Embase databases was undertaken to identify articles on the safety, efficacy and ongoing development of polyclonal antibodies. The search contained database-specific MeSH and EMTREE terms in combination with pertinent text-words: polyclonal antibodies and rare/neglected diseases, antivenins, immunoglobulins, serum sickness, anaphylaxis, drug safety, post marketing surveillance, rabies, human influenza, Dengue, West Nile, Nipah, Hendra, Marburg, MERS, Hemorrhagic Fever Virus, and Crimean-Congo. No language limits were applied. The final search was completed on 20.06.2015. Of 1960 articles, title searches excluded many irrelevant articles, yielding 303 articles read in full. Of these, 179 are referenced in this study. RESULTS Serum therapy was first used in the 1890s against diphtheria. Early preparation techniques yielded products contaminated with reactogenic animal proteins. The introduction of enzymatic digestion, and purification techniques substantially improved their safety profile. The removal of the Fc fragment of antibodies further reduces hypersensitivity reactions. Clinical studies have demonstrated the efficacy of polyclonal antibodies against various infections, toxins and venoms. Products are being developed against infections for which prophylactic and therapeutic options are currently limited, such as avian influenza, Ebola and other zoonotic viruses. CONCLUSIONS Polyclonal antibodies have been successfully applied to rabies, envenomation and intoxication. Polyclonal production provides an exciting opportunity to revolutionise the prognosis of both longstanding neglected tropical diseases as well as emerging infectious threats to humans.
Collapse
Affiliation(s)
- Rashmi Dixit
- The Children's Hospital, Westmead, Sydney, Australia.
| | | | | | - Robert Booy
- The Children's Hospital, Westmead, Sydney, Australia
| |
Collapse
|
23
|
Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity. mBio 2015; 6:e01024-15. [PMID: 26507227 PMCID: PMC4626850 DOI: 10.1128/mbio.01024-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8+ T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8+ T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of exposure to infectious agents, while adaptive immunity takes several days to become effective. Here we show, by using a simple lipopeptide-based TLR2 agonist, that an influenza detergent-split vaccine can be made to simultaneously stimulate and amplify both systems to provide immediate antiviral protection while giving the adaptive immune system time to implement long-term immunity. Both types of immunity induced by this approach protect against vaccine-matched as well as unrelated virus strains and potentially even against strains yet to be encountered. Conferring dual functionality to influenza vaccines is beneficial for improving community protection, particularly during periods between the onset of an outbreak and the time when a vaccine becomes available or in scenarios in which mass vaccination with a strain to which the population is immunologically naive is imperative.
Collapse
|
24
|
Abstract
Whereas active immunity refers to the process of exposing the individual to an antigen to generate an adaptive immune response, passive immunity refers to the transfer of antibodies from one individual to another. Passive immunity provides immediate but short-lived protection, lasting several weeks up to 3 or 4 months. Passive immunity can occur naturally, when maternal antibodies are transferred to the fetus through the placenta or from breast milk to the gut of the infant. It can also be produced artificially, when antibody preparations derived from sera or secretions of immunized donors or, more recently, different antibody producing platforms are transferred via systemic or mucosal route to nonimmune individuals. Passive immunization has recently become an attractive approach because of the emergence of new and drug-resistant microorganisms, diseases that are unresponsive to drug therapy and individuals with an impaired immune system who are unable to respond to conventional vaccines. This chapter addresses the contributions of natural and artificial acquired passive immunity in understanding the concept of passive immunization. We will mainly focus on administration of antibodies for protection against various infectious agents entering through mucosal surfaces.
Collapse
|
25
|
Passive broad-spectrum influenza immunoprophylaxis. INFLUENZA RESEARCH AND TREATMENT 2014; 2014:267594. [PMID: 25328697 PMCID: PMC4190013 DOI: 10.1155/2014/267594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/10/2014] [Indexed: 12/14/2022]
Abstract
Influenza is a perennial problem affecting millions of people annually with the everpresent threat of devastating pandemics. Active prophylaxis by vaccination against influenza virus is currently the main countermeasure supplemented with antivirals. However, disadvantages of this strategy include the impact of antigenic drift, necessitating constant updating of vaccine strain composition, and emerging antiviral drug resistance. The development of other options for influenza prophylaxis, particularly with broad acting agents able to provide protection in the period between the onset of a pandemic and the development of a strain specific vaccine, is of great interest. Exploitation of broad-spectrum mediators could provide barricade protection in the early critical phase of influenza virus outbreaks. Passive immunity has the potential to provide immediate antiviral effects, inhibiting virus replication, reducing virus shedding, and thereby protecting vulnerable populations in the event of an impending influenza pandemic. Here, we review passive broad-spectrum influenza prophylaxis options with a focus on harnessing natural host defenses, including interferons and antibodies.
Collapse
|
26
|
Immunization of cows with novel core glycolipid vaccine induces anti-endotoxin antibodies in bovine colostrum. Vaccine 2014; 32:6107-14. [PMID: 25242628 DOI: 10.1016/j.vaccine.2014.08.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND Translocation of gut-derived Gram-negative bacterial (GNB) lipopolysaccharide (LPS, or endotoxin) is a source of systemic inflammation that exacerbates HIV, cardiovascular and gastrointestinal diseases and malnutrition. The oral administration of bovine colostrum (BC) reduces endotoxemia in patients with impaired gut barrier function. Consequently, BC enriched in antibodies to LPS may ameliorate endotoxemia-related morbidities. We developed a detoxified J5 LPS/group B meningococcal outer membrane protein (J5dLPS/OMP) vaccine that induces antibodies against a highly conserved core region of LPS and protects against heterologous GNB infection. We now examine the ability of this vaccine to elicit anti-core endotoxin antibodies in BC. METHODS Two cohorts of pregnant cows were immunized with this vaccine in combination with FICA (Cohort 1) or Emulsigen-D (Cohort 2) adjuvants. Antibody responses to the J5 core LPS antigen were measured in both serum and colostrum and compared to antibody levels elicited by a commercially available veterinary vaccine (J5 Bacterin) comprised of heat-killed Escherichia coli O111, J5 mutant bacteria, from which the J5 LPS was purified. RESULTS The J5dLPS/OMP vaccine induced high titers of serum IgG antibody to J5 LPS in all seven cows. Both IgG and to a lesser extent IgA anti-J5 LPS antibodies were generated in the colostrum. The J5dLPS/OMP vaccine was significantly more immunogenic in mice than was the J5 Bacterin. BC enriched in anti-J5 LPS antibody reduced circulating endotoxin levels in neutropenic rats, a model of "leaky gut". CONCLUSION The J5dLPS/OMP vaccine elicits high titers of serum anti-endotoxin antibodies in cows that is passed to the colostrum. This BC enriched in anti-core LPS antibodies has the potential to reduce endotoxemia and ameliorate endotoxin-related systemic inflammation in patients with impaired gut barrier function. Since this vaccine is significantly more immunogenic than the J5 Bacterin vaccine, this J5dLPS/OMP vaccine might prove to be more useful for veterinary indications as well.
Collapse
|
27
|
Rinaldi C, Penhale WJ, Stumbles PA, Tay G, Berry CM. Modulation of innate immune responses by influenza-specific ovine polyclonal antibodies used for prophylaxis. PLoS One 2014; 9:e89674. [PMID: 24586955 PMCID: PMC3938480 DOI: 10.1371/journal.pone.0089674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
In the event of a novel influenza A virus pandemic, prophylaxis mediated by antibodies provides an adjunct control option to vaccines and antivirals. This strategy is particularly pertinent to unvaccinated populations at risk during the lag time to produce and distribute an effective vaccine. Therefore, development of effective prophylactic therapies is of high importance. Although previous approaches have used systemic delivery of monoclonal antibodies or convalescent sera, available supply is a serious limitation. Here, we have investigated intranasal delivery of influenza-specific ovine polyclonal IgG antibodies for their efficacy against homologous influenza virus challenge in a mouse model. Both influenza-specific IgG and F(ab')2 reduced clinical scores, body weight loss and lung viral loads in mice treated 1 hour before virus exposure. Full protection from disease was also observed when antibody was delivered up to 3 days prior to virus infection. Furthermore, effective prophylaxis was independent of a strong innate immune response. This strategy presents a further option for prophylactic intervention against influenza A virus using ruminants to generate a bulk supply that could potentially be used in a pandemic setting, to slow virus transmission and reduce morbidity associated with a high cytokine phenotype.
Collapse
Affiliation(s)
- Catherine Rinaldi
- Centre for Forensic Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - William J. Penhale
- Molecular and Biomedical Sciences, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Philip A. Stumbles
- Molecular and Biomedical Sciences, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Guan Tay
- Centre for Forensic Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Cassandra M. Berry
- Molecular and Biomedical Sciences, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
- * E-mail:
| |
Collapse
|
28
|
Stevens NE, Fraser CK, Alsharifi M, Brown MP, Diener KR, Hayball JD. An empirical approach towards the efficient and optimal production of influenza-neutralizing ovine polyclonal antibodies demonstrates that the novel adjuvant CoVaccine HT™ is functionally superior to Freund's adjuvant. PLoS One 2013; 8:e68895. [PMID: 23894371 PMCID: PMC3720891 DOI: 10.1371/journal.pone.0068895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 06/01/2013] [Indexed: 11/18/2022] Open
Abstract
Passive immunotherapies utilising polyclonal antibodies could have a valuable role in preventing and treating infectious diseases such as influenza, particularly in pandemic situations but also in immunocompromised populations such as the elderly, the chronically immunosuppressed, pregnant women, infants and those with chronic diseases. The aim of this study was to optimise current methods used to generate ovine polyclonal antibodies. Polyclonal antibodies to baculovirus-expressed recombinant influenza haemagglutinin from A/Puerto Rico/8/1934 H1N1 (PR8) were elicited in sheep using various immunisation regimens designed to investigate the priming immunisation route, adjuvant formulation, sheep age, and antigen dose, and to empirically ascertain which combination maximised antibody output. The novel adjuvant CoVaccine HT™ was compared to Freund’s adjuvant which is currently the adjuvant of choice for commercial production of ovine polyclonal Fab therapies. CoVaccine HT™ induced significantly higher titres of functional ovine anti-haemagglutinin IgG than Freund’s adjuvant but with fewer side effects, including reduced site reactions. Polyclonal hyperimmune sheep sera effectively neutralised influenza virus in vitro and, when given before or after influenza virus challenge, prevented the death of infected mice. Neither the age of the sheep nor the route of antigen administration appeared to influence antibody titre. Moreover, reducing the administrated dose of haemagglutinin antigen minimally affected antibody titre. Together, these results suggest a cost effective way of producing high and sustained yields of functional ovine polyclonal antibodies specifically for the prevention and treatment of globally significant diseases.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Aging/immunology
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Dose-Response Relationship, Immunologic
- Female
- Freund's Adjuvant/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Injections, Intraperitoneal
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Sheep
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Natalie E. Stevens
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, SA, Australia
- Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
| | - Cara K. Fraser
- Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Gilles Plains, SA, Australia
| | - Mohammed Alsharifi
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Michael P. Brown
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, SA, Australia
- Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Kerrilyn R. Diener
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, SA, Australia
- Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia
- * E-mail: (KRD); (JDH)
| | - John D. Hayball
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, SA, Australia
- Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
- * E-mail: (KRD); (JDH)
| |
Collapse
|
29
|
McDonald RS, Sambol AR, Heimbuch BK, Brown TL, Hinrichs SH, Wander JD. Proportional mouse model for aerosol infection by influenza. J Appl Microbiol 2012; 113:767-78. [PMID: 22809111 PMCID: PMC7166995 DOI: 10.1111/j.1365-2672.2012.05402.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 12/19/2022]
Abstract
AIMS The aim of this study was to demonstrate a prototype tool for measuring infectivity of an aerosolized human pathogen - influenza A/PR/8/34 (H1N1) virus - using a small-animal model in the Controlled Aerosol Test System (CATS). METHODS AND RESULTS Intranasal inoculation of nonadapted H1N1 virus into C57BL, BALB/c and CD-1 mice caused infection in all three species. Respiratory exposure of CD-1 mice to the aerosolized virus at graduated doses was accomplished in a modified rodent exposure apparatus. Weight change was recorded for 7 days postexposure, and viral populations in lung tissue homogenates were measured post mortem by DNA amplification (qRT-PCR), direct fluorescence and microscopic evaluation of cytopathic effect. Plots of weight change and of PCR cycle threshold vs delivered dose were linear to threshold doses of ~40 TCID(50) and ~12 TCID(50) , respectively. CONCLUSIONS MID(50) for inspired H1N1 aerosols in CD-1 mice is between 12 and 40 TCID(50) ; proportionality to dose of weight loss and viral populations makes the CD-1 mouse a useful model for measuring infectivity by inhalation. SIGNIFICANCE AND IMPACT OF THE STUDY In the CATS, this mouse-virus model provides the first quantitative method to evaluate the ability of respiratory protective technologies to attenuate the infectivity of an inspired pathogenic aerosol.
Collapse
Affiliation(s)
- R S McDonald
- Applied Research Associates, Inc, Panama City, FL, USA
| | | | | | | | | | | |
Collapse
|
30
|
A mouse model for the study of contact-dependent transmission of influenza A virus and the factors that govern transmissibility. J Virol 2012; 86:12544-51. [PMID: 22951824 DOI: 10.1128/jvi.00859-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus transmission by direct contact is not well characterized. Here, we describe a mouse model for investigation of factors regulating contact-dependent transmission. Strains within the H3N2 but not H1N1 subtype of influenza virus were transmissible, and reverse-engineered viruses representing hybrids of these subtypes showed that the viral hemagglutinin is a determinant of the transmissible phenotype. Transmission to contact mice occurred within the first 6 to 54 h after cohousing with directly infected index mice, and the proportion of contacts infected within this period was reduced if the index mice had been preinfected with a heterologous subtype virus. A threshold level of virus present in the saliva of the index mice was identified, above which the likelihood of transmission was greatly increased. There was no correlation with transmission and viral loads in the nose or lung. This model could be useful for preclinical evaluation of antiviral and vaccine efficacy in combating contact-dependent transmission of influenza.
Collapse
|
31
|
Kramski M, Lichtfuss GF, Navis M, Isitman G, Wren L, Rawlin G, Center RJ, Jaworowski A, Kent SJ, Purcell DFJ. Anti-HIV-1 antibody-dependent cellular cytotoxicity mediated by hyperimmune bovine colostrum IgG. Eur J Immunol 2012; 42:2771-81. [PMID: 22730083 DOI: 10.1002/eji.201242469] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/11/2012] [Accepted: 06/15/2012] [Indexed: 11/07/2022]
Abstract
Antibodies with antibody-dependent cellular cytotoxicity (ADCC) activity play an important role in protection against HIV-1 infection, but generating sufficient amounts of antibodies to study their protective efficacy is difficult. HIV-specific IgG can be easily and inexpensively produced in large quantities using bovine colostrum. We previously vaccinated cows with HIV-1 envelope gp140 and elicited high titers of anti-gp140-binding IgG in colostrum. In the present study, we determined whether bovine antibodies would also demonstrate specific cytotoxic activity. We found that bovine IgG bind to Fcγ-receptors (FcγRs) on human neutrophils, monocytes, and NK cells in a dose-dependent manner. Antibody-dependent killing was observed in the presence of anti-HIV-1 colostrum IgG but not nonimmune colostrum IgG. Killing was dependent on Fc and FcγR interaction since ADDC activity was not seen with F(ab')(2) fragments. ADCC activity was primarily mediated by CD14(+) monocytes with FcγRIIa (CD32a) as the major receptor responsible for monocyte-mediated ADCC in response to bovine IgG. In conclusion, we demonstrate that bovine anti-HIV colostrum IgG have robust HIV-1-specific ADCC activity and therefore offer a useful source of antibodies able to provide a rapid and potent response against HIV-1 infection. This could assist the development of novel Ab-mediated approaches for prevention of HIV-1 transmission.
Collapse
Affiliation(s)
- Marit Kramski
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kramski M, Center RJ, Wheatley AK, Jacobson JC, Alexander MR, Rawlin G, Purcell DFJ. Hyperimmune bovine colostrum as a low-cost, large-scale source of antibodies with broad neutralizing activity for HIV-1 envelope with potential use in microbicides. Antimicrob Agents Chemother 2012; 56:4310-9. [PMID: 22664963 PMCID: PMC3421555 DOI: 10.1128/aac.00453-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/23/2012] [Indexed: 11/20/2022] Open
Abstract
Bovine colostrum (first milk) contains very high concentrations of IgG, and on average 1 kg (500 g/liter) of IgG can be harvested from each immunized cow immediately after calving. We used a modified vaccination strategy together with established production systems from the dairy food industry for the large-scale manufacture of broadly neutralizing HIV-1 IgG. This approach provides a low-cost mucosal HIV preventive agent potentially suitable for a topical microbicide. Four cows were vaccinated pre- and/or postconception with recombinant HIV-1 gp140 envelope (Env) oligomers of clade B or A, B, and C. Colostrum and purified colostrum IgG were assessed for cross-clade binding and neutralization against a panel of 27 Env-pseudotyped reporter viruses. Vaccination elicited high anti-gp140 IgG titers in serum and colostrum with reciprocal endpoint titers of up to 1 × 10(5). While nonimmune colostrum showed some intrinsic neutralizing activity, colostrum from 2 cows receiving a longer-duration vaccination regimen demonstrated broad HIV-1-neutralizing activity. Colostrum-purified polyclonal IgG retained gp140 reactivity and neutralization activity and blocked the binding of the b12 monoclonal antibody to gp140, showing specificity for the CD4 binding site. Colostrum-derived anti-HIV antibodies offer a cost-effective option for preparing the substantial quantities of broadly neutralizing antibodies that would be needed in a low-cost topical combination HIV-1 microbicide.
Collapse
Affiliation(s)
- Marit Kramski
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Rob J. Center
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Jonathan C. Jacobson
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Marina R. Alexander
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Grant Rawlin
- Immuron Ltd., North Melbourne, Victoria, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
33
|
Byakwaga H, Kelly M, Purcell DFJ, French MA, Amin J, Lewin SR, Haskelberg H, Kelleher AD, Garsia R, Boyd MA, Cooper DA, Emery S. Intensification of antiretroviral therapy with raltegravir or addition of hyperimmune bovine colostrum in HIV-infected patients with suboptimal CD4+ T-cell response: a randomized controlled trial. J Infect Dis 2011; 204:1532-40. [PMID: 21930607 DOI: 10.1093/infdis/jir559] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Despite virally suppressive combination antiretroviral therapy (cART), some HIV-infected patients exhibit suboptimal CD4(+) T-cell recovery. This study aimed to determine the effect of intensification of cART with raltegravir or addition of hyperimmune bovine colostrum (HIBC) on CD4(+) T-cell count in such patients. METHODS We randomized 75 patients to 4 treatment groups to receive raltegravir, HIBC, placebo, or both raltegravir and HIBC in a factorial, double-blind study. The primary endpoint was time-weighted mean change in CD4(+) T-cell count from baseline to week 24. T-cell activation (CD38(+) and HLA-DR(+)), plasma markers of microbial translocation (lipopolysaccharide, 16S rDNA), monocyte activation (soluble (s) CD14), and HIV-RNA (lowest level of detection 4 copies/mL) were monitored. Analysis was performed using linear regression methods. RESULTS Compared with placebo, the addition of neither raltegravir nor HIBC to cART for 24 weeks resulted in a significant change in CD4(+) T-cell count (mean difference, 95% confidence interval [CI]: 3.09 cells/μL, -14.27; 20.45, P = .724 and 9.43 cells/μL, -7.81; 26.68, P = .279, respectively, intention to treat). There was no significant interaction between HIBC and raltegravir (P = .275). No correlation was found between CD4(+) T-cell count and plasma lipopolysaccharide, 16S rDNA, sCD14, or HIV-RNA. CONCLUSION The determinants of poor CD4(+) T-cell recovery following cART require further investigation. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov identifier: NCT00772590, Australia New Zealand Clinical Trials Registry: ACTRN12609000575235.
Collapse
Affiliation(s)
- Helen Byakwaga
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|