1
|
Zhou G, Nan N, Li N, Li M, Ma A, Ye Q, Wang J, Xu ZY. Active DNA Demethylation Mediated by OsGADD45a2 Regulates Growth, Development, and Blast ( Magnaporthe oryzea) Resistance in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39465494 DOI: 10.1021/acs.jafc.4c06297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
OsGADD45a1, a member of the growth arrest and DNA damage-inducible 45 (GADD45) family in rice, has a newly identified homologue, OsGADD45a2, which differs from OsGADD45a1 in only three amino acids. The role and function of the OsGADD45a2 in DNA demethylation are not well-understood and were investigated in this study. Osgadd45a2 mutants exhibited reduced height, shorter panicle length, fewer grains per panicle, and a lower seed setting rate compared with wild-type plants. Moreover, the results showed that OsGADD45a2 negatively regulates rice blast fungus resistance and exhibited high expression in various tissues. Using the 3000 Rice Genomes Project database, we identified four major haplotypes (each with over 100 cultivars) based on single-nucleotide polymorphisms in the coding sequence of OsGADD45a2. Among these, Hap4 was associated with a significantly greater plant height than Hap1-3, possibly due to a functional alteration of OsGADD45a2 linked to the SNP at position 2614993. In OsGADD45a2 overexpression lines, significant decreases in CG and CHG methylation levels were observed in protein-coding genes, leading to their upregulation. Overall, our findings indicate that OsGADD45a2 acts as a methylation regulator, mediating the expression of genes essential for plant growth and development and blast resistance.
Collapse
Affiliation(s)
- Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Nan Nan
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Mengting Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Qixin Ye
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
2
|
Althobaiti NA, Al-Abbas NS, Alsharif I, Albalawi AE, Almars AI, Basabrain AA, Jafer A, Ellatif SA, Bauthman NM, Almohaimeed HM, Soliman MH. Gadd45A-mediated autophagy regulation and its impact on Alzheimer's disease pathogenesis: Deciphering the molecular Nexus. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167353. [PMID: 39004381 DOI: 10.1016/j.bbadis.2024.167353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The growth arrest and DNA damage-inducible 45 (Gadd45) gene has been implicated in various central nervous system (CNS) functions, both normal and pathological, including aging, memory, and neurodegenerative diseases. In this study, we examined whether Gadd45A deletion triggers pathways associated with neurodegenerative diseases including Alzheimer's disease (AD). METHODS Utilizing transcriptome data from AD-associated hippocampus samples, we identified Gadd45A as a pivotal regulator of autophagy. Comprehensive analyses, including Gene Ontology enrichment and protein-protein interaction network assessments, highlighted Cdkn1A as a significant downstream target of Gadd45A. Experimental validation confirmed Gadd45A's role in modulating Cdkn1A expression and autophagy levels in hippocampal cells. We also examined the effects of autophagy on hippocampal functions and proinflammatory cytokine secretion. Additionally, a murine model was employed to validate the importance of Gadd45A in neuroinflammation and AD pathology. RESULTS Our study identified 20 autophagy regulatory factors associated with AD, with Gadd45A emerging as a critical regulator. Experimental findings demonstrated that Gadd45A influences hippocampal cell fate by reducing Cdkn1A expression and suppressing autophagic activity. Comparisons between wild-type (WT) and Gadd45A knockout (Gadd45A-/-) mice revealed that Gadd45A-/- mice exhibited significant cognitive impairments, including deficits in working and spatial memory, increased Tau hyperphosphorylation, and elevated levels of kinases involved in Tau phosphorylation in the hippocampus. Additionally, Gadd45A-/- mice showed significant increases in pro-inflammatory cytokines and decreases autophagy markers in the brain. Neurotrophin levels and dendritic spine length were also reduced in Gadd45A-/- mice, likely contributing to the observed cognitive deficits. CONCLUSIONS These findings support the direct involvement of the Gadd45A gene in AD pathogenesis, and enhancing the expression of Gadd45A may represent a promising therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Saudi Arabia
| | - Nouf S Al-Abbas
- Department of Biology, Jamoum University College, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Aishah E Albalawi
- Faculty of Science, Department of Biology, University of Tabuk, Tabuk 47913, Saudi Arabia
| | - Amany I Almars
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ammar A Basabrain
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayman Jafer
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sawsan Abd Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Nuha M Bauthman
- Department of Obstetric & Gynecology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mona H Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia.
| |
Collapse
|
3
|
Wang J, Li M, Nan N, Ma A, Ao M, Yu J, Wang X, Han K, Yun DJ, Liu B, Li N, Xu ZY. OsGADD45a1: a multifaceted regulator of rice architecture, grain yield, and blast resistance. PLANT CELL REPORTS 2024; 43:88. [PMID: 38461436 DOI: 10.1007/s00299-024-03191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
KEY MESSAGE The homolog gene of the Growth Arrest and DNA Damage-inducible 45 (GADD45) in rice functions in the regulation of plant architecture, grain yield, and blast resistance. The Growth Arrest and DNA Damage-inducible 45 (GADD45) family proteins, well-established stress sensors and tumor suppressors in mammals, serve as pivotal regulators of genotoxic stress responses and tumorigenesis. In contrast, the homolog and role of GADD45 in plants have remained unclear. Herein, using forward genetics, we identified an activation tagging mutant AC13 exhibited dwarf characteristics resulting from the loss-of-function of the rice GADD45α homolog, denoted as OsGADD45a1. osgadd45a1 mutants displayed reduced plant height, shortened panicle length, and decreased grain yield compared to the wild-type Kitaake. Conversely, no obvious differences in plant height, panicle length, or grain yield were observed between wild-type and OsGADD45a1 overexpression plants. OsGADD45a1 displayed relatively high expression in germinated seeds and panicles, with localization in both the nucleus and cytoplasm. RNA-sequencing analysis suggested a potential role for OsGADD45a1 in the regulation of photosynthesis, and binding partner identification indicates OsGADD45a1 interacts with OsRML1 to regulate rice growth. Intriguingly, our study unveiled a novel role for OsGADD45a1 in rice blast resistance, as osgadd45a1 mutant showed enhanced resistance to Magnaporthe oryzae, and the expression of OsGADD45a1 was diminished upon blast fungus treatment. The involvement of OsGADD45a1 in rice blast fungus resistance presents a groundbreaking finding. In summary, our results shed light on the multifaceted role of OsGADD45a1 in rice, encompassing biotic stress response and the modulation of several agricultural traits, including plant height, panicle length, and grain yield.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Mengting Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Nan Nan
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Min Ao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinlei Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaohang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Kangshun Han
- Rice Institute, Tonghua Academy of Agricultural Science, Tonghua, 135007, China
| | - Dae-Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 132-798, South Korea
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
4
|
Griñán-Ferré C, Jarne-Ferrer J, Bellver-Sanchis A, Ribalta-Vilella M, Barroso E, Salvador JM, Jurado-Aguilar J, Palomer X, Vázquez-Carrera M, Pallàs M. Deletion of Gadd45a Expression in Mice Leads to Cognitive and Synaptic Impairment Associated with Alzheimer's Disease Hallmarks. Int J Mol Sci 2024; 25:2595. [PMID: 38473843 DOI: 10.3390/ijms25052595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Gadd45 genes have been implicated in survival mechanisms, including apoptosis, autophagy, cell cycle arrest, and DNA repair, which are processes related to aging and life span. Here, we analyzed if the deletion of Gadd45a activates pathways involved in neurodegenerative disorders such as Alzheimer's Disease (AD). This study used wild-type (WT) and Gadd45a knockout (Gadd45a-/-) mice to evaluate AD progression. Behavioral tests showed that Gadd45a-/- mice presented lower working and spatial memory, pointing out an apparent cognitive impairment compared with WT animals, accompanied by an increase in Tau hyperphosphorylation and the levels of kinases involved in its phosphorylation in the hippocampus. Moreover, Gadd45a-/- animals significantly increased the brain's pro-inflammatory cytokines and modified autophagy markers. Notably, neurotrophins and the dendritic spine length of the neurons were reduced in Gadd45a-/- mice, which could contribute to the cognitive alterations observed in these animals. Overall, these findings demonstrate that the lack of the Gadd45a gene activates several pathways that exacerbate AD pathology, suggesting that promoting this protein's expression or function might be a promising therapeutic strategy to slow down AD progression.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028 Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035 Barcelona, Spain
- Spanish Biomedical Research Center in Neurodegenerative Diseases (CIBERNED)-National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Júlia Jarne-Ferrer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028 Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035 Barcelona, Spain
| | - Aina Bellver-Sanchis
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028 Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035 Barcelona, Spain
| | - Marta Ribalta-Vilella
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028 Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035 Barcelona, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-National Institute of Health Carlos III, 28029 Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Jesús M Salvador
- Department of Immunology and Oncology, National Center for Biotechnology/CSIC, 28049 Madrid, Spain
| | - Javier Jurado-Aguilar
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-National Institute of Health Carlos III, 28029 Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-National Institute of Health Carlos III, 28029 Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-National Institute of Health Carlos III, 28029 Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028 Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035 Barcelona, Spain
- Spanish Biomedical Research Center in Neurodegenerative Diseases (CIBERNED)-National Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Chathuranga WAG, Nikapitiya C, Kim JH, Chathuranga K, Weerawardhana A, Dodantenna N, Kim DJ, Poo H, Jung JU, Lee CH, Lee JS. Gadd45β is critical for regulation of type I interferon signaling by facilitating G3BP-mediated stress granule formation. Cell Rep 2023; 42:113358. [PMID: 37917584 DOI: 10.1016/j.celrep.2023.113358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Stress granules (SGs) constitute a signaling hub that plays a critical role in type I interferon responses. Here, we report that growth arrest and DNA damage-inducible beta (Gadd45β) act as a positive regulator of SG-mediated interferon signaling by targeting G3BP upon RNA virus infection. Gadd45β deficiency markedly impairs SG formation and SG-mediated activation of interferon signaling in vitro. Gadd45β knockout mice are highly susceptible to RNA virus infection, and their ability to produce interferon and cytokines is severely impaired. Specifically, Gadd45β interacts with the RNA-binding domain of G3BP, leading to conformational expansion of G3BP1 via dissolution of its autoinhibitory electrostatic intramolecular interaction. The acidic loop 1- and RNA-binding properties of Gadd45β markedly increase the conformational expansion and RNA-binding affinity of the G3BP1-Gadd45β complex, thereby promoting assembly of SGs. These findings suggest a role for Gadd45β as a component and critical regulator of G3BP1-mediated SG formation, which facilitates RLR-mediated interferon signaling.
Collapse
Affiliation(s)
- W A Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Jae-Hoon Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea; Livestock Products Analysis Division, Division of Animal Health, Daejeon Metropolitan City Institute of Health and Environment, Daejeon 34146, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Haryoung Poo
- Department of Biomedical Science and Engineering, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae U Jung
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRRIB), Daejeon 34141, Republic of Korea.
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea.
| |
Collapse
|
6
|
Ormazábal A, Carletti MS, Saldaño TE, Gonzalez Buitron M, Marchetti J, Palopoli N, Bateman A. Expanding the repertoire of human tandem repeat RNA-binding proteins. PLoS One 2023; 18:e0290890. [PMID: 37729217 PMCID: PMC10511089 DOI: 10.1371/journal.pone.0290890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
Protein regions consisting of arrays of tandem repeats are known to bind other molecular partners, including nucleic acid molecules. Although the interactions between repeat proteins and DNA are already widely explored, studies characterising tandem repeat RNA-binding proteins are lacking. We performed a large-scale analysis of human proteins devoted to expanding the knowledge about tandem repeat proteins experimentally reported as RNA-binding molecules. This work is timely because of the release of a full set of accurate structural models for the human proteome amenable to repeat detection using structural methods. The main goal of our analysis was to build a comprehensive set of human RNA-binding proteins that contain repeats at the sequence or structure level. Our results showed that the combination of sequence and structural methods finds significantly more tandem repeat proteins than either method alone. We identified 219 tandem repeat proteins that bind RNA molecules and characterised the overlap between repeat regions and RNA-binding regions as a first step towards assessing their functional relationship. We observed differences in the characteristics of repeat regions predicted by sequence-based or structure-based methods in terms of their sequence composition, their functions and their protein domains.
Collapse
Affiliation(s)
- Agustín Ormazábal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Matías Sebastián Carletti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Tadeo Enrique Saldaño
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Azul, Buenos Aires, Argentina
| | - Martín Gonzalez Buitron
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Julia Marchetti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
7
|
Maslakova AA, Golyshev SA, Potashnikova DM, Moisenovich AM, Orlovsky IV, Smirnova OV, Rubtsov MA. SERPINA1 long transcripts produce non-secretory alpha1-antitrypsin isoform: In vitro translation in living cells. Int J Biol Macromol 2023; 241:124433. [PMID: 37086761 DOI: 10.1016/j.ijbiomac.2023.124433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/24/2023]
Abstract
SERPINA1 is a well-studied serpin gene due to its dramatic impact on human health. Translation initiation at the main SERPINA1 start codon produces the only known alpha1-antitrypsin (AAT) isoform intended for secretion. AAT performs essential functions by inhibiting proteases and modulating immunity. However, SERPINA1 expression at the level of translation is not sufficiently studied. Here we hypothesize that the main SERPINA1 ORF can be alternatively translated, producing a non-secretory AAT isoform by either masking or excluding a signal peptide. We defined SERPINA1 long mRNA isoforms specific for prostate (DU145) and liver (HepG2) cell lines and studied their individual expression by in vitro assay. We found that all long transcripts produce both glycosylated secretory AAT-eGFP fusion protein and non-glycosylated intracellular AAT-eGFP (initiated from an alternative AUG-2 start codon), with the proportion regulated by the SERPINA1 5'-UTR. Both fusion proteins localize to distinct cellular compartments: in contrast to a fusion with the secretory AAT accumulating in the ER, the intracellular one exhibits nuclear-cytoplasmic shuttling. We detected putative endogenous AAT isoform enriching the nuclear speckles. CONCLUSION: Alternative translation initiation might be a mechanism through which SERPINA1 expands the biological diversity of its protein products. Our findings open up new prospects for the study of SERPINA1 gene expression.
Collapse
Affiliation(s)
- A A Maslakova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia.
| | - S A Golyshev
- A.N. Belozersky Institute of Physical and Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | - D M Potashnikova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - A M Moisenovich
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - I V Orlovsky
- Research Institute of Molecular and Cellular Medicine, Рeoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya, Moscow 117198, Russia
| | - O V Smirnova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - M A Rubtsov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia; Center for Industrial Technologies and Entrepreneurship, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya, Moscow 119991, Russia
| |
Collapse
|
8
|
Chandramouly G. Gadd45 in DNA Demethylation and DNA Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:55-67. [PMID: 35505162 DOI: 10.1007/978-3-030-94804-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growth arrest and DNA damage 45 (Gadd45) family genes, Gadd45A, Gadd45B, and GADD45 G are implicated as stress sensors that are rapidly induced upon genotoxic/physiological stress. They are involved in regulation of various cellular functions such as DNA repair, senescence, and cell cycle control. Gadd45 family of genes serve as tumor suppressors in response to different stimuli and defects in Gadd45 pathway can give rise to oncogenesis. More recently, Gadd45 has been shown to promote gene activation by demethylation and this function is important for transcriptional regulation and differentiation during development. Gadd45 serves as an adaptor for DNA repair factors to promote removal of 5-methylcytosine from DNA at gene specific loci. Therefore, Gadd45 serves as a powerful link between DNA repair and epigenetic gene regulation.
Collapse
Affiliation(s)
- Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Peng F, Wang L, Xiong L, Tang H, Du J, Peng C. Maackiain Modulates miR-374a/GADD45A Axis to Inhibit Triple-Negative Breast Cancer Initiation and Progression. Front Pharmacol 2022; 13:806869. [PMID: 35308218 PMCID: PMC8930825 DOI: 10.3389/fphar.2022.806869] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Breast cancer ranks as the leading cause of death in lethal malignancies among women worldwide, with a sharp increase of incidence since 2008. Triple negative breast cancer (TNBC) gives rise to the largest proportion in breast cancer-related deaths because of its aggressive growth and rapid metastasis. Hence, searching for promising targets and innovative approaches is indispensable for the TNBC treatment. Maackiain (MA), a natural compound with multiple biological activities, could be isolated from different Chinese herbs, such as Spatholobus suberectus and Sophora flavescens. It was the first time to report the anti-cancer effect of MA in TNBC. MA could suppress TNBC cell proliferation, foci formation, migration, and invasion. MA also exerted a significant inhibitory effect on tumor growth of TNBC. Furthermore, MA could induce apoptosis with an increase of GADD45α and a decrease of miR-374a. In contrast, overexpressing miR-374a would result in at least partly affecting the proapoptotic effect of MA and suppressing GADD45α stimulated by MA. These results reveal the anti-TNBC effect of MA in vitro and in vivo, providing evidence for its potential as a drug candidate utilized in TNBC therapy.
Collapse
Affiliation(s)
- Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junrong Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Cheng Peng, ; Junrong Du,
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Junrong Du,
| |
Collapse
|
10
|
Brito DV, Kupke J, Gulmez Karaca K, Oliveira AM. Regulation of neuronal plasticity by the DNA repair associated Gadd45 proteins. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100031. [PMID: 36685757 PMCID: PMC9846468 DOI: 10.1016/j.crneur.2022.100031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 01/25/2023] Open
Abstract
Neurons respond rapidly to extracellular stimuli by activating signaling pathways that modulate the function of already synthetized proteins. Alternatively, signal transduction to the cell nucleus induces de novo synthesis of proteins required for long-lasting adaptations. These complementary strategies are necessary for neuronal plasticity processes that underlie, among other functions, the formation of memories. Nonetheless, it is still not fully understood how the coupling between different stimuli and the activity of constitutively and/or de novo expressed proteins gate neuronal plasticity. Here, we discuss the molecular functions of the Growth Arrest and DNA Damage 45 (Gadd45) family of proteins in neuronal adaptation. We highlight recent findings that indicate that Gadd45 family members regulate this function through multiple cellular processes (e.g., DNA demethylation, gene expression, RNA stability, MAPK signaling). We then summarize the regulation of Gadd45 expression in neurons and put forward the hypothesis that the constitutive and neuronal activity-induced pools of Gadd45 proteins have distinct and complementary roles in modulating neuronal plasticity. Therefore, we propose that Gadd45 proteins are essential for brain function and their dysfunction might underlie pathophysiological conditions such as neuropsychiatric disorders.
Collapse
Affiliation(s)
- David V.C. Brito
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany,Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139, Faro, Portugal
| | - Janina Kupke
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Kubra Gulmez Karaca
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Kapittelweg 29, 6525, EN Nijmegen, the Netherlands
| | - Ana M.M. Oliveira
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany,Corresponding author. Institute of Neurobiology, Interdisciplinary Center for Neurosciences (IZN) Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Tian J, Locker J. Gadd45 in the Liver: Signal Transduction and Transcriptional Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:87-99. [DOI: 10.1007/978-3-030-94804-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Rivera C, Verbel-Vergara D, Arancibia D, Lappala A, González M, Guzmán F, Merello G, Lee JT, Andrés ME. Revealing RCOR2 as a regulatory component of nuclear speckles. Epigenetics Chromatin 2021; 14:51. [PMID: 34819154 PMCID: PMC8611983 DOI: 10.1186/s13072-021-00425-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/31/2021] [Indexed: 12/26/2022] Open
Abstract
Background Nuclear processes such as transcription and RNA maturation can be impacted by subnuclear compartmentalization in condensates and nuclear bodies. Here, we characterize the nature of nuclear granules formed by REST corepressor 2 (RCOR2), a nuclear protein essential for pluripotency maintenance and central nervous system development. Results Using biochemical approaches and high-resolution microscopy, we reveal that RCOR2 is localized in nuclear speckles across multiple cell types, including neurons in the brain. RCOR2 forms complexes with nuclear speckle components such as SON, SRSF7, and SRRM2. When cells are exposed to chemical stress, RCOR2 behaves as a core component of the nuclear speckle and is stabilized by RNA. In turn, nuclear speckle morphology appears to depend on RCOR2. Specifically, RCOR2 knockdown results larger nuclear speckles, whereas overexpressing RCOR2 leads to smaller and rounder nuclear speckles. Conclusion Our study suggests that RCOR2 is a regulatory component of the nuclear speckle bodies, setting this co-repressor protein as a factor that controls nuclear speckles behavior. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00425-4.
Collapse
Affiliation(s)
- Carlos Rivera
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile.,Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6624, Boston, MA, 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel Verbel-Vergara
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile
| | - Duxan Arancibia
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile
| | - Anna Lappala
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6624, Boston, MA, 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Marcela González
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile
| | - Fabián Guzmán
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile
| | - Gianluca Merello
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6624, Boston, MA, 02114, USA. .,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA.
| | - María Estela Andrés
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile.
| |
Collapse
|
13
|
Mohanan G, Das A, Rajyaguru PI. Genotoxic stress response: What is the role of cytoplasmic mRNA fate? Bioessays 2021; 43:e2000311. [PMID: 34096096 DOI: 10.1002/bies.202000311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Genotoxic stress leads to DNA damage which can be detrimental to the cell. A well-orchestrated cellular response is mounted to manage and repair the genotoxic stress-induced DNA damage. Our understanding of genotoxic stress response is derived mainly from studies focused on transcription, mRNA splicing, and protein turnover. Surprisingly not as much is understood about the role of mRNA translation and decay in genotoxic stress response. This is despite the fact that regulation of gene expression at the level of mRNA translation and decay plays a critical role in a myriad of cellular processes. This review aims to summarize some of the known findings of the role of mRNA translation and decay by focusing on two categories of examples. We discuss examples of mRNA whose fates are regulated in the cytoplasm and RNA-binding proteins that regulate mRNA fates in response to genotoxic stress.
Collapse
Affiliation(s)
- Gayatri Mohanan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amiyaranjan Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
14
|
Deckard CE, Sczepanski JT. Reversible chromatin condensation by the DNA repair and demethylation factor thymine DNA glycosylase. Nucleic Acids Res 2021; 49:2450-2459. [PMID: 33733652 PMCID: PMC7969020 DOI: 10.1093/nar/gkab040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/23/2022] Open
Abstract
Chromatin structures (and modulators thereof) play a central role in genome organization and function. Herein, we report that thymine DNA glycosylase (TDG), an essential enzyme involved in DNA repair and demethylation, has the capacity to alter chromatin structure directly through its physical interactions with DNA. Using chemically defined nucleosome arrays, we demonstrate that TDG induces decompaction of individual chromatin fibers upon binding and promotes self-association of nucleosome arrays into higher-order oligomeric structures (i.e. condensation). Chromatin condensation is mediated by TDG’s disordered polycationic N-terminal domain, whereas its C-terminal domain antagonizes this process. Furthermore, we demonstrate that TDG-mediated chromatin condensation is reversible by growth arrest and DNA damage 45 alpha (GADD45a), implying that TDG cooperates with its binding partners to dynamically control chromatin architecture. Finally, we show that chromatin condensation by TDG is sensitive to the methylation status of the underlying DNA. This new paradigm for TDG has specific implications for associated processes, such as DNA repair, DNA demethylation, and transcription, and general implications for the role of DNA modification ‘readers’ in controlling chromatin organization.
Collapse
Affiliation(s)
- Charles E Deckard
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
15
|
Feng W, Chen S, Wang J, Wang X, Chen H, Ning W, Zhang Y. DHX33 Recruits Gadd45a To Cause DNA Demethylation and Regulates a Subset of Gene Transcription. Mol Cell Biol 2020; 40:MCB.00460-19. [PMID: 32312884 PMCID: PMC7296211 DOI: 10.1128/mcb.00460-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
RNA helicase DHX33 was found to regulate the transcription of multiple genes involved in cancer development. But the underlying molecular mechanism remains unclear. Here, we found DHX33 associated extensively with gene promoters at CG-rich region. Its deficiency reduced the loading of active RNA polymerase II at gene promoters. Furthermore, we observed a functional interaction between DHX33, AP-2β, and DNA demethylation protein Gadd45a (growth arrest and DNA damage inductile protein 45a) at specific gene promoters. DHX33 is required to recruit GADD45a, thereby causing local DNA demethylation through further recruiting ten-eleven-translocation (Tet) methylcytosine dioxygenase enzyme, as manifested by reduced 5-hydroxymethyl cytosine levels for a subset of genes after DHX33 deficiency. This process might involve R-loop formation in GC skew as a guidance signal at promoter sites. Our report provides for the first time, to our knowledge, original evidence that DHX33 alters epigenetic marks and regulates specific gene transcription through interaction with Gadd45a.
Collapse
Affiliation(s)
- Weimin Feng
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shiyun Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiuling Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xingshun Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinic College of Tianjin Medical University, Tianjin, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin, China
| | - Wen Ning
- School of Life Sciences, Nankai University, Tianjin, China
| | - Yandong Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shenzhen KeYe Life Technologies, Co., Ltd., Shenzhen, China
| |
Collapse
|
16
|
Deane CAS, Brown IR. Intracellular Targeting of Heat Shock Proteins in Differentiated Human Neuronal Cells Following Proteotoxic Stress. J Alzheimers Dis 2019; 66:1295-1308. [PMID: 30412487 DOI: 10.3233/jad-180536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
HSPA6 (Hsp70B') is an inducible member of the Hsp70 (HSPA) family of heat shock proteins that is present in the human genome and not found in mouse and rat. Hence it is lacking in current animal models of neurodegenerative diseases. To advance knowledge of the little studied HSPA6, differentiated human neuronal SH-SY5Y cells were treated with the proteotoxic stress-inducing agent MG132. A robust induction of HSPA6 was apparent which localized to the periphery of MG132-induced protein aggregates in the neuronal cytoplasm. Components of the protein disaggregation/refolding machine that co-operate with Hsp70 also targeted the periphery of cytoplasmic protein aggregates, including DNAJB1 (Hsp40-1), HSPH1 (Hsp105α), and HSPB1 (Hsp27). These data suggest that HSPA6 is involved in the response of human neuronal cells to proteotoxic stress that is a feature of neurodegenerative diseases which have been characterized as protein misfolding disorders. Constitutively expressed HSPA8 (Hsc70) also localized tothe periphery of cytoplasmic protein aggregates following the treatment of differentiated human neuronal cells with MG132. HSPA8 could provide a rapid response to proteotoxic stress in neuronal cells, circumventing the time required to upregulate inducible Hsps.
Collapse
Affiliation(s)
- Catherine A S Deane
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Aparisi Rey A, Karaulanov E, Sharopov S, Arab K, Schäfer A, Gierl M, Guggenhuber S, Brandes C, Pennella L, Gruhn WH, Jelinek R, Maul C, Conrad A, Kilb W, Luhmann HJ, Niehrs C, Lutz B. Gadd45α modulates aversive learning through post-transcriptional regulation of memory-related mRNAs. EMBO Rep 2019; 20:embr.201846022. [PMID: 30948457 PMCID: PMC6549022 DOI: 10.15252/embr.201846022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 01/25/2023] Open
Abstract
Learning is essential for survival and is controlled by complex molecular mechanisms including regulation of newly synthesized mRNAs that are required to modify synaptic functions. Despite the well‐known role of RNA‐binding proteins (RBPs) in mRNA functionality, their detailed regulation during memory consolidation is poorly understood. This study focuses on the brain function of the RBP Gadd45α (growth arrest and DNA damage‐inducible protein 45 alpha, encoded by the Gadd45a gene). Here, we find that hippocampal memory and long‐term potentiation are strongly impaired in Gadd45a‐deficient mice, a phenotype accompanied by reduced levels of memory‐related mRNAs. The majority of the Gadd45α‐regulated transcripts show unusually long 3′ untranslated regions (3′UTRs) that are destabilized in Gadd45a‐deficient mice via a transcription‐independent mechanism, leading to reduced levels of the corresponding proteins in synaptosomes. Moreover, Gadd45α can bind specifically to these memory‐related mRNAs. Our study reveals a new function for extended 3′UTRs in memory consolidation and identifies Gadd45α as a novel regulator of mRNA stability.
Collapse
Affiliation(s)
- Alejandro Aparisi Rey
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Salim Sharopov
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | - Stephan Guggenhuber
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Caroline Brandes
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Luigi Pennella
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Ruth Jelinek
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christina Maul
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andrea Conrad
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christof Niehrs
- Institute of Molecular Biology, Mainz, Germany .,Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
18
|
Bai Y, Shen Y, Xu XY, Bai Y, Fang Y, Zhang M, Miao Y, Zhang X, Li JL. Growth arrest and DNA damage inducible 45-beta activates pro-inflammatory cytokines and phagocytosis in the grass carp (Ctenopharyngodon idella) after Aeromonas hydrophila infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:176-181. [PMID: 29932964 DOI: 10.1016/j.dci.2018.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Growth arrest and DNA damage inducible 45-beta (Gadd45B) is essential for mitogen-activated protein kinases (MAPK) activities, and involved in regulating growth, apoptosis, and DNA demethylation. In the present study, the cDNA of gcGadd45Ba and gcGadd45Bb in grass carp was identified. And the expression levels show that they were widely distributed in the tested tissues and showed significant immune responses both in vitro and in vivo after challenge with bacteria and pathogen-associated molecular patterns (PAMPs). Overexpression of Gadd45B significantly induced the expression of pro-inflammatory cytokines (IL-1β, IL-8, and TNF-α) and enhanced the phagocytosis activation of grass carp blood cells. These results indicate that Gadd45B plays an important role in innate immune responses.
Collapse
Affiliation(s)
- Yulin Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Chinese Academy of Fishery Sciences, Wuxi, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiao-Yan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yuqi Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yuan Fang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Meng Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yiheng Miao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Xueshu Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Jia-le Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Chinese Academy of Fishery Sciences, Wuxi, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
19
|
Su MQ, Zhou YR, Rao X, Yang H, Zhuang XH, Ke XJ, Peng GY, Zhou CL, Shen BY, Dou J. Baicalein induces the apoptosis of HCT116 human colon cancer cells via the upregulation of DEPP/Gadd45a and activation of MAPKs. Int J Oncol 2018; 53:750-760. [PMID: 29749481 DOI: 10.3892/ijo.2018.4402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/24/2018] [Indexed: 11/05/2022] Open
Abstract
Baicalein has efficient antitumor properties and has been reported to promote the apoptosis of several human cancer cell lines. Decidual protein induced by progesterone (DEPP), a transcriptional target of Forkhead Box O, was originally identified from the human endometrial stromal cell cDNA library. However, the expression and physiological functions of DEPP in human colon cancer cells remain to be fully elucidated. In the present study, it was reported that baicalein stimulated apoptosis and morphological changes of HCT116, A549 and Panc‑1 cells in a dose-dependent manner. It also upregulated the mRNA and protein levels of DEPP and growth arrest and DNA damage-inducible 45α (Gadd45a). In addition, the overexpression of DEPP promoted mitogen-activated protein kinase (MAPK) phosphorylation. To further investigate the role of DEPP and Gadd45a in baicalein-induced apoptosis, HCT116 cells were transfected with small interfering RNA against either DEPP or Gadd45a as in vitro models. Through an Annexin V/PI double staining assay, it was observed that baicalein-induced apoptosis was impaired by the inactivation of either DEPP or Gadd45a, which in turn restricted the baicalein-induced activation of caspase‑3 and caspase‑9 and phosphorylation of MAPKs. In addition, the inhibition of c‑Jun N‑terminal kinase (JNK)/p38 activity with SP600125/SB203580 decreased the expression of Gadd45a, whereas the inactivation of extracellular signal-regulated kinase with SCH772984 had no effect on the expression of Gadd45a. Taken together, these results demonstrated that baicalein induced the upregulation of DEPP and Gadd45a, which promoted the activation of MAPKs with a positive feedback loop between Gadd45a and JNK/p38, resulting in a marked apoptotic response in human colon cancer cells. These results indicated that baicalein is a potential antitumor drug for the treatment of colon cancer.
Collapse
Affiliation(s)
- Meng-Qi Su
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yi-Ran Zhou
- Department of General Surgery, Ruijin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, P.R. China
| | - Xuan Rao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong Yang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xin-Hao Zhuang
- Department of Chemistry and Biochemistry, University of Oregon, OR 97401, USA
| | - Xue-Jia Ke
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guang-Yong Peng
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Chang-Lin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bai-Yong Shen
- Department of General Surgery, Ruijin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, P.R. China
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
20
|
Liu LQ, Tian FJ, Xiong Y, Zhao Y, Song JB. Gadd45a gene silencing by RNAi promotes cell proliferation and inhibits apoptosis and senescence in skin squamous cell carcinoma through the p53 signaling pathway. J Cell Physiol 2018; 233:7424-7434. [PMID: 29663367 DOI: 10.1002/jcp.26588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/08/2018] [Indexed: 12/28/2022]
Abstract
Skin squamous cell carcinoma (SCC) is generally considered as nonaggressive lesions and mainly caused by ultraviolet (UV) radiation. Gadd45a is a key component protecting skin against UV-induced tumors. For that, the study aims to investigate the mechanism of Gadd45a gene silencing on cell proliferation, apoptosis, and senescence in nude mice with skin SCC through the p53 signaling pathway. Healthy nude mice was collected as the normal group and 40 nude mouse models of skin SCC were successfully established as the model group, which were sub-divided into five groups. The incidence, size, and weight of SCC tumor of nude mice were observed. The mRNA expression of Gadd45a, Cyclin B1, MMP-2, Bcl-2, and Bax were determined by RT-qPCR. Cell viability, cell cycle and apoptosis, cell senescence were detected by MTT assay, flow cytometry, and β-galactosidase staining, respectively. The levels of inflammatory factors and vascular endothelial growth factor (VEGF) were detected by using ELISA. The protein expression rate of mutant p53 was detected by immunohistochemistry. Mice transfected with siGadd45a showed increased tumor incidence, size, and weight. Cells transfected with siGadd45a showed decrease in expression of Gadd45a and Bax; and increase in expression of Cyclin B1, MMP-2, and Bcl-2, expression of mutant p53, IL-1α, IL-1β, IL-6, TNF-α, and VEGF. Cell apoptosis and senescence were inhibited, while cell viability and proliferation were promoted after siGadd45a treatment. The results reveal that Gadd45a silencing increases tumor cell proliferation and reduces apoptosis and senescence through the p53 signaling pathway in skin SCC.
Collapse
Affiliation(s)
- Li-Qian Liu
- Dermatological Department, Linyi People's Hospital, Linyi, P.R. China
| | - Fu-Jun Tian
- Dermatological Department, Linyi People's Hospital, Linyi, P.R. China
| | - Ying Xiong
- Dermatological Department, Linyi People's Hospital, Linyi, P.R. China
| | - Yan Zhao
- Dermatological Department, Linyi People's Hospital, Linyi, P.R. China
| | - Jian-Bo Song
- Dermatological Department, Dezhou People's Hospital, Dezhou, P.R. China
| |
Collapse
|
21
|
Capece D, D'Andrea D, Verzella D, Tornatore L, Begalli F, Bennett J, Zazzeroni F, Franzoso G. Turning an old GADDget into a troublemaker. Cell Death Differ 2018; 25:642-644. [PMID: 29511335 PMCID: PMC5864189 DOI: 10.1038/s41418-018-0087-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Daria Capece
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Daniel D'Andrea
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Daniela Verzella
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Laura Tornatore
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Federica Begalli
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Guido Franzoso
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
22
|
Gadd45a opens up the promoter regions of miR-295 facilitating pluripotency induction. Cell Death Dis 2017; 8:e3107. [PMID: 29022923 PMCID: PMC5682663 DOI: 10.1038/cddis.2017.497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/13/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) play crucial roles in the establishment of pluripotent state by controlling pluripotent network. However, the molecular mechanisms controlling miRNAs during somatic cell reprogramming remain obscure. In this study, we show Gadd45a (growth arrest and DNA-damage-inducible protein 45a) enhances reprogramming by activating miR-295. Furthermore, we show that Gadd45a binds the promoter regions of miR-295. Nuclease accessibility assay indicates that Gadd45a opens the promoter regions of miR-295. Levels of H3K9Ac and H3K27Ac on the promoter regions of miR-295 were also increased. In conclusion, our results indicate that Gadd45a relaxes the promoter regions of miR-295 and promotes the expression of miR-295 during reprogramming, implying a concise mechanism of Gadd45a and miR-290 cluster cooperation in cell-fate determination.
Collapse
|
23
|
Mannen T, Yamashita S, Tomita K, Goshima N, Hirose T. The Sam68 nuclear body is composed of two RNase-sensitive substructures joined by the adaptor HNRNPL. J Cell Biol 2017; 214:45-59. [PMID: 27377249 PMCID: PMC4932371 DOI: 10.1083/jcb.201601024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/14/2016] [Indexed: 01/21/2023] Open
Abstract
The mammalian cell nucleus contains membraneless suborganelles referred to as nuclear bodies (NBs). Some NBs are formed with an architectural RNA (arcRNA) as the structural core. Here, we searched for new NBs that are built on unidentified arcRNAs by screening for ribonuclease (RNase)-sensitive NBs using 32,651 fluorescently tagged human cDNA clones. We identified 32 tagged proteins that required RNA for their localization in distinct nuclear foci. Among them, seven RNA-binding proteins commonly localized in the Sam68 nuclear body (SNB), which was disrupted by RNase treatment. Knockdown of each SNB protein revealed that SNBs are composed of two distinct RNase-sensitive substructures. One substructure is present as a distinct NB, termed the DBC1 body, in certain conditions, and the more dynamic substructure including Sam68 joins to form the intact SNB. HNRNPL acts as the adaptor to combine the two substructures and form the intact SNB through the interaction of two sets of RNA recognition motifs with the putative arcRNAs in the respective substructures.
Collapse
Affiliation(s)
- Taro Mannen
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Seisuke Yamashita
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Kozo Tomita
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koutou 135-0064, Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
24
|
Deane CAS, Brown IR. Differential Targeting of Hsp70 Heat Shock Proteins HSPA6 and HSPA1A with Components of a Protein Disaggregation/Refolding Machine in Differentiated Human Neuronal Cells following Thermal Stress. Front Neurosci 2017; 11:227. [PMID: 28484369 PMCID: PMC5401876 DOI: 10.3389/fnins.2017.00227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/04/2017] [Indexed: 01/19/2023] Open
Abstract
Heat shock proteins (Hsps) co-operate in multi-protein machines that counter protein misfolding and aggregation and involve DNAJ (Hsp40), HSPA (Hsp70), and HSPH (Hsp105α). The HSPA family is a multigene family composed of inducible and constitutively expressed members. Inducible HSPA6 (Hsp70B') is found in the human genome but not in the genomes of mouse and rat. To advance knowledge of this little studied HSPA member, the targeting of HSPA6 to stress-sensitive neuronal sites with components of a disaggregation/refolding machine was investigated following thermal stress. HSPA6 targeted the periphery of nuclear speckles (perispeckles) that have been characterized as sites of transcription. However, HSPA6 did not co-localize at perispeckles with DNAJB1 (Hsp40-1) or HSPH1 (Hsp105α). At 3 h after heat shock, HSPA6 co-localized with these members of the disaggregation/refolding machine at the granular component (GC) of the nucleolus. Inducible HSPA1A (Hsp70-1) and constitutively expressed HSPA8 (Hsc70) co-localized at nuclear speckles with components of the machine immediately after heat shock, and at the GC layer of the nucleolus at 1 h with DNAJA1 and BAG-1. These results suggest that HSPA6 exhibits targeting features that are not apparent for HSPA1A and HSPA8.
Collapse
Affiliation(s)
- Catherine A S Deane
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto ScarboroughToronto, ON, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto ScarboroughToronto, ON, Canada
| |
Collapse
|
25
|
Deane CAS, Brown IR. Components of a mammalian protein disaggregation/refolding machine are targeted to nuclear speckles following thermal stress in differentiated human neuronal cells. Cell Stress Chaperones 2017; 22:191-200. [PMID: 27966060 PMCID: PMC5352593 DOI: 10.1007/s12192-016-0753-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 01/19/2023] Open
Abstract
Heat shock proteins (Hsps) are a set of highly conserved proteins involved in cellular repair and protective mechanisms. They counter protein misfolding and aggregation that are characteristic features of neurodegenerative diseases. Hsps act co-operatively in disaggregation/refolding machines that assemble at sites of protein misfolding and aggregation. Members of the DNAJ (Hsp40) family act as "holdases" that detect and bind misfolded proteins, while members of the HSPA (Hsp70) family act as "foldases" that refold proteins to biologically active states. HSPH1 (Hsp105α) is an important additional member of the mammalian disaggregation/refolding machine that acts as a disaggregase to promote the dissociation of aggregated proteins. Components of a disaggregation/refolding machine were targeted to nuclear speckles after thermal stress in differentiated human neuronal SH-SY5Y cells, namely: HSPA1A (Hsp70-1), DNAJB1 (Hsp40-1), DNAJA1 (Hsp40-4), and HSPH1 (Hsp105α). Nuclear speckles are rich in RNA splicing factors, and heat shock disrupts RNA splicing which recovers after stressful stimuli. Interestingly, constitutively expressed HSPA8 (Hsc70) was also targeted to nuclear speckles after heat shock with elements of a disaggregation/refolding machine. Hence, neurons have the potential to rapidly assemble a disaggregation/refolding machine after cellular stress using constitutively expressed Hsc70 without the time lag needed for synthesis of stress-inducible Hsp70. Constitutive Hsc70 is abundant in neurons in the mammalian brain and has been proposed to play a role in pre-protecting neurons from cellular stress.
Collapse
Affiliation(s)
- Catherine A S Deane
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
26
|
Becirovic L, Brown IR. Targeting of Heat Shock Protein HSPA6 (HSP70B') to the Periphery of Nuclear Speckles is Disrupted by a Transcription Inhibitor Following Thermal Stress in Human Neuronal Cells. Neurochem Res 2016; 42:406-414. [PMID: 27743288 DOI: 10.1007/s11064-016-2084-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (Hsps) are a set of highly conserved proteins involved in cellular repair and protective mechanisms. The intracellular localization of inducible members of the HSPA (HSP70) family can be used as an index to identify stress-sensitive sites in differentiated human neuronal cells. Following thermal stress, the little studied HSPA6 (HSP70B') was targeted to the periphery of nuclear speckles (perispeckles) that are sites of transcription factories. Triptolide, a fast-acting transcription inhibitor, knocked down levels of the large subunit of RNA polymerase II, RPB1, during the time-frame when HSPA6 associated with perispeckles. Administration of triptolide to heat shocked human neuronal SH-SY5Y cells, disrupted HSPA6 localization to perispeckles, suggesting the involvement of HSPA6 in transcriptional recovery after stress. The HSPA6 gene is present in the human genome but is not found in the genomes of the mouse and rat. Hence current animal models of neurodegenerative diseases lack a member of the HSPA family that exhibits the feature of stress-induced targeting to perispeckles.
Collapse
Affiliation(s)
- Larissa Becirovic
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
27
|
Chen K, Long Q, Wang T, Zhao D, Zhou Y, Qi J, Wu Y, Li S, Chen C, Zeng X, Yang J, Zhou Z, Qin W, Liu X, Li Y, Li Y, Huang X, Qin D, Chen J, Pan G, Schöler HR, Xu G, Liu X, Pei D. Gadd45a is a heterochromatin relaxer that enhances iPS cell generation. EMBO Rep 2016; 17:1641-1656. [PMID: 27702986 DOI: 10.15252/embr.201642402] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022] Open
Abstract
Reprogramming of somatic cells to induced pluripotent stem cells rewrites the code of cell fate at the chromatin level. Yet, little is known about this process physically. Here, we describe a fluorescence recovery after photobleaching method to assess the dynamics of heterochromatin/euchromatin and show significant heterochromatin loosening at the initial stage of reprogramming. We identify growth arrest and DNA damage-inducible protein a (Gadd45a) as a chromatin relaxer in mouse embryonic fibroblasts, which also enhances somatic cell reprogramming efficiency. We show that residue glycine 39 (G39) in Gadd45a is essential for interacting with core histones, opening chromatin and enhancing reprogramming. We further demonstrate that Gadd45a destabilizes histone-DNA interactions and facilitates the binding of Yamanaka factors to their targets for activation. Our study provides a method to screen factors that impact on chromatin structure in live cells, and identifies Gadd45a as a chromatin relaxer.
Collapse
Affiliation(s)
- Keshi Chen
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Long
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tao Wang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Danyun Zhao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanshuang Zhou
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Juntao Qi
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Wu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shengbiao Li
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chunlan Chen
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoming Zeng
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jianguo Yang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zisong Zhou
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weiwen Qin
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiyin Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuxing Li
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yingying Li
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaofen Huang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dajiang Qin
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiekai Chen
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Guangjin Pan
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hans R Schöler
- Department for Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Guoliang Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xingguo Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
28
|
Gadd45β ameliorates L-DOPA-induced dyskinesia in a Parkinson's disease mouse model. Neurobiol Dis 2016; 89:169-79. [PMID: 26875664 DOI: 10.1016/j.nbd.2016.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 12/15/2022] Open
Abstract
The dopamine precursor 3,4-dihydroxyphenyl-l-alanine (L-DOPA) is currently the most efficacious pharmacotherapy for Parkinson's disease (PD). However, long-term L-DOPA treatment leads to the development of abnormal involuntary movements (AIMs) in patients and animal models of PD. Recently, involvement of growth arrest and DNA damage-inducible 45β (Gadd45β) was reported in neurological and neurobehavioral dysfunctions. However, little is known about the role of Gadd45β in the dopaminergic nigrostriatal pathway or L-DOPA-induced dyskinesia (LID). To address this issue, we prepared an animal model of PD using unilateral 6-hydroxydopamine (6-OHDA) lesions in the substantia nigra of Gadd45β(+/+) and Gadd45β(-/-) mice. Dyskinetic symptoms were triggered by repetitive administration of L-DOPA in these 6-OHDA-lesioned mice. Whereas dopamine denervation in the dorsal striatum decreased Gadd45β mRNA, chronic L-DOPA treatment significantly increased Gadd45β mRNA expression in the 6-OHDA-lesioned striatum of wild-type mice. Using unilaterally 6-OHDA-lesioned Gadd45β(+/+) and Gadd45β(-/-) mice, we found that mice lacking Gadd45β exhibited long-lasting increases in AIMs following repeated administration of L-DOPA. By contrast, adeno-associated virus-mediated expression of Gadd45β in the striatum reduced AIMs in Gadd45β knockout mice. The deficiency of Gadd45β in LID increased expression of ΔFosB and c-Fos in the lesioned striatum 90 min after the last administration of L-DOPA following 11days of daily L-DOPA treatments. These data suggest that the increased expression of Gadd45β induced by repeated administration of L-DOPA may be beneficial in patients with PD.
Collapse
|
29
|
|
30
|
Khalouei S, Chow AM, Brown IR. Localization of heat shock protein HSPA6 (HSP70B') to sites of transcription in cultured differentiated human neuronal cells following thermal stress. J Neurochem 2014; 131:743-54. [DOI: 10.1111/jnc.12970] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Sam Khalouei
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| | - Ari M. Chow
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| | - Ian R. Brown
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| |
Collapse
|
31
|
Arab K, Park YJ, Lindroth AM, Schäfer A, Oakes C, Weichenhan D, Lukanova A, Lundin E, Risch A, Meister M, Dienemann H, Dyckhoff G, Herold-Mende C, Grummt I, Niehrs C, Plass C. Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell 2014; 55:604-14. [PMID: 25087872 DOI: 10.1016/j.molcel.2014.06.031] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/14/2014] [Accepted: 06/24/2014] [Indexed: 12/26/2022]
Abstract
DNA methylation is a dynamic and reversible process that governs gene expression during development and disease. Several examples of active DNA demethylation have been documented, involving genome-wide and gene-specific DNA demethylation. How demethylating enzymes are targeted to specific genomic loci remains largely unknown. We show that an antisense lncRNA, termed TARID (for TCF21 antisense RNA inducing demethylation), activates TCF21 expression by inducing promoter demethylation. TARID interacts with both the TCF21 promoter and GADD45A (growth arrest and DNA-damage-inducible, alpha), a regulator of DNA demethylation. GADD45A in turn recruits thymine-DNA glycosylase for base excision repair-mediated demethylation involving oxidation of 5-methylcytosine to 5-hydroxymethylcytosine in the TCF21 promoter by ten-eleven translocation methylcytosine dioxygenase proteins. The results reveal a function of lncRNAs, serving as a genomic address label for GADD45A-mediated demethylation of specific target genes.
Collapse
Affiliation(s)
- Khelifa Arab
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yoon Jung Park
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anders M Lindroth
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Andrea Schäfer
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Christopher Oakes
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Annekatrin Lukanova
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Medical Biosciences, Department of Pathology, Umea University, 90185 Umea, Sweden
| | - Eva Lundin
- Medical Biosciences, Department of Pathology, Umea University, 90185 Umea, Sweden
| | - Angela Risch
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Michael Meister
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany; Translational Research Unit, Thoraxklinik-Heidelberg gGmbH University of Heidelberg, 69120 Heidelberg, Germany
| | - Hendrik Dienemann
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany; Department of Thoracic Surgery, Thoraxklinik-Heidelberg gGmbH, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gerhard Dyckhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, 69120 Heidelberg, Germany; Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; The German Cancer Consortium, 69120 Heidelberg, Germany.
| |
Collapse
|
32
|
Epigenetically regulated microRNAs in Alzheimer's disease. Neurobiol Aging 2014; 35:731-45. [DOI: 10.1016/j.neurobiolaging.2013.10.082] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/09/2013] [Accepted: 10/16/2013] [Indexed: 12/12/2022]
|
33
|
Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, Dahal U, Lou XM, Liu X, Huang J, Yuan WP, Zhu XF, Cheng T, Zhao YL, Wang X, Danielsen JMR, Liu F, Yang YG. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014; 24:177-89. [PMID: 24407421 PMCID: PMC3915904 DOI: 10.1038/cr.2014.3] [Citation(s) in RCA: 1639] [Impact Index Per Article: 163.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/21/2022] Open
Abstract
The methyltransferase like 3 (METTL3)-containing methyltransferase complex catalyzes the N6-methyladenosine (m6A) formation, a novel epitranscriptomic marker; however, the nature of this complex remains largely unknown. Here we report two new components of the human m6A methyltransferase complex, Wilms' tumor 1-associating protein (WTAP) and methyltransferase like 14 (METTL14). WTAP interacts with METTL3 and METTL14, and is required for their localization into nuclear speckles enriched with pre-mRNA processing factors and for catalytic activity of the m6A methyltransferase in vivo. The majority of RNAs bound by WTAP and METTL3 in vivo represent mRNAs containing the consensus m6A motif. In the absence of WTAP, the RNA-binding capability of METTL3 is strongly reduced, suggesting that WTAP may function to regulate recruitment of the m6A methyltransferase complex to mRNA targets. Furthermore, transcriptomic analyses in combination with photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) illustrate that WTAP and METTL3 regulate expression and alternative splicing of genes involved in transcription and RNA processing. Morpholino-mediated knockdown targeting WTAP and/or METTL3 in zebrafish embryos caused tissue differentiation defects and increased apoptosis. These findings provide strong evidence that WTAP may function as a regulatory subunit in the m6A methyltransferase complex and play a critical role in epitranscriptomic regulation of RNA metabolism.
Collapse
Affiliation(s)
- Xiao-Li Ping
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Bao-Fa Sun
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Xiao
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xin Yang
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Jia Wang
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Samir Adhikari
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Shi
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Lv
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-Sheng Chen
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Zhao
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ang Li
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Yang
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ujwal Dahal
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Min Lou
- Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Liu
- Center for Structural Biology, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Zhejiang 310058, China
| | - Wei-Ping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Tianjin 300041, China
| | - Xiao-Fan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Tianjin 300041, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Tianjin 300041, China
| | - Yong-Liang Zhao
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinquan Wang
- Center for Structural Biology, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jannie M Rendtlew Danielsen
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Copenhagen, Denmark
| | - Feng Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun-Gui Yang
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
34
|
Schomacher L. Mammalian DNA demethylation: multiple faces and upstream regulation. Epigenetics 2013; 8:679-84. [PMID: 23803967 PMCID: PMC3781186 DOI: 10.4161/epi.24977] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 01/01/2023] Open
Abstract
DNA cytosine methylation is a reversible epigenetic mark regulating gene expression. Aberrant methylation profiles are concomitant with developmental defects and cancer. Numerous studies in the past decade have identified enzymes and pathways responsible for active DNA demethylation both on a genome-wide as well as gene-specific scale. Recent findings have strengthened the idea that 5-methylcytosine oxidation catalyzed by members of the ten-eleven translocation (Tet1-3) oxygenases in conjunction with replication-coupled dilution of the conversion products causes the majority of genome-wide erasure of methylation marks during early development. In contrast, short and long patch DNA excision repair seems to be implicated mainly in gene-specific demethylation. Growth arrest and DNA damage-inducible protein 45 a (Gadd45a) regulates gene-specific demethylation within regulatory sequences of limited lengths raising the question of how such site specificity is achieved. A new study identified the protein inhibitor of growth 1 (Ing1) as a reader of the active chromatin mark histone H3 lysine 4 trimethylation (H3K4me3). Ing1 binds and directs Gadd45a to target sites, thus linking the histone code with DNA demethylation.
Collapse
|
35
|
Schäfer A, Karaulanov E, Stapf U, Döderlein G, Niehrs C. Ing1 functions in DNA demethylation by directing Gadd45a to H3K4me3. Genes Dev 2013; 27:261-73. [PMID: 23388825 DOI: 10.1101/gad.186916.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Active DNA demethylation regulates epigenetic gene activation in numerous processes, but how the target site specificity of DNA demethylation is determined and what factors are involved are still poorly understood. Here we show that the tumor suppressor inhibitor of growth protein 1 (Ing1) is required for targeting active DNA demethylation. Ing1 functions by recruiting the regulator of DNA demethylation growth arrest and DNA damage protein 45a (Gadd45a) to histone H3 trimethylated at Lys 4 (H3K4me3). We show that reduced H3K4 methylation impairs recruitment of Gadd45a/Ing1 and gene-specific DNA demethylation. Our results indicate that histone methylation directs DNA demethylation.
Collapse
|
36
|
Hoffman B, Liebermann DA. Gadd45 in modulation of solid tumors and leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:21-33. [PMID: 24104471 DOI: 10.1007/978-1-4614-8289-5_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The stress response gadd45 gene family participates in cell cycle control, cell survival, apoptosis, maintenance of genomic stability, DNA repair, and active DNA demethylation, in response to environmental and physiological stress including oncogenic stress. Given these diverse functions, it is anticipated that gadd45 genes can influence the initiation and progression of malignancy and the response to different treatments. This chapter will provide an overview of how the different members of the gadd45 gene family are expressed in different tumors and leukemia, how this may impact on progression of disease, and what happens when expression is manipulated. Studies from human tumor/leukemia samples, cell lines, and animal models are included in this review. An overriding theme is that each of the gadd45 genes has both tumor suppressor and tumor promoter functions, dependent on the tissue/cell type and transforming event.
Collapse
Affiliation(s)
- Barbara Hoffman
- Temple University School of Medicine, Philadelphia, PA, USA,
| | | |
Collapse
|
37
|
Schäfer A. Gadd45 proteins: key players of repair-mediated DNA demethylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:35-50. [PMID: 24104472 DOI: 10.1007/978-1-4614-8289-5_3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The three growth arrest and DNA damage 45 (Gadd45) family genes encode for stress-response proteins that are rapidly induced upon cellular stress or differentiation cues. They are well-characterized regulators of cell cycle, senescence, survival, and apoptosis. More recently, it has become clear that Gadd45 proteins promote active DNA demethylation thereby mediating gene activation. This epigenetic function of Gadd45 is important for differentiation and transcriptional regulation during development. Mechanistically, Gadd45 acts as an adapter for DNA repair factors at gene-specific loci to promote removal of 5-methylcytosine from DNA. Hence, Gadd45 is a nexus between DNA repair and epigenetic gene regulation.
Collapse
|
38
|
Gadd45 in the Liver: Signal Transduction and Transcriptional Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:69-80. [DOI: 10.1007/978-1-4614-8289-5_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Moskalev A, Plyusnina E, Shaposhnikov M, Shilova L, Kazachenok A, Zhavoronkov A. The role of D-GADD45 in oxidative, thermal and genotoxic stress resistance. Cell Cycle 2012; 11:4222-41. [PMID: 23095639 PMCID: PMC3524218 DOI: 10.4161/cc.22545] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a relationship between various cellular stress factors and aging. In earlier studies, we demonstrated that overexpression of the D-GADD45 gene increases the life span of Drosophila melanogaster. In this study, we investigate the relationship between D-GADD45 activity and resistance to oxidative, genotoxic and thermal stresses as well as starvation. In most cases, flies with constitutive and conditional D-GADD45 overexpression in the nervous system were more stress-resistant than ones without overexpression. At the same time, most of the studied stress factors increased D-GADD45 expression in the wild-type strain. The lifespan-extending effect of D-GADD45 overexpression was also retained after exposure to chronic and acute gamma-irradiation, with doses of 40 сGy and 30 Gy, respectively. However, knocking out D-GADD45 resulted in a significant reduction in lifespan, lack of radiation hormesis and radioadaptive response. A dramatic decrease in the spontaneous level of D-GADD45 expression was observed in the nervous system as age progressed, which may be one of the causes of the age-related deterioration of organismal stress resistance. Thus, D-GADD45 expression is activated by most of the studied stress factors, and D-GADD45 overexpression resulted in an increase of stress resistance.
Collapse
Affiliation(s)
- Alexey Moskalev
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology, Komi Science Center of Russian Academy of Sciences, Syktyvkar, Russia.
| | | | | | | | | | | |
Collapse
|
40
|
Abnormal levels of Gadd45alpha in developing neocortex impair neurite outgrowth. PLoS One 2012; 7:e44207. [PMID: 22970179 PMCID: PMC3435417 DOI: 10.1371/journal.pone.0044207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/30/2012] [Indexed: 12/13/2022] Open
Abstract
To better understand the short and long-term effects of stress on the developing cerebral cortex, it is necessary to understand how early stress response genes protect or permanently alter cells. One family of highly conserved, stress response genes is the growth arrest and DNA damage-45 (Gadd45) genes. The expression of these genes is induced by a host of genotoxic, drug, and environmental stressors. Here we examined the impact of altering the expression of Gadd45alpha (Gadd45a), a member of the Gadd45 protein family that is expressed throughout the developing cortices of mice and humans. To manipulate levels of Gadd45a protein in developing mouse cortex, we electroporated cDNA plasmids encoding either Gadd45a or Gadd45a shRNA to either overexpress or knockdown Gadd45a levels in the developing cortices of mice, respectively. The effects of these manipulations were assessed by examining the fates and morphologies of the labeled neurons. Gadd45a overexpression both in vitro and in vivo significantly impaired the morphology of neurons, decreasing neurite complexity, inducing soma hypertrophy and increasing cell death. Knockdown of Gadd45a partially inhibited neuronal migration and reduced neurite complexity, an effect that was reversed in the presence of an shRNA-resistant Gadd45a. Finally, we found that shRNA against MEKK4, a direct target of Gadd45a, also stunted neurite outgrowth. Our findings suggest that the expression of Gadd45a in normal, developing brain is tightly regulated and that treatments or environmental stimuli that alter its expression could produce significant changes in neuronal circuitry development.
Collapse
|
41
|
Ebert SM, Dyle MC, Kunkel SD, Bullard SA, Bongers KS, Fox DK, Dierdorff JM, Foster ED, Adams CM. Stress-induced skeletal muscle Gadd45a expression reprograms myonuclei and causes muscle atrophy. J Biol Chem 2012; 287:27290-301. [PMID: 22692209 DOI: 10.1074/jbc.m112.374777] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diverse stresses including starvation and muscle disuse cause skeletal muscle atrophy. However, the molecular mechanisms of muscle atrophy are complex and not well understood. Here, we demonstrate that growth arrest and DNA damage-inducible 45a protein (Gadd45a) is a critical mediator of muscle atrophy. We identified Gadd45a through an unbiased search for potential downstream mediators of the stress-inducible, pro-atrophy transcription factor ATF4. We show that Gadd45a is required for skeletal muscle atrophy induced by three distinct skeletal muscle stresses: fasting, muscle immobilization, and muscle denervation. Conversely, forced expression of Gadd45a in muscle or cultured myotubes induces atrophy in the absence of upstream stress. We show that muscle-specific ATF4 knock-out mice have a reduced capacity to induce Gadd45a mRNA in response to stress, and as a result, they undergo less atrophy in response to fasting or muscle immobilization. Interestingly, Gadd45a is a myonuclear protein that induces myonuclear remodeling and a comprehensive program for muscle atrophy. Gadd45a represses genes involved in anabolic signaling and energy production, and it induces pro-atrophy genes. As a result, Gadd45a reduces multiple barriers to muscle atrophy (including PGC-1α, Akt activity, and protein synthesis) and stimulates pro-atrophy mechanisms (including autophagy and caspase-mediated proteolysis). These results elucidate a critical stress-induced pathway that reprograms muscle gene expression to cause atrophy.
Collapse
Affiliation(s)
- Scott M Ebert
- Department of and Molecular Physiology and Biophysics and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Niehrs C, Schäfer A. Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol 2012; 22:220-7. [PMID: 22341196 DOI: 10.1016/j.tcb.2012.01.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/23/2011] [Accepted: 01/05/2012] [Indexed: 11/13/2022]
Abstract
How DNA methylation patterns are established, maintained and remodeled is incompletely understood, however, it has become clear that DNA methylation is reversible and dynamic as a result of enzymatic DNA demethylation. Several different mechanisms that may account for demethylation have recently been put forward and all seem to involve DNA repair. Here, we review DNA demethylation mediated by multifunctional growth arrest and DNA damage 45 (Gadd45) protein family members which mediate DNA demethylation during cell differentiation and stress response. Gadd45 recruits nucleotide and/or base excision repair factors to gene-specific loci and acts as an adapter between repair factors and chromatin, thereby creating a nexus between epigenetics and DNA repair.
Collapse
|
43
|
Moskalev AA, Smit-McBride Z, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Tacutu R, Fraifeld VE. Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing Res Rev 2012; 11:51-66. [PMID: 21986581 PMCID: PMC3765067 DOI: 10.1016/j.arr.2011.09.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/25/2011] [Accepted: 09/27/2011] [Indexed: 12/12/2022]
Abstract
The Gadd45 proteins have been intensively studied, in view of their important role in key cellular processes. Indeed, the Gadd45 proteins stand at the crossroad of the cell fates by controlling the balance between cell (DNA) repair, eliminating (apoptosis) or preventing the expansion of potentially dangerous cells (cell cycle arrest, cellular senescence), and maintaining the stem cell pool. However, the biogerontological aspects have not thus far received sufficient attention. Here we analyzed the pathways and modes of action by which Gadd45 members are involved in aging, longevity and age-related diseases. Because of their pleiotropic action, a decreased inducibility of Gadd45 members may have far-reaching consequences including genome instability, accumulation of DNA damage, and disorders in cellular homeostasis - all of which may eventually contribute to the aging process and age-related disorders (promotion of tumorigenesis, immune disorders, insulin resistance and reduced responsiveness to stress). Most recently, the dGadd45 gene has been identified as a longevity regulator in Drosophila. Although further wide-scale research is warranted, it is becoming increasingly clear that Gadd45s are highly relevant to aging, age-related diseases (ARDs) and to the control of life span, suggesting them as potential therapeutic targets in ARDs and pro-longevity interventions.
Collapse
Affiliation(s)
- Alexey A Moskalev
- Group of Molecular Radiobiology and Gerontology, Institute of Biology, Komi Science Center of Russian Academy of Sciences.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lee B, Morano A, Porcellini A, Muller MT. GADD45α inhibition of DNMT1 dependent DNA methylation during homology directed DNA repair. Nucleic Acids Res 2011; 40:2481-93. [PMID: 22135303 PMCID: PMC3315326 DOI: 10.1093/nar/gkr1115] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this work, we examine regulation of DNA methyltransferase 1 (DNMT1) by the DNA damage inducible protein, GADD45α. We used a system to induce homologous recombination (HR) at a unique double-strand DNA break in a GFP reporter in mammalian cells. After HR, the repaired DNA is hypermethylated in recombinant clones showing low GFP expression (HR-L expressor class), while in high expressor recombinants (HR-H clones) previous methylation patterns are erased. GADD45α, which is transiently induced by double-strand breaks, binds to chromatin undergoing HR repair. Ectopic overexpression of GADD45α during repair increases the HR-H fraction of cells (hypomethylated repaired DNA), without altering the recombination frequency. Conversely, silencing of GADD45α increases methylation of the recombined segment and amplifies the HR-L expressor (hypermethylated) population. GADD45α specifically interacts with the catalytic site of DNMT1 and inhibits methylation activity in vitro. We propose that double-strand DNA damage and the resulting HR process involves precise, strand selected DNA methylation by DNMT1 that is regulated by GADD45α. Since GADD45α binds with high avidity to hemimethylated DNA intermediates, it may also provide a barrier to spreading of methylation during or after HR repair.
Collapse
Affiliation(s)
- Bongyong Lee
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32826-3227, USA
| | | | | | | |
Collapse
|
45
|
Chahwan R, Edelmann W, Scharff MD, Roa S. Mismatch-mediated error prone repair at the immunoglobulin genes. Biomed Pharmacother 2011; 65:529-36. [PMID: 22100214 DOI: 10.1016/j.biopha.2011.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
The generation of effective antibodies depends upon somatic hypermutation (SHM) and class-switch recombination (CSR) of antibody genes by activation induced cytidine deaminase (AID) and the subsequent recruitment of error prone base excision and mismatch repair. While AID initiates and is required for SHM, more than half of the base changes that accumulate in V regions are not due to the direct deamination of dC to dU by AID, but rather arise through the recruitment of the mismatch repair complex (MMR) to the U:G mismatch created by AID and the subsequent perversion of mismatch repair from a high fidelity process to one that is very error prone. In addition, the generation of double-strand breaks (DSBs) is essential during CSR, and the resolution of AID-generated mismatches by MMR to promote such DSBs is critical for the efficiency of the process. While a great deal has been learned about how AID and MMR cause hypermutations and DSBs, it is still unclear how the error prone aspect of these processes is largely restricted to antibody genes. The use of knockout models and mice expressing mismatch repair proteins with separation-of-function point mutations have been decisive in gaining a better understanding of the roles of each of the major MMR proteins and providing further insight into how mutation and repair are coordinated. Here, we review the cascade of MMR factors and repair signals that are diverted from their canonical error free role and hijacked by B cells to promote genetic diversification of the Ig locus. This error prone process involves AID as the inducer of enzymatically-mediated DNA mismatches, and a plethora of downstream MMR factors acting as sensors, adaptors and effectors of a complex and tightly regulated process from much of which is not yet well understood.
Collapse
Affiliation(s)
- Richard Chahwan
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave-Chanin 404, Bronx, NY 10461, United States
| | | | | | | |
Collapse
|