1
|
de Matos Silva S, Echeverri CR, Mendes-Giannini MJS, Fusco-Almeida AM, Gonzalez A. Common virulence factors between Histoplasma and Paracoccidioides: Recognition of Hsp60 and Enolase by CR3 and plasmin receptors in host cells. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100246. [PMID: 39022313 PMCID: PMC11253281 DOI: 10.1016/j.crmicr.2024.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Over the last two decades, the incidence of Invasive Fungal Infections (IFIs) globally has risen, posing a considerable challenge despite available antifungal therapies. Addressing this, the World Health Organization (WHO) prioritized research on specific fungi, notably Histoplasma spp. and Paracoccidioides spp. These dimorphic fungi have a mycelial life cycle in soil and a yeast phase associated with tissues of mammalian hosts. Inhalation of conidia and mycelial fragments initiates the infection, crucially transforming into the yeast form within the host, influenced by factors like temperature, host immunity, and hormonal status. Survival and multiplication within alveolar macrophages are crucial for disease progression, where innate immune responses play a pivotal role in overcoming physical barriers. The transition to pathogenic yeast, triggered by increased temperature, involves yeast phase-specific gene expression, closely linked to infection establishment and pathogenicity. Cell adhesion mechanisms during host-pathogen interactions are intricately linked to fungal virulence, which is critical for tissue colonization and disease development. Yeast replication within macrophages leads to their rupture, aiding pathogen dissemination. Immune cells, especially macrophages, dendritic cells, and neutrophils, are key players during infection control, with macrophages crucial for defense, tissue integrity, and pathogen elimination. Recognition of common virulence molecules such as heat- shock protein-60 (Hsp60) and enolase by pattern recognition receptors (PRRs), mainly via the complement receptor 3 (CR3) and plasmin receptor pathways, respectively, could be pivotal in host-pathogen interactions for Histoplasma spp. and Paracoccidioides spp., influencing adhesion, phagocytosis, and inflammatory regulation. This review provides a comprehensive overview of the dynamic of these two IFIs between host and pathogen. Further research into these fungi's virulence factors promises insights into pathogenic mechanisms, potentially guiding the development of effective treatment strategies.
Collapse
Affiliation(s)
- Samanta de Matos Silva
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Carolina Rodriguez Echeverri
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Maria José Soares Mendes-Giannini
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
| | - Ana Marisa Fusco-Almeida
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
| | - Angel Gonzalez
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
2
|
Pires ACMDS, Carvalho AR, Vaso CO, Mendes-Giannini MJS, Singulani JDL, Fusco-Almeida AM. Influence of Zinc on Histoplasma capsulatum Planktonic and Biofilm Cells. J Fungi (Basel) 2024; 10:361. [PMID: 38786716 PMCID: PMC11122510 DOI: 10.3390/jof10050361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 05/25/2024] Open
Abstract
Histoplasma capsulatum causes a fungal respiratory disease. Some studies suggest that the fungus requires zinc to consolidate the infection. This study aimed to investigate the influence of zinc and the metal chelator TPEN on the growth of Histoplasma in planktonic and biofilm forms. The results showed that zinc increased the metabolic activity, cell density, and cell viability of planktonic growth. Similarly, there was an increase in biofilm metabolic activity but no increase in biomass or extracellular matrix production. N'-N,N,N,N-tetrakis-2-pyridylmethylethane-1,2 diamine (TPEN) dramatically reduced the same parameters in the planktonic form and resulted in a decrease in metabolic activity, biomass, and extracellular matrix production for the biofilm form. Therefore, the unprecedented observations in this study highlight the importance of zinc ions for the growth, development, and proliferation of H. capsulatum cells and provide new insights into the role of metal ions for biofilm formation in the dimorphic fungus Histoplasma, which could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Ana Carolina Moreira da Silva Pires
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Angélica Romão Carvalho
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Junya de Lacorte Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| |
Collapse
|
3
|
Marques PH, Tiwari S, Felice AG, Jaiswal AK, Aburjaile FF, Azevedo V, Silva-Vergara ML, Ferreira-Paim K, Soares SDC, Fonseca FM. Design of a Multi-Epitope Vaccine against Histoplasma capsulatum through Immunoinformatics Approaches. J Fungi (Basel) 2024; 10:43. [PMID: 38248954 PMCID: PMC10817582 DOI: 10.3390/jof10010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Histoplasmosis is a widespread systemic disease caused by Histoplasma capsulatum, prevalent in the Americas. Despite its significant morbidity and mortality rates, no vaccines are currently available. Previously, five vaccine targets and specific epitopes for H. capsulatum were identified. Immunoinformatics has emerged as a novel approach for determining the main immunogenic components of antigens through in silico methods. Therefore, we predicted the main helper and cytotoxic T lymphocytes and B-cell epitopes for these targets to create a potential multi-epitope vaccine known as HistoVAC-TSFM. A total of 38 epitopes were found: 23 common to CTL and B-cell responses, 11 linked to HTL and B cells, and 4 previously validated epitopes associated with the B subunit of cholera toxin, a potent adjuvant. In silico evaluations confirmed the stability, non-toxicity, non-allergenicity, and non-homology of these vaccines with the host. Notably, the vaccine exhibited the potential to trigger both innate and adaptive immune responses, likely involving the TLR4 pathway, as supported by 3D modeling and molecular docking. The designed HistoVAC-TSFM appears promising against Histoplasma, with the ability to induce important cytokines, such as IFN-γ, TNF-α, IL17, and IL6. Future studies could be carried out to test the vaccine's efficacy in in vivo models.
Collapse
Affiliation(s)
- Pedro Henrique Marques
- Postgraduate Interunits Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (P.H.M.); (A.K.J.)
- Department of Preventive Veterinary, Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Sandeep Tiwari
- Institute of Biology, Federal University of Bahia, Salvador 40170-115, Brazil;
- Institute of Health Sciences, Federal University of Bahia, Salvador 40170-115, Brazil
| | - Andrei Giacchetto Felice
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba 38015-050, Brazil; (A.G.F.); (S.d.C.S.)
| | - Arun Kumar Jaiswal
- Postgraduate Interunits Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (P.H.M.); (A.K.J.)
| | - Flávia Figueira Aburjaile
- Department of Preventive Veterinary, Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Mario León Silva-Vergara
- Department of Infectious Diseases, Federal University of Triangulo Mineiro, Uberaba 38025-440, Brazil;
| | - Kennio Ferreira-Paim
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba 38015-050, Brazil; (A.G.F.); (S.d.C.S.)
| | - Siomar de Castro Soares
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba 38015-050, Brazil; (A.G.F.); (S.d.C.S.)
| | | |
Collapse
|
4
|
Zhang M, Wang A, Zhang C, Xu F, Liu W, Fan J, Ma Z, Zhou Y. Key infection stages defending heat stress in high-temperature-resistant Blumeria graminis f. sp. tritici isolates. Front Microbiol 2022; 13:1045796. [DOI: 10.3389/fmicb.2022.1045796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
With the increase of temperature in the winter wheat-growing regions in China, the high-temperature-resistant Blumeria graminis f. sp. tritici (Bgt) isolates developed in the fields. To clarify the key infection stages and the roles of heat shock protein (HSP) genes of high-temperature-resistant Bgt isolates defending high temperature, 3 high-temperature-resistant and 3 sensitive Bgt isolates were selected from 55 isolates after determination of temperature sensitivity. And then they were used to investigate the infection stages and the expression levels of HSP genes, including Bgthsp60, Bgthsp70, Bgthsp90, and Bgthsp104, at 18°C and 25°C. The formation frequency of abnormal appressoria and inhibition rate of haustoria formation of high-temperature-resistant isolates at 25°C were lower than those of high-temperature-sensitive isolates, while major axis of microcolonies of high-temperature-resistant isolates was higher than those of high-temperature-sensitive isolates at 25°C. The results indicated that haustoria formation and hyphal expansion were the key infection stages of defense against heat stress in high-temperature-resistant isolates. Further analyses of HSP genes found the expression levels of Bgthsp60 and Bgthsp70c were upregulated at 24 and 72 h post-inoculation in high-temperature-resistant isolates, while no significant difference was observed for Bgthsp90 and Bgthsp104 genes. Taken together, the basis of high-temperature-resistant Bgt isolates is associated with induced expression of Bgthsp60 and Bgthsp70c response to heat stress in haustoria formation and hyphal expansion stages.
Collapse
|
5
|
Valdez AF, Miranda DZ, Guimarães AJ, Nimrichter L, Nosanchuk JD. Pathogenicity & Virulence of Histoplasma capsulatum - a multifaceted organism adapted to intracellular environments. Virulence 2022; 13:1900-1919. [PMID: 36266777 DOI: 10.1080/21505594.2022.2137987] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Histoplasmosis is a systemic mycosis caused by the thermally dimorphic fungus Histoplasma capsulatum. Although healthy individuals can develop histoplasmosis, the disease is particularly life-threatening in immunocompromised patients, with a wide range of clinical manifestations depending on the inoculum and virulence of the infecting strain. In this review, we discuss the established virulence factors and pathogenesis traits that make H. capsulatum highly adapted to a wide variety of hosts, including mammals. Understanding and integrating these mechanisms is a key step towards devising new preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro F Valdez
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Daniel Zamith Miranda
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Allan Jefferson Guimarães
- Universidade Federal Fluminense, Instituto Biomédico, Departamento de Microbiologia e Parasitologia - MIP, Niterói, Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
6
|
Ferreira MDS, Mendoza SR, Gonçalves DDS, Rodríguez-de la Noval C, Honorato L, Nimrichter L, Ramos LFC, Nogueira FCS, Domont GB, Peralta JM, Guimarães AJ. Recognition of Cell Wall Mannosylated Components as a Conserved Feature for Fungal Entrance, Adaptation and Survival Within Trophozoites of Acanthamoeba castellanii and Murine Macrophages. Front Cell Infect Microbiol 2022; 12:858979. [PMID: 35711659 PMCID: PMC9194641 DOI: 10.3389/fcimb.2022.858979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023] Open
Abstract
Acanthamoeba castellanii (Ac) is a species of free-living amoebae (FLAs) that has been widely applied as a model for the study of host-parasite interactions and characterization of environmental symbionts. The sharing of niches between Ac and potential pathogens, such as fungi, favors associations between these organisms. Through predatory behavior, Ac enhances fungal survival, dissemination, and virulence in their intracellular milieu, training these pathogens and granting subsequent success in events of infections to more evolved hosts. In recent studies, our group characterized the amoeboid mannose binding proteins (MBPs) as one of the main fungal recognition pathways. Similarly, mannose-binding lectins play a key role in activating antifungal responses by immune cells. Even in the face of similarities, the distinct impacts and degrees of affinity of fungal recognition for mannose receptors in amoeboid and animal hosts are poorly understood. In this work, we have identified high-affinity ligands for mannosylated fungal cell wall residues expressed on the surface of amoebas and macrophages and determined the relative importance of these pathways in the antifungal responses comparing both phagocytic models. Mannose-purified surface proteins (MPPs) from both phagocytes showed binding to isolated mannose/mannans and mannosylated fungal cell wall targets. Although macrophage MPPs had more intense binding when compared to the amoeba receptors, the inhibition of this pathway affects fungal internalization and survival in both phagocytes. Mass spectrometry identified several MPPs in both models, and in silico alignment showed highly conserved regions between spotted amoeboid receptors (MBP and MBP1) and immune receptors (Mrc1 and Mrc2) and potential molecular mimicry, pointing to a possible convergent evolution of pathogen recognition mechanisms.
Collapse
Affiliation(s)
- Marina da Silva Ferreira
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
- Pós-Graduação em Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Ruiz Mendoza
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
- Pós-Graduação em Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego de Souza Gonçalves
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
- Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Rodríguez-de la Noval
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Leandro Honorato
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia RJ - FAPERJ, Rio de Janeiro, Brazil
| | - Luís Felipe Costa Ramos
- Laboratório de Química de Proteínas, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C. S. Nogueira
- Laboratório de Química de Proteínas, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B. Domont
- Laboratório de Química de Proteínas, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Mauro Peralta
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan J. Guimarães
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
- Pós-Graduação em Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia RJ - FAPERJ, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
7
|
Thermotolerance and Adaptation to Climate Change. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Oliveira FCS, Pessoa WFB, Mares JH, Freire HPS, Souza EAD, Pirovani CP, Romano CC. Differentially expressed proteins in the interaction of Paracoccidioides lutzii with human monocytes. Rev Iberoam Micol 2021; 38:159-167. [PMID: 34802898 DOI: 10.1016/j.riam.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2020] [Accepted: 09/22/2020] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Fungi of the genus Paracoccidioides are the etiological agents of paracoccidioidomycosis, a highly prevalent mycosis in Latin America. Infection in humans occurs by the inhalation of conidia, which later revert to the form of yeast. In this context, macrophages are positioned as an important line of defense, assisting in the recognition and presentation of antigens, as well as producing reactive oxygen species that inhibit fungal spreading. AIMS The objective of this study was to identify differentially expressed proteins during the interaction between Paracoccidioides lutzii Pb01 strain and human U937 monocytes. METHODS Two-dimensional electrophoresis, combined with mass spectrometry, was used to evaluate the differential proteomic profiles of the fungus P. lutzii (Pb01) interacting with U937 monocytes. RESULTS It was possible to identify 25 proteins differentially expressed by Pb01 alone and after interacting with U937 monocytes. Most of these proteins are directly associated with fungal metabolism for energy generation, such as glyceraldehyde-3-phosphate dehydrogenase, and intracellular adaptation to monocytes. Antioxidant proteins involved in the response to oxidative stress, such as peroxiredoxin, cytochrome, and peroxidase, were expressed in greater quantity in the interaction with monocytes, suggesting their association with survival mechanisms inside phagocytic cells. We also identified 12 proteins differentially expressed in monocytes before and after the interaction with the fungus; proteins involved in the reorganization of the cytoskeleton, such as vimentin, and proteins involved in the response to oxidative stress, such as glioxalase 1, were identified. CONCLUSIONS The results of this proteomic study of a P. lutzii isolate are novel, mimicking in vitro what occurs in human infections. In addition, the proteins identified may aid to understand fungal-monocyte interactions and the pathogenesis of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Flamélia Carla Silva Oliveira
- Department of Biological Sciences, Laboratory of Immunology, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Wallace Felipe Blohem Pessoa
- Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Joise Hander Mares
- Department of Physiology and Pathology - Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Herbert Pina Silva Freire
- Department of Biological Sciences, Laboratory of Immunology, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil; Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Ednara Almeida de Souza
- Department of Biological Sciences, Laboratory of Immunology, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil; Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Carla Cristina Romano
- Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil.
| |
Collapse
|
9
|
Elhassan RM, Alsony NM, Othman KM, Izz-Aldin DT, Alhaj TA, Ali AA, Abashir LA, Ahmed OH, Hassan MA. Epitope-Based Immunoinformatic Approach on Heat Shock 70 kDa Protein Complex of Cryptococcus neoformans var. grubii. J Immunol Res 2021; 2021:9921620. [PMID: 34471644 PMCID: PMC8405342 DOI: 10.1155/2021/9921620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Cryptococcosis is a ubiquitous opportunistic fungal disease caused by Cryptococcus neoformans var. grubii. It has high global morbidity and mortality among HIV patients and non-HIV carriers with 99% and 95%, respectively. Furthermore, the increasing prevalence of undesired toxicity profile of antifungal, multidrug-resistant organisms and the scarcity of FDA-authorized vaccines were the hallmark in the present days. This study was undertaken to design a reliable epitope-based peptide vaccine through targeting highly conserved immunodominant heat shock 70 kDa protein of Cryptococcus neoformans var. grubii that covers a considerable digit of the world population through implementing a computational vaccinology approach. MATERIALS AND METHODS A total of 38 sequences of Cryptococcus neoformans var. grubii's heat shock 70 kDa protein were retrieved from the NCBI protein database. Different prediction tools were used to analyze the aforementioned protein at the Immune Epitope Database (IEDB) to discriminate the most promising T-cell and B-cell epitopes. The proposed T-cell epitopes were subjected to the population coverage analysis tool to compute the global population's coverage. Finally, the T-cell projected epitopes were ranked based on their binding scores and modes using AutoDock Vina software. Results and Discussion. The epitopes (ANYVQASEK, QSEKPKNVNPVI, SEKPKNVNPVI, and EKPKNVNPVI) had shown very strong binding affinity and immunogenic properties to B-cell. (FTQLVAAYL, YVYDTRGKL) and (FFGGKVLNF, FINAQLVDV, and FDYALVQHF) exhibited a very strong binding affinity to MHC-I and MHC-II, respectively, with high population coverage for each, while FYRQGAFEL has shown promising results in terms of its binding profile to MHC-II and MHC-I alleles and good strength of binding when docked with HLA-C∗12:03. In addition, there is massive global population coverage in the three coverage modes. Accordingly, our in silico vaccine is expected to be the future epitope-based peptide vaccine against Cryptococcus neoformans var. grubii that covers a significant figure of the entire world citizens.
Collapse
Affiliation(s)
- Reham M. Elhassan
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sudan International University, Khartoum, Sudan
| | - Nagla M. Alsony
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Microbiology, Faculty of Medical Laboratory Science, Kamlin Ahlia College, Gazira, Sudan
| | - Khadeejah M. Othman
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Microbiology, Faculty of Medical Laboratory Science, Sudan University for Science and Technology, Khartoum, Sudan
- Department of Microbiology, Abu Huzaifa Health Center, Khartoum, Sudan
| | - Duaa T. Izz-Aldin
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Microbiology, Faculty of Medical Laboratory Science, Sudan University for Science and Technology, Khartoum, Sudan
| | - Tamadour A. Alhaj
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
| | - Abdelrahman A. Ali
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Molecular Biology, Institute of Endemic Disease, University of Khartoum, Khartoum, Sudan
- Department of Neurosurgery, Ribat University Hospital, Khartoum, Sudan
| | - Lena A. Abashir
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Pharmacy, Fedail Hospital, Khartoum, Sudan
| | - Omar H. Ahmed
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Pharmacology, Faculty of Pharmacy, University of Gazira, Wad Medany, Sudan
| | - Mohammed A. Hassan
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Bioinformatics, DETAGEN Genetic Diagnostics Center, Kayseri, Turkey
| |
Collapse
|
10
|
Almeida MA, Baeza LC, Almeida-Paes R, Bailão AM, Borges CL, Guimarães AJ, Soares CMA, Zancopé-Oliveira RM. Comparative Proteomic Analysis of Histoplasma capsulatum Yeast and Mycelium Reveals Differential Metabolic Shifts and Cell Wall Remodeling Processes in the Different Morphotypes. Front Microbiol 2021; 12:640931. [PMID: 34177824 PMCID: PMC8226243 DOI: 10.3389/fmicb.2021.640931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Histoplasma capsulatum is a thermally dimorphic fungus distributed worldwide, but with the highest incidence in the Americas within specific geographic areas, such as the Mississippi River Valley and regions in Latin America. This fungus is the etiologic agent of histoplasmosis, an important life-threatening systemic mycosis. Dimorphism is an important feature for fungal survival in different environments and is related to the virulence of H. capsulatum, and essential to the establishment of infection. Proteomic profiles have made important contributions to the knowledge of metabolism and pathogenicity in several biological models. However, H. capsulatum proteome studies have been underexplored. In the present study, we report the first proteomic comparison between the mycelium and the yeast cells of H. capsulatum. Liquid chromatography coupled to mass spectrometry was used to evaluate the proteomic profile of the two phases of H. capsulatum growth, mycelium, and yeast. In summary, 214 and 225 proteins were only detected/or preferentially abundant in mycelium or yeast cells, respectively. In mycelium, enzymes related to the glycolytic pathway and to the alcoholic fermentation occurred in greater abundance, suggesting a higher use of anaerobic pathways for energy production. In yeast cells, proteins related to the tricarboxylic acid cycle and response to temperature stress were in high abundance. Proteins related to oxidative stress response or involved with cell wall metabolism were identified with differential abundance in both conditions. Proteomic data validation was performed by enzymatic activity determination, Western blot assays, or immunofluorescence microscopy. These experiments corroborated, directly or indirectly, the abundance of isocitrate lyase, 2-methylcitrate synthase, catalase B, and mannosyl-oligosaccharide-1,2-alpha-mannosidase in the mycelium and heat shock protein (HSP) 30, HSP60, glucosamine-fructose-6-phosphate aminotransferase, glucosamine-6-phosphate deaminase, and N-acetylglucosamine-phosphate mutase in yeast cells. The proteomic profile-associated functional classification analyses of proteins provided new and interesting information regarding the differences in metabolism between the two distinct growth forms of H. capsulatum.
Collapse
Affiliation(s)
- Marcos Abreu Almeida
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lilian Cristiane Baeza
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Rodrigo Almeida-Paes
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Clayton Luiz Borges
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | | |
Collapse
|
11
|
Fregonezi NF, Oliveira LT, Singulani JDL, Marcos CM, Dos Santos CT, Taylor ML, Mendes-Giannini MJS, de Oliveira HC, Fusco-Almeida AM. Heat Shock Protein 60, Insights to Its Importance in Histoplasma capsulatum: From Biofilm Formation to Host-Interaction. Front Cell Infect Microbiol 2021; 10:591950. [PMID: 33553002 PMCID: PMC7862341 DOI: 10.3389/fcimb.2020.591950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/04/2020] [Indexed: 12/04/2022] Open
Abstract
Heat shock proteins (Hsps) are among the most widely distributed and evolutionary conserved proteins, acting as essential regulators of diverse constitutive metabolic processes. The Hsp60 of the dimorphic fungal Histoplasma capsulatum is the major surface adhesin to mammalian macrophages and studies of antibody-mediated protection against H. capsulatum have provided insight into the complexity involving Hsp60. However, nothing is known about the role of Hsp60 regarding biofilms, a mechanism of virulence exhibited by H. capsulatum. Considering this, the present study aimed to investigate the influence of the Hsp60 on biofilm features of H. capsulatum. Also, the non-conventional model Galleria mellonella was used to verify the effect of this protein during in vivo interaction. The use of invertebrate models such as G. mellonella is highly proposed for the evaluation of pathogenesis, immune response, virulence mechanisms, and antimicrobial compounds. For that purpose, we used a monoclonal antibody (7B6) against Hsp60 and characterized the biofilm of two H. capsulatum strains by metabolic activity, biomass content, and images from scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). We also evaluated the survival rate of G. mellonella infected with both strains under blockage of Hsp60. The results showed that mAb 7B6 was effective to reduce the metabolic activity and biomass of both H. capsulatum strains. Furthermore, the biofilms of cells treated with the antibody were thinner as well as presented a lower amount of cells and extracellular polymeric matrix compared to its non-treated controls. The blockage of Hsp60 before fungal infection of G. mellonella larvae also resulted in a significant increase of the larvae survival compared to controls. Our results highlight for the first time the importance of the Hsp60 protein to the establishment of the H. capsulatum biofilms and the G. mellonella larvae infection. Interestingly, the results with Hsp60 mAb 7B6 in this invertebrate model suggest a pattern of fungus-host interaction different from those previously found in a murine model, which can be due to the different features between insect and mammalian immune cells such as the absence of Fc receptors in hemocytes. However further studies are needed to support this hypothesis
Collapse
Affiliation(s)
- Nathália Ferreira Fregonezi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Lariane Teodoro Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Junya de Lacorte Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Caroline Maria Marcos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Claudia Tavares Dos Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Maria Lucia Taylor
- Unidad de Micología, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM-Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Haroldo Cesar de Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| |
Collapse
|
12
|
Characterization of a novel yeast phase-specific antigen expressed during in vitro thermal phase transition of Talaromyces marneffei. Sci Rep 2020; 10:21169. [PMID: 33273617 PMCID: PMC7713699 DOI: 10.1038/s41598-020-78178-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Talaromyces marneffei is a dimorphic fungus that has emerged as an opportunistic pathogen particularly in individuals with HIV/AIDS. Since its dimorphism has been associated with its virulence, the transition from mold to yeast-like cells might be important for fungal pathogenesis, including its survival inside of phagocytic host cells. We investigated the expression of yeast antigen of T.marneffei using a yeast-specific monoclonal antibody (MAb) 4D1 during phase transition. We found that MAb 4D1 recognizes and binds to antigenic epitopes on the surface of yeast cells. Antibody to antigenic determinant binding was associated with time of exposure, mold to yeast conversion, and mammalian temperature. We also demonstrated that MAb 4D1 binds to and recognizes conidia to yeast cells’ transition inside of a human monocyte-like THP-1 cells line. Our studies are important because we demonstrated that MAb 4D1 can be used as a tool to study T.marneffei virulence, furthering the understanding of the therapeutic potential of passive immunity in this fungal pathogenesis.
Collapse
|
13
|
Almeida MA, Almeida-Paes R, Guimarães AJ, Valente RH, Soares CMDA, Zancopé-Oliveira RM. Immunoproteomics Reveals Pathogen's Antigens Involved in Homo sapiens- Histoplasma capsulatum Interaction and Specific Linear B-Cell Epitopes in Histoplasmosis. Front Cell Infect Microbiol 2020; 10:591121. [PMID: 33251160 PMCID: PMC7673445 DOI: 10.3389/fcimb.2020.591121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Histoplasmosis is one of the most frequent systemic mycosis in HIV patients. In these patients, histoplasmosis has high rates of morbidity/mortality if diagnosis and treatment are delayed. Despite its relevance, there is a paucity of information concerning the interaction between Histoplasma capsulatum and the human host, especially regarding the B-cell response, which has a direct impact on the diagnosis. Culture-based “gold-standard” methods have limitations, making immunodiagnostic tests an attractive option for clinical decisions. Despite the continuous development of those tests, improving serological parameters is necessary to make these methods efficient tools for definitive diagnosis of histoplasmosis. This includes the determination of more specific and immunogenic antigens to improve specificity and sensitivity of assays. In this study, we performed a co-immunoprecipitation assay between a protein extract from the yeast form of H. capsulatum and pooled sera from patients with proven histoplasmosis, followed by shotgun mass spectrometry identification of antigenic targets. Sera from patients with other pulmonary infections or from healthy individuals living in endemic areas of histoplasmosis were also assayed to determine potentially cross-reactive proteins. The primary structures of H. capsulatum immunoprecipitated proteins were evaluated using the DNAStar Protean 7.0 software. In parallel, the online epitope prediction server, BCPREDS, was used to complement the B-epitope prediction analysis. Our approach detected 132 reactive proteins to antibodies present in histoplasmosis patients’ sera. Among these antigens, 127 were recognized also by antibodies in heterologous patients’ and/or normal healthy donors’ sera. Therefore, the only three antigens specifically recognized by antibodies of histoplasmosis patients were mapped as potential antigenic targets: the M antigen, previously demonstrated in the diagnosis of histoplasmosis, and the catalase P and YPS-3 proteins, characterized as virulence factors of H. capsulatum, with antigenic properties still unclear. The other two proteins were fragments of the YPS-3 and M antigen. Overlapping results obtained from the two aforementioned bioinformatic tools, 16 regions from these three proteins are proposed as putative B-cell epitopes exclusive to H. capsulatum. These data reveal a new role for these proteins on H. capsulatum interactions with the immune system and indicate their possible use in new methods for the diagnosis of histoplasmosis.
Collapse
Affiliation(s)
- Marcos Abreu Almeida
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Allan Jefferson Guimarães
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Rodriguez-de la Noval C, Ruiz Mendoza S, de Souza Gonçalves D, da Silva Ferreira M, Honorato L, Peralta JM, Nimrichter L, Guimarães AJ. Protective Efficacy of Lectin-Fc(IgG) Fusion Proteins In Vitro and in a Pulmonary Aspergillosis In Vivo Model. J Fungi (Basel) 2020; 6:jof6040250. [PMID: 33120893 PMCID: PMC7712007 DOI: 10.3390/jof6040250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Aspergillosis cases by Aspergillus fumigatus have increased, along with fungal resistance to antifungals, urging the development of new therapies. Passive immunization targeting common fungal antigens, such as chitin and β-glucans, are promising and would eliminate the need of species-level diagnosis, thereby expediting the therapeutic intervention. However, these polysaccharides are poorly immunogenic. To overcome this drawback, we developed the lectin-Fc(IgG) fusion proteins, Dectin1-Fc(IgG2a), Dectin1-Fc(IgG2b) and wheat germ agglutinin (WGA)-Fc(IgG2a), based on their affinity to β-1,3-glucan and chitooligomers, respectively. The WGA-Fc(IgG2a) previously demonstrated antifungal activity against Histoplasma capsulatum, Cryptococcus neoformans and Candida albicans. In the present work, we evaluated the antifungal properties of these lectin-Fc(s) against A. fumigatus. Lectin-Fc(IgG)(s) bound in a dose-dependent manner to germinating conidia and this binding increased upon conidia germination. Both lectin-Fc(IgG)(s) displayed in vitro antifungal effects, such as inhibition of conidia germination, a reduced length of germ tubes and a diminished biofilm formation. Lectin-Fc(IgG)(s) also enhanced complement deposition on conidia and macrophage effector functions, such as increased phagocytosis and killing of fungi. Finally, administration of the Dectin-1-Fc(IgG2b) and WGA-Fc(IgG2a) protected mice infected with A. fumigatus, with a 20% survival and a doubled life-span of the infected mice, which was correlated to a fungal burden reduction in lungs and brains of treated animals. These results confirm the potential of lectin-Fc(IgGs)(s) as a broad-spectrum antifungal therapeutic.
Collapse
Affiliation(s)
- Claudia Rodriguez-de la Noval
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-141, RJ, Brazil; (C.R.-d.l.N.); (S.R.M.); (D.d.S.G.); (M.d.S.F.)
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (L.H.); (L.N.)
| | - Susana Ruiz Mendoza
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-141, RJ, Brazil; (C.R.-d.l.N.); (S.R.M.); (D.d.S.G.); (M.d.S.F.)
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Diego de Souza Gonçalves
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-141, RJ, Brazil; (C.R.-d.l.N.); (S.R.M.); (D.d.S.G.); (M.d.S.F.)
- Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
| | - Marina da Silva Ferreira
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-141, RJ, Brazil; (C.R.-d.l.N.); (S.R.M.); (D.d.S.G.); (M.d.S.F.)
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Leandro Honorato
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (L.H.); (L.N.)
| | - José Mauro Peralta
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (L.H.); (L.N.)
| | - Allan J. Guimarães
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-141, RJ, Brazil; (C.R.-d.l.N.); (S.R.M.); (D.d.S.G.); (M.d.S.F.)
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas (PPGMPA), Instituto Biomédico, Universidade Federal Fluminense, Rua Professor Hernani Pires de Melo 101, São Domingos, Niterói 24210-130, RJ, Brazil
- Correspondence: ; Tel.: +55-21-2629-2410
| |
Collapse
|
15
|
Transcriptome Analysis of Dimorphic Fungus Sporothrix schenckii Exposed to Temperature Stress. Int Microbiol 2020; 24:25-35. [PMID: 32691258 PMCID: PMC7873001 DOI: 10.1007/s10123-020-00136-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 11/03/2022]
Abstract
PURPOSE Sporothrix schenckii is a thermally dimorphic fungus. In a saprotrophic environment or culturing at 25 °C, it grows as mycelia, whereas in host tissues or culturing at 37 °C, it undergoes dimorphic transition and division into pathogenic yeast cells. S. schenckii can cause serious disseminated sporotrichosis in immunocompromised hosts and presents an emerging global health problem. The mycelium-to-yeast transition was a consequence of the adaptive process to different environment. Some studies showed that the transition was significantly related to the virulence and pathogenesis of dimorphic fungi. However the genetic mechanisms of this complicated biological process are poorly understood. METHOD Our study presented a comparative transcriptomic analysis perspective on temperature stress in a visceral isolates of S. schenckii, obtaining more genetic information related to dimorphic transition. RESULTS The 9.38 Gbp dataset was generated and assembled into 14,423 unigenes. Compared with gene and protein databases, 9561 unigenes were annotated. Comparative analysis identified 1259 genes expressed differentially in mycelium and yeast phase, and were categorized into a number of important biological processes, such as synthesis and metabolism, transmembrane transport, biocatalysis, oxidation reduction, and cellular signal transduction. CONCLUSIONS The findings suggested that temperature-dependent transition was tightly associated with stress adaptation, growth and development, signal regulation, adhesion, and colonization, which was predicted to be related with virulence and pathogenesis. Collection of these data should offer fine-scale insights into the mechanisms of dimorphism and pathogenesis of S. schenckii, and meanwhile facilitate the evolutionary and function studies of other dimorphic fungi.
Collapse
|
16
|
Gonçalves LNC, Costa-Orlandi CB, Bila NM, Vaso CO, Da Silva RAM, Mendes-Giannini MJS, Taylor ML, Fusco-Almeida AM. Biofilm Formation by Histoplasma capsulatum in Different Culture Media and Oxygen Atmospheres. Front Microbiol 2020; 11:1455. [PMID: 32754126 PMCID: PMC7365857 DOI: 10.3389/fmicb.2020.01455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Histoplasma capsulatum is a dimorphic fungus that causes an important systemic mycosis called histoplasmosis. It is an infectious disease with high prevalence and morbidity that affects the general population. Recently, the ability of these fungi to form biofilms, a phenotype that can induce resistance and enhance virulence, has been described. Despite some efforts, data regarding the impact of nutrients and culture media that affect the H. capsulatum biofilm development in vitro are not yet available. This work aimed to study H. capsulatum biofilms, by checking the influence of different culture media and oxygen atmospheres in the development of these communities. The biofilm formation by two strains (EH-315 and G186A) was characterized under different culture media: [Brain and Heart Infusion (BHI), Roswell Park Memorial Institute (RPMI) with 2% glucose, Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum and nutrient medium HAM-F12 (HAM-F12) supplemented with glucose (18.2 g/L), glutamic acid (1 g/L), HEPES (6 g/L) and L-cysteine (8.4 mg/L)] and oxygen atmospheres (aerobiosis and microaerophilia), using the XTT reduction assay to quantify metabolic activities, crystal violet staining for biomass, safranin staining for the quantification of polysaccharide material and scanning electron microscopy (SEM) for the observation of topographies. Results indicated that although all culture mediums have stimulated the maturation of the communities, HAM-F12 provided the best development of biomass and polysaccharide material when compared to others. Regarding the oxygen atmospheres, both stimulated an excellent development of the communities, however in low oxygen conditions an exuberant amount of extracellular matrix was observed when compared to biofilms formed in aerobiosis, mainly in the HAM-F12 media. SEM images showed yeasts embedded by an extracellular matrix in several points, corroborating the colorimetric assays. However, biofilms formed in BHI, RPMI, and DMEM significantly induced yeast to hyphae reversal, requiring further investigation. The results obtained so far contribute to in vitro study of biofilms formed by these fungi and show that nutrition promoted by different media modifies the development of these communities. These data represent advances in the field of biofilms and contribute to future studies that can prove the role of these communities in the fungi-host interaction.
Collapse
Affiliation(s)
| | - Caroline Barcelos Costa-Orlandi
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Níura Madalena Bila
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil.,School of Veterinary, Department of Para Clinic, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Carolina Orlando Vaso
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | | | | | - Maria Lucia Taylor
- School of Medicine, Department of Microbiology and Parasitology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| |
Collapse
|
17
|
Elias Moreira AL, Milhomem Cruz-Leite VR, O'Hara Souza Silva L, Alves Parente AF, Bailão AM, Maria de Almeida Soares C, Parente-Rocha JA, Ruiz OH, Borges CL. Proteome characterization of Paracoccidioides lutzii conidia by using nanoUPLC-MS E. Fungal Biol 2020; 124:766-780. [PMID: 32883428 DOI: 10.1016/j.funbio.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 12/30/2022]
Abstract
Fungi of the genus Paracoccidioides are the etiological agents of Paracoccidioidomycosis (PCM), the most prevalent mycosis in Latin America. Paracoccidioidomycosis infection is acquired by inhalation of Paracoccidioides conidia, which have first contact with the lungs and can subsequently spread to other organs/tissues. Until now, there have been no proteomic studies focusing on this infectious particle of Paracoccidioides. In order to identify the Paracoccidioides lutzii conidia proteome, conidia were produced and purified. Proteins were characterized by use of the nanoUPLC-MSE approach. The strategy allowed us to identify a total of 242 proteins in P. lutzii conidia. In the conidia proteome, proteins were classified in functional categories such as protein synthesis, energy production, metabolism, cellular defense/virulence processes, as well as other processes that can be important for conidia survival. Through this analysis, a pool of ribosomal proteins was identified, which may be important for the initial processes of dimorphic transition. In addition, molecules related to energetic and metabolic processes were identified, suggesting a possible basal metabolism during this form of resistance of the fungus. In addition, adhesins and virulence factors were identified in the P. lutzii conidia proteome. Our results demonstrate the potential role that these molecules can play during early cell-host interaction processes, as well as the way in which these molecules are involved in environmental survival during this form of propagation.
Collapse
Affiliation(s)
- André Luís Elias Moreira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | | | - Lana O'Hara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | | | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Orville Hernandez Ruiz
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia; Grupo de Investigación MICROBA, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia.
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
18
|
Chechi JL, Franckin T, Barbosa LN, Alves FCB, Leite ADL, Buzalaf MAR, Delazari Dos Santos L, Bosco SDMG. Inferring putative virulence factors for Pythium insidiosum by proteomic approach. Med Mycol 2019; 57:92-100. [PMID: 29373751 DOI: 10.1093/mmy/myx166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 01/05/2018] [Indexed: 12/23/2022] Open
Abstract
Pythium insidiosum is the etiologic agent of pythiosis, a life-threatening disease that affects human and animals, has difficult diagnosis, and therapy. Studies on protein characterization of P. insidiosum are scarce, so we aimed to determine the protein profile of P. insidiosum by mass spectrometry and bioinformatics strategies targeting in proteins that may act as putative virulence factors. Therefore, an extraction protocol was standardized to obtain the total proteins of P. insidiosum. By the analysis of Image Master 2D Platinum software, it was found that 186 spots ranging between 12 and 89 KDa and isoelectric point from 4 to 7. By the analysis of 2D-SDS-PAGE it was possible to visualize and excise 103 spots, which were hydrolyzed with trypsin and submitted to mass spectrometry, resulting in the identification of 36 different proteins. Three of them were classified as proteins supposedly related to virulence factors due to its functions, such as glucan 1,3-beta glucosidase, Heat shock protein (Hsp) 70 and enolase. These results may contribute to a better understanding of the virulence factors of this medically important oomycete, as well as to subsidize new studies on diagnosis and therapeutic approaches.
Collapse
Affiliation(s)
- Jéssica Luana Chechi
- Department of Microbiology and Immunology, Univ. Estadual Paulista (UNESP), Botucatu, Sao Paulo, Brazil
| | - Tarsila Franckin
- Department of Microbiology and Immunology, Univ. Estadual Paulista (UNESP), Botucatu, Sao Paulo, Brazil
| | - Lidiane Nunes Barbosa
- Department of Microbiology and Immunology, Univ. Estadual Paulista (UNESP), Botucatu, Sao Paulo, Brazil.,Center for the Studies of Venoms and Venomous Animals (CEVAP), Univ Estadual Paulista (UNESP), Botucatu, Sao Paulo, Brazil
| | | | - Aline de Lima Leite
- Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo (USP), Bauru, Brazil
| | | | - Lucilene Delazari Dos Santos
- Center for the Studies of Venoms and Venomous Animals (CEVAP), Univ Estadual Paulista (UNESP), Botucatu, Sao Paulo, Brazil.,Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Univ Estadual Paulista (UNESP), Botucatu, Sao Paulo, Brazil
| | - Sandra de Moraes Gimenes Bosco
- Department of Microbiology and Immunology, Univ. Estadual Paulista (UNESP), Botucatu, Sao Paulo, Brazil.,Center for the Studies of Venoms and Venomous Animals (CEVAP), Univ Estadual Paulista (UNESP), Botucatu, Sao Paulo, Brazil
| |
Collapse
|
19
|
Mittal J, Ponce MG, Gendlina I, Nosanchuk JD. Histoplasma Capsulatum: Mechanisms for Pathogenesis. Curr Top Microbiol Immunol 2019; 422:157-191. [PMID: 30043340 PMCID: PMC7212190 DOI: 10.1007/82_2018_114] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histoplasmosis, caused by the dimorphic environmental fungus Histoplasma capsulatum, is a major mycosis on the global stage. Acquisition of the fungus by mammalian hosts can be clinically silent or it can lead to life-threatening systemic disease, which can occur in immunologically intact or deficient hosts, albeit severe disease is more likely in the setting of compromised cellular immunity. H. capsulatum yeast cells are highly adapted to the mammalian host as they can effectively survive within intracellular niches in select phagocytic cells. Understanding the biological response by both the host and H. capsulatum will facilitate improved approaches to prevent and/or modify disease. This review presents our current understanding of the major pathogenic mechanisms involved in histoplasmosis.
Collapse
Affiliation(s)
- Jamie Mittal
- Department of Medicine (Infectious Diseases), Montefiore Medical Center, Bronx, NY, USA
| | - Maria G Ponce
- Department of Medicine (Infectious Diseases), Montefiore Medical Center, Bronx, NY, USA
| | - Inessa Gendlina
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joshua D Nosanchuk
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
20
|
Nimrichter L, de Souza MM, Del Poeta M, Nosanchuk JD, Joffe L, Tavares PDM, Rodrigues ML. Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells. Front Microbiol 2016; 7:1034. [PMID: 27458437 PMCID: PMC4937017 DOI: 10.3389/fmicb.2016.01034] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/20/2016] [Indexed: 12/02/2022] Open
Abstract
Classic cell wall components of fungi comprise the polysaccharides glucans and chitin, in association with glycoproteins and pigments. During the last decade, however, system biology approaches clearly demonstrated that the composition of fungal cell walls include atypical molecules historically associated with intracellular or membrane locations. Elucidation of mechanisms by which many fungal molecules are exported to the extracellular space suggested that these atypical components are transitorily located to the cell wall. The presence of extracellular vesicles (EVs) at the fungal cell wall and in culture supernatants of distinct pathogenic species suggested a highly functional mechanism of molecular export in these organisms. Thus, the passage of EVs through fungal cell walls suggests remarkable molecular diversity and, consequently, a potentially variable influence on the host antifungal response. On the basis of information derived from the proteomic characterization of fungal EVs from the yeasts Cryptoccocus neoformans and Candida albicans and the dimorphic fungi Histoplasma capsulatum and Paracoccidioides brasiliensis, our manuscript is focused on the clear view that the fungal cell wall is much more complex than previously thought.
Collapse
Affiliation(s)
- Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Marcio M de Souza
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NYUSA; Veterans Administration Medical Center, Northport, NYUSA
| | - Joshua D Nosanchuk
- Department of Microbiology and Immunology and Medicine, Albert Einstein College of Medicine, Bronx, NY USA
| | - Luna Joffe
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Patricia de M Tavares
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Marcio L Rodrigues
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil; Fundação Oswaldo Cruz, Centro de Desenvolvimento Tecnológico em Saúde, Rio de JaneiroBrazil
| |
Collapse
|
21
|
Martinez-Rossi NM, Jacob TR, Sanches PR, Peres NTA, Lang EAS, Martins MP, Rossi A. Heat Shock Proteins in Dermatophytes: Current Advances and Perspectives. Curr Genomics 2016; 17:99-111. [PMID: 27226766 PMCID: PMC4864838 DOI: 10.2174/1389202917666151116212437] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/02/2015] [Accepted: 07/13/2015] [Indexed: 11/29/2022] Open
Abstract
Heat shock proteins (HSPs) are proteins whose transcription responds rapidly to temperature shifts. They constitute a family of molecular chaperones, involved in the proper folding and stabilisation of proteins under physiological and adverse conditions. HSPs also assist in the protection and recovery of cells exposed to a variety of stressful conditions, including heat. The role of HSPs extends beyond chaperoning proteins, as they also participate in diverse cellular functions, such as the assembly of macromolecular complexes, protein transport and sorting, dissociation of denatured protein aggregates, cell cycle control, and programmed cell death. They are also important antigens from a variety of pathogens, are able to stimulate innate immune cells, and are implicated in acquired immunity. In fungi, HSPs have been implicated in virulence, dimorphic transition, and drug resistance. Some HSPs are potential targets for therapeutic strategies. In this review, we discuss the current understanding of HSPs in dermatophytes, which are a group of keratinophilic fungi responsible for superficial mycoses in humans and animals. Computational analyses were performed to characterise the group of proteins in these dermatophytes, as well as to assess their conservation and to identify DNA-binding domains (5′-nGAAn-3′) in the promoter regions of the hsp genes. In addition, the quantification of the transcript levels of few genes in a pacC background helped in the development of an extended model for the regulation of the expression of the hsp genes, which supports the participation of the pH-responsive transcriptional regulator PacC in this process.
Collapse
Affiliation(s)
- Nilce M Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tiago R Jacob
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pablo R Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nalu T A Peres
- Present address: Department of Morphology, Federal University of Sergipe, SE, Brazil
| | - Elza A S Lang
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maíra P Martins
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
22
|
Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis. J Immunol Res 2016; 2016:6525831. [PMID: 27051673 PMCID: PMC4808653 DOI: 10.1155/2016/6525831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/21/2016] [Indexed: 12/23/2022] Open
Abstract
Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response.
Collapse
|
23
|
Nosanchuk JD, Nosanchuk MD, Rodrigues ML, Nimrichter L, de Carvalho ACC, Weiss LM, Spray DC, Tanowitz HB. The Einstein-Brazil Fogarty: A decade of synergy. Braz J Microbiol 2015; 46:945-55. [PMID: 26691452 PMCID: PMC4704644 DOI: 10.1590/s1517-838246420140975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/05/2015] [Indexed: 02/08/2023] Open
Abstract
A rich, collaborative program funded by the US NIH Fogarty program in 2004 has provided for a decade of remarkable opportunities for scientific advancement through the training of Brazilian undergraduate, graduate and postdoctoral students from the Federal University and Oswaldo Cruz Foundation systems at Albert Einstein College of Medicine. The focus of the program has been on the development of trainees in the broad field of Infectious Diseases, with a particular focus on diseases of importance to the Brazilian population. Talented trainees from various regions in Brazil came to Einstein to learn techniques and study fungal, parasitic and bacterial pathogens. In total, 43 trainees enthusiastically participated in the program. In addition to laboratory work, these students took a variety of courses at Einstein, presented their results at local, national and international meetings, and productively published their findings. This program has led to a remarkable synergy of scientific discovery for the participants during a time of rapid acceleration of the scientific growth in Brazil. This collaboration between Brazilian and US scientists has benefitted both countries and serves as a model for future training programs between these countries.
Collapse
Affiliation(s)
- Joshua D. Nosanchuk
- Departments of Medicine, Microbiology & Immunology, Albert
Einstein College of Medicine, Bronx, NY, EUA
- Send correspondence to J.D. Nosanchuk. Departments of Medicine,
Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, EUA.
E-mail:
| | - Murphy D. Nosanchuk
- Departments of Medicine, Microbiology & Immunology, Albert
Einstein College of Medicine, Bronx, NY, EUA
- Instituto de Microbiologia Professor Paulo de Góes, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcio L. Rodrigues
- Instituto de Microbiologia Professor Paulo de Góes, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo
Cruz, Rio de Janeiro, RJ, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Professor Paulo de Góes, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Louis M. Weiss
- Departments of Pathology and Medicine, Albert Einstein College of
Medicine, Bronx, NY, EUA
| | - David C. Spray
- Departments of Neuroscience and Medicine, Albert Einstein College of
Medicine, Bronx, NY, EUA
| | - Herbert B. Tanowitz
- Departments of Pathology and Medicine, Albert Einstein College of
Medicine, Bronx, NY, EUA
| |
Collapse
|
24
|
Muñoz JF, Gallo JE, Misas E, Priest M, Imamovic A, Young S, Zeng Q, Clay OK, McEwen JG, Cuomo CA. Genome update of the dimorphic human pathogenic fungi causing paracoccidioidomycosis. PLoS Negl Trop Dis 2014; 8:e3348. [PMID: 25474325 PMCID: PMC4256289 DOI: 10.1371/journal.pntd.0003348] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
Paracoccidiodomycosis (PCM) is a clinically important fungal disease that can acquire serious systemic forms and is caused by the thermodimorphic fungal Paracoccidioides spp. PCM is a tropical disease that is endemic in Latin America, where up to ten million people are infected; 80% of reported cases occur in Brazil, followed by Colombia and Venezuela. To enable genomic studies and to better characterize the pathogenesis of this dimorphic fungus, two reference strains of P. brasiliensis (Pb03, Pb18) and one strain of P. lutzii (Pb01) were sequenced [1]. While the initial draft assemblies were accurate in large scale structure and had high overall base quality, the sequences had frequent small scale defects such as poor quality stretches, unknown bases (N's), and artifactual deletions or nucleotide duplications, all of which caused larger scale errors in predicted gene structures. Since assembly consensus errors can now be addressed using next generation sequencing (NGS) in combination with recent methods allowing systematic assembly improvement, we re-sequenced the three reference strains of Paracoccidioides spp. using Illumina technology. We utilized the high sequencing depth to re-evaluate and improve the original assemblies generated from Sanger sequence reads, and obtained more complete and accurate reference assemblies. The new assemblies led to improved transcript predictions for the vast majority of genes of these reference strains, and often substantially corrected gene structures. These include several genes that are central to virulence or expressed during the pathogenic yeast stage in Paracoccidioides and other fungi, such as HSP90, RYP1-3, BAD1, catalase B, alpha-1,3-glucan synthase and the beta glucan synthase target gene FKS1. The improvement and validation of these reference sequences will now allow more accurate genome-based analyses. To our knowledge, this is one of the first reports of a fully automated and quality-assessed upgrade of a genome assembly and annotation for a non-model fungus. The fungal genus Paracoccidioides is the causal agent of paracoccidioidomycosis (PCM), a neglected tropical disease that is endemic in several countries of South America. Paracoccidioides is a pathogenic dimorphic fungus that is capable of converting to a virulent yeast form after inhalation by the host. Therefore the molecular biology of the switch to the yeast phase is of particular interest for understanding the virulence of this and other human pathogenic fungi, and ultimately for reducing the morbidity and mortality caused by such fungal infections. We here present the strategy and methods we used to update and improve accuracy of three reference genome sequences of Paracoccidioides spp. utilizing state-of-the-art Illumina re-sequencing, assembly improvement, re-annotation, and quality assessment. The resulting improved genome resource should be of wide use not solely for advancing research on the genetics and molecular biology of Paracoccidioides and the closely related pathogenic species Histoplasma and Blastomyces, but also for fungal diagnostics based on sequencing or molecular assays, characterizing rapidly changing proteins that may be involved in virulence, SNP-based population analyses and other tasks that require high sequence accuracy. The genome update and underlying strategy and methods also serve as a proof of principle that could encourage similar improvements of other draft genomes.
Collapse
Affiliation(s)
- José F. Muñoz
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Juan E. Gallo
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Elizabeth Misas
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Margaret Priest
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Alma Imamovic
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Oliver K. Clay
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan G. McEwen
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
25
|
Vargas G, Rocha JDB, Oliveira DL, Albuquerque PC, Frases S, Santos SS, Nosanchuk JD, Gomes AMO, Medeiros LCAS, Miranda K, Sobreira TJP, Nakayasu ES, Arigi EA, Casadevall A, Guimaraes AJ, Rodrigues ML, Freire-de-Lima CG, Almeida IC, Nimrichter L. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol 2014; 17:389-407. [PMID: 25287304 DOI: 10.1111/cmi.12374] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 09/08/2014] [Accepted: 09/22/2014] [Indexed: 12/14/2022]
Abstract
The release of extracellular vesicles (EV) by fungal organisms is considered an alternative transport mechanism to trans-cell wall passage of macromolecules. Previous studies have revealed the presence of EV in culture supernatants from fungal pathogens, such as Cryptococcus neoformans, Histoplasma capsulatum, Paracoccidioides brasiliensis, Sporothrix schenckii, Malassezia sympodialis and Candida albicans. Here we investigated the size, composition, kinetics of internalization by bone marrow-derived murine macrophages (MO) and dendritic cells (DC), and the immunomodulatory activity of C. albicans EV. We also evaluated the impact of EV on fungal virulence using the Galleria mellonella larvae model. By transmission electron microscopy and dynamic light scattering, we identified two populations ranging from 50 to 100 nm and 350 to 850 nm. Two predominant seroreactive proteins (27 kDa and 37 kDa) and a group of polydispersed mannoproteins were observed in EV by immunoblotting analysis. Proteomic analysis of C. albicans EV revealed proteins related to pathogenesis, cell organization, carbohydrate and lipid metabolism, response to stress, and several other functions. The major lipids detected by thin-layer chromatography were ergosterol, lanosterol and glucosylceramide. Short exposure of MO to EV resulted in internalization of these vesicles and production of nitric oxide, interleukin (IL)-12, transforming growth factor-beta (TGF-β) and IL-10. Similarly, EV-treated DC produced IL-12p40, IL-10 and tumour necrosis factor-alpha. In addition, EV treatment induced the up-regulation of CD86 and major histocompatibility complex class-II (MHC-II). Inoculation of G. mellonella larvae with EV followed by challenge with C. albicans reduced the number of recovered viable yeasts in comparison with infected larvae control. Taken together, our results demonstrate that C. albicans EV were immunologically active and could potentially interfere with the host responses in the setting of invasive candidiasis.
Collapse
Affiliation(s)
- Gabriele Vargas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Differential protein accumulations in isolates of the strawberry wilt pathogen Fusarium oxysporum f. sp. fragariae differing in virulence. J Proteomics 2014; 108:223-37. [PMID: 24907490 DOI: 10.1016/j.jprot.2014.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED This study was conducted to define differences in Fusarium oxysporum f. sp. fragariae (Fof) isolates with different virulence efficiency to strawberry at the proteome level, in combination with their differences in mycelial growth, conidial production and germination. Comparative proteome analyses revealed substantial differences in mycelial proteomes between Fof isolates, where the 54 differentially accumulated protein spots were consistently over-accumulated or exclusively in the highly virulent isolate. These protein spots were identified through MALDI-TOF/TOF mass spectrometry analyses, and the identified proteins were mainly related to primary and protein metabolism, antioxidation, electron transport, cell cycle and transcription based on their putative functions. Proteins of great potential as Fof virulence factors were those involved in ubiquitin/proteasome-mediated protein degradation and reactive oxygen species detoxification; the hydrolysis-related protein haloacid dehalogenase superfamily hydrolase; 3,4-dihydroxy-2-butanone 4-phosphate synthase associated with riboflavin biosynthesis; and those exclusive to the highly virulent isolate. In addition, post-translational modifications may also make an important contribution to Fof virulence. BIOLOGICAL SIGNIFICANCE F. oxysporum f. sp. fragariae (Fof), the causal agent of Fusarium wilt in strawberry, is a serious threat to commercial strawberry production worldwide. However, factors and mechanisms contributing to Fof virulence remained unknown. This study provides knowledge of the molecular basis for the differential expression of virulence in Fof, allowing new possibilities towards developing alternative and more effective strategies to manage Fusarium wilt.
Collapse
|
27
|
Silveira CP, Piffer AC, Kmetzsch L, Fonseca FL, Soares DA, Staats CC, Rodrigues ML, Schrank A, Vainstein MH. The heat shock protein (Hsp) 70 of Cryptococcus neoformans is associated with the fungal cell surface and influences the interaction between yeast and host cells. Fungal Genet Biol 2013; 60:53-63. [PMID: 23954835 DOI: 10.1016/j.fgb.2013.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/01/2013] [Accepted: 08/08/2013] [Indexed: 01/03/2023]
Abstract
The pathogenic yeast Cryptococcus neoformans secretes numerous proteins, such as heat shock proteins, by unconventional mechanisms during its interaction with host cells. Hsp70 is a conserved chaperone that plays important roles in various cellular processes, including the interaction of fungi with host immune cells. Here, we report that sera from individuals with cryptococcosis infection recognize a recombinant C. neoformans Hsp70 (Cn_rHsp70). Moreover, immunofluorescence assays using antibodies against Cn_rHsp70 revealed the localization of this protein at the cell surface mainly in association with the capsular network. We found that the addition of Cn_rHsp70 positively modulated the interaction of C. neoformans with human alveolar epithelial cells and decreased fungal killing by mouse macrophages, without affecting phagocytosis rates. Immunofluorescence analysis showed that there was a competitive association among the receptor, GXM and Cn_rHsp70, indicating that the Hsp70-binding sites in host cells appear to be shared by glucuronoxylomannan (GXM), the major capsular antigen in C. neoformans. Our observations suggest additional mechanisms by which Hsp70 influences the interaction of C. neoformans with host cells.
Collapse
Affiliation(s)
- Carolina P Silveira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Henderson B, Fares MA, Lund PA. Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol Rev Camb Philos Soc 2013; 88:955-87. [DOI: 10.1111/brv.12037] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 02/20/2013] [Accepted: 03/04/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Brian Henderson
- Department of Microbial Diseases, UCL-Eastman Dental Institute; University College London; London WC1X 8LD U.K
| | - Mario A. Fares
- Department of Genetics; University of Dublin, Trinity College Dublin; Dublin 2 Ireland
- Department of Abiotic Stress; Instituto de Biologia Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas (CSIC-UPV); Valencia 46022 Spain
| | - Peter A. Lund
- School of Biosciences; University of Birmingham; Birmingham B15 2TT U.K
| |
Collapse
|
29
|
Pedras MSC, Minic Z. Differential protein expression in response to the phytoalexin brassinin allows the identification of molecular targets in the phytopathogenic fungus Alternaria brassicicola. MOLECULAR PLANT PATHOLOGY 2012; 13:483-93. [PMID: 22111639 PMCID: PMC6638890 DOI: 10.1111/j.1364-3703.2011.00765.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The effects of the cruciferous phytoalexin brassinin on the protein expression patterns of the phytopathogenic fungus Alternaria brassicicola were investigated. Cell-free protein extracts of mycelia of A. brassicicola induced with brassinin at 0.50 and 0.10 mm were fractionated, and the proteins in soluble fractions were separated by two-dimensional electrophoresis. Spots corresponding to differentially expressed proteins were digested and analysed by liquid chromatography-electrospray ionization-mass spectrometry. The number of differentially expressed proteins was significantly higher in mycelia treated with brassinin at 0.50 mm (96 protein spots) than in mycelia treated with brassinin at 0.10 mm (18 protein spots). The majority of differentially expressed proteins included proteins involved in metabolism, processing, synthesis and several heat shock proteins (HSPs). Brassinin concentrations below 0.30 mm induced HSP90, a protein involved in the regulation of morphogenetic signalling in fungi, suggesting that 0.30 mm is a minimal concentration of brassinin necessary for the protection of brassicas against A. brassicicola. These results reveal that HSP90 is a potential target for inhibition in stressed A. brassicicola and confirm that brassinin has strong detrimental effects on A. brassicicola, suggesting that its detoxification by the fungus suppresses an important defence layer of the plant.
Collapse
Affiliation(s)
- M Soledade C Pedras
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5C9
| | | |
Collapse
|
30
|
Nosanchuk JD, Zancopé-Oliveira RM, Hamilton AJ, Guimarães AJ. Antibody therapy for histoplasmosis. Front Microbiol 2012; 3:21. [PMID: 22347215 PMCID: PMC3270318 DOI: 10.3389/fmicb.2012.00021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/12/2012] [Indexed: 11/13/2022] Open
Abstract
The endemic human pathogenic fungus Histoplasma capsulatum is a major fungal pathogen with a broad variety of clinical presentations, ranging from mild, focal pulmonary disease to life-threatening systemic infections. Although azoles, such as itraconazole and voriconazole, and amphotericin B have significant activity against H. capsulatum, about 1 in 10 patients hospitalized due to histoplasmosis die. Hence, new approaches for managing disease are being sought. Over the past 10 years, studies have demonstrated that monoclonal antibodies (mAbs) can modify the pathogenesis of histoplasmosis. Disease has been shown to be impacted by mAbs targeting either fungal cell surface proteins or host co-stimulatory molecules. This review will detail our current knowledge regarding the impact of antibody therapy on histoplasmosis.
Collapse
Affiliation(s)
- Joshua D Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine Bronx, NY, USA
| | | | | | | |
Collapse
|
31
|
Guimarães AJ, de Cerqueira MD, Nosanchuk JD. Surface architecture of histoplasma capsulatum. Front Microbiol 2011; 2:225. [PMID: 22121356 PMCID: PMC3220077 DOI: 10.3389/fmicb.2011.00225] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/25/2011] [Indexed: 12/22/2022] Open
Abstract
The dimorphic fungal pathogen Histoplasma capsulatum is the most frequent cause of clinically significant fungal pneumonia in humans. H. capsulatum virulence is achieved, in part, through diverse and dynamic alterations to the fungal cell surface. Surface components associated with H. capsulatum pathogenicity include carbohydrates, lipids, proteins, and melanins. Here, we describe the various structures comprising the cell surface of H. capsulatum that have been associated with virulence and discuss their involvement in the pathobiology of disease.
Collapse
Affiliation(s)
- Allan J Guimarães
- Department of Microbiology and Imunology, Albert Einstein College of Medicine of Yeshiva University Bronx, NY, USA
| | | | | |
Collapse
|
32
|
Histoplasma virulence and host responses. Int J Microbiol 2011; 2012:268123. [PMID: 22007223 PMCID: PMC3189557 DOI: 10.1155/2012/268123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/09/2011] [Indexed: 11/17/2022] Open
Abstract
Histoplasma capsulatum is the most prevalent cause of fungal respiratory disease. The disease extent and outcomes are the result of the complex interaction between the pathogen and a host's immune system. The focus of our paper consists in presenting the current knowledge regarding the multiple facets of the dynamic host-pathogen relationship in the context of the virulence arsenal displayed by the fungus and the innate and adaptive immune responses of the host.
Collapse
|