1
|
Cassmann ED, Frese AJ, Becker KA, Greenlee JJ. Short incubation periods of atypical H-type BSE in cattle with EK211 and KK211 prion protein genotypes after intracranial inoculation. Front Vet Sci 2023; 10:1301998. [PMID: 38026617 PMCID: PMC10655004 DOI: 10.3389/fvets.2023.1301998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
In 2006, a case of atypical H-type BSE (H-BSE) was found to be associated with a germline mutation in the PRNP gene that resulted in a lysine substitution for glutamic acid at codon 211 (E211K). The E211K amino acid substitution in cattle is analogous to E200K in humans, which is associated with the development of genetic Creutzfeldt-Jakob disease (CJD). In the present study, we aimed to determine the effect of the EK211 prion protein genotype on incubation time in cattle inoculated with the agent of H-BSE; to characterize the molecular profile of H-BSE in KK211 and EK211 genotype cattle; and to assess the influence of serial passage on BSE strain. Eight cattle, representing three PRNP genotype groups (EE211, EK211, and KK211), were intracranially inoculated with the agent of H-BSE originating from either a case in a cow with the EE211 prion protein genotype or a case in a cow with E211K amino acid substitution. All inoculated animals developed clinical disease; post-mortem samples were collected, and prion disease was confirmed through enzyme immunoassay, anti-PrPSc immunohistochemistry, and western blot. Western blot molecular analysis revealed distinct patterns in a steer with KK211 H-BSE compared to EK211 and EE211 cattle. Incubation periods were significantly shorter in cattle with the EK211 and KK211 genotypes compared to the EE211 genotype. Inoculum type did not significantly influence the incubation period. This study demonstrates a shorter incubation period for H-BSE in cattle with the K211 genotype in both the homozygous and heterozygous forms.
Collapse
Affiliation(s)
- Eric D. Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Alexis J. Frese
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Kelsey A. Becker
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Justin J. Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
2
|
Block AJ, Bartz JC. Prion strains: shining new light on old concepts. Cell Tissue Res 2023; 392:113-133. [PMID: 35796874 PMCID: PMC11318079 DOI: 10.1007/s00441-022-03665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
Prion diseases are a group of inevitably fatal neurodegenerative disorders affecting numerous mammalian species, including humans. The existence of heritable phenotypes of disease in the natural host suggested that prions exist as distinct strains. Transmission of sheep scrapie to rodent models accelerated prion research, resulting in the isolation and characterization of numerous strains with distinct characteristics. These strains are grouped into categories based on the incubation period of disease in different strains of mice and also by how stable the strain properties were upon serial passage. These classical studies defined the host and agent parameters that affected strain properties, and, prior to the advent of the prion hypothesis, strain properties were hypothesized to be the result of mutations in a nucleic acid genome of a conventional pathogen. The development of the prion hypothesis challenged the paradigm of infectious agents, and, initially, the existence of strains was difficult to reconcile with a protein-only agent. In the decades since, much evidence has revealed how a protein-only infectious agent can perform complex biological functions. The prevailing hypothesis is that strain-specific conformations of PrPSc encode prion strain diversity. This hypothesis can provide a mechanism to explain the observed strain-specific differences in incubation period of disease, biochemical properties of PrPSc, tissue tropism, and subcellular patterns of pathology. This hypothesis also explains how prion strains mutate, evolve, and adapt to new species. These concepts are applicable to prion-like diseases such as Parkinson's and Alzheimer's disease, where evidence of strain diversity is beginning to emerge.
Collapse
Affiliation(s)
- Alyssa J Block
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
3
|
Thackray AM, Andréoletti O, Spiropoulos J, Bujdoso R. A new model for sensitive detection of zoonotic prions by PrP transgenic Drosophila. J Biol Chem 2021; 297:100878. [PMID: 34270959 PMCID: PMC8350378 DOI: 10.1016/j.jbc.2021.100878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 11/01/2022] Open
Abstract
Prions are transmissible protein pathogens most reliably detected by a bioassay in a suitable host, typically mice. However, the mouse bioassay is slow and cumbersome, and relatively insensitive to low titers of prion infectivity. Prions can be detected biochemically in vitro by the protein misfolding cyclic amplification (PMCA) technique, which amplifies disease-associated prion protein but does not detect bona fide prion infectivity. Here, we demonstrate that Drosophila transgenic for bovine prion protein (PrP) expression can serve as a model system for the detection of bovine prions significantly more efficiently than either the mouse prion bioassay or PMCA. Strikingly, bovine PrP transgenic Drosophila could detect bovine prion infectivity in the region of a 10-12 dilution of classical bovine spongiform encephalopathy (BSE) inoculum, which is 106-fold more sensitive than that achieved by the bovine PrP mouse bioassay. A similar level of sensitivity was observed in the detection of H-type and L-type atypical BSE and sheep-passaged BSE by bovine PrP transgenic Drosophila. Bioassays of bovine prions in Drosophila were performed within 7 weeks, whereas the mouse prion bioassay required at least a year to assess the same inoculum. In addition, bovine PrP transgenic Drosophila could detect classical BSE at a level 105-fold lower than that achieved by PMCA. These data show that PrP transgenic Drosophila represent a new tractable prion bioassay for the efficient and sensitive detection of mammalian prions, including those of known zoonotic potential.
Collapse
Affiliation(s)
- Alana M Thackray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225 -Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - John Spiropoulos
- Pathology Department, Animal and Plant Health Agency (APHA), Weybridge, Addlestone, Surrey, UK
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Classical and Atypical Scrapie in Sheep and Goats. Review on the Etiology, Genetic Factors, Pathogenesis, Diagnosis, and Control Measures of Both Diseases. Animals (Basel) 2021; 11:ani11030691. [PMID: 33806658 PMCID: PMC7999988 DOI: 10.3390/ani11030691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Prion diseases, such as scrapie, are neurodegenerative diseases with a fatal outcome, caused by a conformational change of the cellular prion protein (PrPC), originating with the pathogenic form (PrPSc). Classical scrapie in small ruminants is the paradigm of prion diseases, as it was the first transmissible spongiform encephalopathy (TSE) described and is the most studied. It is necessary to understand the etiological properties, the relevance of the transmission pathways, the infectivity of the tissues, and how we can improve the detection of the prion protein to encourage detection of the disease. The aim of this review is to perform an overview of classical and atypical scrapie disease in sheep and goats, detailing those special issues of the disease, such as genetic factors, diagnostic procedures, and surveillance approaches carried out in the European Union with the objective of controlling the dissemination of scrapie disease.
Collapse
|
5
|
Suzuki A, Sawada K, Yamasaki T, Denkers ND, Mathiason CK, Hoover EA, Horiuchi M. Involvement of N- and C-terminal region of recombinant cervid prion protein in its reactivity to CWD and atypical BSE prions in real-time quaking-induced conversion reaction in the presence of high concentrations of tissue homogenates. Prion 2020; 14:283-295. [PMID: 33345717 PMCID: PMC7757825 DOI: 10.1080/19336896.2020.1858694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
The real-time quaking-induced conversion (RT-QuIC) reaction is a sensitive and specific method for detecting prions. However, inhibitory factors present in tissue homogenates can easily interfere with this reaction. To identify the RT-QuIC condition under which low levels of chronic wasting disease (CWD) and bovine spongiform encephalopathy (BSE) prions can be detected in the presence of high concentrations of brain tissue homogenates, reactivities of various recombinant prion proteins (rPrPs) were tested. Among the tested rPrPs, recombinant cervid PrP (rCerPrP) showed a unique reactivity: the reactivity of rCerPrP to CWD and atypical BSE prions was not highly affected by high concentrations of normal brain homogenates. The unique reactivity of rCerPrP disappeared when the N-terminal region (aa 25-93) was truncated. Replacement of aa 23-149 of mouse (Mo) PrP with the corresponding region of CerPrP partially restored the unique reactivity of rCerPrP in RT-QuIC. Replacement of the extreme C-terminal region of MoPrP aa 219-231 to the corresponding region of CerPrP partially conferred the unique reactivity of rCerPrP to rMoPrP, suggesting the involvement of both N- and C-terminal regions. Additionally, rCerN-Mo-CerCPrP, a chimeric PrP comprising CerPrP aa 25-153, MoPrP aa 150-218, and CerPrP aa 223-233, showed an additive effect of the N- and C-terminal regions. These results provide a mechanistic implication for detecting CWD and atypical BSE prions using rCerPrP and are useful for further improvements of RT-QuIC.
Collapse
Affiliation(s)
- Akio Suzuki
- Laboratory of Veterinary Hygiene, Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Kazuhei Sawada
- Laboratory of Veterinary Hygiene, Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Takeshi Yamasaki
- Laboratory of Veterinary Hygiene, Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Nathaniel D Denkers
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Candace K Mathiason
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Edward A Hoover
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
- Global Station for Zoonosis Control. Global Institute for Collaborative Research and Education, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
6
|
Bovine adapted transmissible mink encephalopathy is similar to L-BSE after passage through sheep with the VRQ/VRQ genotype but not VRQ/ARQ. BMC Vet Res 2020; 16:383. [PMID: 33032590 PMCID: PMC7545885 DOI: 10.1186/s12917-020-02611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/05/2020] [Indexed: 11/24/2022] Open
Abstract
Background Transmissible mink encephalopathy (TME) is a fatal neurologic disease of farmed mink. Evidence indicates that TME and L-BSE are similar and may be linked in some outbreaks of TME. We previously transmitted bovine adapted TME (bTME) to sheep. The present study compared ovine passaged bTME (o-bTME) to C-BSE and L-BSE in transgenic mice expressing wild type bovine prion protein (TgBovXV). To directly compare the transmission efficiency of all prion strains in this study, we considered the attack rates and mean incubation periods. Additional methods for strain comparison were utilized including lesion profiles, fibril stability, and western blotting. Results Sheep donor genotype elicited variable disease phenotypes in bovinized mice. Inoculum derived from a sheep with the VRQ/VRQ genotype (o-bTMEVV) resulted in an attack rate, incubation period, western blot profile, and neuropathology most similar to bTME and L-BSE. Conversely, donor material from a sheep with the VRQ/ARQ genotype (o-bTMEAV) elicited a phenotype distinct from o-bTMEVV, bTME and L-BSE. The TSE with the highest transmission efficiency in bovinized mice was L-BSE. The tendency to efficiently transmit to TgBovXV mice decreased in the order bTME, C-BSE, o-bTMEVV, and o-bTMEAV. The transmission efficiency of L-BSE was approximately 1.3 times higher than o-bTMEVV and 3.2 times higher than o-bTMEAV. Conclusions Our findings provide insight on how sheep host genotype modulates strain genesis and influences interspecies transmission characteristics. Given that the transmission efficiencies of L-BSE and bTME are higher than C-BSE, coupled with previous reports of L-BSE transmission to mice expressing the human prion protein, continued monitoring for atypical BSE is advisable in order to prevent occurrences of interspecies transmission that may affect humans or other species.
Collapse
|
7
|
Miyazawa K, Masujin K, Matsuura Y, Iwamaru Y, Okada H. Influence of Interspecies Transmission of Atypical Bovine Spongiform Encephalopathy Prions to Hamsters on Prion Characteristics. Front Vet Sci 2020; 7:94. [PMID: 32195273 PMCID: PMC7062703 DOI: 10.3389/fvets.2020.00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/07/2020] [Indexed: 11/30/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a prion disease in cattle and is classified into the classical type (C-BSE) and two atypical BSEs, designated as high type (H-BSE) and low type (L-BSE). These classifications are based on the electrophoretic migration of the proteinase K-resistant core (PrPres) of the disease-associated form of the prion protein (PrPd). In a previous study, we succeeded in transmitting the H-BSE prion from cattle to TgHaNSE mice overexpressing normal hamster cellular PrP (PrPC). Further, Western blot analysis demonstrated that PrPres banding patterns of the H-BSE prion were indistinguishable from those of the C-BSE prion in TgHaNSE mice. In addition, similar PrPres glycoprofiles were detected among H-, C-, and L-BSE prions in TgHaNSE mice. Therefore, to better understand atypical BSE prions after interspecies transmission, H-BSE prion transmission from TgHaNSE mice to hamsters was investigated, and the characteristics of classical and atypical BSE prions among hamsters, wild-type mice, and mice overexpressing bovine PrPC (TgBoPrP) were compared in this study using biochemical and neuropathological methods. Identical PrPres banding patterns were confirmed between TgHaNSE mice and hamsters in the case of all three BSE prion strains. However, these PrPres banding patterns differed from those of TgBoPrP and wild-type mice infected with the H-BSE prion. In addition, glycoprofiles of TgHaNSE mice and hamsters infected with the L-BSE prion differed from those of TgBoPrP mice infected with the L-BSE prion. These data indicate that the PrPC amino acid sequences of new host species rather than other host environmental factors may affect some molecular aspects of atypical BSE prions. Although three BSE prion strains were distinguishable based on the neuropathological features in hamsters, interspecies transmission modified some molecular properties of atypical BSE prions, and these properties were indistinguishable from those of C-BSE prions in hamsters. Taken together, PrPres banding patterns and glycoprofiles are considered to be key factors for BSE strain typing. However, this study also revealed that interspecies transmission could sometimes influence these characteristics.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Viral Ecology Unit, National Institute of Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | | | - Yuichi Matsuura
- Viral Ecology Unit, National Institute of Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yoshifumi Iwamaru
- Viral Ecology Unit, National Institute of Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hiroyuki Okada
- Department of Planning and General Administration, NIAH, NARO, Tsukuba, Japan
| |
Collapse
|
8
|
Chapman GE, Lockey R, Beck KE, Vickery C, Arnold M, Thorne L, Thorne JK, Walker SR, Keulen L, Casalone C, Griffiths PC, Simmons MM, Terry LA, Spiropoulos J. Inactivation of H‐type and L‐type bovine spongiform encephalopathy following recommended autoclave decontamination procedures. Transbound Emerg Dis 2020. [DOI: 10.1111/tbed.13513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - Katy E. Beck
- Animal and Plant Health Agency (APHA) Weybridge UK
| | | | - Mark Arnold
- Animal and Plant Health Agency (APHA) Weybridge UK
| | - Leigh Thorne
- Animal and Plant Health Agency (APHA) Weybridge UK
| | | | | | - Lucien Keulen
- Wageningen Bioveterinary Research Wageningen UR Lelystad The Netherlands
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta Sede Centrale di Torino Turin Italy
| | | | | | | | | |
Collapse
|
9
|
Cassmann ED, Moore SJ, Smith JD, Greenlee JJ. Sheep Are Susceptible to the Bovine Adapted Transmissible Mink Encephalopathy Agent by Intracranial Inoculation and Have Evidence of Infectivity in Lymphoid Tissues. Front Vet Sci 2019; 6:430. [PMID: 31850385 PMCID: PMC6895770 DOI: 10.3389/fvets.2019.00430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/14/2019] [Indexed: 11/13/2022] Open
Abstract
Transmissible mink encephalopathy (TME) is a food borne prion disease. Epidemiological and experimental evidence suggests similarities between the agents of TME and L-BSE. This experiment demonstrates the susceptibility of four different genotypes of sheep to the bovine adapted TME agent by intracranial inoculation. The four genotypes of sheep used in this experiment had polymorphisms corresponding to codons 136, 154, and 171 of the prion gene: V136R154Q171/VRQ, VRQ/ARQ, ARQ/ARQ, and ARQ/ARR. All intracranially inoculated sheep without comorbidities (15/15) developed clinical signs and had detectable PrPSc by immunohistochemistry, western blot, and enzyme immunoassay (EIA). The mean incubation periods in sheep with bovine adapted TME correlated with their relative genotypic susceptibility. There was peripheral distribution of PrPSc in the trigeminal ganglion and neuromuscular spindles; however, unlike classical scrapie and C-BSE in sheep, sheep inoculated with the bovine TME agent did not have immunohistochemically detectable PrPSc in the lymphoid tissue. To rule out the presence of infectivity, the lymph nodes of two sheep genotypes, VRQ/VRQ, and ARQ/ARQ, were bioassayed in transgenic mice expressing ovine prion protein. Mice intracranially inoculated with retropharyngeal lymph node from a VRQ/VRQ sheep were EIA positive (3/17) indicating that sheep inoculated with the bovine TME agent harbor infectivity in their lymph nodes despite a lack of detection with conventional immunoassays. Western blot analysis demonstrated similarities in the migration patterns between bovine TME in sheep, the bovine adapted TME inoculum, and L-BSE. Overall, these results demonstrate that sheep are susceptible to the bovine adapted TME agent, and the tissue distribution of PrPSc in sheep with bovine TME is distinct from classical scrapie.
Collapse
Affiliation(s)
- Eric D Cassmann
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| | - S Jo Moore
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| | - Jodi D Smith
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States
| | - Justin J Greenlee
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
10
|
Rivera NA, Brandt AL, Novakofski JE, Mateus-Pinilla NE. Chronic Wasting Disease In Cervids: Prevalence, Impact And Management Strategies. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2019; 10:123-139. [PMID: 31632898 PMCID: PMC6778748 DOI: 10.2147/vmrr.s197404] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022]
Abstract
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) that affects members of the cervidae family. The infectious agent is a misfolded isoform (PrPSC) of the host prion protein (PrPC). The replication of PrPSC initiates a cascade of developmental changes that spread from cell to cell, individual to individual, and that for some TSEs, has crossed the species barrier. CWD can be transmitted horizontally and vertically, and it is the only TSE that affects free-ranging wildlife. While other TSEs are under control and even declining, infection rates of CWD continue to grow and the disease distribution continues to expand in North America and around the world. Since the first reported case in 1967, CWD has spread infecting captive and free-ranging cervids in 26 states in the US, 3 Canadian provinces, 3 European countries and has been found in captive cervids in South Korea. CWD causes considerable ecologic, economic and sociologic impact, as this is a 100% fatal highly contagious infectious disease, with no treatment or cure available. Because some TSEs have crossed the species barrier, the zoonotic potential of CWD is a concern for human health and continues to be investigated. Here we review the characteristics of the CWD prion protein, mechanisms of transmission and the role of genetics. We discuss the characteristics that contribute to prevalence and distribution. We also discuss the impact of CWD and review the management strategies that have been used to prevent and control the spread of CWD.
Collapse
Affiliation(s)
- Nelda A Rivera
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Adam L Brandt
- Division of Natural Sciences, St. Norbert College, De Pere, WI, USA
| | - Jan E Novakofski
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nohra E Mateus-Pinilla
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
11
|
Kumagai S, Daikai T, Onodera T. Bovine Spongiform Encephalopathy
- A Review from the Perspective of Food Safety. Food Saf (Tokyo) 2019; 7:21-47. [PMID: 31998585 PMCID: PMC6978881 DOI: 10.14252/foodsafetyfscj.2018009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/01/2019] [Indexed: 12/04/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease that belongs to transmissible spongiform encephalopathy (TSE). Since the first case was identified in the UK in 1986, BSE spread to other countries including Japan. Its incidence peaked in 1992 in the UK and from 2001 to 2006 in many other countries, but a feed ban aimed at eliminating the recycling of the BSE agent and other control measures aimed at preventing food and feed contamination with the agent were highly effective at reducing the spread of BSE. In 2004, two types of atypical BSE, H-type BSE (H-BSE) and L-type BSE (L-BSE), which differ from classical BSE (C-BSE), were found in France and Italy. Atypical BSE, which is assumed to occur spontaneously, has also been detected among cattle in other countries including Japan. The BSE agent including atypical BSE agent is a unique food-safety hazard with different chemical and biological properties from the microbial pathogens and toxic chemicals that contaminate food. In this review, we summarize the reported findings on the tissue distribution of BSE prions in infected cattle and other aspects of BSE, as well as the control measures against the disease employed in Japan. Topics that require further studies are discussed based on the summarized findings from the perspective of food safety.
Collapse
Affiliation(s)
- Susumu Kumagai
- Research Center for Food Safety, The University of
Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657,
Japan
| | - Takateru Daikai
- Food Safety Commission of Japan Secretariat, Akasaka
Park Bld. 22F, Akasaka 5-2-20, Minato-ku,
Tokyo 107-6122, Japan
- Cooperative Department of Veterinary Medicine,
Graduate School of Veterinary Sciences, Iwate University, Morioka-shi,
Iwate 020-8550, Japan
| | - Takashi Onodera
- Research Center for Food Safety, The University of
Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657,
Japan
| |
Collapse
|
12
|
Hagiwara K, Sato Y, Yamakawa Y, Hara H, Tobiume M, Okemoto-Nakamura Y, Sata T, Horiuchi M, Shibata H, Ono F. Tracking and clarifying differential traits of classical- and atypical L-type bovine spongiform encephalopathy prions after transmission from cattle to cynomolgus monkeys. PLoS One 2019; 14:e0216807. [PMID: 31095605 PMCID: PMC6522098 DOI: 10.1371/journal.pone.0216807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/29/2019] [Indexed: 11/29/2022] Open
Abstract
Classical- (C-) and atypical L-type bovine spongiform encephalopathy (BSE) prions cause different pathological phenotypes in cattle brains, and the disease-associated forms of each prion protein (PrPSc) has a dissimilar biochemical signature. Bovine C-BSE prions are the causative agent of variant Creutzfeldt-Jakob disease. To date, human infection with L-BSE prions has not been reported, but they can be transmitted experimentally from cows to cynomolgus monkeys (Macaca fascicularis), a non-human primate model. When transmitted to monkeys, C- and L-BSE prions induce different pathological phenotypes in the brain. However, when isolated from infected brains, the two prion proteins (PrPSc) have similar biochemical signatures (i.e., electrophoretic mobility, glycoforms, and resistance to proteinase K). Such similarities suggest the possibility that L-BSE prions alter their virulence to that of C-BSE prions during propagation in monkeys. To clarify this possibility, we conducted bioassays using inbred mice. C-BSE prions with or without propagation in monkeys were pathogenic to mice, and exhibited comparable incubation periods in secondary passage in mice. By contrast, L-BSE prions, either with or without propagation in monkeys, did not cause the disease in mice, indicating that the pathogenicity of L-BSE prions does not converge towards a C-BSE prion type in this primate model. These results suggest that, although C- and L-BSE prions propagated in cynomolgus monkeys exhibit similar biochemical PrPSc signatures and consist of the monkey amino acid sequence, the two prions maintain strain-specific conformations of PrPSc in which they encipher and retain unique pathogenic traits.
Collapse
Affiliation(s)
- Ken’ichi Hagiwara
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshio Yamakawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Hara
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yuko Okemoto-Nakamura
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tetsutaro Sata
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroaki Shibata
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Fumiko Ono
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Miyazawa K, Masujin K, Matsuura Y, Iwamaru Y, Yokoyama T, Okada H. Interspecies transmission to bovinized transgenic mice uncovers new features of a CH1641-like scrapie isolate. Vet Res 2018; 49:116. [PMID: 30486902 PMCID: PMC6262972 DOI: 10.1186/s13567-018-0611-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
In animal prion diseases, including bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease in cervids, and scrapie in sheep and goats, a disease-associated isoform of prion protein (PrPd) accumulates in the brains of affected animals. Although the CH1641 scrapie isolate was experimentally established in the UK, a few natural CH1641-like scrapie cases have been reported in France and the UK. The molecular mass of the unglycosylated protease-resistant core of PrPd (PrPres) is known to be similar between CH1641-like scrapie and experimental BSE in sheep. We previously established an experimental CH1641-like scrapie isolate (Sh294) from a natural classical scrapie case. Here, we demonstrated that the Sh294 isolate was independent of both classical and atypical BSEs by cross-species transmission to bovine PrP overexpressing (TgBoPrP) mice and wild-type mice. Interestingly, we found that the Sh294 isolate altered its host range by the transmission to TgBoPrP mice, and we succeeded in the first stable reproduction of CH1641-like scrapie specific PrPres banding patterns with the ~12-kDa small C-terminal fragment in wild-type mice. This study provides new insight into the relationship between CH1641-like scrapie isolates and BSEs. In addition, interspecies transmission models such as we have demonstrated here could be a great help to investigate the origin and host range of animal prions.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Kentaro Masujin
- Exotic Disease Research Unit, Division of Transboundary Animal Diseases, NIAH, NARO, Kodaira, Tokyo, Japan
| | - Yuichi Matsuura
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yoshifumi Iwamaru
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- Department of Planning and General Administration, NIAH, NARO, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Okada
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Serra F, Dudas S, Torres JM, Anderson R, Oevermann A, Espinosa JC, Czub S, Seuberlich T. Presumptive BSE cases with an aberrant prion protein phenotype in Switzerland, 2011: Lack of prion disease in experimentally inoculated cattle and bovine prion protein transgenic mice. Transbound Emerg Dis 2018; 65:1348-1356. [PMID: 29675959 DOI: 10.1111/tbed.12884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Indexed: 01/21/2023]
Abstract
Bovine spongiform encephalopathy (BSE) is caused by different prion strains that are discriminated by the molecular characteristics of the pathological prion protein. In 2011, Switzerland reported two presumptive cases of BSE in cattle with a prion protein phenotype different from previously described strains, and it was unclear whether these findings were related to a transmissible disease and have implications on animal and public health. In this study, brain tissues of these cases were inoculated into transgenic mice expressing the bovine prion protein (BoPrP-Tg110) and into cattle. Clinical and pathological investigations as well as molecular testing did not provide evidence for the presence of BSE in the Swiss cases after two passages in BoPrP-Tg110 mice and a challenge period of 3.5 years in cattle. This lack of disease transmission suggests that the Swiss 2011 cases were not affected by a prion disease and were unrelated to the feed-born BSE epidemic.
Collapse
Affiliation(s)
- F Serra
- Division of Neurological Sciences, NeuroCenter, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - S Dudas
- Lethbridge Laboratory, Canadian Food Inspection Agency, Lethbridge, Alberta, Canada
| | - J M Torres
- Centro de Investigación en Sanidad Animal, Valdeolmos, Madrid, Spain
| | - R Anderson
- Lethbridge Laboratory, Canadian Food Inspection Agency, Lethbridge, Alberta, Canada
| | - A Oevermann
- Division of Neurological Sciences, NeuroCenter, University of Bern, Bern, Switzerland
| | - J C Espinosa
- Centro de Investigación en Sanidad Animal, Valdeolmos, Madrid, Spain
| | - S Czub
- Lethbridge Laboratory, Canadian Food Inspection Agency, Lethbridge, Alberta, Canada
| | - T Seuberlich
- Division of Neurological Sciences, NeuroCenter, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
O'Connor JT, Byrne JP, More SJ, Blake M, McGrath G, Tratalos JA, Mcelroy MC, Kiernan P, Canty MJ, O'Brien-Lynch C, Griffin JM. Using an epidemiological framework and bovine spongiform encephalopathy investigation questionnaire to investigate suspect bovine spongiform encephalopathy cases: an example from a bovine spongiform encephalopathy case in Ireland in 2015. Vet Rec 2018; 182:168. [PMID: 29122979 PMCID: PMC5870463 DOI: 10.1136/vr.104148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 08/25/2017] [Accepted: 10/08/2017] [Indexed: 11/04/2022]
Abstract
In several EU member states, bovine spongiform encephalopathy (BSE) cases have been identified in cattle born after the reinforced ban (BARB cases), for reasons that are not entirely clear. Epidemiological investigation of these cases has proved challenging. The European Food Safety Authority recently recommended the collection of a predefined set of epidemiological data from BSE suspects and confirmed BSE cases to aid future investigations. In this study, we present an epidemiological framework and BSE investigation questionnaire to aid the investigation of suspect BSE cases, and illustrate its application during the investigation of a BSE case in Ireland in 2015. It is recommended that the framework and questionnaire are used concurrently: the framework provides structure and focus, whereas the questionnaire (with 135 questions) aids data collection. The framework focuses on confirmation and discrimination, estimating the date and location of exposure, and determining the method/source of exposure. The BSE case in Ireland in 2015 was a BARB case born in 2010. It was identified with classical BSE at an authorised knackery as part of Ireland's targeted active surveillance programme for BSE. No definitive source of infection with the BSE agent could be attributed in this case.
Collapse
Affiliation(s)
- Jarlath T O'Connor
- Department of Agriculture, Food and the Marine, Backweston Laboratory Complex, Celbridge, Ireland
| | - Justin P Byrne
- Department of Agriculture, Food and the Marine, Backweston Laboratory Complex, Celbridge, Ireland
| | - Simon J More
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Martin Blake
- Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - Guy McGrath
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Jamie A Tratalos
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Maire C Mcelroy
- Department of Agriculture, Food and the Marine, Backweston Laboratory Complex, Celbridge, Ireland
| | - Paul Kiernan
- Department of Agriculture, Food and the Marine, Backweston Laboratory Complex, Celbridge, Ireland
| | - Mary J Canty
- Department of Agriculture, Food and the Marine, Backweston Laboratory Complex, Celbridge, Ireland
| | - Chris O'Brien-Lynch
- Department of Agriculture, Food and the Marine, Dublin, Ireland
- Department of Agriculture, Food and the Marine, Navan, Ireland
| | - John M Griffin
- Department of Agriculture, Food and the Marine, Backweston Laboratory Complex, Celbridge, Ireland
| |
Collapse
|
16
|
Igel-Egalon A, Béringue V, Rezaei H, Sibille P. Prion Strains and Transmission Barrier Phenomena. Pathogens 2018; 7:E5. [PMID: 29301257 PMCID: PMC5874731 DOI: 10.3390/pathogens7010005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
Several experimental evidences show that prions are non-conventional pathogens, which physical support consists only in proteins. This finding raised questions regarding the observed prion strain-to-strain variations and the species barrier that happened to be crossed with dramatic consequences on human health and veterinary policies during the last 3 decades. This review presents a focus on a few advances in the field of prion structure and prion strains characterization: from the historical approaches that allowed the concept of prion strains to emerge, to the last results demonstrating that a prion strain may in fact be a combination of a few quasi species with subtle biophysical specificities. Then, we will focus on the current knowledge on the factors that impact species barrier strength and species barrier crossing. Finally, we present probable scenarios on how the interaction of strain properties with host characteristics may account for differential selection of new conformer variants and eventually species barrier crossing.
Collapse
Affiliation(s)
- Angélique Igel-Egalon
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Vincent Béringue
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Human Rezaei
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Pierre Sibille
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| |
Collapse
|
17
|
Okada H, Masujin K, Miyazawa K, Iwamaru Y, Imamura M, Matsuura Y, Arai S, Fukuda S, Murayama Y, Yokoyama T. Experimental Infection of Cattle With a Novel Prion Derived From Atypical H-Type Bovine Spongiform Encephalopathy. Vet Pathol 2017; 54:892-900. [PMID: 28731378 DOI: 10.1177/0300985817717769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
H-type bovine spongiform encephalopathy (H-BSE) is an atypical form of BSE in cattle. During passaging of H-BSE in transgenic bovinized (TgBoPrP) mice, a novel phenotype of BSE, termed BSE-SW emerged and was characterized by a short incubation time and host weight loss. To investigate the biological and biochemical properties of the BSE-SW prion, a transmission study was conducted in cattle, which were inoculated intracerebrally with brain homogenate from BSE-SW-infected TgBoPrP mice. The disease incubation period was approximately 15 months. The animals showed characteristic neurological signs of dullness, and severe spongiform changes and a widespread, uniform distribution of disease-associated prion protein (PrPSc) were observed throughout the brain of infected cattle. Immunohistochemical PrPSc staining of the brain revealed the presence of intraglial accumulations and plaque-like deposits. No remarkable differences were identified in vacuolar lesion scores, topographical distribution patterns, and staining types of PrPSc in the brains of BSE-SW- vs H-BSE-infected cattle. PrPSc deposition was detected in the ganglia, vagus nerve, spinal nerve, cauda equina, adrenal medulla, and ocular muscle. Western blot analysis revealed that the specific biochemical properties of the BSE-SW prion, with an additional 10- to 12-kDa fragment, were well maintained after transmission. These findings indicated that the BSE-SW prion has biochemical properties distinct from those of H-BSE in cattle, although clinical and pathologic features of BSW-SW in cattle are indistinguishable from those of H-BSE. The results suggest that the 2 infectious agents, BSE-SW and H-BSE, are closely related strains.
Collapse
Affiliation(s)
- Hiroyuki Okada
- 1 National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kentaro Masujin
- 1 National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kohtaro Miyazawa
- 1 National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yoshihumi Iwamaru
- 1 National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Morikazu Imamura
- 1 National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yuichi Matsuura
- 1 National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Shozo Arai
- 1 National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Shigeo Fukuda
- 2 Hokkaido Animal Research Center, Hokkaido Research Organization, Shintoku, Hokkaido, Japan
| | - Yuichi Murayama
- 1 National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- 1 National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Atypical BSE: Current Knowledge and Knowledge Gaps. Food Saf (Tokyo) 2017; 5:10-13. [PMID: 32231923 DOI: 10.14252/foodsafetyfscj.2016028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/26/2016] [Indexed: 11/21/2022] Open
Abstract
Atypical BSE is an invariably fatal neurologic disease of cattle caused by misfolded prion proteins with different conformations than those associated with classical BSE. Evidence suggests that these atypical BSE types are sporadic or genetic prion diseases of cattle and the relevance of these diseases, as far as natural transmissibility, is still unknown. Different misfolded prion protein conformations also result in unique biochemical characteristics. This raised concerns about detection of atypical BSE on rapid test platforms designed and validated for classical BSE prions. Despite the differences in the misfolded prion protein characteristics, studies have shown that the tests also work well for detecting the known types of atypical BSE. A new question that has recently emerged is related to the possibility of additional forms of atypical BSE. Initially reactive bovine brain samples on certain rapid surveillance tests have sparked debate about the true BSE status of these samples. Work is currently underway to determine if these samples are infectious and if they eventually result in neurologic disease in cattle. Results of these studies could impact future BSE diagnostic testing programs as well as human and animal health policies.
Collapse
|
19
|
Laurindo EE, Barros Filho IRD. Encefalopatia espongiforme bovina atípica: uma revisão. ARQUIVOS DO INSTITUTO BIOLÓGICO 2017. [DOI: 10.1590/1808-1657000392015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO: A encefalopatia espongiforme bovina (EEB), causada por um príon infectante, surgiu na década de 1980 na Europa como uma nova doença nos rebanhos bovinos e, desde então, estão sendo tomadas várias ações para sua prevenção e controle. A restrição da alimentação de ruminantes com subprodutos de origem animal e a remoção e destruição dos materiais de risco específico para a doença das carcaças em frigoríficos se mostraram efetivas medidas para o controle da doença, além de reduzirem a exposição humana ao agente, pois se trata de uma importante zoonose. No entanto, em 2004 os primeiros casos atípicos de EEB foram diagnosticados, nos quais os agentes causais apresentavam alterações de peso molecular na prova de Western blot, em relação ao agente da forma clássica. Além das diferenças moleculares dos agentes, as apresentações clínicas mostraram-se diferenciadas nas formas atípicas, acometendo principalmente bovinos com idade superior a oito anos. Por se tratar de uma nova forma da doença, muitos estudos estão sendo conduzidos buscando elucidar a patogenia, epidemiologia e seu potencial zoonótico. Objetivou-se neste estudo revisar os principais aspectos relacionados às EEB atípicas enfatizando sua etiologia, epidemiologia, sinais clínicos, diagnóstico e medidas de controle.
Collapse
|
20
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Sanaa M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Ru G, Telling GC, Tryland M, Ortiz Pelaez A, Simmons M. Chronic wasting disease (CWD) in cervids. EFSA J 2017; 15:e04667. [PMID: 32625260 PMCID: PMC7010154 DOI: 10.2903/j.efsa.2017.4667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In April and May of 2016, Norway confirmed two cases of chronic wasting disease (CWD) in a wild reindeer and a wild moose, respectively. In the light of this emerging issue, the European Commission requested EFSA to recommend surveillance activities and, if necessary, additional animal health risk-based measures to prevent the introduction of the disease and the spread into/within the EU, specifically Estonia, Finland, Iceland, Latvia, Lithuania, Norway, Poland and Sweden, and considering seven wild, semidomesticated and farmed cervid species (Eurasian tundra reindeer, Finnish (Eurasian) forest reindeer, moose, roe deer, white-tailed deer, red deer and fallow deer). It was also asked to assess any new evidence on possible public health risks related to CWD. A 3-year surveillance system is proposed, differing for farmed and wild or semidomesticated cervids, with a two-stage sampling programme at the farm/geographically based population unit level (random sampling) and individual level (convenience sampling targeting high-risk animals). The current derogations of Commission Implementing Decision (EU) 2016/1918 present a risk of introduction of CWD into the EU. Measures to prevent the spread of CWD within the EU are dependent upon the assumption that the disease is already present; this is currently unknown. The measures listed are intended to contain (limit the geographic extent of a focus) and/or to control (actively stabilise/reduce infection rates in an affected herd or population) the disease where it occurs. With regard to the zoonotic potential, the human species barrier for CWD prions does not appear to be absolute. These prions are present in the skeletal muscle and other edible tissues, so humans may consume infected material in enzootic areas. Epidemiological investigations carried out to date make no association between the occurrence of sporadic Creutzfeldt-Jakob disease in humans and exposure to CWD prions.
Collapse
|
21
|
Intra- and Interspecies Transmission of Atypical BSE - What Can We Learn from It? Food Saf (Tokyo) 2016; 4:121-129. [PMID: 32231916 DOI: 10.14252/foodsafetyfscj.2016023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/17/2016] [Indexed: 11/21/2022] Open
Abstract
After the detection of the first cases of atypical bovine spongiform encephalopathy (BSE) more than ten years ago, the etiology, pathogenesis and agent distribution of these novel BSE forms in cattle were completely unknown. Many studies have been performed in the meantime to elucidate the pathogenic mechanisms of these diseases. A wealth of data has been accumulated regarding the distribution of the abnormal isoform of the prion protein, PrPSc, in tissues of affected cattle, confirming the general restriction of the PrPSc and agent distribution to the central and peripheral nervous system, albeit at slightly higher levels as compared to classical BSE. However, due to lack of data, the assumptions regarding the spontaneous etiology of both atypical BSE forms (H-BSE and L-BSE) and also the origin of the classical BSE epidemic are still mainly speculative. By performing subpassage experiments of both the atypical BSE forms in a variety of conventional and transgenic mice and Syrian Gold hamsters, we aimed to improve our understanding of the strain stability of these BSE forms. It turned out that under these experimental conditions, both the atypical BSE forms may alter their phenotypes and become indistinguishable from classical BSE. Information about the classical and atypical BSE strain characteristics help to improve our understanding of the correlation between all three BSE forms.
Collapse
|
22
|
Emergence of a novel bovine spongiform encephalopathy (BSE) prion from an atypical H-type BSE. Sci Rep 2016; 6:22753. [PMID: 26948374 PMCID: PMC4780101 DOI: 10.1038/srep22753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/19/2016] [Indexed: 11/20/2022] Open
Abstract
The H-type of atypical bovine spongiform encephalopathy (H-BSE) was serially passaged in bovinized transgenic (TgBoPrP) mice. At the fourth passage, most challenged mice showed a typical H-BSE phenotype with incubation periods of 223 ± 7.8 days. However, a different phenotype of BSE prion with shorter incubation periods of 109 ± 4 days emerged in a minor subset of the inoculated mice. The latter showed distinct clinical signs, brain pathology, and abnormal prion protein profiles as compared to H-BSE and other known BSE strains in mice. This novel prion was transmitted intracerebrally to cattle, with incubation periods of 14.8 ± 1.5 months, with phenotypes that differed from those of other bovine prion strains. These data suggest that intraspecies transmission of H-BSE in cattle allows the emergence of a novel BSE strain. Therefore, the continuation of feed ban programs may be necessary to exclude the recycling of H-BSE prions, which appear to arise spontaneously, in livestock. Such measures should help to reduce the risks from both novel and known strains of BSE.
Collapse
|
23
|
Detection of Atypical H-Type Bovine Spongiform Encephalopathy and Discrimination of Bovine Prion Strains by Real-Time Quaking-Induced Conversion. J Clin Microbiol 2016; 54:676-86. [PMID: 26739160 DOI: 10.1128/jcm.02731-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022] Open
Abstract
Prion diseases of cattle include the classical bovine spongiform encephalopathy (C-BSE) and the atypical H-type BSE (H-BSE) and L-type BSE (L-BSE) strains. Although the C- and L-BSE strains can be detected and discriminated by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays, no such test has yet been described for the detection of H-BSE or the discrimination of each of the major bovine prion strains. Here, we demonstrate an RT-QuIC assay for H-BSE that can detect as little as 10(-9) dilutions of brain tissue and neat cerebrospinal fluid samples from clinically affected cattle. Moreover, comparisons of the reactivities with different recombinant prion protein substrates and/or immunoblot band profiles of proteinase K-treated RT-QuIC reaction products indicated that H-, L-, and C-BSE have distinctive prion seeding activities and can be discriminated by RT-QuIC on this basis.
Collapse
|
24
|
Okada H, Masujin K, Miyazawa K, Yokoyama T. Transmissibility of H-Type Bovine Spongiform Encephalopathy to Hamster PrP Transgenic Mice. PLoS One 2015; 10:e0138977. [PMID: 26466381 PMCID: PMC4605493 DOI: 10.1371/journal.pone.0138977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/07/2015] [Indexed: 11/18/2022] Open
Abstract
Two distinct forms of atypical bovine spongiform encephalopathies (H-BSE and L-BSE) can be distinguished from classical (C-) BSE found in cattle based on biochemical signatures of disease-associated prion protein (PrPSc). H-BSE is transmissible to wild-type mice—with infected mice showing a long survival period that is close to their normal lifespan—but not to hamsters. Therefore, rodent-adapted H-BSE with a short survival period would be useful for analyzing H-BSE characteristics. In this study, we investigated the transmissibility of H-BSE to hamster prion protein transgenic (TgHaNSE) mice with long survival periods. Although none of the TgHaNSE mice manifested the disease during their lifespan, PrPSc accumulation was observed in some areas of the brain after the first passage. With subsequent passages, TgHaNSE mice developed the disease with a mean survival period of 220 days. The molecular characteristics of proteinase K-resistant PrPSc (PrPres) in the brain were identical to those observed in first-passage mice. The distribution of immunolabeled PrPSc in the brains of TgHaNSE mice differed between those infected with H-BSE as compared to C-BSE or L-BSE, and the molecular properties of PrPres in TgHaNSE mice infected with H-BSE differed from those of the original isolate. The strain-specific electromobility, glycoform profiles, and proteolytic cleavage sites of H-BSE in TgHaNSE mice were indistinguishable from those of C-BSE, in which the diglycosylated form was predominant. These findings indicate that strain-specific pathogenic characteristics and molecular features of PrPres in the brain are altered during cross-species transmission. Typical H-BSE features were restored after back passage from TgHaNSE to bovinized transgenic mice, indicating that the H-BSE strain was propagated in TgHaNSE mice. This could result from the overexpression of the hamster prion protein.
Collapse
Affiliation(s)
- Hiroyuki Okada
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- * E-mail: (HO); (KM)
| | - Kentaro Masujin
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- * E-mail: (HO); (KM)
| | - Kohtaro Miyazawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
25
|
Okada H, Masujin K, Miyazawa K, Yokoyama T. Acquired transmissibility of sheep-passaged L-type bovine spongiform encephalopathy prion to wild-type mice. Vet Res 2015; 46:81. [PMID: 26169916 PMCID: PMC4499898 DOI: 10.1186/s13567-015-0211-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
L-type bovine spongiform encephalopathy (L-BSE) is an atypical form of BSE that is transmissible to cattle and several lines of prion protein (PrP) transgenic mice, but not to wild-type mice. In this study, we examined the transmissibility of sheep-passaged L-BSE prions to wild-type mice. Disease-associated prion protein (PrPSc) was detected in the brain and/or lymphoid tissues during the lifespan of mice that were asymptomatic subclinical carriers, indicating that wild-type mice were susceptible to sheep-passaged L-BSE. The morphological characteristics of the PrPSc of sheep-passaged L-BSE included florid plaques that were distributed mainly in the cerebral cortex and hippocampus of subsequent passaged mice. The PrPSc glycoform profiles of wild-type mice infected with sheep-passaged L-BSE were similar to those of the original isolate. The data indicate that sheep-passaged L-BSE has an altered host range and acquired transmissibility to wild-type mice.
Collapse
Affiliation(s)
- Hiroyuki Okada
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Kentaro Masujin
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Kohtaro Miyazawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Takashi Yokoyama
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| |
Collapse
|
26
|
Simmons MM, Moore SJ, Lockey R, Chaplin MJ, Konold T, Vickery C, Spiropoulos J. Phenotype shift from atypical scrapie to CH1641 following experimental transmission in sheep. PLoS One 2015; 10:e0117063. [PMID: 25710519 PMCID: PMC4339189 DOI: 10.1371/journal.pone.0117063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022] Open
Abstract
The interactions of host and infecting strain in ovine transmissible spongiform encephalopathies are known to be complex, and have a profound effect on the resulting phenotype of disease. In contrast to classical scrapie, the pathology in naturally-occurring cases of atypical scrapie appears more consistent, regardless of genotype, and is preserved on transmission within sheep homologous for the prion protein (PRNP) gene. However, the stability of transmissible spongiform encephalopathy phenotypes on passage across and within species is not absolute, and there are reports in the literature where experimental transmissions of particular isolates have resulted in a phenotype consistent with a different strain. In this study, intracerebral inoculation of atypical scrapie between two genotypes both associated with susceptibility to atypical forms of disease resulted in one sheep displaying an altered phenotype with clinical, pathological, biochemical and murine bioassay characteristics all consistent with the classical scrapie strain CH1641, and distinct from the atypical scrapie donor, while the second sheep did not succumb to challenge. One of two sheep orally challenged with the same inoculum developed atypical scrapie indistinguishable from the donor. This study adds to the range of transmissible spongiform encephalopathy phenotype changes that have been reported following various different experimental donor-recipient combinations. While these circumstances may not arise through natural exposure to disease in the field, there is the potential for iatrogenic exposure should current disease surveillance and feed controls be relaxed. Future sheep to sheep transmission of atypical scrapie might lead to instances of disease with an alternative phenotype and onward transmission potential which may have adverse implications for both public health and animal disease control policies.
Collapse
Affiliation(s)
- Marion M. Simmons
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
- * E-mail:
| | - S. Jo Moore
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Richard Lockey
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Melanie J Chaplin
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Timm Konold
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Christopher Vickery
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - John Spiropoulos
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| |
Collapse
|
27
|
Orge L, Machado CG, Ramalho L, Carvalho R, Silva J, Almeida P, Tavares P, Ochoa C, Lima C, Pinto MJM, Simas JP. Identification of H-type BSE in Portugal. Prion 2015; 9:22-8. [PMID: 25629308 DOI: 10.1080/19336896.2014.997615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
During the bovine spongiform encephalopathy (BSE) epidemic, Portugal was the third most affected country. As a result of a successful national eradication plan, the number of BSE affected animals has been progressively declining in Portugal with no cases identified in 2013. However, within the scope of this active surveillance scheme, we have identified the first H-type BSE case born after the introduction of the reinforced ban in fallen stock. Here, we report the phenotypic features of this case and the analysis of the protein coding sequence of prnp as well as the prnp promoter and intron 1 insertion-deletions.
Collapse
Affiliation(s)
- Leonor Orge
- a Laboratório de Patologia polos Benfica e Vairão; Instituto Nacional de Investigação Agrária e Veterinária, IP ; Lisboa e Vairão , Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tark D, Kim H, Neale MH, Kim M, Sohn H, Lee Y, Cho I, Joo Y, Windl O. Generation of a persistently infected MDBK cell line with natural bovine spongiform encephalopathy (BSE). PLoS One 2015; 10:e0115939. [PMID: 25647616 PMCID: PMC4315440 DOI: 10.1371/journal.pone.0115939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/28/2014] [Indexed: 01/14/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a zoonotic transmissible spongiform encephalopathy (TSE) thought to be caused by the same prion strain as variant Creutzfeldt-Jakob disease (vCJD). Unlike scrapie and chronic wasting disease there is no cell culture model allowing the replication of proteinase K resistant BSE (PrPBSE) and the further in vitro study of this disease. We have generated a cell line based on the Madin-Darby Bovine Kidney (MDBK) cell line over-expressing the bovine prion protein. After exposure to naturally BSE-infected bovine brain homogenate this cell line has shown to replicate and accumulate PrPBSE and maintain infection up to passage 83 after initial challenge. Collectively, we demonstrate, for the first time, that the BSE agent can infect cell lines over-expressing the bovine prion protein similar to other prion diseases. These BSE infected cells will provide a useful tool to facilitate the study of potential therapeutic agents and the diagnosis of BSE.
Collapse
Affiliation(s)
- Dongseob Tark
- Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, 175 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Hyojin Kim
- Department of Animal Disease Control and Quarantine, Animal and Plant Quarantine Agency, 175 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Michael H Neale
- Pathology and Host Susceptibility Department, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, KT15 3NB, United Kingdom
| | - Minjeong Kim
- Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, 175 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Hyunjoo Sohn
- Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, 175 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Yoonhee Lee
- Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, 175 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Insoo Cho
- Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, 175 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Yiseok Joo
- Department of Animal Disease Control and Quarantine, Animal and Plant Quarantine Agency, 175 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Otto Windl
- Pathology and Host Susceptibility Department, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, KT15 3NB, United Kingdom
| |
Collapse
|
29
|
Detection and discrimination of classical and atypical L-type bovine spongiform encephalopathy by real-time quaking-induced conversion. J Clin Microbiol 2015; 53:1115-20. [PMID: 25609728 DOI: 10.1128/jcm.02906-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Statutory surveillance of bovine spongiform encephalopathy (BSE) indicates that cattle are susceptible to both classical BSE (C-BSE) and atypical forms of BSE. Atypical forms of BSE appear to be sporadic and thus may never be eradicated. A major challenge for prion surveillance is the lack of sufficiently practical and sensitive tests for routine BSE detection and strain discrimination. The real-time quaking-induced conversion (RT-QuIC) test, which is based on prion-seeded fibrillization of recombinant prion protein (rPrPSen), is known to be highly specific and sensitive for the detection of multiple human and animal prion diseases but not BSE. Here, we tested brain tissue from cattle affected by C-BSE and atypical L-type bovine spongiform encephalopathy (L-type BSE or L-BSE) with the RT-QuIC assay and found that both BSE forms can be detected and distinguished using particular rPrPSen substrates. Specifically, L-BSE was detected using multiple rPrPSen substrates, while C-BSE was much more selective. This substrate-based approach suggests a diagnostic strategy for specific, sensitive, and rapid detection and discrimination of at least some BSE forms.
Collapse
|
30
|
Aguilar-Calvo P, García C, Espinosa JC, Andreoletti O, Torres JM. Prion and prion-like diseases in animals. Virus Res 2014; 207:82-93. [PMID: 25444937 DOI: 10.1016/j.virusres.2014.11.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/06/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022]
Abstract
Transmissible spongiform encephalopaties (TSEs) are fatal neurodegenerative diseases characterized by the aggregation and accumulation of the misfolded prion protein in the brain. Other proteins such as β-amyloid, tau or Serum Amyloid-A (SAA) seem to share with prions some aspects of their pathogenic mechanism; causing a variety of so called prion-like diseases in humans and/or animals such as Alzheimer's, Parkinson's, Huntington's, Type II diabetes mellitus or amyloidosis. The question remains whether these misfolding proteins have the ability to self-propagate and transmit in a similar manner to prions. In this review, we describe the prion and prion-like diseases affecting animals as well as the recent findings suggesting the prion-like transmissibility of certain non-prion proteins.
Collapse
Affiliation(s)
| | - Consolación García
- Centro de Investigación en Sanidad Animal (CISA-INIA), 28130 Valdeolmos, Madrid, Spain
| | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), 28130 Valdeolmos, Madrid, Spain
| | - Olivier Andreoletti
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, École Nationale Vétérinaire de Toulouse, 23 chemin des Capelles, 31076 Toulouse Cedex, France
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), 28130 Valdeolmos, Madrid, Spain.
| |
Collapse
|
31
|
Konold T, Phelan LJ, Clifford D, Chaplin MJ, Cawthraw S, Stack MJ, Simmons MM. The pathological and molecular but not clinical phenotypes are maintained after second passage of experimental atypical bovine spongiform encephalopathy in cattle. BMC Vet Res 2014; 10:243. [PMID: 25274502 PMCID: PMC4190426 DOI: 10.1186/s12917-014-0243-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/24/2014] [Indexed: 11/24/2022] Open
Abstract
Background Atypical bovine spongiform encephalopathies (BSEs), classified as H-type and L-type BSE based on the Western immunoblot profiles, are naturally occurring diseases in cattle, which are phenotypically different to classical BSE. Transmission studies in cattle using the intracerebral route resulted in disease where the phenotypes were maintained irrespective of BSE type but clinically affected cattle with a shorter survival time displayed a nervous form whereas cattle with a longer survival time displayed a dull form. A second transmission study is reported here where four cattle were intracerebrally inoculated with brain tissue from experimentally infected cattle presenting with either the nervous or dull form of H- or L-type BSE to determine whether the phenotype is maintained. Results The four inoculated cattle were culled at 16.5-19.5 months post inoculation after presenting with difficulty getting up, a positive scratch response (all) and dullness (three cattle), which was not observed in two non-inoculated control cattle, each housed with either group of inoculated cattle. Only the inoculated cattle had detectable prion protein in the brain based on immunohistochemical examination, and the Western immunoblot profile was consistent with the H-type or L-type BSE of the respective donor cattle. Conclusions Second passage of H-type and L-type BSE in cattle produced a TSE where the majority of cattle displayed the dull form regardless of clinical disease form of the donor cattle. The pathological and molecular phenotypes of H- and L-type BSE were maintained. Electronic supplementary material The online version of this article (doi:10.1186/s12917-014-0243-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timm Konold
- Animal Sciences Unit, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, KT15 3NB, UK.
| | - Laura J Phelan
- Pathology Department, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, KT15 3NB, UK.
| | - Derek Clifford
- Animal Sciences Unit, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, KT15 3NB, UK.
| | - Melanie J Chaplin
- Prion Unit, Virology Department, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, KT15 3NB, UK.
| | - Saira Cawthraw
- Central Sequencing Unit, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, KT15 3NB, UK.
| | - Michael J Stack
- Prion Unit, Virology Department, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, KT15 3NB, UK.
| | - Marion M Simmons
- Pathology Department, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, KT15 3NB, UK.
| |
Collapse
|
32
|
Protocol for further laboratory investigations into the distribution of infectivity of Atypical BSE. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
33
|
Consideration of Risk Variations in Japan Derived from the Proposed Revisions of the Current Countermeasures against BSE. Food Saf (Tokyo) 2014. [DOI: 10.14252/foodsafetyfscj.2014019f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Prion protein misfolding, strains, and neurotoxicity: an update from studies on Mammalian prions. Int J Cell Biol 2013; 2013:910314. [PMID: 24454379 PMCID: PMC3884631 DOI: 10.1155/2013/910314] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 11/10/2013] [Accepted: 11/11/2013] [Indexed: 11/17/2022] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders affecting humans and other mammalian species. The central event in TSE pathogenesis is the conformational conversion of the cellular prion protein, PrPC, into the aggregate, β-sheet rich, amyloidogenic form, PrPSc. Increasing evidence indicates that distinct PrPSc conformers, forming distinct ordered aggregates, can encipher the phenotypic TSE variants related to prion strains. Prion strains are TSE isolates that, after inoculation into syngenic hosts, cause disease with distinct characteristics, such as incubation period, pattern of PrPSc distribution, and regional severity of histopathological changes in the brain. In analogy with other amyloid forming proteins, PrPSc toxicity is thought to derive from the existence of various intermediate structures prior to the amyloid fiber formation and/or their specific interaction with membranes. The latter appears particularly relevant for the pathogenesis of TSEs associated with GPI-anchored PrPSc, which involves major cellular membrane distortions in neurons. In this review, we update the current knowledge on the molecular mechanisms underlying three fundamental aspects of the basic biology of prions such as the putative mechanism of prion protein conversion to the pathogenic form PrPSc and its propagation, the molecular basis of prion strains, and the mechanism of induced neurotoxicity by PrPSc aggregates.
Collapse
|
35
|
Vidal E, Fernández-Borges N, Pintado B, Ordóñez M, Márquez M, Fondevila D, Eraña H, Torres JM, Pumarola M, Castilla J. Exploring the risks of a putative transmission of BSE to new species. Prion 2013; 7:443-6. [PMID: 24184875 DOI: 10.4161/pri.27014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The prion responsible for the Bovine Spongiform Encephalopathy (BSE) shows unique features when compared with other prions. One of these features is its ability to infect almost all experimentally tested animal models. In the paper published in The Journal of Neuroscience (1) we describe a series of experiments directed toward elucidating which would be the in vivo behavior of BSE if it would infect dogs and rabbits, two alleged prion resistant species. Protein misfolding cyclic amplification (PMCA) was used to generate canidae and leporidae in vitro adapted BSE prions. A characterization of their in vivo pathobiological properties showed that BSE prions were capable not only of adapting to new species but they maintained, in the case of rabbits, their ability to infect transgenic mice expressing human PrP. The remarkable adaptation ability of certain prions implies that any new host species could lead to the emergence of new infectious agents with unpredictable transmission potential. Our results suggest that caution must be taken when considering the use of any mammal derived protein in feedstuffs.
Collapse
Affiliation(s)
- Enric Vidal
- Centre de Recerca en Sanitat Animal (CReSA); UAB-IRTA; Campus de la Universitat Autònoma de Barcelona; Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wilson R, Dobie K, Hunter N, Casalone C, Baron T, Barron RM. Presence of subclinical infection in gene-targeted human prion protein transgenic mice exposed to atypical bovine spongiform encephalopathy. J Gen Virol 2013; 94:2819-2827. [PMID: 24045112 DOI: 10.1099/vir.0.052738-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmission of bovine spongiform encephalopathy (BSE) to humans, leading to variant Creutzfeldt-Jakob disease has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health. Until recently, TSE disease in cattle was thought to be caused by a single agent strain, BSE, also known as classical BSE, or BSE-C. However, due to the initiation of a large-scale surveillance programme throughout Europe, two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H have since been discovered. To model the risk to human health, we previously inoculated these two forms of atypical BSE (BASE and BSE-H) into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP) (HuTg) but were unable to detect any signs of TSE pathology in these mice. However, despite the absence of TSE pathology, upon subpassage of some BASE-challenged HuTg mice, a TSE was observed in recipient gene-targeted bovine PrP Tg (Bov6) mice but not in HuTg mice. Disease transmission from apparently healthy individuals indicates the presence of subclinical BASE infection in mice expressing human PrP that cannot be identified by current diagnostic methods. However, due to the lack of transmission to HuTg mice on subpassage, the efficiency of mouse-to-mouse transmission of BASE appears to be low when mice express human rather than bovine PrP.
Collapse
Affiliation(s)
- Rona Wilson
- Neurobiology Division, Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Karen Dobie
- Neurobiology Division, Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Nora Hunter
- Neurobiology Division, Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Thierry Baron
- Agence Nationale de Sécurité Sanitaire, Lyon, France
| | - Rona M Barron
- Neurobiology Division, Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| |
Collapse
|
37
|
Atypical and classical forms of the disease-associated state of the prion protein exhibit distinct neuronal tropism, deposition patterns, and lesion profiles. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1539-1547. [PMID: 24012784 DOI: 10.1016/j.ajpath.2013.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/13/2013] [Accepted: 07/09/2013] [Indexed: 11/22/2022]
Abstract
A number of disease-associated PrP forms characterized by abnormally short proteinase K-resistant fragments (atypical PrPres) were recently described in prion diseases. The relationship between atypical PrPres and PrP(Sc), and their role in etiology of prion diseases, remains unknown. We examined the relationship between PrP(Sc) and atypical PrPres, a form characterized by short C-terminal proteinase K-resistant fragments, in a prion strain of synthetic origin. We found that the two forms exhibit distinct neuronal tropism, deposition patterns, and degree of pathological lesions. Immunostaining of brain regions demonstrated a partial overlap in anatomic involvement of the two forms and revealed the sites of their selective deposition. The experiments on amplification in vitro suggested that distinct neuronal tropism is attributed to differences in replication requirements, such as preferences for different cellular cofactors and PrP(C) glycoforms. Remarkably, deposition of atypical PrPres alone was not associated with notable pathological lesions, suggesting that it was not neurotoxic, but yet transmissible. Unlike PrP(Sc), atypical PrPres did not show significant perineuronal, vascular, or perivascular immunoreactivity. However, both forms showed substantial synaptic immunoreactivity. Considering that atypical PrPres is not associated with substantial lesions, this result suggests that not all synaptic disease-related PrP states are neurotoxic. The current work provides important new insight into our understanding of the structure-pathogenicity relationships of transmissible PrP states.
Collapse
|
38
|
Comoy EE, Mikol J, Ruchoux MM, Durand V, Luccantoni-Freire S, Dehen C, Correia E, Casalone C, Richt JA, Greenlee JJ, Torres JM, Brown P, Deslys JP. Evaluation of the zoonotic potential of transmissible mink encephalopathy. Pathogens 2013; 2:520-32. [PMID: 25437205 PMCID: PMC4235697 DOI: 10.3390/pathogens2030520] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 11/16/2022] Open
Abstract
Successful transmission of Transmissible Mink Encephalopathy (TME) to cattle supports the bovine hypothesis for the still controversial origin of TME outbreaks. Human and primate susceptibility to classical Bovine Spongiform Encephalopathy (c-BSE) and the transmissibility of L-type BSE to macaques indicate a low cattle-to-primate species barrier. We therefore evaluated the zoonotic potential of cattle-adapted TME. In less than two years, this strain induced in cynomolgus macaques a neurological disease similar to L-BSE but distinct from c-BSE. TME derived from another donor species (raccoon) induced a similar disease with even shorter incubation periods. L-BSE and cattle-adapted TME were also transmissible to transgenic mice expressing human prion protein (PrP). Secondary transmissions to transgenic mice expressing bovine PrP maintained the features of the three tested bovine strains (cattle TME, c-BSE and L-BSE) regardless of intermediate host. Thus, TME is the third animal prion strain transmissible to both macaques and humanized transgenic mice, suggesting zoonotic potentials that should be considered in the risk analysis of animal prion diseases for human health. Moreover, the similarities between TME and L-BSE are highly suggestive of a link between these strains, and therefore the possible presence of L-BSE for many decades prior to its identification in USA and Europe.
Collapse
Affiliation(s)
- Emmanuel E Comoy
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Jacqueline Mikol
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Marie-Madeleine Ruchoux
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Valérie Durand
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Sophie Luccantoni-Freire
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Capucine Dehen
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Evelyne Correia
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Via Bologna 148, 10154 Torino, Italy.
| | - Juergen A Richt
- Kansas State University, College of Veterinary Medicine, K224B Mosier Hall, Manhattan, Kansas 66506-5601 USA.
| | - Justin J Greenlee
- National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Ave, Ames, Iowa 50010 USA.
| | - Juan Maria Torres
- Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, Madrid, Spain.
| | - Paul Brown
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Jean-Philippe Deslys
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| |
Collapse
|
39
|
Priemer G, Balkema-Buschmann A, Hills B, Groschup MH. Biochemical Characteristics and PrP(Sc) Distribution Pattern in the Brains of Cattle Experimentally Challenged with H-type and L-type Atypical BSE. PLoS One 2013; 8:e67599. [PMID: 23805320 PMCID: PMC3689710 DOI: 10.1371/journal.pone.0067599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/20/2013] [Indexed: 11/28/2022] Open
Abstract
Besides the classical form of bovine spongiform encephalopathy (BSE) that has been known for almost three decades, two atypical forms designated H-type and L-type BSE have recently been described. While the main diagnostic feature of these forms is the altered biochemical profile of the accumulated PrPSc, it was also observed in the initial analysis that L-type BSE displays a distribution pattern of the pathological prion protein (PrPSc), which clearly differs from that observed in classical BSE (C-type). Most importantly, the obex region in the brainstem is not the region with the highest PrPSc concentrations, but PrPSc is spread more evenly throughout the entire brain. A similar distribution pattern has been revealed for H-type BSE by rapid test analysis. Based on these findings, we performed a more detailed Western blot study of the anatomical PrPSc distribution pattern and the biochemical characteristics (molecular mass, glycoprofile as well as PK sensitivity) in ten different anatomical locations of the brain from cattle experimentally challenged with H- or L-type BSE, as compared to cattle challenged with C-type BSE. Results of this study revealed distinct differences in the PrPSc deposition patterns between all three BSE forms, while the biochemical characteristics remained stable for each BSE type among all analysed brain areas.
Collapse
Affiliation(s)
- Grit Priemer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | | | | | | |
Collapse
|
40
|
Wilson R, King D, Hunter N, Goldmann W, Barron RM. Characterization of an unusual transmissible spongiform encephalopathy in goat by transmission in knock-in transgenic mice. J Gen Virol 2013; 94:1922-1932. [PMID: 23720218 DOI: 10.1099/vir.0.051706-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disorder of cattle, and its transmission to humans through contaminated food is thought to be the cause of the variant form of Creutzfeldt-Jakob disease. BSE is believed to have spread from the recycling in cattle of ruminant tissue in meat and bone meal (MBM). However, during this time, sheep and goats were also exposed to BSE-contaminated MBM. Both sheep and goats are experimentally susceptible to BSE, and while there have been no reported natural BSE cases in sheep, two goat BSE field cases have been documented. While cases of BSE are rare in small ruminants, the existence of scrapie in both sheep and goats is well established. In the UK, during 2006-2007, a serious outbreak of clinical scrapie was detected in a large dairy goat herd. Subsequently, 200 goats were selected for post-mortem examination, one of which showed biochemical and immunohistochemical features of the disease-associated prion protein (PrP(TSE)) which differed from all other infected goats. In the present study, we investigated this unusual case by performing transmission bioassays into a panel of mouse lines. Following characterization, we found that strain properties such as the ability to transmit to different mouse lines, lesion profile pattern, degree of PrP deposition in the brain and biochemical features of this unusual goat case were neither consistent with goat BSE nor with a goat scrapie herdmate control. However, our results suggest that this unusual case has BSE-like properties and highlights the need for continued surveillance.
Collapse
Affiliation(s)
- Rona Wilson
- Neurobiology Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian EH25 9RG, UK
| | - Declan King
- Neurobiology Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian EH25 9RG, UK
| | - Nora Hunter
- Neurobiology Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian EH25 9RG, UK
| | - Wilfred Goldmann
- Neurobiology Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian EH25 9RG, UK
| | - Rona M Barron
- Neurobiology Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian EH25 9RG, UK
| |
Collapse
|
41
|
Unique properties of the classical bovine spongiform encephalopathy strain and its emergence from H-type bovine spongiform encephalopathy substantiated by VM transmission studies. J Neuropathol Exp Neurol 2013; 72:211-8. [PMID: 23399901 DOI: 10.1097/nen.0b013e318285c7f9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In addition to classical bovine spongiform encephalopathy (C-BSE), which is recognized as being at the origin of the human variant form of Creutzfeldt-Jakob disease, 2 rare phenotypes of BSE (H-type BSE [H-BSE] and L-type BSE [L-BSE]) were identified in 2004. H-type BSE and L-BSE are considered to be sporadic forms of prion disease in cattle because they differ from C-BSE with respect to incubation period, vacuolar pathology in the brain, and biochemical properties of the protease-resistant prion protein (PrP) in natural hosts and in some mouse models that have been tested. Recently, we showed that H-BSE transmitted to C57Bl/6 mice resulted in a dissociation of the phenotypic features, that is, some mice showed an H-BSE phenotype, whereas others had a C-BSE phenotype. Here, these 2 phenotypes were further studied in VM mice and compared with cattle C-BSE, H-BSE, and L-BSE. Serial passages from the C-BSE-like phenotype on VM mice retained similarities with C-BSE. Moreover, our results indicate that strains 301V and 301C derived from C-BSE transmitted to VM and C57Bl/6 mice, respectively, are fundamentally the same strain. These VM transmission studies confirm the unique properties of the C-BSE strain and support the emergence of a strain that resembles C-BSE from H-BSE.
Collapse
|
42
|
Beck KE, Vickery CM, Lockey R, Holder T, Thorne L, Terry LA, Denyer M, Webb P, Simmons MM, Spiropoulos J. The interpretation of disease phenotypes to identify TSE strains following murine bioassay: characterisation of classical scrapie. Vet Res 2012; 43:77. [PMID: 23116457 PMCID: PMC3503603 DOI: 10.1186/1297-9716-43-77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/19/2012] [Indexed: 11/10/2022] Open
Abstract
Mouse bioassay can be readily employed for strain typing of naturally occurring transmissible spongiform encephalopathy cases. Classical scrapie strains have been characterised historically based on the established methodology of assessing incubation period of disease and the distribution of disease-specific vacuolation across the brain following strain stabilisation in a given mouse line. More recent research has shown that additional methods could be used to characterise strains and thereby expand the definition of strain “phenotype”. Here we present the phenotypic characteristics of classical scrapie strains isolated from 24 UK ovine field cases through the wild-type mouse bioassay. PrPSc immunohistochemistry (IHC), paraffin embedded tissue blots (PET-blot) and Western blotting approaches were used to determine the neuroanatomical distribution and molecular profile of PrPSc associated with each strain, in conjunction with traditional methodologies. Results revealed three strains isolated through each mouse line, including a previously unidentified strain. Moreover IHC and PET-blot methodologies were effective in characterising the strain-associated types and neuroanatomical locations of PrPSc. The use of Western blotting as a parameter to define classical scrapie strains was limited. These data provide a comprehensive description of classical scrapie strain phenotypes on isolation through the mouse bioassay that can provide a reference for further scrapie strain identification.
Collapse
Affiliation(s)
- Katy E Beck
- Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Atypical H-type bovine spongiform encephalopathy in a cow born after the reinforced feed ban on meat-and-bone meal in Europe. J Clin Microbiol 2012; 50:4171-4. [PMID: 23035195 DOI: 10.1128/jcm.02178-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The significance of atypical bovine spongiform encephalopathies (BSE) in cattle for controlling the BSE epidemic is poorly understood. Here we report a case of atypical H-type BSE in a cow born after the implementation of the reinforced feed ban in Europe. This supports an etiology of H-type BSE unrelated to that of classical BSE.
Collapse
|
44
|
Greenlee JJ, Smith JD, West Greenlee MH, Nicholson EM. Clinical and pathologic features of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism. PLoS One 2012; 7:e38678. [PMID: 22715405 PMCID: PMC3371052 DOI: 10.1371/journal.pone.0038678] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/11/2012] [Indexed: 12/03/2022] Open
Abstract
The majority of bovine spongiform encephalopathy (BSE) cases have been ascribed to the classical form of the disease. H-type and L-type BSE cases have atypical molecular profiles compared to classical BSE and are thought to arise spontaneously. However, one case of H-type BSE was associated with a heritable E211K mutation in the prion protein gene. The purpose of this study was to describe transmission of this unique isolate of H-type BSE when inoculated into a calf of the same genotype by the intracranial route. Electroretinograms were used to demonstrate preclinical deficits in retinal function, and optical coherence tomography was used to demonstrate an antemortem decrease in retinal thickness. The calf rapidly progressed to clinical disease (9.4 months) and was necropsied. Widespread distribution of abnormal prion protein was demonstrated within neural tissues by western blot and immunohistochemistry. While this isolate is categorized as BSE-H due to a higher molecular mass of the unglycosylated PrPSc isoform, a strong labeling of all 3 PrPSc bands with monoclonal antibodies 6H4 and P4, and a second unglycosylated band at approximately 14 kDa when developed with antibodies that bind in the C-terminal region, it is unique from other described cases of BSE-H because of an additional band 23 kDa demonstrated on western blots of the cerebellum. This work demonstrates that this isolate is transmissible, has a BSE-H phenotype when transmitted to cattle with the K211 polymorphism, and has molecular features that distinguish it from other cases of BSE-H described in the literature.
Collapse
Affiliation(s)
- Justin J Greenlee
- National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America.
| | | | | | | |
Collapse
|
45
|
Sala C, Morignat E, Oussaïd N, Gay E, Abrial D, Ducrot C, Calavas D. Individual factors associated with L- and H-type Bovine Spongiform encephalopathy in France. BMC Vet Res 2012; 8:74. [PMID: 22647660 PMCID: PMC3514362 DOI: 10.1186/1746-6148-8-74] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/18/2012] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cattle with L-type (L-BSE) and H-type (H-BSE) atypical Bovine Spongiform encephalopathy (BSE) were identified in 2003 in Italy and France respectively before being identified in other countries worldwide. As of December 2011, around 60 atypical BSE cases have currently been reported in 13 countries, with over one third in France. While the epidemiology of classical BSE (C-BSE) has been widely described, atypical BSEs are still poorly documented, but appear to differ from C-BSE. We analysed the epidemiological characteristics of the 12 cases of L-BSE and 11 cases of H-BSE detected in France from January 2001 to late 2009 and looked for individual risk factors. As L-BSE cases did not appear to be homogeneously distributed throughout the country, two complementary methods were used: spatial analysis and regression modelling. L-BSE and H-BSE were studied separately as both the biochemical properties of their pathological prion protein and their features differ in animal models. RESULTS The median age at detection for L-BSE and H-BSE cases was 12.4 (range 8.4-18.7) and 12.5 (8.3-18.2) years respectively, with no significant difference between the two distributions. However, this median age differed significantly from that of classical BSE (7.0 (range 3.5-15.4) years). A significant geographical cluster was detected for L-BSE. Among animals over eight years of age, we showed that the risk of being detected as a L-BSE case increased with age at death. This was not the case for H-BSE. CONCLUSION To the best of our knowledge this is the first study to describe the epidemiology of the two types of atypical BSE. The geographical cluster detected for L-BSE could be partly due to the age structure of the background-tested bovine population. Our regression analyses, which adjusted for the effect of age and birth cohort showed an age effect for L-BSE and the descriptive analysis showed a particular age structure in the area where the cluster was detected. No birth cohort effect was evident. The relatively small number of cases of atypical BSE and the few individual data available for the tested population limited our analysis to the investigation of age and cohort effect only. We conclude that it is essential to maintain BSE surveillance to further elucidate our findings.
Collapse
Affiliation(s)
- Carole Sala
- ANSES-Lyon, 31 avenue Tony Garnier, Lyon cedex 7, 69364, France
| | - Eric Morignat
- ANSES-Lyon, 31 avenue Tony Garnier, Lyon cedex 7, 69364, France
| | - Nadia Oussaïd
- ANSES-Lyon, 31 avenue Tony Garnier, Lyon cedex 7, 69364, France
| | - Emilie Gay
- ANSES-Lyon, 31 avenue Tony Garnier, Lyon cedex 7, 69364, France
| | | | | | - Didier Calavas
- ANSES-Lyon, 31 avenue Tony Garnier, Lyon cedex 7, 69364, France
| |
Collapse
|
46
|
Thackray AM, Hopkins L, Lockey R, Spiropoulos J, Bujdoso R. Propagation of ovine prions from “poor” transmitter scrapie isolates in ovine PrP transgenic mice. Exp Mol Pathol 2012; 92:167-74. [DOI: 10.1016/j.yexmp.2011.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/03/2011] [Indexed: 11/27/2022]
|
47
|
Wilson R, Hart P, Piccardo P, Hunter N, Casalone C, Baron T, Barron RM. Bovine PrP expression levels in transgenic mice influence transmission characteristics of atypical bovine spongiform encephalopathy. J Gen Virol 2012; 93:1132-1140. [PMID: 22302882 DOI: 10.1099/vir.0.040030-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Until recently, transmissible spongiform encephalopathy (TSE) disease in cattle was thought to be caused by a single agent strain, bovine spongiform encephalopathy (BSE) (classical BSE or BSE-C). However, due to the initiation of a large-scale surveillance programme throughout Europe, two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H have since been discovered. These atypical BSE isolates have been previously transmitted to a range of transgenic mouse models overexpressing PrP from different species at different levels, on a variety of genetic backgrounds. To control for genetic background and expression level in the analysis of these isolates, we performed here a comprehensive comparison of the neuropathological and molecular properties of all three BSE agents (BASE, BSE-C and BSE-H) upon transmission into the same gene-targeted transgenic mouse line expressing the bovine prion protein (Bov6) and a wild-type control of the same genetic background. Significantly, upon challenge with these BSE agents, we found that BASE did not produce shorter survival times in these mice compared with BSE-C, contrary to previous studies using overexpressing bovine transgenic mice. Amyloid plaques were only present in mice challenged with atypical BSE and neuropathological features, including intensity of PrP deposition in the brain and severity of vacuolar degeneration were less pronounced in BASE compared with BSE-C-challenged mice.
Collapse
Affiliation(s)
- Rona Wilson
- Neurobiology Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Patricia Hart
- Neurobiology Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Pedro Piccardo
- Laboratory of Bacterial and TSE-agents, Food and Drug Administration, Rockville, MD 20852, USA.,Neurobiology Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Nora Hunter
- Neurobiology Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Thierry Baron
- Agence Nationale de Sécurité Sanitaire, Lyon, France
| | - Rona M Barron
- Neurobiology Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| |
Collapse
|
48
|
Bovine Spongiform Encephalopathy: A Tipping Point in One Health and Food Safety. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45791-7_264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Imran M, Mahmood S. An overview of animal prion diseases. Virol J 2011; 8:493. [PMID: 22044871 PMCID: PMC3228711 DOI: 10.1186/1743-422x-8-493] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/01/2011] [Indexed: 11/10/2022] Open
Abstract
Prion diseases are transmissible neurodegenerative conditions affecting human and a wide range of animal species. The pathogenesis of prion diseases is associated with the accumulation of aggregates of misfolded conformers of host-encoded cellular prion protein (PrPC). Animal prion diseases include scrapie of sheep and goats, bovine spongiform encephalopathy (BSE) or mad cow disease, transmissible mink encephalopathy, feline spongiform encephalopathy, exotic ungulate spongiform encephalopathy, chronic wasting disease of cervids and spongiform encephalopathy of primates. Although some cases of sporadic atypical scrapie and BSE have also been reported, animal prion diseases have basically occurred via the acquisition of infection from contaminated feed or via the exposure to contaminated environment. Scrapie and chronic wasting disease are naturally sustaining epidemics. The transmission of BSE to human has caused more than 200 cases of variant Cruetzfeldt-Jacob disease and has raised serious public health concerns. The present review discusses the epidemiology, clinical neuropathology, transmissibility and genetics of animal prion diseases.
Collapse
Affiliation(s)
- Muhammad Imran
- 1Centre for Research in Endocrinology and Reproductive Sciences (CRERS), Department of Physiology and Cell Biology, University of Health Sciences (UHS), Khayaban-e-Jamia Punjab, Lahore 54600, Pakistan
| | | |
Collapse
|
50
|
Transmission of prion strains in a transgenic mouse model overexpressing human A53T mutated α-synuclein. J Neuropathol Exp Neurol 2011; 70:377-85. [PMID: 21487306 DOI: 10.1097/nen.0b013e318217d95f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is a growing interest in the potential roles of misfolded protein interactions in neurodegeneration. To investigate this issue, we inoculated 3 prion strains intracerebrally into transgenic (TgM83) mice that overexpress human A53T α-synuclein. In comparison to nontransgenic controls, there was a striking decrease in the incubation periods of scrapie, classic and H-type bovine spongiform encephalopathies(C-BSE and H-BSE), with conservation of the histopathologic and biochemical features characterizing these 3 prion strains. TgM83 mice died of scrapie or C-BSE prion diseases before accumulating the insoluble and phosphorylated forms of α-synuclein specific to late stages of synucleinopathy. In contrast, the median incubation time for TgM83 mice inoculated with H-BSE was comparable to that observed when these mice were uninfected, thereby allowing the development of molecular alterations of α-synuclein. The last 4 mice of this cohort exhibited early accumulations of H-BSE prion protein along with α-synuclein pathology. The results indicate that a prion disease was triggered concomitantly with an overt synucleinopathy in some transgenic mice overexpressing human A53T α-synuclein after intracerebral inoculation with an H-BSE prion strain.
Collapse
|