1
|
Das BB. Unlocking the Potential: Angiotensin Receptor Neprilysin and Sodium Glucose Co-Transporter 2 Inhibitors for Right Ventricle Dysfunction in Heart Failure. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1112. [PMID: 39064541 PMCID: PMC11279219 DOI: 10.3390/medicina60071112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
This review article examines the mechanism of action of Angiotensin Receptor-Neprilysin Inhibitors (ARNIs) and Sodium-Glucose Co-Transporter 2 Inhibitors (SGLT2is) in managing chronic right ventricular (RV) dysfunction. Despite advancements in heart failure (HF) treatment, RV dysfunction remains a significant contributor to morbidity and mortality. This article explores the The article explores the impact of ARNIs and SGLT2is on RV function based on clinical and preclinical evidence, and the potential benefits of combined therapy. It highlights the need for further research to optimize patient outcomes and suggests that RV function should be considered in future clinical trials as part of risk stratification for HF therapies. This review underscores the importance of the early initiation of ARNIs and SGLT2is as per guideline-directed medical therapy for eligible HFrEF and HFpEF patients to improve co-existing RV dysfunction.
Collapse
Affiliation(s)
- Bibhuti B Das
- Heart Failure and Transplant Program, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
2
|
Silva JMA, Antonio EL, Dos Santos LFN, Serra AJ, Feliciano RS, Junior JAS, Ihara SSM, Tucci PJF, Moises VA. Hypertrophy of the right ventricle by pulmonary artery banding in rats: a study of structural, functional, and transcriptomics alterations in the right and left ventricles. Front Physiol 2023; 14:1129333. [PMID: 37576341 PMCID: PMC10414540 DOI: 10.3389/fphys.2023.1129333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Right ventricular remodeling with subsequent functional impairment can occur in some clinical conditions in adults and children. The triggering factors, molecular mechanisms, and, especially, the evolution over time are still not well known. Left ventricular (LV) changes associated with right ventricular (RV) remodeling are also poorly understood. Objectives: The study aimed to evaluate RV morphological, functional, and gene expression parameters in rats submitted to pulmonary artery banding compared to control rats, with the temporal evolution of these parameters, and to analyze the influence of RV remodeling by pulmonary artery banding in rats and their controls over time on LV geometry, histology, gene expression, and functional performance. Methods: Healthy 6-week-old male Wistar-EPM rats weighing 170-200 g were included. One day after the echocardiogram, depending on the animals undergoing the pulmonary artery banding (PAB) procedure or not (control group), they were then randomly divided into subgroups according to the follow-up time: 72 h, or 2, 4, 6, or 8 weeks. In each subgroup, the following were conducted: a new echocardiogram, a hemodynamic study, the collection of material for morphological analysis (hypertrophy and fibrosis), and molecular biology (gene expression). The results were presented as the mean ± standard deviation of the mean. A two-way ANOVA and Tukey post-test compared the variables of the subgroups and evolution follow-up times. The adopted significance level was 5%. Results: There was no significant difference among the subgroups in the percentage of water in both the lungs and the liver (the percentage of water in the lungs ranged from 76% to 78% and that of the liver ranged from 67% to 71%). The weight of the right chambers was significantly higher in PAB animals in all subgroups (RV PAB weighed from 0.34 to 0.48 g, and control subjects, from 0.17 to 0.20 g; right atrium (RA) with PAB from 0.09 to 0.14 g; and control subjects from 0.02 to 0.03 g). In the RV of PAB animals, there was a significant increase in myocyte nuclear volume (97 μm3-183.6 μm3) compared to control subjects (34.2 μm3-57.2 μm3), which was more intense in subgroups with shorter PAB follow-up time, and the fibrosis percentage (5.9%-10.4% vs. 0.96%-1.18%) was higher as the PAB follow-up time was longer. In the echocardiography result, there was a significant increase in myocardial thickness in all PAB groups (0.09-0.11 cm compared to control subjects-0.04-0.05 cm), but there was no variation in RV diastolic diameter. From 2 to 8 weeks of PAB, the S-wave (S') (0.031 cm/s and 0.040 cm/s), and fractional area change (FAC) (51%-56%), RV systolic function parameters were significantly lower than those of the respective control subjects (0.040 cm/s to 0.050 cm/s and 61%-67%). Furthermore, higher expression of genes related to hypertrophy and extracellular matrix in the initial subgroups and apoptosis genes in the longer follow-up PAB subgroups were observed in RV. On the other hand, LV weight was not different between animals with and without PAB. The nuclear volume of the PAB animals was greater than that of the control subjects (74 μm3-136 μm3; 40.8 μm3-46.9 μm3), and the percentage of fibrosis was significantly higher in the 4- and 8-week PAB groups (1.2% and 2.2%) compared to the control subjects (0.4% and 0.7%). Echocardiography showed that the diastolic diameter and LV myocardial thickness were not different between PAB animals and control subjects. Measurements of isovolumetric relaxation time and E-wave deceleration time at the echocardiography were different between PAB animals and control subjects in all subgroups, but there were no changes in diastolic function in the hemodynamic study. There was also increased expression of genes related to various functions, particularly hypertrophy. Conclusion: 1) Rats submitted to pulmonary artery banding presented RV remodeling compatible with hypertrophy. Such alterations were mediated by increased gene expression and functional alterations, which coincide with the onset of fibrosis. 2) Structural changes of the RV, such as weight, myocardial thickness, myocyte nuclear volume, and degree of fibrosis, were modified according to the time of exposure to pulmonary artery banding and related to variations in gene expression, highlighting the change from an alpha to a beta pattern from early to late follow-up times. 3) The study suggests that the left ventricle developed histological alterations accompanied by gene expression modifications simultaneously with the alterations found in the right ventricle.
Collapse
Affiliation(s)
| | - Ednei Luiz Antonio
- Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Andrey Jorge Serra
- Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
MacLean MR, Fanburg B, Hill N, Lazarus HM, Pack TF, Palacios M, Penumatsa KC, Wring SA. Serotonin and Pulmonary Hypertension; Sex and Drugs and ROCK and Rho. Compr Physiol 2022; 12:4103-4118. [PMID: 36036567 DOI: 10.1002/cphy.c220004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin is often referred to as a "happy hormone" as it maintains good mood, well-being, and happiness. It is involved in communication between nerve cells and plays a role in sleeping and digestion. However, too much serotonin can have pathogenic effects and serotonin synthesis is elevated in pulmonary artery endothelial cells from patients with pulmonary arterial hypertension (PAH). PAH is characterized by elevated pulmonary pressures, right ventricular failure, inflammation, and pulmonary vascular remodeling; serotonin has been shown to be associated with these pathologies. The rate-limiting enzyme in the synthesis of serotonin in the periphery of the body is tryptophan hydroxylase 1 (TPH1). TPH1 expression and serotonin synthesis are elevated in pulmonary artery endothelial cells in patients with PAH. The serotonin synthesized in the pulmonary arterial endothelium can act on the adjacent pulmonary arterial smooth muscle cells (PASMCs), adventitial macrophages, and fibroblasts, in a paracrine fashion. In humans, serotonin enters PASMCs cells via the serotonin transporter (SERT) and it can cooperate with the 5-HT1B receptor on the plasma membrane; this activates both contractile and proliferative signaling pathways. The "serotonin hypothesis of pulmonary hypertension" arose when serotonin was associated with PAH induced by diet pills such as fenfluramine, aminorex, and chlorphentermine; these act as indirect serotonergic agonists causing the release of serotonin from platelets and cells through the SERT. Here the role of serotonin in PAH is reviewed. Targeting serotonin synthesis or signaling is a promising novel alternative approach which may lead to novel therapies for PAH. © 2022 American Physiological Society. Compr Physiol 12: 1-16, 2022.
Collapse
Affiliation(s)
- Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Barry Fanburg
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Nicolas Hill
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | | | | | | - Krishna C Penumatsa
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
4
|
Luongo F, Miotti C, Scoccia G, Papa S, Manzi G, Cedrone N, Toto F, Malerba C, Papa G, Caputo A, Manguso G, Adamo F, Carmine DV, Badagliacca R. Future perspective in diabetic patients with pre- and post-capillary pulmonary hypertension. Heart Fail Rev 2022; 28:745-755. [PMID: 35098382 DOI: 10.1007/s10741-021-10208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Pulmonary hypertension is a clinical syndrome that may include multiple clinical conditions and can complicate the majority of cardiovascular and respiratory diseases. Pulmonary hypertension secondary to left heart disease is the prevalent clinical condition and accounts for two-thirds of all cases. Type 2 diabetes mellitus, which affects about 422 million adults worldwide, has emerged as an independent risk factor for the development of pulmonary hypertension in patients with left heart failure. While a correct diagnosis of pulmonary hypertension secondary to left heart disease requires invasive hemodynamic evaluation through right heart catheterization, several scores integrating clinical and echocardiographic parameters have been proposed to discriminate pre- and post-capillary types of pulmonary hypertension. Despite new emerging evidence on the pathophysiological mechanisms behind the effects of diabetes in patients with pre- and/or post-capillary pulmonary hypertension, no specific drug has been yet approved for this group of patients. In the last few years, the attention has been focused on the role of antidiabetic drugs in patients with pulmonary hypertension secondary to left heart failure, both in animal models and in clinical trials. The aim of the present review is to highlight the links emerged in the recent years between diabetes and pre- and/or post-capillary pulmonary hypertension and new perspectives for antidiabetic drugs in this setting.
Collapse
Affiliation(s)
- Federico Luongo
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Cristiano Miotti
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Gianmarco Scoccia
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Silvia Papa
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Giovanna Manzi
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Nadia Cedrone
- Internal Medicine Department, S. Pertini Hospital, Via dei Monti Tiburtini, 385, 00157, Roma RM. Rome, Italy
| | - Federica Toto
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Claudia Malerba
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Gennaro Papa
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Annalisa Caputo
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Giulia Manguso
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Francesca Adamo
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Dario Vizza Carmine
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Roberto Badagliacca
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy.
| |
Collapse
|
5
|
Brent MB, Emmanuel T, Simonsen U, Brüel A, Thomsen JS. Hypobaric hypoxia deteriorates bone mass and strength in mice. Bone 2022; 154:116203. [PMID: 34536630 DOI: 10.1016/j.bone.2021.116203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022]
Abstract
Mountaineers at high altitude are at increased risk of acute mountain sickness as well as high altitude pulmonary and cerebral edema. A densitometric study in mountaineers has suggested that expeditions at high altitude decrease bone mineral density. Surprisingly, the in vivo skeletal effects of hypobaric hypoxia are largely unknown, and have not been studied using advanced contemporary methods to assess bone microstructure. Eighty-four 22-week-old female mice were divided into seven groups with 12 mice in each group: 1. Baseline; 2. Normobaric, 4 weeks; 3. Hypobaric hypoxia, 4 weeks; 4. Normobaric, 8 weeks; 5. Hypobaric hypoxia, 8 weeks; 6. Normobaric, 12 weeks; and 7. Hypobaric hypoxia, 12 weeks. Hypobaric hypoxia mice were housed in hypobaric chambers at an ambient pressure of 500 mbar (5500 m altitude), while normobaric mice were housed at sea level atmospheric pressure for 4, 8, or 12 weeks, respectively. Hypobaric hypoxia had a profound impact on femoral cortical bone and L4 trabecular bone, while the effect on femoral trabecular bone was less pronounced. Hypobaric hypoxia reduced the bone strength of the femoral mid-diaphysis and L4 at all time-points. At femoral cortical bone, hypobaric hypoxia reduced bone formation through fewer mineralizing surfaces and lower bone formation rate after 2 weeks. In addition, bone strength decreased, and C-terminal telopeptide of type I collagen (CTX-I) increased independently of the duration of exposure to simulated high altitude. At L4, hypobaric hypoxia resulted in a substantial reduction in bone volume fraction, trabecular thickness, and trabecular number after 4 weeks of exposure. Hypobaric hypoxia reduced bone strength and femoral bone mass, while femoral trabecular bone was much less affected, indicating the skeletal response to hypobaric hypoxia differ between cortical and trabecular bone. These findings provide initial preclinical support for future clinical studies in mountaineers to assess bone status and bone strength after exposure to prolonged high altitude exposure.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Thomas Emmanuel
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
6
|
Markvardsen LK, Sønderskov LD, Wandall-Frostholm C, Pinilla E, Prat-Duran J, Aalling M, Mogensen S, Andersen CU, Simonsen U. Cystamine Treatment Fails to Prevent the Development of Pulmonary Hypertension in Chronic Hypoxic Rats. J Vasc Res 2021; 58:237-251. [PMID: 33910208 DOI: 10.1159/000515511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Pulmonary hypertension is characterized by vasoconstriction and remodeling of pulmonary arteries, leading to right ventricular hypertrophy and failure. We have previously found upregulation of transglutaminase 2 (TG2) in the right ventricle of chronic hypoxic rats. The hypothesis of the present study was that treatment with the transglutaminase inhibitor, cystamine, would inhibit the development of pulmonary arterial remodeling, pulmonary hypertension, and right ventricular hypertrophy. METHODS Effect of cystamine on transamidase activity was investigated in tissue homogenates. Wistar rats were exposed to chronic hypoxia and treated with vehicle, cystamine (40 mg/kg/day in mini-osmotic pumps), sildenafil (25 mg/kg/day), or the combination for 2 weeks. RESULTS Cystamine concentration-dependently inhibited TG2 transamidase activity in liver and lung homogenates. In contrast to cystamine, sildenafil reduced right ventricular systolic pressure and hypertrophy and decreased pulmonary vascular resistance and muscularization in chronic hypoxic rats. Fibrosis in the lung tissue decreased in chronic hypoxic rats treated with cystamine. TG2 expression was similar in the right ventricle and lung tissue of drug and vehicle-treated hypoxic rats. DISCUSSION/CONCLUSIONS Cystamine inhibited TG2 transamidase activity, but cystamine failed to prevent pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial muscularization in the chronic hypoxic rat.
Collapse
MESH Headings
- Animals
- Arterial Pressure/drug effects
- Cystamine/pharmacology
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Female
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/enzymology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Hypoxia/complications
- Hypoxia/drug therapy
- Hypoxia/enzymology
- Hypoxia/physiopathology
- Male
- Mice, Inbred C57BL
- Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors
- Protein Glutamine gamma Glutamyltransferase 2/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Pulmonary Artery/physiopathology
- Pulmonary Fibrosis/enzymology
- Pulmonary Fibrosis/etiology
- Pulmonary Fibrosis/physiopathology
- Pulmonary Fibrosis/prevention & control
- Rats, Wistar
- Vascular Remodeling/drug effects
- Ventricular Function, Right/drug effects
- Ventricular Remodeling/drug effects
- Mice
- Rats
Collapse
Affiliation(s)
- Lars K Markvardsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lene D Sønderskov
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Christine Wandall-Frostholm
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Estéfano Pinilla
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Judit Prat-Duran
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Mathilde Aalling
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Susie Mogensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Charlotte U Andersen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Penumatsa KC, Falcão-Pires I, Leite S, Leite-Moreira A, Bhedi CD, Nasirova S, Ma J, Sutliff RL, Fanburg BL. Increased Transglutaminase 2 Expression and Activity in Rodent Models of Obesity/Metabolic Syndrome and Aging. Front Physiol 2020; 11:560019. [PMID: 33041859 PMCID: PMC7522548 DOI: 10.3389/fphys.2020.560019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Diastolic dysfunction of the heart and decreased compliance of the vasculature and lungs (i.e., increased organ tissue stiffness) are known features of obesity and the metabolic syndrome. Similarly, cardiac diastolic dysfunction is associated with aging. Elevation of the enzyme transglutaminase 2 (TG2) leads to protein cross-linking and enhanced collagen synthesis and participates as a candidate pathway for development of tissue stiffness. With these observations in mind we hypothesized that TG2 may be elevated in tissues of a rat model of obesity/metabolic syndrome (the ZSF 1 rat) and a mouse model of aging, i.e., the senescent SAMP8 mouse. In the experiments reported here, TG2 expression and activity were found for the first time to be spontaneously elevated in organs from both the ZSF1 rat and the SAMP8 mouse. These observations are consistent with a hypothesis that a TG2-related pathway may participate in the known tissue stiffness associated with cardiac diastolic dysfunction in these two rodent models. The potential TG2 pathway needs better correlation with physiologic dysfunction and may eventually provide novel therapeutic insights to improve tissue compliance.
Collapse
Affiliation(s)
- Krishna C. Penumatsa
- Pulmonary Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | - Ines Falcão-Pires
- Faculty of Medicine of the University of Porto, Cardiovascular Research and Development Center, Porto, Portugal
| | - Sara Leite
- Faculty of Medicine of the University of Porto, Cardiovascular Research and Development Center, Porto, Portugal
| | - Adelino Leite-Moreira
- Faculty of Medicine of the University of Porto, Cardiovascular Research and Development Center, Porto, Portugal
| | - Chinmayee D. Bhedi
- Pulmonary Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | - Sabina Nasirova
- Pulmonary Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | - Jing Ma
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA, United States
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Roy L. Sutliff
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA, United States
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Barry L. Fanburg
- Pulmonary Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
8
|
Bhedi CD, Nasirova S, Toksoz D, Warburton RR, Morine KJ, Kapur NK, Galper JB, Preston IR, Hill NS, Fanburg BL, Penumatsa KC. Glycolysis regulated transglutaminase 2 activation in cardiopulmonary fibrogenic remodeling. FASEB J 2020; 34:930-944. [PMID: 31914588 PMCID: PMC6956703 DOI: 10.1096/fj.201902155r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Abstract
The pathophysiology of pulmonary hypertension (PH) and heart failure (HF) includes fibrogenic remodeling associated with the loss of pulmonary arterial (PA) and cardiac compliance. We and others have previously identified transglutaminase 2 (TG2) as a participant in adverse fibrogenic remodeling. However, little is known about the biologic mechanisms that regulate TG2 function. We examined physiological mouse models of experimental PH, HF, and type 1 diabetes that are associated with altered glucose metabolism/glycolysis and report here that TG2 expression and activity are elevated in pulmonary and cardiac tissues under all these conditions. We additionally used PA adventitial fibroblasts to test the hypothesis that TG2 is an intermediary between enhanced tissue glycolysis and fibrogenesis. Our in vitro results show that glycolytic enzymes and TG2 are upregulated in fibroblasts exposed to high glucose, which stimulates cellular glycolysis as measured by Seahorse analysis. We examined the relationship of TG2 to a terminal glycolytic enzyme, pyruvate kinase M2 (PKM2), and found that PKM2 regulates glucose-induced TG2 expression and activity as well as fibrogenesis. Our studies further show that TG2 inhibition blocks glucose-induced fibrogenesis and cell proliferation. Our findings support a novel role for glycolysis-mediated TG2 induction and tissue fibrosis associated with experimental PH, HF, and hyperglycemia.
Collapse
Affiliation(s)
- Chinmayee D. Bhedi
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Sabina Nasirova
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Deniz Toksoz
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Rod R. Warburton
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Kevin J. Morine
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Navin K. Kapur
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Jonas B. Galper
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Ioana R. Preston
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Nicholas S. Hill
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Barry L. Fanburg
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Krishna C. Penumatsa
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
9
|
Mamazhakypov A, Viswanathan G, Lawrie A, Schermuly RT, Rajagopal S. The role of chemokines and chemokine receptors in pulmonary arterial hypertension. Br J Pharmacol 2019; 178:72-89. [PMID: 31399998 DOI: 10.1111/bph.14826] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by progressive pulmonary artery remodelling leading to increased right ventricular pressure overload, which results in right heart failure and premature death. Inflammation plays a central role in the development of PAH, and the recruitment and function of immune cells are tightly regulated by chemotactic cytokines called chemokines. A number of studies have shown that the development and progression of PAH are associated with the dysregulated expression of several chemokines and chemokine receptors in the pulmonary vasculature. Moreover, some chemokines are differentially regulated in the pressure-overloaded right ventricle. Recent studies have tested the efficacy of pharmacological agents targeting several chemokines and chemokine receptors for their effects on the development of PAH, suggesting that these receptors could serve as useful therapeutic targets. In this review, we provide recent insights into the role of chemokines and chemokine receptors in PAH and RV remodelling and the opportunities and roadblocks in targeting them. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Gayathri Viswanathan
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Allan Lawrie
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
10
|
Koop AMC, Bossers GPL, Ploegstra MJ, Hagdorn QAJ, Berger RMF, Silljé HHW, Bartelds B. Metabolic Remodeling in the Pressure-Loaded Right Ventricle: Shifts in Glucose and Fatty Acid Metabolism-A Systematic Review and Meta-Analysis. J Am Heart Assoc 2019; 8:e012086. [PMID: 31657265 PMCID: PMC6898858 DOI: 10.1161/jaha.119.012086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Right ventricular (RV) failure because of chronic pressure load is an important determinant of outcome in pulmonary hypertension. Progression towards RV failure is characterized by diastolic dysfunction, fibrosis and metabolic dysregulation. Metabolic modulation has been suggested as therapeutic option, yet, metabolic dysregulation may have various faces in different experimental models and disease severity. In this systematic review and meta‐analysis, we aimed to identify metabolic changes in the pressure loaded RV and formulate recommendations required to optimize translation between animal models and human disease. Methods and Results Medline and EMBASE were searched to identify original studies describing cardiac metabolic variables in the pressure loaded RV. We identified mostly rat‐models, inducing pressure load by hypoxia, Sugen‐hypoxia, monocrotaline (MCT), pulmonary artery banding (PAB) or strain (fawn hooded rats, FHR), and human studies. Meta‐analysis revealed increased Hedges’ g (effect size) of the gene expression of GLUT1 and HK1 and glycolytic flux. The expression of MCAD was uniformly decreased. Mitochondrial respiratory capacity and fatty acid uptake varied considerably between studies, yet there was a model effect in carbohydrate respiratory capacity in MCT‐rats. Conclusions This systematic review and meta‐analysis on metabolic remodeling in the pressure‐loaded RV showed a consistent increase in glucose uptake and glycolysis, strongly suggest a downregulation of beta‐oxidation, and showed divergent and model‐specific changes regarding fatty acid uptake and oxidative metabolism. To translate metabolic results from animal models to human disease, more extensive characterization, including function, and uniformity in methodology and studied variables, will be required.
Collapse
Affiliation(s)
- Anne-Marie C Koop
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| | - Guido P L Bossers
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| | - Mark-Jan Ploegstra
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| | - Quint A J Hagdorn
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| | - Rolf M F Berger
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| | - Herman H W Silljé
- Department of Cardiology University Medical Center Groningen University of Groningen The Netherlands
| | - Beatrijs Bartelds
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| |
Collapse
|
11
|
Viswanathan G, Mamazhakypov A, Schermuly RT, Rajagopal S. The Role of G Protein-Coupled Receptors in the Right Ventricle in Pulmonary Hypertension. Front Cardiovasc Med 2018; 5:179. [PMID: 30619886 PMCID: PMC6305072 DOI: 10.3389/fcvm.2018.00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Pressure overload of the right ventricle (RV) in pulmonary arterial hypertension (PAH) leads to RV remodeling and failure, an important determinant of outcome in patients with PAH. Several G protein-coupled receptors (GPCRs) are differentially regulated in the RV myocardium, contributing to the pathogenesis of RV adverse remodeling and dysfunction. Many pharmacological agents that target GPCRs have been demonstrated to result in beneficial effects on left ventricular (LV) failure, such as beta-adrenergic receptor and angiotensin receptor antagonists. However, the role of such drugs on RV remodeling and performance is not known at this time. Moreover, many of these same receptors are also expressed in the pulmonary vasculature, which could result in complex effects in PAH. This manuscript reviews the role of GPCRs in the RV remodeling and dysfunction and discusses activating and blocking GPCR signaling to potentially attenuate remodeling while promoting improvements of RV function in PAH.
Collapse
Affiliation(s)
- Gayathri Viswanathan
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Argen Mamazhakypov
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Ralph T Schermuly
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
12
|
Wang HM, Liu WZ, Tang FT, Sui HJ, Zhan XJ, Wang HX. Cystamine slows but not inverses the progression of monocrotaline-induced pulmonary arterial hypertension in rats. Can J Physiol Pharmacol 2018; 96:783-789. [DOI: 10.1139/cjpp-2017-0720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tissue transglutaminase (TG2) plays an important role in pulmonary arterial hypertension (PAH). Previous research indicate that TG2 and protein serotonylation catalyzed by TG2 are upregulated in PAH. Serotonin transporter inhibitor fluoxetine ameliorates PAH via inhibition of protein serotonylation. It is still unknown whether PAH is inhibited through direct inhibition of TG2. Therefore, the present study aimed to investigate the effects of TG2 inhibitor cystamine on monocrotaline-induced PAH in rats. Rats were treated with monocrotaline (60 mg·kg−1, i.p.) in combination with or without cystamine (20, 40 mg·kg−1·day−1, p.o.). The results showed that compared with monocrotaline alone, combination of monocrotaline with cystamine (40 mg·kg−1·day−1, p.o.) relieved right ventricle hypertrophy, inhibited pulmonary arteriolar remodeling, and downregulated protein expression of TG2, phosphorylated protein kinase B (Akt), and extracellular regulated protein kinase (ERK) at day 21. However, except for TG2 expression, these changes were not significantly inhibited by cystamine at day 35. In addition, cystamine dose-dependently enhanced the survival rate of rats injected with monocrotaline at day 35. The findings suggest that cystamine slows but not reverses monocrotaline-induced PAH in rats, which was largely associated with the inhibition of TG2 protein expression and Akt and ERK activation.
Collapse
Affiliation(s)
- Han-Ming Wang
- Department of Pharmacology, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Wan-Zhu Liu
- Experimental Teaching Center of Basic Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Fu-Tian Tang
- Department of Pharmacology, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Hai-Juan Sui
- Department of Pharmacology, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Xing-Jie Zhan
- Grade 2012 Clinical Class 6, Jinzhou Medical University, Jinzhou, 121001, China
| | - Hong-Xin Wang
- Department of Pharmacology, College of Basic Medicine; Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, China
| |
Collapse
|
13
|
Su J, Logan CC, Hughes AD, Parker KH, Dhutia NM, Danielsen CC, Simonsen U. Impact of chronic hypoxia on proximal pulmonary artery wave propagation and mechanical properties in rats. Am J Physiol Heart Circ Physiol 2018; 314:H1264-H1278. [PMID: 29547024 PMCID: PMC6032080 DOI: 10.1152/ajpheart.00695.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
Arterial stiffness and wave reflection are important components of the ventricular afterload. Therefore, we aimed to assess the arterial wave characteristics and mechanical properties of the proximal pulmonary arteries (PAs) in the hypoxic pulmonary hypertensive rat model. After 21 days in normoxic or hypoxic chambers (24 animals/group), animals underwent transthoracic echocardiography and PA catheterization with a dual-tipped pressure and Doppler flow sensor wire. Wave intensity analysis was performed. Artery rings obtained from the pulmonary trunk, right and left PAs, and aorta were subjected to a tensile test to rupture. Collagen and elastin content were determined. In hypoxic rats, proximal PA wall thickness, collagen content, tensile strength per unit collagen, maximal elastic modulus, and wall viscosity increased, whereas the elastin-to-collagen ratio and arterial distensibility decreased. Arterial pulse wave velocity was also increased, and the increase was more prominent in vivo than ex vivo. Wave intensity was similar in hypoxic and normoxic animals with negligible wave reflection. In contrast, the aortic maximal elastic modulus remained unchanged, whereas wall viscosity decreased. In conclusion, there was no evidence of altered arterial wave propagation in proximal PAs of hypoxic rats while the extracellular matrix protein composition was altered and collagen tensile strength increased. This was accompanied by altered mechanical properties in vivo and ex vivo. NEW & NOTEWORTHY In rats exposed to chronic hypoxia, we have shown that pulse wave velocity in the proximal pulmonary arteries increased and pressure dependence of the pulse wave velocity was steeper in vivo than ex vivo leading to a more prominent increase in vivo.
Collapse
Affiliation(s)
- Junjing Su
- Department of Biomedicine, Aarhus University , Aarhus , Denmark
| | | | - Alun D Hughes
- Institute of Cardiovascular Science, University College London , London , United Kingdom
| | - Kim H Parker
- Department of Bioengineering, Imperial College London , London , United Kingdom
| | - Niti M Dhutia
- Department of Bioengineering, Imperial College London , London , United Kingdom
| | | | - Ulf Simonsen
- Department of Biomedicine, Aarhus University , Aarhus , Denmark
| |
Collapse
|
14
|
Crnkovic S, Schmidt A, Egemnazarov B, Wilhelm J, Marsh LM, Ghanim B, Klepetko W, Olschewski A, Olschewski H, Kwapiszewska G. Functional and molecular factors associated with TAPSE in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 311:L59-73. [PMID: 27106290 DOI: 10.1152/ajplung.00381.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/17/2016] [Indexed: 01/11/2023] Open
Abstract
Adaptation of the right ventricle (RV) to increased afterload is crucial for survival in pulmonary hypertension (PH), but it is challenging to assess RV function and identify associated molecular mechanisms. The aim of the current study was to analyze the relationship between invasive and noninvasive parameters of RV morphology and function and associated molecular changes. The response of mice to normobaric hypoxia was assessed by hechocardiography, invasive hemodynamics, and histological and molecular analyses. Plasma levels of possibly novel markers of RV remodeling were measured by ELISA in patients with idiopathic pulmonary arterial hypertension (IPAH) and matched healthy controls. Chronic hypoxia-induced PH was accompanied by significantly decreased tricuspid annular plane systolic excursion (TAPSE) and unchanged RV contractility index and tau. RV hypertrophy was present without an increase in fibrosis. There was no change in α- and β-major histocompatibility class or natriuretic peptides expression. Comparative microarray analysis identified two soluble factors, fibroblast growth factor-5 (FGF5) and interleukin-22 receptor alpha-2 (IL22RA2), as being possibly associated with RV remodeling. We observed significantly higher plasma levels of IL22RA2, but not FGF5, in patients with IPAH. Hypoxic pulmonary hypertension in a stage of RV remodeling with preserved systolic function is associated with decreased pulmonary vascular compliance, mild diastolic RV dysfunction, and significant decrease in TAPSE. Subtle gene expression changes in the RV vs. the left ventricle upon chronic hypoxia suggest that the majority of changes are due to hypoxia and not due to changes in afterload. Increased IL22RA2 levels might represent a novel RV adaptive mechanism.
Collapse
Affiliation(s)
- Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| | - Albrecht Schmidt
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Jochen Wilhelm
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Bahil Ghanim
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Thoracic Surgery, Medical University of Vienna/Vienna General Hospital, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna/Vienna General Hospital, Vienna, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; and
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
15
|
Costa ADF, Franco OL. Insights into RNA transcriptome profiling of cardiac tissue in obesity and hypertension conditions. J Cell Physiol 2015; 230:959-68. [PMID: 25393239 DOI: 10.1002/jcp.24807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/05/2014] [Indexed: 12/20/2022]
Abstract
Several epidemiologic studies suggest that obesity and hypertension are associated with cardiac transcriptome modifications that could be further associated with inflammatory processes and cardiac hypertrophy. In this field, transcriptome studies have demonstrated their importance to elucidate physiologic mechanisms, pathways or genes involved in many biologic processes. Over the past decade, RNA microarray and RNA-seq analysis has become an essential component to examine metabolic pathways in terms of mRNA expression in cardiology. In this review, cardiac muscle gene expression in response to effects of obesity and hypertension will be focused, providing a broad view on cardiac transcriptome and physiologic and biochemical mechanisms involved in gene expression changes produced by these events, emphasizing the use of new technologies for gene expression analyses.
Collapse
Affiliation(s)
- Alzenira de Fátima Costa
- Universidade Católica de Brasília, Pós-Graduação em Ciências Genômicas e Biotecnologia Centro de Análises Proteômicas e Bioquímicas, Brasília, Brazil
| | | |
Collapse
|
16
|
Penumatsa KC, Toksoz D, Warburton RR, Hilmer AJ, Liu T, Khosla C, Comhair SAA, Fanburg BL. Role of hypoxia-induced transglutaminase 2 in pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 2014; 307:L576-85. [PMID: 25128524 DOI: 10.1152/ajplung.00162.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We previously reported that transglutaminase 2 (TG2) activity is markedly elevated in lungs of hypoxia-exposed rodent models of pulmonary hypertension (PH). Since vascular remodeling of pulmonary artery smooth muscle cells (PASMCs) is important in PH, we undertook the present study to determine whether TG2 activity is altered in PASMCs with exposure to hypoxia and whether that alteration participates in their proliferative response to hypoxia. Cultured distal bovine (b) and proximal human (h) PASMCs were exposed to hypoxia (3% O2) or normoxia (21% O2). mRNA and protein expression were determined by PCR and Western blot analyses. TG2 activity and function were visualized and determined by fluorescent labeled 5-pentylamine biotin incorporation and immunoblotting of serotonylated fibronectin. Cell proliferation was assessed by [(3)H]thymidine incorporation assay. At 24 h, both TG2 expression and activity were stimulated by hypoxia in bPASMCs. Activation of TG2 by hypoxia was blocked by inhibition of the extracellular calcium-sensing receptor or the transient receptor potential channel V4. In contrast, TG2 expression was blocked by inhibition of the transcription factor hypoxia-inducible factor-1α, supporting the presence of separate mechanisms for stimulation of activity and expression of TG2. Pulmonary arterial hypertension patient-derived hPASMCs were found to proliferate significantly more rapidly and respond to hypoxia more strongly than control-derived hPASMCs. Similar to bovine cells, hypoxia-induced proliferation of patient-derived cells was blocked by inhibition of TG2 activity. Our results suggest an important role for TG2, mediated by intracellular calcium fluxes and HIF-1α, in hypoxia-induced PASMC proliferation and possibly in vascular remodeling in PH.
Collapse
Affiliation(s)
- Krishna C Penumatsa
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Tupper Research Institute, Boston, Massachusetts
| | - Deniz Toksoz
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Tupper Research Institute, Boston, Massachusetts
| | - Rod R Warburton
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Tupper Research Institute, Boston, Massachusetts
| | - Andrew J Hilmer
- Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, California; and
| | - Tiegang Liu
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Tupper Research Institute, Boston, Massachusetts
| | - Chaitan Khosla
- Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, California; and
| | - Suzy A A Comhair
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Barry L Fanburg
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Tupper Research Institute, Boston, Massachusetts;
| |
Collapse
|
17
|
Wandall-Frostholm C, Skaarup LM, Sadda V, Nielsen G, Hedegaard ER, Mogensen S, Köhler R, Simonsen U. Pulmonary hypertension in wild type mice and animals with genetic deficit in KCa2.3 and KCa3.1 channels. PLoS One 2014; 9:e97687. [PMID: 24858807 PMCID: PMC4032241 DOI: 10.1371/journal.pone.0097687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/22/2014] [Indexed: 11/18/2022] Open
Abstract
Objective In vascular biology, endothelial KCa2.3 and KCa3.1 channels contribute to arterial blood pressure regulation by producing membrane hyperpolarization and smooth muscle relaxation. The role of KCa2.3 and KCa3.1 channels in the pulmonary circulation is not fully established. Using mice with genetically encoded deficit of KCa2.3 and KCa3.1 channels, this study investigated the effect of loss of the channels in hypoxia-induced pulmonary hypertension. Approach and Result Male wild type and KCa3.1−/−/KCa2.3T/T(+DOX) mice were exposed to chronic hypoxia for four weeks to induce pulmonary hypertension. The degree of pulmonary hypertension was evaluated by right ventricular pressure and assessment of right ventricular hypertrophy. Segments of pulmonary arteries were mounted in a wire myograph for functional studies and morphometric studies were performed on lung sections. Chronic hypoxia induced pulmonary hypertension, right ventricular hypertrophy, increased lung weight, and increased hematocrit levels in either genotype. The KCa3.1−/−/KCa2.3T/T(+DOX) mice developed structural alterations in the heart with increased right ventricular wall thickness as well as in pulmonary vessels with increased lumen size in partially- and fully-muscularized vessels and decreased wall area, not seen in wild type mice. Exposure to chronic hypoxia up-regulated the gene expression of the KCa2.3 channel by twofold in wild type mice and increased by 2.5-fold the relaxation evoked by the KCa2.3 and KCa3.1 channel activator NS309, whereas the acetylcholine-induced relaxation - sensitive to the combination of KCa2.3 and KCa3.1 channel blockers, apamin and charybdotoxin - was reduced by 2.5-fold in chronic hypoxic mice of either genotype. Conclusion Despite the deficits of the KCa2.3 and KCa3.1 channels failed to change hypoxia-induced pulmonary hypertension, the up-regulation of KCa2.3-gene expression and increased NS309-induced relaxation in wild-type mice point to a novel mechanism to counteract pulmonary hypertension and to a potential therapeutic utility of KCa2.3/KCa3.1 activators for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
| | | | - Veeranjaneyulu Sadda
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Institute for Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Gorm Nielsen
- Institute for Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | | | - Susie Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ralf Köhler
- Institute for Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Aragon Institute of Health Sciences I+CS and ARAID, Zaragoza, Spain
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Dunlop K, Gosal K, Kantores C, Ivanovska J, Dhaliwal R, Desjardins JF, Connelly KA, Jain A, McNamara PJ, Jankov RP. Therapeutic hypercapnia prevents inhaled nitric oxide-induced right-ventricular systolic dysfunction in juvenile rats. Free Radic Biol Med 2014; 69:35-49. [PMID: 24423485 DOI: 10.1016/j.freeradbiomed.2014.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/31/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
Abstract
Chronic pulmonary hypertension in the neonate and infant frequently presents with right-ventricular (RV) failure. Current clinical management may include protracted treatment with inhaled nitric oxide (iNO), with the goal of reducing RV afterload. We have previously reported that prolonged exposure to iNO causes RV systolic dysfunction in the chronic hypoxia-exposed juvenile rat, which was prevented by a peroxynitrite decomposition catalyst. Given that inhalation of CO2 (therapeutic hypercapnia) may limit oxidative stress and upregulated cytokine expression in the lung and other organs, we hypothesized that therapeutic hypercapnia would attenuate cytokine-mediated nitric oxide synthase (NOS) upregulation, thus limiting peroxynitrite generation. Sprague-Dawley rat pups were exposed to chronic hypoxia (13% O2) from postnatal day 1 to 21, while receiving iNO (20 ppm) from day 14 to 21, with or without therapeutic hypercapnia (10% CO2). Therapeutic hypercapnia completely normalized RV systolic function, RV hypertrophy, and remodeling of pulmonary resistance arteries in animals exposed to iNO. Inhaled nitric oxide-mediated increases in RV peroxynitrite, apoptosis, and contents of tumor necrosis factor (TNF)-α, interleukin (IL)-1α, and NOS-2 were all attenuated by therapeutic hypercapnia. Inhibition of NOS-2 activity with 1400 W (1 mg/kg/day) prevented iNO-mediated upregulation of peroxynitrite and led to improved RV systolic function. Blockade of IL-1 receptor signaling with anakinra (500 mg/kg/day) decreased NOS-2 content and had similar effects compared to NOS-2 inhibition on iNO-mediated effects, whereas blockade of TNF-α signaling with etanercept (0.4 mg/kg on alternate days) had no effects on these parameters. We conclude that therapeutic hypercapnia prevents the adverse effects of sustained exposure to iNO on RV systolic function by limiting IL-1-mediated NOS-2 upregulation and consequent nitration. Therapeutic hypercapnia also acts synergistically with iNO in normalizing RV hypertrophy, vascular remodeling, and raised pulmonary vascular resistance secondary to chronic hypoxia.
Collapse
Affiliation(s)
- Kristyn Dunlop
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Kiranjot Gosal
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Faculty of Medicine, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Crystal Kantores
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Julijana Ivanovska
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Rupinder Dhaliwal
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Jean-François Desjardins
- Keenan Research Center, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
| | - Kim A Connelly
- Keenan Research Center, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, and Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Amish Jain
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Faculty of Medicine, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8; Division of Neonatology, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Patrick J McNamara
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Faculty of Medicine, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8; Division of Neonatology, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Robert P Jankov
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Faculty of Medicine, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, and Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8; Division of Neonatology, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8.
| |
Collapse
|
19
|
Laan N, Bremmer RH, Aalders MC, de Bruin KG. Volume Determination of Fresh and Dried Bloodstains by Means of Optical Coherence Tomography. J Forensic Sci 2013; 59:34-41. [DOI: 10.1111/1556-4029.12272] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 08/30/2012] [Accepted: 10/24/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Nick Laan
- Department of Biomedical Engineering and Physics; Academic Medical Center; University of Amsterdam; Meibergdreef 15, 1105 AZ Amsterdam The Netherlands
- Netherlands Forensic Institute; The Hague P.O. Box 24044 The Netherlands
| | - Rolf H. Bremmer
- Department of Biomedical Engineering and Physics; Academic Medical Center; University of Amsterdam; Meibergdreef 15, 1105 AZ Amsterdam The Netherlands
| | - Maurice C.G. Aalders
- Department of Biomedical Engineering and Physics; Academic Medical Center; University of Amsterdam; Meibergdreef 15, 1105 AZ Amsterdam The Netherlands
| | - Karla G. de Bruin
- Netherlands Forensic Institute; The Hague P.O. Box 24044 The Netherlands
| |
Collapse
|
20
|
Nielsen G, Wandall-Frostholm C, Sadda V, Oliván-Viguera A, Lloyd EE, Bryan RM, Simonsen U, Köhler R. Alterations of N-3 polyunsaturated fatty acid-activated K2P channels in hypoxia-induced pulmonary hypertension. Basic Clin Pharmacol Toxicol 2013; 113:250-8. [PMID: 23724868 DOI: 10.1111/bcpt.12092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/24/2013] [Indexed: 01/06/2023]
Abstract
Polyunsaturated fatty acid (PUFA)-activated two-pore domain potassium channels (K2P ) have been proposed to be expressed in the pulmonary vasculature. However, their physiological or pathophysiological roles are poorly defined. Here, we tested the hypothesis that PUFA-activated K2P are involved in pulmonary vasorelaxation and that alterations of channel expression are pathophysiologically linked to pulmonary hypertension. Expression of PUFA-activated K2P in the murine lung was investigated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), by patch clamp (PC) and myography. K2P -gene expression was examined in chronic hypoxic mice. qRT-PCR showed that the K2P 2.1 and K2P 6.1 were the predominantly expressed K2P in the murine lung. IHC revealed protein expression of K2P 2.1 and K2P 6.1 in the endothelium of pulmonary arteries and of K2P 6.1 in bronchial epithelium. PC showed pimozide-sensitive K2P -like K(+) -current activated by docosahexaenoic acid (DHA) in freshly isolated endothelial cells as well as DHA-induced membrane hyperpolarization. Myography on pulmonary arteries showed that DHA induced concentration-dependent instantaneous relaxations that were resistant to endothelial removal and inhibition of NO and prostacyclin synthesis and to a cocktail of blockers of calcium-activated K(+) channels but were abolished by high extracellular (30 mM) K(+) -concentration. Gene expression and protein of K2P 2.1 were not altered in chronic hypoxic mice, while K2P 6.1 was up-regulated by fourfold. In conclusion, the PUFA-activated K2P 2.1 and K2P 6.1 are expressed in murine lung and functional K2P -like channels contribute to endothelium hyperpolarization and pulmonary artery relaxation. The increased K2P 6.1-gene expression may represent a novel counter-regulatory mechanism in pulmonary hypertension and suggest that arterial K2P 2.1 and K2P 6.1 could be novel therapeutic targets.
Collapse
Affiliation(s)
- Gorm Nielsen
- Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Jönsson ÅLM, Hilberg O, Bendstrup EM, Mogensen S, Simonsen U. SLC34A2 gene mutation may explain comorbidity of pulmonary alveolar microlithiasis and aortic valve sclerosis. Am J Respir Crit Care Med 2012; 185:464. [PMID: 22336687 DOI: 10.1164/ajrccm.185.4.464] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
22
|
Hoeper MM, Granton J. Intensive care unit management of patients with severe pulmonary hypertension and right heart failure. Am J Respir Crit Care Med 2012; 184:1114-24. [PMID: 21700906 DOI: 10.1164/rccm.201104-0662ci] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite advances in medical therapies, pulmonary arterial hypertension (PAH) continues to cause significant morbidity and mortality. Although the right ventricle (RV) can adapt to an increase in afterload, progression of the pulmonary vasculopathy that characterizes PAH causes many patients to develop progressive right ventricular failure. Furthermore, acute right ventricular decompensation may develop from disorders that lead to either an acute increase in cardiac demand, such as sepsis, or to an increase in ventricular afterload, including interruptions in medical therapy, arrhythmia, or pulmonary embolism. The poor reserve of the right ventricle, RV ischemia, and adverse right ventricular influence on left ventricular filling may lead to a global reduction in oxygen delivery and multiorgan failure. There is a paucity of data to guide clinicians caring for acute right heart failure in PAH. Treatment recommendations are frequently based on animal models of acute right heart failure or case series in humans with other causes of pulmonary hypertension. Successful treatment often requires that invasive hemodynamics be used to monitor the effect of strategies that are based primarily on biological plausibility. Herein we have developed an approach based on the current understanding of RV failure in PAH and have attempted to develop a treatment paradigm based on physiological principles and available evidence.
Collapse
Affiliation(s)
- Marius M Hoeper
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
23
|
Østergaard L, Honoré B, Thorsen LB, Baandrup J, Eskildsen-Helmond Y, Laursen BE, Vorum H, Mulvany MJ, Simonsen U. Pulmonary pressure reduction attenuates expression of proteins identified by lung proteomic profiling in pulmonary hypertensive rats. Proteomics 2011; 11:4492-502. [DOI: 10.1002/pmic.201100171] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 08/22/2011] [Accepted: 08/30/2011] [Indexed: 01/28/2023]
|