1
|
Zhang Z, Wu F, Zhou Z, Luo H, Qin Y, Yang M, Mo Y, Zhu Z, Zhang Y, Guo Y. Establishing the reference intervals of plasma PLG, FXII activity, and FXIII antigen in healthy adults in Guangzhou. BMC Cardiovasc Disord 2025; 25:3. [PMID: 39757167 DOI: 10.1186/s12872-024-04398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVE To establish the reference intervals of plasma Plasminogen, Factor XII activity, and Factor XIII Antigen in healthy adults in Guangzhou. METHODS A total of 168 young people (75 males and 93 females, aged 18-65 years) who underwent physical examination in Zhujiang Hospital of Southern Medical University from 2020 to 2022 were recruited. Sysmex CS5100 automatic coagulation analyzer and matching reagents were used to detect Plasminogen. Factor XII activity and Factor XIII Antigen were detected using the ACL TOP 700 (Instrumentation Laboratory, Bedford, MA, USA) automatic coagulation analyzer and matching reagents; reference intervals were established. RESULTS Plasma Plasminogen and Factor XIII Antigen were normally distributed, and plasma Factor XII activity showed a skewed distribution with no statistical significance in gender. The established reference intervals were as follows: Plasminogen: 71.6-123.0%; Factor XIII Antigen: 55.1-113.1%; Factor XII: 42.3-144.1%. CONCLUSION The reference intervals for special coagulation items of the laboratory population in a particular area should be established to provide results that align with the population characteristics for assessing the coagulation status of clinical patients.
Collapse
Affiliation(s)
- Zhenfei Zhang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
- Guangdong Provincial Clinical Research Center for Laboratory Medicine, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
| | - Fang Wu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
- Guangdong Provincial Clinical Research Center for Laboratory Medicine, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
| | - Zejie Zhou
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
- Guangdong Provincial Clinical Research Center for Laboratory Medicine, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
| | - Huixian Luo
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
- Guangdong Provincial Clinical Research Center for Laboratory Medicine, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
| | - Yuehua Qin
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
| | - Meng Yang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
- Guangdong Provincial Clinical Research Center for Laboratory Medicine, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
| | - Yinjuan Mo
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
- Guangdong Provincial Clinical Research Center for Laboratory Medicine, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
| | - Zhiqiang Zhu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
- Guangdong Provincial Clinical Research Center for Laboratory Medicine, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
| | - Yi Zhang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
- Guangdong Provincial Clinical Research Center for Laboratory Medicine, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China
| | - Yonghui Guo
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China.
- Guangdong Provincial Clinical Research Center for Laboratory Medicine, 253 Industrial Avenue Central, Guangzhou, 510280, P. R. China.
| |
Collapse
|
2
|
Dang Y, Zhang Y, Jian M, Luo P, Anwar N, Ma Y, Zhang D, Wang X. Advances of Blood Coagulation Factor XIII in Bone Healing. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:591-604. [PMID: 37166415 DOI: 10.1089/ten.teb.2023.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The biologic process of bone healing is complicated, involving a variety of cells, cytokines, and growth factors. As a result of bone damage, the activation of a clotting cascade leads to hematoma with a high osteogenic potential in the initial stages of healing. A major factor involved in this course of events is clotting factor XIII (FXIII), which can regulate bone defect repair in different ways during various stages of healing. Autografts and allografts often have defects in clinical practice, making the development of advanced materials that support bone regeneration a critical requirement. Few studies, however, have examined the promotion of bone healing by FXIII in combination with biomaterials, in particular, its effect on blood coagulation and osteogenesis. Therefore, we mainly summarized the role of FXIII in promoting bone regeneration by regulating the extracellular matrix and type I collagen, bone-related cells, angiogenesis, and platelets, and described the research progress of FXIII = related biomaterials on osteogenesis. This review provides a reference for investigators to explore the mechanism by which FXIII promotes bone healing and the combination of FXIII with biomaterials to achieve targeted bone tissue repair.
Collapse
Affiliation(s)
- Yi Dang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Minghui Jian
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Peng Luo
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Nadia Anwar
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Center for Tissue Engineering, The Fourth Military Medical University, Xian, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
The Effect of Activated FXIII, a Transglutaminase, on Vascular Smooth Muscle Cells. Int J Mol Sci 2022; 23:ijms23105845. [PMID: 35628664 PMCID: PMC9144255 DOI: 10.3390/ijms23105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Plasma factor XIII (pFXIII) is a heterotetramer of FXIII-A and FXIII-B subunits. The cellular form (cFXIII), a dimer of FXIII-A, is present in a number of cell types. Activated FXIII (FXIIIa), a transglutaminase, plays an important role in clot stabilization, wound healing, angiogenesis and maintenance of pregnancy. It has a direct effect on vascular endothelial cells and fibroblasts, which have been implicated in the development of atherosclerotic plaques. Our aim was to explore the effect of FXIIIa on human aortic smooth muscle cells (HAoSMCs), another major cell type in the atherosclerotic plaque. Osteoblastic transformation induced by Pi and Ca2+ failed to elicit the expression of cFXIII in HAoSMCs. EZ4U, CCK-8 and CytoSelect Wound Healing assays were used to investigate cell proliferation and migration. The Sircol Collagen Assay Kit was used to monitor collagen secretion. Thrombospondin-1 (TSP-1) levels were measured by ELISA. Cell-associated TSP-1 was detected by the immunofluorescence technique. The TSP-1 mRNA level was estimated by RT-qPCR. Activated recombinant cFXIII (rFXIIIa) increased cell proliferation and collagen secretion. In parallel, a 67% decrease in TSP-1 concentration in the medium and a 2.5-fold increase in cells were observed. TSP-1 mRNA did not change significantly. These effects of FXIIIa might contribute to the pathogenesis of atherosclerotic plaques.
Collapse
|
4
|
MACF1 promotes osteoblast differentiation by sequestering repressors in cytoplasm. Cell Death Differ 2021; 28:2160-2178. [PMID: 33664480 PMCID: PMC8257666 DOI: 10.1038/s41418-021-00744-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoblast differentiation leading to bone formation requires a coordinated transcriptional program. Osteoblastic cells with low level of microtubule actin crosslinking factor 1 (MACF1) show reduced osteoblast differentiation ability, however, the comprehensive mechanism of MACF1's action remains unexplored. In the current study, we found that MACF1 knockdown suppressed osteoblast differentiation by altering the transcriptome dynamics. We further identified two MACF1-interacted proteins, cyclin-dependent kinase 12 (CDK12) and MYST/Esa1-associated factor 6 (MEAF6), and two MACF1-interacted transcription factors (TFs), transcription factor 12 (TCF12) and E2F transcription factor 6 (E2F6), which repress osteoblast differentiation by altering the expression of osteogenic TFs and genes. Moreover, we found that MACF1 regulated cytoplasmic-nuclear localization of itself, TCF12 and E2F6 in a concentration-dependent manner. MACF1 oppositely regulates the expression of TCF12 and transcription factor 7 (TCF7), two TFs that drive osteoblast differentiation to opposite directions. This study reveals that MACF1, a cytoskeletal protein, acts as a sponge for repressors of osteoblast differentiation to promote osteoblast differentiation and contributes to a novel mechanistic insight of osteoblast differentiation and transcription dynamics.
Collapse
|
5
|
Abstract
Hemophilia is caused by a lack of antihemophilic factor(s), for example, factor VIII (FVIII; hemophilia A) and factor IX (FIX; hemophilia B). Low bone mass is widely reported in epidemiological studies of hemophilia, and patients with hemophilia are at an increased risk of fracture. The detailed etiology of bone homeostasis imbalance in hemophilia is unclear. Clinical and experimental studies show that FVIII and FIX are involved in bone remodeling. However, it is likely that antihemophilic factors affect bone biology through thrombin pathways rather than via their own intrinsic properties. In addition, among patients with hemophilia, there are pathophysiological processes in several systems that might contribute to bone loss. This review summarizes studies on the association between hemophilia and bone remodeling, and might shed light on the challenges facing the care and prevention of osteoporosis and fracture in patients with hemophilia.
Collapse
Affiliation(s)
- Hanshi Wang
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xizhuang Bai
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
6
|
Kaartinen MT, Arora M, Heinonen S, Rissanen A, Kaprio J, Pietiläinen KH. Transglutaminases and Obesity in Humans: Association of F13A1 to Adipocyte Hypertrophy and Adipose Tissue Immune Response. Int J Mol Sci 2020; 21:E8289. [PMID: 33167412 PMCID: PMC7663854 DOI: 10.3390/ijms21218289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022] Open
Abstract
Transglutaminases TG2 and FXIII-A have recently been linked to adipose tissue biology and obesity, however, human studies for TG family members in adipocytes have not been conducted. In this study, we investigated the association of TGM family members to acquired weight gain in a rare set of monozygotic (MZ) twins discordant for body weight, i.e., heavy-lean twin pairs. We report that F13A1 is the only TGM family member showing significantly altered, higher expression in adipose tissue of the heavier twin. Our previous work linked adipocyte F13A1 to increased weight, body fat mass, adipocyte size, and pro-inflammatory pathways. Here, we explored further the link of F13A1 to adipocyte size in the MZ twins via a previously conducted TWA study that was further mined for genes that specifically associate to hypertrophic adipocytes. We report that differential expression of F13A1 (ΔHeavy-Lean) associated with 47 genes which were linked via gene enrichment analysis to immune response, leucocyte and neutrophil activation, as well as cytokine response and signaling. Our work brings further support to the role of F13A1 in the human adipose tissue pathology, suggesting a role in the cascade that links hypertrophic adipocytes with inflammation.
Collapse
Affiliation(s)
- Mari T. Kaartinen
- Faculty of Medicine (Experimental Medicine), McGill University, Montreal, QC H3A 0J7, Canada;
- Faculty of Dentistry (Biomedical Sciences), McGill University, Montreal, QC H3A 0J7, Canada
| | - Mansi Arora
- Faculty of Medicine (Experimental Medicine), McGill University, Montreal, QC H3A 0J7, Canada;
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.H.); (A.R.); (K.H.P.)
| | - Aila Rissanen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.H.); (A.R.); (K.H.P.)
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, 00100 Helsinki, Finland;
| | - Kirsi H. Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.H.); (A.R.); (K.H.P.)
- Abdominal Center, Obesity Center, Endocrinology, University of Helsinki and Helsinki University Central Hospital, 00014 Helsinki, Finland
| |
Collapse
|
7
|
Sun H, Kaartinen MT. Assessment of expression and specific activities of transglutaminases TG1, TG2, and FXIII-A during osteoclastogenesis. Anal Biochem 2019; 591:113512. [PMID: 31786225 DOI: 10.1016/j.ab.2019.113512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
Osteoclasts are large multinucleated bone-resorbing cells derived from monocyte/macrophage lineage. Macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) drive the multi-stage osteoclastogenesis. Transglutaminases (TGs) are Ca2+- and thiol-dependent acyl transferases and protein crosslinking enzymes. TG enzyme family contains eight catalytically active enzymes TG1-7 and Factor XIII-A (FXIII-A). Recent studies have shown that TG1, TG2, and FXIII-A are present in osteoclasts and that TG2 and FXIII-A regulate osteoclastogenesis. In this study, we examined gene and protein expression and specific activities of TG1, TG2, and FXIII-A during osteoclastogenesis using "Hitomi peptides" in a day-by-day manner. We report that TG activities are highest in the differentiation and early fusion phases and then decrease dramatically. TG activities were upregulated by M-CSF and downregulated by addition of RANKL. FXIII-A was dramatically downregulated by RANKL, suggesting its involvement in M-CSF-mediated precursor commitment phase. TG1 and TG2 proteins were present throughout osteoclastogenesis, suggesting that they may have functions in both differentiation and fusion. In summary, the three TGs likely exert distinct functions at different stages of osteoclastogenesis. Our work also demonstrates that the "Hitomi peptides" are highly specific tools for detection of distinct TGs in a system where multiple TGs are present.
Collapse
Affiliation(s)
- H Sun
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - M T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Cellular Factor XIII, a Transglutaminase in Human Corneal Keratocytes. Int J Mol Sci 2019; 20:ijms20235963. [PMID: 31783511 PMCID: PMC6928837 DOI: 10.3390/ijms20235963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Cellular factor XIII (cFXIII, FXIII-A2), a transglutaminase, has been demonstrated in a few cell types. Its main function is to cross-link proteins by isopeptide bonds. Here, we investigated the presence of cFXIII in cells of human cornea. Tissue sections of the cornea were immunostained for FXIII-A in combination with staining for CD34 antigen or isopeptide cross-links. Isolated corneal keratocytes were also evaluated by immunofluorescent microscopy and flow cytometry. FXIII-A in the corneal stroma was quantified by Western blotting. FXIII-A mRNA was detected by RT-qPCR. The cornea of FXIII-A-deficient patients was evaluated by cornea topography. FXIII-A was detected in 68 ± 13% of CD34+ keratocytes. Their distribution in the corneal stroma was unequal; they were most abundant in the subepithelial tertile. cFXIII was of cytoplasmic localization. In the stroma, 3.64 ng cFXIII/mg protein was measured. The synthesis of cFXIII by keratocytes was confirmed by RT-qPCR. Isopeptide cross-links were detected above, but not within the corneal stroma. Slight abnormality of the cornea was detected in six out of nine FXIII-A-deficient patients. The presence of cFXIII in human keratocytes was established for the first time. cFXIII might be involved in maintaining the stability of the cornea and in the corneal wound healing process.
Collapse
|
9
|
Jin W, Zhu X, Yao F, Xu X, Chen X, Luo Z, Zhao D, Li X, Leng X, Sun L. Cytoprotective effect of Fufang Lurong Jiangu capsule against hydrogen peroxide-induced oxidative stress in bone marrow stromal cell-derived osteoblasts through the Nrf2/HO-1 signaling pathway. Biomed Pharmacother 2019; 121:109676. [PMID: 31810119 DOI: 10.1016/j.biopha.2019.109676] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Oxidative stress is increasingly recognized as a risk factor associated with the development and progression of osteoporosis. Fufang Lurong Jiangu Capsule (FLJC) has a known anti-osteoporotic effect, but its pharmacological effect on osteoblasts is not clearly understood. This study was designed to investigate FLJC effects/mechanisms on in vitro hydrogen peroxide (H2O2)-induced oxidative damage of osteoblasts and on in vivo lipopolysaccharide (LPS)-induced mice bone loss. FLJC alleviates osteoporosis via unknown pharmacological mechanisms. METHODS Chemical compositions of FLJC preparations were analyzed using high-performance liquid chromatographic fingerprinting. After rat bone marrow mesenchymal stem cell differentiation induction, resulting osteoblasts received various 48 h FLJC pretreatments before H2O2-based (200 μM) oxidative stress exposure. FLJC effects were measured on osteoblast cell viability, morphological changes, levels of intracellular reactive oxygen species (ROS), localization of mitochondria, activity of antioxidant enzymes, alkaline phosphatase (ALP) and mineralization, the secretion of Col I and expression of osteogenic markers. The percentages of apoptosis were determined by flow cytometric analysis; apoptosis-related protein levels, including nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) with or without Nrf2 inhibitor were analyzed via western blot. Hematoxylin and eosin (H&E) and ALP staining revealed in vivo FLJC effect on mice LPS-induced bone loss. RESULTS Five chemical components in FLJC were identified, and fingerprint analysis showed good reproducibility. FLJC pretreatment significantly reduced H2O2-induced ROS levels in osteoblasts and increased antioxidant enzyme activities to reduce oxidative damage. With regard to osteoblast differentiation, FLJC pretreatment increased ALP expression, as well as levels of mineralization and osteoblast markers. Additionally, FLJC protected against H2O2-induced apoptosis by inhibiting changes in expression of major Bcl-2 family effector proteins of the mitochondrial apoptosis pathway. Furthermore, FLJC protected cells from H2O2-induced oxidative damage by up-regulating Nrf2 and HO-1 protein levels. Finally, we confirmed that FLJC administration could reverse the bone loss in LPS-induced mice. CONCLUSION These results indicate that FLJC may significantly attenuate oxidative damage of osteoblasts induced by H2O2 via the Nrf2/HO-1 signaling pathway, providing new insights to guide development of treatments for osteoporosis induced by oxidative injury.
Collapse
Affiliation(s)
- Wenqi Jin
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaoqian Zhu
- Technology Innovation Center for Chinese Medicine Biotechnology, College of Science, Beihua University, Jilin, Jilin, China
| | - Fan Yao
- Center of Preventive Treatment of Diseases, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zongjian Luo
- Department of Orthopedics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, China
| | - Xiangyan Li
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, China
| | - Xiangyang Leng
- Department of Orthopedics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China.
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China.
| |
Collapse
|
10
|
Anokhin BA, Dean WL, Smith KA, Flick MJ, Ariëns RAS, Philippou H, Maurer MC. Proteolytic and nonproteolytic activation mechanisms result in conformationally and functionally different forms of coagulation factor XIII A. FEBS J 2019; 287:452-464. [PMID: 31407850 DOI: 10.1111/febs.15040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
Abstract
Factor XIIIA (FXIIIA) is a transglutaminase that cross-links intra- and extracellular protein substrates. FXIIIA is expressed as an inactive zymogen, and during blood coagulation, it is activated by removal of an activation peptide by the protease thrombin. No such proteolytic FXIIIA activation is known to occur in other tissues or the intracellular form of FXIIIA. For those locations, FXIIIA is assumed instead to undergo activation by Ca2+ ions. Previously, we demonstrated a monomeric state for active FXIIIA. Current analytical ultracentrifugation and kinetic experiments revealed that thrombin-activated FXIIIA has a higher conformational flexibility and a stronger affinity toward glutamine substrate than does nonproteolytically activated FXIIIA. The proteolytic activation of FXIIIA was further investigated in a context of fibrin clotting. In a series of fibrin cross-linking assays and scanning electron microscopy studies of plasma clots, the activation rates of FXIIIA V34X variants were correlated with the extent of fibrin cross-linking and incorporation of nonfibrous protein into the clot. Overall, the results suggest conformational and functional differences between active FXIIIA forms, thus expanding the understanding of FXIIIA function. Those differences may serve as a basis for developing therapeutic strategies to target FXIIIA in different physiological environments. ENZYMES: Factor XIIIA ( EC 2.3.2.13).
Collapse
Affiliation(s)
| | - William L Dean
- Brown Cancer Center, University of Louisville School of Medicine, KY, USA.,Department of Medicine, University of Louisville, KY, USA.,Department of Biochemistry and Molecular Genetics, University of Louisville, KY, USA
| | - Kerrie A Smith
- Leeds Thrombosis Collective, Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Matthew J Flick
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Robert A S Ariëns
- Leeds Thrombosis Collective, Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Helen Philippou
- Leeds Thrombosis Collective, Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | | |
Collapse
|
11
|
Hulsart-Billström G, Janson O, Engqvist H, Welch K, Hong J. Thromboinflammation as bioactivity assessment of H 2O 2-alkali modified titanium surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:66. [PMID: 31127371 PMCID: PMC6534515 DOI: 10.1007/s10856-019-6248-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
The release of growth factors from platelets, mediated by the coagulation and the complement system, plays an important role in the bone formation around implants. This study aimed at exploring the thromboinflammatory response of H2O2-alkali soaked commercially pure titanium grade 2 discs exposed to whole human blood, as a way to assess the bioactivity of the discs. Commercially pure titanium grade 2 discs were modified by soaking in H2O2, NaOH and Ca(OH)2. The platelet aggregation, coagulation activation and complement activation was assessed by exposing the discs to fresh whole blood from human donors. The platelet aggregation was examined by a cell counter and the coagulation and complement activation were assessed by ELISA-measurements of the concentration of thrombin-antithrombin complex, C3a and terminal complement complex. The modified surface showed a statistically significant increased platelet aggregation, coagulation activation and complement activation compared to unexposed blood. The surface also showed a statistically significant increase of coagulation activation compared to PVC. The results of this study showed that the H2O2-alkali soaked surfaces induced a thromboinflammatory response that indicates that the surfaces are bioactive.
Collapse
Affiliation(s)
- Gry Hulsart-Billström
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, 751 21, Uppsala, Sweden
| | - Oscar Janson
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, 751 21, Uppsala, Sweden
| | - Håkan Engqvist
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, 751 21, Uppsala, Sweden
| | - Ken Welch
- Department of Engineering Sciences, Division of Nanotechnology and Functional Materials, Uppsala University, 751 21, Uppsala, Sweden
| | - Jaan Hong
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory C5, Uppsala University, 75185, Uppsala, Sweden.
| |
Collapse
|
12
|
Mitchell JL, Mutch NJ. Let's cross-link: diverse functions of the promiscuous cellular transglutaminase factor XIII-A. J Thromb Haemost 2019; 17:19-30. [PMID: 30489000 DOI: 10.1111/jth.14348] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Indexed: 12/16/2022]
Abstract
Essentials Plasma Factor XIII, a heterodimer of A and B subunits FXIIIA2 B2 , is a transglutaminase enzyme with a well-established role in haemostasis. Cells of bone marrow and mesenchymal lineage express the FXIII-A gene (F13A1) that encodes the cellular form of the transglutaminase, a homodimer of the A subunits, FXIII-A. FXIII-A was presumed to function intracellularly, however, several lines of evidence now indicate that FXIII-A is externalised by an as yet unknown mechanism This review describes the mounting evidence that FXIII-A is a diverse transglutaminase with many intracellular and extracellular substrates that can participate in an array of biological processes SUMMARY: Factor XIII is a tranglutaminase enzyme that catalyzes the formation of ε-(γ-glutamyl)lysyl isopeptide bonds in protein substrates. The plasma form, FXIII-A2 B2 , has an established function in hemostasis, where its primary substrate is fibrin. A deficiency in FXIII manifests as a severe bleeding diathesis, underscoring its importance in this pathway. The cellular form of the enzyme, a homodimer of the A-subunits, denoted FXIII-A, has not been studied in as extensive detail. FXIII-A was generally perceived to remain intracellular, owing to the lack of a classical signal peptide for its release. In the last decade, emerging evidence has revealed that this diverse transglutaminase can be externalized from cells, by an as yet unknown mechanism, and can cross-link extracellular substrates and participate in a number of diverse pathways. The FXIII-A gene (F13A1) is expressed in cells of bone marrow and mesenchymal lineage, notably megakaryocytes, monocytes/macrophages, dendritic cells, chrondrocytes, osteoblasts, and preadipocytes. The biological processes that FXIII-A is coupled with, such as wound healing, phagocytosis, and bone and matrix remodeling, reflect its expression in these cell types. This review describes the mounting evidence that this cellular transglutaminase can be externalized, usually in response to stimuli, and participate in extracellular cross-linking reactions. A corollary of being involved in these biological pathways is the participation of FXIII-A in pathological processes. In conclusion, the functions of this transglutaminase extend far beyond its role in hemostasis, and our understanding of this enzyme in terms of its secretion, regulation and substrates is in its infancy.
Collapse
Affiliation(s)
- J L Mitchell
- School of Biological Sciences, University of Reading, Reading, UK
| | - N J Mutch
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
13
|
Katt WP, Blobel NJ, Komarova S, Antonyak MA, Nakano I, Cerione RA. A small molecule regulator of tissue transglutaminase conformation inhibits the malignant phenotype of cancer cells. Oncotarget 2018; 9:34379-34397. [PMID: 30344949 PMCID: PMC6188150 DOI: 10.18632/oncotarget.26193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/15/2018] [Indexed: 12/26/2022] Open
Abstract
The protein crosslinking enzyme tissue transglutaminase (tTG) is an acyltransferase which catalyzes transamidation reactions between two proteins, or between a protein and a polyamine. It is frequently overexpressed in several different types of human cancer cells, where it has been shown to contribute to their growth, survival, and invasiveness. tTG is capable of adopting two distinct conformational states: a protein crosslinking active (“open”) state, and a GTP-bound, crosslinking inactive (“closed”) state. We have previously shown that the ectopic expression of mutant forms of tTG, which constitutively adopt the open conformation, are toxic to cells. This raises the possibility that strategies directed toward causing tTG to maintain an open state could potentially provide a therapeutic benefit for cancers in which tTG is highly expressed. Here, we report the identification of a small molecule, TTGM 5826, which stabilizes the open conformation of tTG. Treatment of breast and brain cancer cell lines, as well as glioma stem cells, with this molecule broadly inhibits their transformed phenotypes. Thus, TTGM 5826 represents the lead compound for a new class of small molecules that promote the toxicity of cancer cells by stabilizing the open state of tTG.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Nicolas J Blobel
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Svetlana Komarova
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
14
|
Sun H, Kaartinen MT. Transglutaminase activity regulates differentiation, migration and fusion of osteoclasts via affecting actin dynamics. J Cell Physiol 2018; 233:7497-7513. [PMID: 29663380 DOI: 10.1002/jcp.26603] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Osteoclasts, bone resorbing cells, derive from monocyte/macrophage cell lineage. Increased osteoclast activity is responsible for bone destruction in diseases such as osteoporosis, periodontitis and rheumatoid arthritis. Transglutaminases (TGs), protein crosslinking enzymes, were recently found involved in osteoclastogenesis in vivo, however their mechanisms of action have remained unknown. In this study, we have investigated the role of TG activity in osteoclastogenesis in vitro using four TG inhibitors, NC9, Z006, T101, and monodansyl cadaverine. Our results showed that all TG inhibitors were capable of blocking the entire osteoclastogenesis process. The most potent of the inhibitors, NC9 when added to cultures at different phases of osteoclastogenesis, inhibited differentiation, migration, and fusion of pre-osteoclasts as well as resorption activity of mature osteoclasts. Further investigation into the mechanisms revealed that NC9 increased RhoA levels and blocked podosome belt formation suggesting that TG activity regulates actin dynamics in pre-osteoclasts. The inhibitory effect of NC9 on osteoclastogenesis as well as podosome belt formation was completely reversed with a Rho-family inhibitor Exoenzyme C3. Microtubule architecture, acetylation, and detyrosination of α-tubulin were not affected. Finally, we demonstrated that macrophages and osteoclasts expressed mRNA of three TGs:TG1, TG2, and Factor XIII-A which were all differentially regulated in these cells during differentiation. Immunofluoresence microscopic analysis showed that all three enzymes co-localized to podosomes in osteoclasts. Taken together, our data suggests that TG activity regulates differentiation, migration and fusion of osteoclasts via affecting actin dynamics and that this may involve contribution from all three TG enzymes.
Collapse
Affiliation(s)
- Huifang Sun
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Kapusta P, Wypasek E, Natorska J, Grudzien G, Sobczyk D, Sadowski J, Undas A. Factor XIII expression within aortic valves and its plasma activity in patients with aortic stenosis: association with severity of disease. Thromb Haemost 2017; 108:1172-9. [DOI: 10.1160/th12-07-0455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/10/2012] [Indexed: 11/05/2022]
Abstract
SummaryAortic valve stenosis (AS) shares several similarities with atherosclerosis. Factor XIII (FXIII) has been detected within atherosclerotic plaques and may contribute to the development of atherosclerosis via multiple mechanisms. In the current study, we sought to investigate FXIII expression within human stenotic aortic valves and its association with severity of the disease. We prospectively enrolled 91 consecutive patients with AS scheduled for isolated valve replacement. Valvular FXIII subunit A (FXIII-A), fibrin and macrophages expression was evaluated by immunostaining. FXIII-A subunit transcripts and FXIII-A Val34Leu polymorphism was determined by real-time PCR. Plasma FXIII (pFXIII) activity was measured. We demonstrated that the valvular FXIII-A was predominantly expressed on the aortic side of leaflets, colocalized with alternatively activated macrophages (AAM). Areas stained for FXIII-A showed positive correlations with valvular fibrin presence, degree of calcification, pFXIII activity and the severity of AS, reflected by mean and maximum transvalvular gradients (all, p<0.001). The FXIII-A mRNA in the stenotic leaflets was significantly elevated compared to control leaflets. Interestingly, pFXIII activity was also positively correlated with mean (p<0.001) and maximum (p=0.001) transvalvular gradient. The FXIII-A Val34Leu polymorphism did not affect FXIII-A and fibrin expression in AS valves. In conclusion, the study is the first to show abundant expression of FXIII-A at the mRNA and protein levels within human stenotic aortic valves, which is associated with the severity of AS. Our findings might suggest that FXIII in the stenotic valves is presented in AAM and may be involved in the AS progression.
Collapse
|
16
|
Hoac B, Nelea V, Jiang W, Kaartinen MT, McKee MD. Mineralization-inhibiting effects of transglutaminase-crosslinked polymeric osteopontin. Bone 2017; 101:37-48. [PMID: 28428079 DOI: 10.1016/j.bone.2017.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/21/2017] [Accepted: 04/16/2017] [Indexed: 01/12/2023]
Abstract
Osteopontin (OPN) belongs to the SIBLING family (Small, Integrin-Binding LIgand N-linked Glycoproteins) of mineral-binding matrix proteins found in bones and teeth. OPN is a well-known inhibitor of matrix mineralization, and enzymatic modification of OPN can affect this inhibitory function. In bone, OPN exists both as a monomer and as a high-molecular-weight polymer - the latter is formed by transglutaminase-mediated crosslinking of glutamine and lysine residues in OPN to create homotypic protein assemblies. OPN can be covalently crosslinked by transglutaminase 2 (TG2) and Factor XIII-A. Polymeric OPN has increased binding to collagen and promotes osteoblast adhesion, but despite these initial observations, its role in mineralization is not clear. In this study, we investigated the effect of polymerized OPN on mineralization using a hydroxyapatite crystal growth assay and mineralizing MC3T3-E1 osteoblast cultures. In the cultures, endogenous polymeric OPN was detected after mineralization occurred. In cell-free conditions, TG2 was used to crosslink bovine OPN into its polymeric form, and atomic force microscopy and dynamic light scattering revealed variably-sized, large branched aggregates ranging across hundreds of nanometers. These OPN polymers inhibited the growth of hydroxyapatite crystals in solution at concentrations similar to monomeric OPN, although the crosslinking slightly reduced its inhibitory potency. When added to MC3T3-E1 osteoblast cultures, this exogenous polymeric OPN essentially did not inhibit mineralization when given during the later mineralization stages of culture; however, cultures treated early and then continuously with polymeric OPN throughout both the matrix assembly and mineral deposition stages showed reduced mineralization. Immunoblotting of protein extracts from these continuously treated cultures revealed exogenous OPN polymers incorporated into mature matrix that had not yet mineralized. These results suggest that in bone, the increased size and branched structure of crosslinked inhibitory polymeric OPN near the mineralization front could hinder it from accessing focal mineralization sites in the dense collagen-rich matrix, suggesting that OPN-crosslinking into polymers may represent a way to fine-tune the inhibitory potency of OPN on bone mineralization.
Collapse
Affiliation(s)
- Betty Hoac
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Valentin Nelea
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Wenge Jiang
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Mari T Kaartinen
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
17
|
Mousa A, Cui C, Song A, Myneni VD, Sun H, Li JJ, Murshed M, Melino G, Kaartinen MT. Transglutaminases factor XIII-A and TG2 regulate resorption, adipogenesis and plasma fibronectin homeostasis in bone and bone marrow. Cell Death Differ 2017; 24:844-854. [PMID: 28387755 PMCID: PMC5423109 DOI: 10.1038/cdd.2017.21] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 02/08/2023] Open
Abstract
Appropriate bone mass is maintained by bone-forming osteoblast and bone-resorbing osteoclasts. Mesenchymal stem cell (MSC) lineage cells control osteoclastogenesis via expression of RANKL and OPG (receptor activator of nuclear factor κB ligand and osteoprotegerin), which promote and inhibit bone resorption, respectively. Protein crosslinking enzymes transglutaminase 2 (TG2) and Factor XIII-A (FXIII-A) have been linked to activity of myeloid and MSC lineage cells; however, in vivo evidence has been lacking to support their function. In this study, we show in mice that TG2 and FXIII-A control monocyte-macrophage cell differentiation into osteoclasts as well as RANKL production in MSCs and in adipocytes. Long bones of mice lacking TG2 and FXIII-A transglutaminases, show compromised biomechanical properties and trabecular bone loss in axial and appendicular skeleton. This was caused by increased osteoclastogenesis, a cellular phenotype that persists in vitro. The increased potential of TG2 and FXIII-A deficient monocytes to form osteoclasts was reversed by chemical inhibition of TG activity, which revealed the presence of TG1 in osteoclasts and assigned different roles for the TGs as regulators of osteoclastogenesis. TG2- and FXIII-A-deficient mice had normal osteoblast activity, but increased bone marrow adipogenesis, MSCs lacking TG2 and FXIII-A showed high adipogenic potential and significantly increased RANKL expression as well as upregulated TG1 expression. Chemical inhibition of TG activity in the null cells further increased adipogenic potential and RANKL production. Altered differentiation of TG2 and FXIII-A null MSCs was associated with plasma fibronectin (FN) assembly defect in cultures and FN retention in serum and marrow in vivo instead of assembly into bone. Our findings provide new functions for TG2, FXIII-A and TG1 in bone cells and identify them as novel regulators of bone mass, plasma FN homeostasis, RANKL production and myeloid and MSC cell differentiation.
Collapse
Affiliation(s)
- Aisha Mousa
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
| | - Cui Cui
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
| | - Aimei Song
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
| | - Vamsee D Myneni
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
| | - Huifang Sun
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
| | - Jin Jin Li
- Shriners Hospital for Children, Montreal, QC, Canada
| | - Monzur Murshed
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
- Shriners Hospital for Children, Montreal, QC, Canada
| | - Gerry Melino
- Department Experimental Medicine & Surgery, University of Rome Tor Vergata, Rome, Italy
- MRC Toxicology Unit, Leicester LE19HN, UK
| | - Mari T Kaartinen
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Abstract
Objective: To provide a comprehensive literature review on roles of coagulation factor XIII (FXIII) in coagulation, wound healing, neoplasm, bone metabolism, and pregnancy. Data Sources: All articles in PubMed with key words Coagulation factor XIII, wound, leukemia, tumor, bone, and pregnancy with published date from 2001 to 2016 were included in the study. Frequently cited publications before 2000 were also included. Study Selection: We reviewed the role of FXIII in biologic processes as documented in clinical, animal, and in vitro studies. Results: FXIII, a member of the transglutaminase (TG) family, plays key roles in various biological processes. Besides its well-known function in coagulation, the cross-linking of small molecules catalyzed by FXIII has been found in studies to help promote wound healing, improve bone metabolism, and prevent miscarriages. The study has also shown that FXIII concentration level differs in the blood of patients with leukemia and solid tumors and offers promises as a diagnostic indicator. Conclusions: FXIII has many more biologic functions besides being known as coagulation factor. The TG activity of FXIII contributes to several processes, including wound healing, bone extracellular matrix stabilization, and the interaction between embryo and decidua of uterus. Further research is needed to elucidate the link between FXIII and leukemia and solid tumors.
Collapse
Affiliation(s)
- Da-Yu Shi
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shu-Jie Wang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
19
|
Gundemir S, Monteagudo A, Akbar A, Keillor JW, Johnson GVW. The complex role of transglutaminase 2 in glioblastoma proliferation. Neuro Oncol 2017; 19:208-218. [PMID: 27591334 PMCID: PMC5464277 DOI: 10.1093/neuonc/now157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glioblastomas (GBMs) are a heterogeneous group of primary brain tumors. These tumors are resistant to therapeutic interventions and invariably recur after surgical resection. The multifunctional protein transglutaminase 2 (TG2) has been shown to promote cell survival in a number of different tumors. There is also evidence that TG2 may be a pro-survival factor in GBMs. However, the roles that TG2 plays in facilitating GBM survival and proliferation have not yet been clearly delineated . METHODS The functions of TG2 are often cell- and context-specific. Therefore, in this study we examined the ability of TG2 to facilitate GBM proliferation using colony formation assays and 5-ethynyl-2'-deoxyuridine (EdU) incorporation in several different GBM cell lines as well as neurospheres derived from patient tumors representing the 3 major subtypes of GBM tumors (mesenchymal, proneural, and classical) and maintained in the absence of serum. TG2 knockdown or selective TG2 inhibitors were used to modulate TG2 expression and activity. RESULTS We show that TG2 plays differential roles in the proliferative process depending on the cell type. In most, but not all, GBM models TG2 plays a crucial role in the proliferative process, and some but not all TG2 inhibitors were highly effective at reducing proliferation in a large subset of the GBM models. CONCLUSION Our results show that TG2 plays an important-but notoriously context-specific-role in GBM cell biology. Nonetheless, as future studies unravel the genetic "fingerprints" that make TG2 inhibitors effective, this information could be exploited to develop TG2 inhibitors into personalized GBM therapies.
Collapse
Affiliation(s)
- Soner Gundemir
- Department of Anesthesiology, University of Rochester, Rochester, New York; Department of Pharmacology and Physiology, University of Rochester, Rochester, New York; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Alina Monteagudo
- Department of Anesthesiology, University of Rochester, Rochester, New York; Department of Pharmacology and Physiology, University of Rochester, Rochester, New York; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Abdullah Akbar
- Department of Anesthesiology, University of Rochester, Rochester, New York; Department of Pharmacology and Physiology, University of Rochester, Rochester, New York; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Jeffrey W Keillor
- Department of Anesthesiology, University of Rochester, Rochester, New York; Department of Pharmacology and Physiology, University of Rochester, Rochester, New York; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester, Rochester, New York; Department of Pharmacology and Physiology, University of Rochester, Rochester, New York; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Myneni VD, Mousa A, Kaartinen MT. Factor XIII-A transglutaminase deficient mice show signs of metabolically healthy obesity on high fat diet. Sci Rep 2016; 6:35574. [PMID: 27759118 PMCID: PMC5069677 DOI: 10.1038/srep35574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/03/2016] [Indexed: 12/20/2022] Open
Abstract
F13A1 gene, which encodes for Factor XIII-A blood clotting factor and a transglutaminase enzyme, was recently identified as a potential causative gene for obesity in humans. In our previous in vitro work, we showed that FXIII-A regulates preadipocyte differentiation and modulates insulin signaling via promoting plasma fibronectin assembly into the extracellular matrix. To understand the role of FXIII-A in whole body energy metabolism, here we have characterized the metabolic phenotype of F13a1-/- mice. F13a1-/- and F13a1+/+ type mice were fed chow or obesogenic, high fat diet for 20 weeks. Weight gain, total fat mass and fat pad mass, glucose handling, insulin sensitivity, energy expenditure and, morphological and biochemical analysis of adipose tissue was performed. We show that mice lacking FXIII-A gain weight on obesogenic diet, similarly as wild type mice, but exhibit a number of features of metabolically healthy obesity such as protection from developing diet-induced insulin resistance and hyperinsulinemia. Mice also show normal fasting glucose levels, larger adipocytes, decreased extracellular matrix accumulation and inflammation of adipose tissue, as well as decreased circulating triglycerides. This study reveals that FXIII-A transglutaminase can regulate whole body insulin sensitivity and may have a role in the development of diet-induced metabolic disturbances.
Collapse
Affiliation(s)
- Vamsee D Myneni
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Aisha Mousa
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Mari T Kaartinen
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Burhan I, Furini G, Lortat-Jacob H, Atobatele AG, Scarpellini A, Schroeder N, Atkinson J, Maamra M, Nutter FH, Watson P, Vinciguerra M, Johnson TS, Verderio EAM. Interplay between transglutaminases and heparan sulphate in progressive renal scarring. Sci Rep 2016; 6:31343. [PMID: 27694984 PMCID: PMC5046136 DOI: 10.1038/srep31343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/18/2016] [Indexed: 01/19/2023] Open
Abstract
Transglutaminase-2 (TG2) is a new anti-fibrotic target for chronic kidney disease, for its role in altering the extracellular homeostatic balance leading to excessive build-up of matrix in kidney. However, there is no confirmation that TG2 is the only transglutaminase involved, neither there are strategies to control its action specifically over that of the conserved family-members. In this study, we have profiled transglutaminase isozymes in the rat subtotal nephrectomy (SNx) model of progressive renal scarring. All transglutaminases increased post-SNx peaking at loss of renal function but TG2 was the predominant enzyme. Upon SNx, extracellular TG2 deposited in the tubulointerstitium and peri-glomerulus via binding to heparan sulphate (HS) chains of proteoglycans and co-associated with syndecan-4. Extracellular TG2 was sufficient to activate transforming growth factor-β1 in tubular epithelial cells, and this process occurred in a HS-dependent way, in keeping with TG2-affinity for HS. Analysis of heparin binding of the main transglutaminases revealed that although the interaction between TG1 and HS is strong, the conformational heparin binding site of TG2 is not conserved, suggesting that TG2 has a unique interaction with HS within the family. Our data provides a rationale for a novel anti-fibrotic strategy specifically targeting the conformation-dependent TG2-epitope interacting with HS.
Collapse
Affiliation(s)
- Izhar Burhan
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - Giulia Furini
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CNRS, CEA, Grenoble, F-38027, France
| | - Adeola G. Atobatele
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - Alessandra Scarpellini
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - Nina Schroeder
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - John Atkinson
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | - Mabrouka Maamra
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | - Faith H. Nutter
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | - Philip Watson
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | - Manlio Vinciguerra
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - Timothy S. Johnson
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | | |
Collapse
|
22
|
Protein cross-linking by chlorinated polyamines and transglutamylation stabilizes neutrophil extracellular traps. Cell Death Dis 2016; 7:e2332. [PMID: 27512953 PMCID: PMC5108309 DOI: 10.1038/cddis.2016.200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/22/2022]
Abstract
Neutrophil extracellular trap (NET) ejected from activated dying neutrophils is a highly ordered structure of DNA and selected proteins capable to eliminate pathogenic microorganisms. Biochemical determinants of the non-randomly formed stable NETs have not been revealed so far. Studying the formation of human NETs we have observed that polyamines were incorporated into the NET. Inhibition of myeloperoxidase, which is essential for NET formation and can generate reactive chlorinated polyamines through hypochlorous acid, decreased polyamine incorporation. Addition of exogenous primary amines that similarly to polyamines inhibit reactions catalyzed by the protein cross-linker transglutaminases (TGases) has similar effect. Proteomic analysis of the highly reproducible pattern of NET components revealed cross-linking of NET proteins through chlorinated polyamines and ɛ(γ-glutamyl)lysine as well as bis-γ-glutamyl polyamine bonds catalyzed by the TGases detected in neutrophils. Competitive inhibition of protein cross-linking by monoamines disturbed the cross-linking pattern of NET proteins, which resulted in the loss of the ordered structure of the NET and significantly reduced capacity to trap bacteria. Our findings provide explanation of how NETs are formed in a reproducible and ordered manner to efficiently neutralize microorganisms at the first defense line of the innate immune system.
Collapse
|
23
|
Fisher ML, Adhikary G, Xu W, Kerr C, Keillor JW, Eckert RL. Type II transglutaminase stimulates epidermal cancer stem cell epithelial-mesenchymal transition. Oncotarget 2016; 6:20525-39. [PMID: 25971211 PMCID: PMC4653023 DOI: 10.18632/oncotarget.3890] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/25/2015] [Indexed: 12/12/2022] Open
Abstract
Type II transglutaminase (TG2) is a multifunctional protein that has recently been implicated as having a role in ECS cell survival. In the present study we investigate the role of TG2 in regulating epithelial mesenchymal transition (EMT) in ECS cells. Our studies show that TG2 knockdown or treatment with TG2 inhibitor, results in a reduced EMT marker expression, and reduced cell migration and invasion. TG2 has several activities, but the most prominent are its transamidase and GTP binding activity. Analysis of a series of TG2 mutants reveals that TG2 GTP binding activity, but not the transamidase activity, is required for expression of EMT markers (Twist, Snail, Slug, vimentin, fibronectin, N-cadherin and HIF-1α), and increased ECS cell invasion and migration. This coupled with reduced expression of E-cadherin. Additional studies indicate that NF&#ξ03BA;B signaling, which has been implicated as mediating TG2 impact on EMT in breast cancer cells, is not involved in TG2 regulation of EMT in skin cancer. These studies suggest that TG2 is required for maintenance of ECS cell EMT, invasion and migration, and suggests that inhibiting TG2 GTP binding/G-protein related activity may reduce skin cancer tumor survival.
Collapse
Affiliation(s)
- Matthew L Fisher
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gautam Adhikary
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wen Xu
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Candace Kerr
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey W Keillor
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard L Eckert
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Cancer, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Glu-tubulin is a marker for Schwann cells and can distinguish between schwannomas and neurofibromas. Histochem Cell Biol 2016; 146:467-77. [PMID: 27278446 DOI: 10.1007/s00418-016-1455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Schwann cells generate myelin sheaths around the axons of the peripheral nervous system, thus facilitating efficient nerve impulse propagation. Two main tumor types can arise from peripheral nerves, schwannomas and neurofibromas, which are sometimes difficult to distinguish and may require the use of diagnostic biomarkers. Here, we characterize a new marker for Schwann cells and its potential use as a diagnostic marker for schwannomas. Immunohistochemistry for Glu-tubulin, a posttranslational modification of α-tubulin, was performed in mouse and human tissues. This technique labels Schwann cells but not oligodendrocytes. All peripheral nerves were immunoreactive for this antibody, including large nerve trunks, thin myelinated nerves, as well as the myenteric and submucous plexus of the digestive tract. In the mouse brain, many neurons were immunoreactive for Glu-tubulin but oligodendrocytes were negative. During embryo development, immunoreactive nerves were already found at E10. In Schwann cells, the staining is restricted to the myelin sheaths and is not present in the perinuclear cytoplasm or the Ranvier nodes. Primary cultures of fibroblasts and Schwann cells were established from mouse sciatic nerves, and Western blot analysis showed that Glu-tubulin immunoreactivity was found in the Schwann cells but not in the fibroblasts. Clinical specimens of schwannomas (n = 20) and neurofibromas (n = 20) were stained with anti-Glu-tubulin antibodies. Schwannomas presented a strong staining in all tumor cells, whereas neurofibromas had a light speckled staining pattern, easily distinguishable from the one found in schwannomas. In conclusion, Glu-tubulin can be used as a marker of Schwann cells and can help in diagnosing peripheral nerve tumors.
Collapse
|
25
|
Fibbi B, Benvenuti S, Giuliani C, Deledda C, Luciani P, Monici M, Mazzanti B, Ballerini C, Peri A. Low extracellular sodium promotes adipogenic commitment of human mesenchymal stromal cells: a novel mechanism for chronic hyponatremia-induced bone loss. Endocrine 2016; 52:73-85. [PMID: 26093848 DOI: 10.1007/s12020-015-0663-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/11/2015] [Indexed: 01/05/2023]
Abstract
Hyponatremia represents an independent risk factor for osteoporosis and fractures, affecting both bone density and quality. A direct stimulation of bone resorption in the presence of reduced extracellular sodium concentrations ([Na(+)]) has been shown, but the effects of low [Na(+)] on osteoblasts have not been elucidated. We investigated the effects of a chronic reduction of extracellular [Na(+)], independently of osmotic stress, on human mesenchymal stromal cells (hMSC) from bone marrow, the common progenitor for osteoblasts and adipocytes. hMSC adhesion and viability were significantly inhibited by reduced [Na(+)], but their surface antigen profile and immuno-modulatory properties were not altered. In low [Na(+)], hMSC were able to commit toward both the osteogenic and the adipogenic phenotypes, as demonstrated by differentiation markers analysis. However, the dose-dependent increase in the number of adipocytes as a function of reduced [Na(+)] suggested a preferential commitment toward the adipogenic phenotype at the expense of osteogenesis. The amplified inhibitory effect on the expression of osteoblastic markers exerted by adipocytes-derived conditioned media in low [Na(+)] further supported this observation. The analysis of cytoskeleton showed that low [Na(+)] were associated with disruption of tubulin organization in hMSC-derived osteoblasts, thus suggesting a negative effect on bone quality. Finally, hMSC-derived osteoblasts increased their expression of factors stimulating osteoclast recruitment and activity. These findings confirm that hyponatremia should be carefully taken into account because of its negative effects on bone, in addition to the known neurological effects, and indicate for the first time that impaired osteogenesis may be involved.
Collapse
Affiliation(s)
- B Fibbi
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - S Benvenuti
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - C Giuliani
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - C Deledda
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - P Luciani
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - M Monici
- ASAcampus Joint Laboratory, ASA Research Division, "Center for Research, Transfer and High Education on Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development of Novel Therapies" (DENOThe), Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - B Mazzanti
- Haematology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - C Ballerini
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - A Peri
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
26
|
Trombetta-eSilva J, Rosset EA, Hepfer RG, Wright GJ, Baicu C, Yao H, Bradshaw AD. Decreased Mechanical Strength and Collagen Content in SPARC-Null Periodontal Ligament Is Reversed by Inhibition of Transglutaminase Activity. J Bone Miner Res 2015; 30:1914-24. [PMID: 25827352 PMCID: PMC4734383 DOI: 10.1002/jbmr.2522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/13/2015] [Accepted: 03/26/2015] [Indexed: 12/15/2022]
Abstract
The periodontal ligament (PDL) is a critical tissue that provides a physical link between the mineralized outer layer of the tooth and the alveolar bone. The PDL is composed primarily of nonmineralized fibrillar collagens. Expression of secreted protein acidic and rich in cysteine (SPARC/osteonectin), a collagen-binding matricellular protein, has been shown to be essential for collagen homeostasis in PDL. In the absence of SPARC, PDL collagen fibers are smaller and less dense than fibers that constitute WT PDL. The aim of this study was to identify cellular mechanisms by which SPARC affected collagen fiber assembly and morphology in PDL. Cross-linking of fibrillar collagens is one parameter that is known to affect insoluble collagen incorporation and fiber morphology. Herein, the reduction in collagen fiber size and quantity in the absence of SPARC expression was shown to result in a PDL with reduced molar extraction force in comparison to that of WT mice (C57Bl/6J). Furthermore, an increase in transglutaminase activity was found in SPARC-null PDL by biochemical analyses that was supported by immunohistochemical results. Specifically, collagen I was identified as a substrate for transglutaminase in PDL and transglutaminase activity on collagen I was found to be greater in SPARC-null tissues in comparison to WT. Strikingly, inhibition of transglutaminase activity in SPARC-null PDL resulted in increases in both collagen fiber thickness and in collagen content, whereas transglutaminase inhibitors injected into WT mice resulted in increases in collagen fiber thickness only. Furthermore, PDL treated with transglutaminase inhibitors exhibited increases in molar extraction force in WT and in SPARC-null mice. Thus, SPARC is proposed to act as a critical regulator of transglutaminase activity on collagen I with implications for mechanical strength of tissues.
Collapse
Affiliation(s)
- Jessica Trombetta-eSilva
- Department of Craniofacial Biology, Medical University of South Carolina, Charleston, Clemson, SC, USA
| | - Emilie A Rosset
- Department of Craniofacial Biology, Medical University of South Carolina, Charleston, Clemson, SC, USA
| | - R Glenn Hepfer
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Gregory J Wright
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Catalin Baicu
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Hai Yao
- Department of Craniofacial Biology, Medical University of South Carolina, Charleston, Clemson, SC, USA
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Amy D Bradshaw
- Department of Craniofacial Biology, Medical University of South Carolina, Charleston, Clemson, SC, USA
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, USA
| |
Collapse
|
27
|
Wang S, Kaartinen MT. Cellular Factor XIIIA Transglutaminase Localizes in Caveolae and Regulates Caveolin-1 Phosphorylation, Homo-oligomerization and c-Src Signaling in Osteoblasts. J Histochem Cytochem 2015; 63:829-41. [PMID: 26231113 DOI: 10.1369/0022155415597964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 07/05/2015] [Indexed: 11/22/2022] Open
Abstract
Transglutaminases (TGs) are a family of widely distributed enzymes that catalyze protein crosslinking by forming a covalent isopeptide bond between the substrate proteins. We have shown that MC3T3-E1 osteoblasts express Factor XIII-A (FXIII-A), and that the extracellular crosslinking activity of FXIII-A is involved in regulating matrix secretion and deposition. In this study, we have investigated the localization and potential role of intracellular FXIII-A. Conventional immunofluorescence microscopy and TIRF microscopy analyses showed that FXIII-A co-localizes with caveolin-1 in specialized membrane structures, caveolae, in differentiating osteoblasts. The caveolae-disrupting agent methyl-β-cyclodextrin abolished FXIII-A staining and co-localization with caveolin-1 from the osteoblast plasma membrane. The presence of FXIII-A in caveolae was confirmed by preparing caveolae-enriched cellular fractions using sucrose density gradient ultracentrifugation followed by western blotting. Despite this association of FXIII-A with caveolae, there was no detectable transglutaminase activity in caveolae, as measured by monodansylcadaverine incorporation. TG inhibitor NC9--which can alter TG enzyme conformation--localized to caveolae and displaced FXIII-A from these structures when added to the osteoblast cultures. The decreased FXIII-A levels in caveolae after NC9 treatment increased c-Src activation, which resulted in caveolin-1 phosphorylation, homo-oligomerization and Akt phosphorylation, suggesting cellular FXIII-A has a role in regulating c-Src signaling in osteoblasts.
Collapse
Affiliation(s)
- Shuai Wang
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada. (SW, MTK)
| | - Mari T Kaartinen
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada (MTK),Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada. (SW, MTK)
| |
Collapse
|
28
|
Russmueller G, Moser D, Spassova E, Plasenzotti R, Poeschl P, Seemann R, Becker S, Pirklbauer K, Eder-Czembirek C, Czembirek C, Perisanidis C, Ewers R, Schopper C. Tricalcium phosphate-based biocomposites for mandibular bone regeneration—A histological study in sheep. J Craniomaxillofac Surg 2015; 43:696-704. [DOI: 10.1016/j.jcms.2015.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/03/2015] [Accepted: 03/23/2015] [Indexed: 12/18/2022] Open
|
29
|
Fisher ML, Keillor JW, Xu W, Eckert RL, Kerr C. Transglutaminase Is Required for Epidermal Squamous Cell Carcinoma Stem Cell Survival. Mol Cancer Res 2015; 13:1083-94. [PMID: 25934691 DOI: 10.1158/1541-7786.mcr-14-0685-t] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/15/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Cancer stem cells are thought to be responsible for rapid tumor growth, metastasis, and enhanced tumor survival following drug treatment. For this reason, there is a major emphasis on identifying proteins that can be targeted to kill cancer stem cells or control their growth, and transglutaminase type II (TGM2/TG2) is such a target in epidermal squamous cell carcinoma. TG2 was originally described as a transamidase in the extracellular matrix that crosslinks proteins by catalyzing ε-(γ-glutamyl)lysine bonds. However, subsequent studies have shown that TG2 is a GTP-binding protein that plays an important role in cell signaling and survival. In the present study, TG2 shows promise as a target for anticancer stem cell therapy in human squamous cell carcinoma. TG2 was determined to be highly elevated in epidermal cancer stem cells (ECS cells), and TG2 knockdown or suppression of TG2 function with inhibitors reduced ECS cell survival, spheroid formation, Matrigel invasion, and migration. The reduction in survival is associated with activation of apoptosis. Mechanistic studies, using TG2 mutants, revealed that the GTP-binding activity is required for maintenance of ECS cell growth and survival, and that the action of TG2 in ECS cells is not mediated by NF-κB signaling. IMPLICATIONS This study suggests that TG2 has an important role in maintaining cancer stem cell survival, invasive, and metastatic behavior and is an important therapeutic target to reduce survival of cancer stem cells in epidermal squamous cell carcinoma.
Collapse
Affiliation(s)
- Matthew L Fisher
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jeffrey W Keillor
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Wen Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland. Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland. Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Candace Kerr
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
30
|
Cui C, Kaartinen MT. Serotonin (5-HT) inhibits Factor XIII-A-mediated plasma fibronectin matrix assembly and crosslinking in osteoblast cultures via direct competition with transamidation. Bone 2015; 72:43-52. [PMID: 25460579 DOI: 10.1016/j.bone.2014.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/07/2014] [Accepted: 11/14/2014] [Indexed: 01/24/2023]
Abstract
Serotonin (5-HT)--a monoamine with a variety of physiological functions--has recently emerged as a major regulator of bone mass. 5-HT is synthesized in the brain and the gut, and gut-derived 5-HT contributes to circulating 5-HT levels and is a negative modulator of bone mass and quality. 5-HT's negative effects on the skeleton are considered to be mediated via its receptors and transporter in osteoblasts and osteoclasts; however, 5-HT can also incorporate covalently into proteins via a transglutaminase-mediated serotonylation reaction, which in turn can alter protein function. Plasma fibronectin (pFN)--a major component of the bone extracellular matrix that regulates bone matrix quality in vivo--is a major transglutaminase substrate in bone and in osteoblast cultures. We have recently demonstrated that pFN assembly into osteoblast culture matrix requires a Factor XIII-A (FXIII-A) transglutaminase-mediated crosslinking step that regulates both quantity and quality of type I collagen matrix in vitro. In this study, we show that 5-HT interferes with pFN assembly into the extracellular matrix in osteoblast cultures, which in turn has major consequences on matrix assembly and mineralization. 5-HT treatment of MC3T3-E1 osteoblast cultures dramatically decreased both pFN fibrillogenesis as analyzed by immunofluorescence microscopy and pFN levels in DOC-soluble and DOC-insoluble matrix fractions. This was accompanied by an increase in pFN levels in the culture media. Analysis of the media showed covalent incorporation of 5-HT into pFN. Minor co-localization of pFN with 5-HT was also seen in extracellular fibrils. 5-HT also showed co-localization with FXIII-A on the cell surface and inhibited its transamidation activity directly. 5-HT treatment of osteoblast cultures resulted in a discontinuous pFN matrix and impaired type I collagen deposition, decreased alkaline phosphatase and lysyl oxidase activity, and delayed mineralization of the cultures. Addition of excess exogenous pFN to cultures treated with 5-HT resulted in a significant rescue of pFN fibrillogenesis as well as type I collagen deposition and mineralization. In summary, our study presents a novel mechanism on how increased peripheral extracellular 5-HT levels might contribute to the weakening of bone by directly affecting the stabilization of extracellular matrix networks.
Collapse
Affiliation(s)
- Cui Cui
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
31
|
Dickneite G, Herwald H, Korte W, Allanore Y, Denton CP, Matucci Cerinic M. Coagulation factor XIII: a multifunctional transglutaminase with clinical potential in a range of conditions. Thromb Haemost 2015; 113:686-97. [PMID: 25652913 DOI: 10.1160/th14-07-0625] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/27/2014] [Indexed: 12/28/2022]
Abstract
Coagulation factor XIII (FXIII), a plasma transglutaminase, is best known as the final enzyme in the coagulation cascade, where it is responsible for cross-linking of fibrin. However, a growing body of evidence has demonstrated that FXIII targets a wide range of additional substrates that have important roles in health and disease. These include antifibrinolytic proteins, with cross-linking of α2-antiplasmin to fibrin, and potentially fibrinogen, being the principal mechanism(s) whereby plasmin-mediated clot degradation is minimised. FXIII also acts on endothelial cell VEGFR-2 and αvβ3 integrin, which ultimately leads to downregulation of the antiangiogenic protein thrombospondin-1, promoting angiogenesis and neovascularisation. Under infectious disease conditions, FXIII cross-links bacterial surface proteins to fibrinogen, resulting in immobilisation and killing, while during wound healing, FXIII induces cross-linking of the provisional matrix. The latter process has been shown to influence the interaction of leukocytes with the provisional extracellular matrix and promote wound healing. Through these actions, there are good rationales for evaluating the therapeutic potential of FXIII in diseases in which tissue repair is dysregulated or perturbed, including systemic sclerosis (scleroderma), invasive bacterial infections, and tissue repair, for instance healing of venous leg ulcers or myocardial injuries. Adequate levels of FXIII are also required in patients undergoing surgery to prevent or treat perioperative bleeding, and its augmentation in patients with/at risk for perioperative bleeding may also have potential clinical benefit. While there are preclinical and/or clinical data to support the use of FXIII in a range of settings, further clinical evaluation in these underexplored applications is warranted.
Collapse
Affiliation(s)
- Gerhard Dickneite
- Prof. Dr Gerhard Dickneite, Preclinical R&D, CSL Behring, PO Box 1230, 35002 Marburg, Germany, Tel.: +49 6421 392306, Fax: +49 6421 394663, E-mail:
| | | | | | | | | | | |
Collapse
|
32
|
Inhibitors of tissue transglutaminase. Trends Pharmacol Sci 2014; 36:32-40. [PMID: 25500711 DOI: 10.1016/j.tips.2014.10.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
Abstract
Tissue transglutaminase (TG2) catalyzes the cross-linking of proteins by the formation of isopeptide bonds between glutamine (Gln) and lysine (Lys) side chains. Although TG2 is essential for the stabilization of the extracellular matrix, its unregulated activity has been implicated in celiac disease, fibrosis, and cancer metastasis, among other disorders. Given the importance and range of TG2-related pathologies, recent work has focused on the development of potent and selective inhibitors against TG2. In this review, we present the latest and most noteworthy irreversible and reversible inhibitors of TG2, and offer perspectives for the design of future inhibitors, in the hope that lead compounds with therapeutic potential may soon be discovered.
Collapse
|
33
|
Patoine A, Gaumond MH, Jaiswal PK, Fassier F, Rauch F, Moffatt P. Topological mapping of BRIL reveals a type II orientation and effects of osteogenesis imperfecta mutations on its cellular destination. J Bone Miner Res 2014; 29:2004-16. [PMID: 24715519 DOI: 10.1002/jbmr.2243] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 11/12/2022]
Abstract
BRIL/IFITM5 is a membrane protein present almost exclusively in osteoblasts, which is believed to adopt a type III (N-out/C-out) topology. Mutations in IFITM5 cause OI type V, but the characteristics of the mutant protein and the mechanism involved are still unknown. The purpose of the current study was to re-assess the topology, localization, and biochemical properties of BRIL and compare it to the OI type V mutant in MC3T3 osteoblasts. Immunofluorescence labeling was performed with antibodies directed against BRIL N- or C-terminus. In intact cells, BRIL labeling was conspicuously detected at the plasma membrane only with the anti-C antibody. Detection of BRIL N-terminus was only possible after cell permeabilization, revealing both plasma membrane and Golgi labeling. Trypsinization of live cells expressing BRIL only cleaved off the C-terminus, confirming that it is a type II protein and that its N-terminus is intracellular. A truncated form of BRIL lacking the last 18 residues did not appear to affect localization, whereas mutation of a single leucine to arginine within the transmembrane segment abolished plasma membrane targeting. BRIL is first targeted to the endoplasmic reticulum as the entry point to the secretory pathway and rapidly traffics to the Golgi via a COPII-dependent pathway. BRIL was found to be palmitoylated and two conserved cysteine residues (C52 and C53) were critical for targeting to the plasma membrane. The OI type V mutant BRIL, having a five residue extension (MALEP) at its N-terminus, presented with exactly the same topological and biochemical characteristics as wild type BRIL. In contrast, the S42 > L mutant BRIL was trapped intracellularly in the Golgi. BRIL proteins and transcripts were equally detected in bone from a patient with OI type V, suggesting that the cause of the disease is a gain of function mediated by a faulty intracellular activity of the mutant BRIL.
Collapse
Affiliation(s)
- Alexa Patoine
- Shriners Hospital for Children, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Korte W. Catridecacog: a breakthrough in the treatment of congenital factor XIII A-subunit deficiency? J Blood Med 2014; 5:107-13. [PMID: 25031548 PMCID: PMC4096448 DOI: 10.2147/jbm.s35395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Circulating factor XIII (FXIII) consists of two active (A) and two carrier (B) subunits in tetrameric form. Congenital FXIII deficiency is a rare autosomal-recessive trait that mostly results from an FXIII A-subunit deficiency. Classic coagulation assays, such as prothrombin time or activated partial thromboplastin time, are not sensitive to FXIII; therefore, specific FXIII assays are necessary to detect the deficiency. The clinical picture of congenital FXIII deficiency comprises abortions, umbilical cord bleeding, increased surgical bleeding, intracerebral hemorrhage (which can, unfortunately, be the very first sign of severe FXIII deficiency), menorrhagia, and wound-healing disorders. Given the risk of intracranial hemorrhage, continued prophylaxis is to be recommended in severe deficiency, even in the actual absence of bleeding symptoms. Functional FXIII half-life decreases in consumptive processes (eg, surgery), explaining why increased dosing is needed in such situations. A recombinant FXIII (rFXIII) subunit-A molecule, which is expressed in Saccharomyces cerevisiae, has been evaluated for replacement therapy in congenital FXIII deficiency. The bleeding frequency under continued rFXIII prophylaxis during a year-long treatment period was significantly lower compared to on-demand treatment. Importantly, no severe spontaneous bleedings occurred, and bleeding requiring additional intervention only occurred after relevant trauma. Treatment with rFXIII proved to be safe: antibodies against rFXIII detected in four patients were not considered clinically relevant. No allergic reactions were observed. These data show that rFXIII can be used safely and effectively for continued prophylaxis in congenital FXIII deficiency; it is conceivable that this also holds true for treatment of acute bleeding, but clinical proof of this is pending.
Collapse
Affiliation(s)
- Wolfgang Korte
- Center for Laboratory Medicine, St Gallen, Switzerland ; Center for Hemostaseology and Hemophilia, St Gallen, Switzerland
| |
Collapse
|
35
|
Keillor JW, Clouthier CM, Apperley KYP, Akbar A, Mulani A. Acyl transfer mechanisms of tissue transglutaminase. Bioorg Chem 2014; 57:186-197. [PMID: 25035302 DOI: 10.1016/j.bioorg.2014.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/14/2014] [Accepted: 06/18/2014] [Indexed: 02/01/2023]
Abstract
Tissue transglutaminase (TG2) is a calcium-dependent enzyme that catalyses several acyl transfer reactions. The most biologically relevant of these involve protein-bound Gln residues as an acyl-donor substrate, and either water or a primary amine as an acyl-acceptor substrate. The former leads to deamidation of Gln to Glu, whereas the latter leads to transamidation, typically resulting in protein cross-linking when the amine substrate is a protein-bound Lys residue. In this review, we present an overview of over fifty years of mechanistic studies that have led to our current understanding of TG2-mediated hydrolysis and transamidation.
Collapse
Affiliation(s)
- Jeffrey W Keillor
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada.
| | - Christopher M Clouthier
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| | - Kim Y P Apperley
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| | - Abdullah Akbar
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| | - Amina Mulani
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
36
|
Factor XIII-A transglutaminase acts as a switch between preadipocyte proliferation and differentiation. Blood 2014; 124:1344-53. [PMID: 24934257 DOI: 10.1182/blood-2013-12-543223] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Factor XIII-A (FXIII-A) transglutaminase (TG) was recently identified as a potential causative obesity gene in human white adipose tissue (WAT). Here, we have examined the role of TG activity and the role of protein crosslinking in adipogenesis. Mouse WAT and preadipocytes showed abundant TG activity arising from FXIII-A. FXIII-A was localized to the cell surface and acted as a negative regulator of adipogenesis by promoting assembly of fibronectin (FN) from plasma into preadipocyte extracellular matrix. This modulated cytoskeletal dynamics and maintained the preadipocyte state. FXIII-A-assembled plasma FN (pFN) matrix promoted preadipocyte proliferation and potentiated the proproliferative effects of insulin (INS) while suppressing the prodifferentiating INS signaling. FXIII-A-deficient mouse embryonic fibroblasts showed increased lipid accumulation and decreased proliferation as well as decreased pFN assembly into extracellular matrix. Thus, FXIII-A serves as a preadipocyte-bound proliferation/differentiation switch that mediates effects of hepatocyte-produced circulating pFN.
Collapse
|
37
|
Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GVW, Mehta K. Transglutaminase regulation of cell function. Physiol Rev 2014; 94:383-417. [PMID: 24692352 DOI: 10.1152/physrev.00019.2013] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states.
Collapse
|
38
|
Detyrosinated Glu-tubulin is a substrate for cellular Factor XIIIA transglutaminase in differentiating osteoblasts. Amino Acids 2014; 46:1513-26. [DOI: 10.1007/s00726-014-1719-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 02/26/2014] [Indexed: 11/26/2022]
|
39
|
Cui C, Wang S, Myneni VD, Hitomi K, Kaartinen MT. Transglutaminase activity arising from Factor XIIIA is required for stabilization and conversion of plasma fibronectin into matrix in osteoblast cultures. Bone 2014; 59:127-38. [PMID: 24246248 DOI: 10.1016/j.bone.2013.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 11/19/2022]
Abstract
Circulating plasma fibronectin (pFN), produced by hepatocytes, is a major component of the noncollagenous bone matrix where it was recently shown in vivo in mice to control the biomechanical quality as well as the mineral-to-matrix ratio in bone. FN fibrillogenesis is a process generally requiring FN binding to cellular integrins, and cellular tension to elongate and assemble the molecule. Whether soluble pFN undergoes cell-mediated assembly in bone is not fully established. FN is a well-known substrate for transglutaminases (TGs), which are protein-crosslinking enzymes capable of stabilizing macromolecular structures. The role of this modification regarding the function of FN in bone matrix has remained unknown. Osteoblasts express two TGs-transglutaminase 2 and Factor XIIIA-and we have shown that Factor XIIIA is the main TG active during osteoblast differentiation. In the present study, conducted using MC3T3-E1 osteoblast cultures and bone marrow stromal cells, we demonstrate that pFN requires a TG-mediated crosslinking step to form osteoblast matrix in vitro. This modification step is specific for pFN; cellular FN (EDA-FN) does not serve as a TG substrate. Inhibition of pFN assembly using a TG inhibitor, or depletion of pFN from cell culture serum, dramatically decreased total FN matrix assembly in the osteoblast cultures and affected both the quantity and quality of the type I collagen matrix, and decreased lysyl oxidase and alkaline phosphatase levels, resulting in decreased mineralization. Experiments with isozyme-specific substrate peptides showed that FXIIIA is responsible for the crosslinking of pFN. Addition of exogenous preactivated FXIIIA to osteoblast cultures promoted pFN assembly from the media into matrix. Exogenous TG2 had no effect. Analysis of pFN and EDA-FN fibrils by immunofluorescence microscopy demonstrated that they form distinct matrix network, albeit with minor overlap, suggesting different functions for the two FN forms. Further analysis using EDA-FN blocking antibody showed that it regulated preosteoblast proliferation whereas pFN depletion from the serum had no effect on this process. In conclusion, our study shows that pFN assembly into bone matrix in vitro requires FXIIIA transglutaminase activity making pFN assembly an active, osteoblast-mediated process.
Collapse
Affiliation(s)
- Cui Cui
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Shuai Wang
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Vamsee D Myneni
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Kiyotaka Hitomi
- Department of Applied Molecular Biosciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
40
|
The plant extracellular transglutaminase: what mammal analogues tell. Amino Acids 2013; 46:777-92. [DOI: 10.1007/s00726-013-1605-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 10/09/2013] [Indexed: 12/17/2022]
|
41
|
Transglutaminase is a therapeutic target for oxidative stress, excitotoxicity and stroke: a new epigenetic kid on the CNS block. J Cereb Blood Flow Metab 2013; 33:809-18. [PMID: 23571278 PMCID: PMC3677119 DOI: 10.1038/jcbfm.2013.53] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transglutaminases (TGs) are multifunctional, calcium-dependent enzymes that have been recently implicated in stroke pathophysiology. Classically, these enzymes are thought to participate in cell injury and death in chronic neurodegenerative conditions via their ability to catalyze covalent, nondegradable crosslinks between proteins or to incorporate polyamines into protein substrates. Accumulating lines of inquiry indicate that specific TG isoforms can shuttle into the nucleus when they sense pathologic changes in calcium or oxidative stress, bind to chromatin and thereby transduce these changes into transcriptional repression of genes involved in metabolic or oxidant adaptation. Here, we review the evidence that supports principally a role for one isoform of this family, TG2, in cell injury and death associated with hemorrhagic or ischemic stroke. We also outline an evolving model in which TG2 is a critical mediator between pathologic signaling and epigenetic modifications that lead to gene repression. Accordingly, the salutary effects of TG inhibitors in stroke may derive from their ability to restore homeostasis by removing inappropriate deactivation of adaptive genetic programs by oxidative stress or extrasynaptic glutamate receptor signaling.
Collapse
|
42
|
Fadoo Z, Merchant Q, Rehman KA. New developments in the management of congenital Factor XIII deficiency. J Blood Med 2013; 4:65-73. [PMID: 23761984 PMCID: PMC3674014 DOI: 10.2147/jbm.s32693] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Congenital Factor XIII (FXIII) deficiency is a rare, inherited, autosomal recessive coagulation disorder. Most mutations of this condition are found in the A-subunit with almost half these being missense mutations. Globally, approximately one in three million people suffer from this deficiency. Factor XIII deficiency is associated with severe life threatening bleeding, intracranial hemorrhage, impaired wound healing, and recurrent pregnancy losses. FXIII is known to have a potential role in mediating inflammatory processes, insulin resistance, bone metabolism, neoplasia, and angiogenesis. The algorithm provided for FXIII diagnosis and classification will enable prompt identification and early intervention for controlling potential life threatening complications. Prophylactic replacement therapy using blood products containing FXIII such as fresh frozen plasma, cryoprecipitate, or using FXIII concentrate remains the mainstay for the management of FXIII deficiency. In most parts of the world, cryoprecipitate and plasma transfusions are the only treatments available. Management developments have revealed the effectiveness and safety of recombinant FXIII concentrate for prophylaxis and treatment. The aim of this review is to provide an overview of advancements made in the management of FXIII deficiency from the time it was first detected, highlighting novel developments made in recent years. Greater research is warranted in identifying novel approaches to manage FXIII deficiency in light of its underlying pathophysiology.
Collapse
Affiliation(s)
- Zehra Fadoo
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | | | | |
Collapse
|
43
|
Soendergaard C, Kvist PH, Seidelin JB, Nielsen OH. Tissue-regenerating functions of coagulation factor XIII. J Thromb Haemost 2013; 11:806-16. [PMID: 23406195 DOI: 10.1111/jth.12169] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/04/2013] [Indexed: 12/13/2022]
Abstract
The protransglutaminase factor XIII (FXIII) has recently attracted attention within the field of tissue regeneration, as it has been found that FXIII significantly influences wound healing by exerting a multitude of functions. It supports hemostasis by enhancing platelet adhesion to damaged endothelium, and by its cross-linking activity it stabilizes the formed fibrin clot. Furthermore, FXIII limits bacterial dissemination from the wound and incorporates macromolecules of importance for cellular infiltration, supporting cell migration and survival. FXIII-mediated complex formation of the vascular endothelial growth factor receptor 2 and αV β3 integrin is important for angiogenesis, supporting the formation of granulation tissue. Chronic inflammatory conditions involving bleeding and activation of the coagulation cascade have been shown to lead to reduced FXIII levels in plasma. Of particular importance for this review is the fact that patients suffering from inflammatory bowel disease (IBD) have reduced FXIII antigen levels and activity. Furthermore, these patients show impaired mucosal healing, which supports the inflammatory state of the disease. This review summarizes the role of FXIII in the healing of wounds, and briefly summarizes the previous use of FXIII in clinical settings. Moreover, it addresses the potential role for FXIII as a therapeutic agent in the healing of persistent wounds during chronic conditions, with an emphasis on IBD.
Collapse
Affiliation(s)
- C Soendergaard
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
44
|
Del Duca S, Faleri C, Iorio RA, Cresti M, Serafini-Fracassini D, Cai G. Distribution of transglutaminase in pear pollen tubes in relation to cytoskeleton and membrane dynamics. PLANT PHYSIOLOGY 2013; 161:1706-21. [PMID: 23396835 PMCID: PMC3613450 DOI: 10.1104/pp.112.212225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Transglutaminases (TGases) are ubiquitous enzymes that take part in a variety of cellular functions. In the pollen tube, cytoplasmic TGases are likely to be involved in the incorporation of primary amines at selected peptide-bound glutamine residues of cytosolic proteins (including actin and tubulin), while cell wall-associated TGases are believed to regulate pollen tube growth. Using immunological probes, we identified TGases associated with different subcellular compartments (cytosol, membranes, and cell walls). Binding of cytosolic TGase to actin filaments was shown to be Ca(2+) dependent. The membrane TGase is likely associated with both Golgi-derived structures and the plasma membrane, suggesting a Golgi-based exocytotic delivery of TGase. Association of TGase with the plasma membrane was also confirmed by immunogold transmission electron microscopy. Immunolocalization of TGase indicated that the enzyme was present in the growing region of pollen tubes and that the enzyme colocalizes with cell wall markers. Bidimensional electrophoresis indicated that different TGase isoforms were present in distinct subcellular compartments, suggesting either different roles or different regulatory mechanisms of enzyme activity. The application of specific inhibitors showed that the distribution of TGase in different subcellular compartments was regulated by both membrane dynamics and cytoskeleton integrity, suggesting that delivery of TGase to the cell wall requires the transport of membranes along cytoskeleton filaments. Taken together, these data indicate that a cytoplasmic TGase interacts with the cytoskeleton, while a different TGase isoform, probably delivered via a membrane/cytoskeleton-based transport system, is secreted in the cell wall of pear (Pyrus communis) pollen tubes, where it might play a role in the regulation of apical growth.
Collapse
|
45
|
Fukui M, Kuramoto K, Yamasaki R, Shimizu Y, Itoh M, Kawamoto T, Hitomi K. Identification of a highly reactive substrate peptide for transglutaminase 6 and its use in detecting transglutaminase activity in the skin epidermis. FEBS J 2013; 280:1420-9. [PMID: 23331848 DOI: 10.1111/febs.12133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/19/2012] [Accepted: 01/11/2013] [Indexed: 11/30/2022]
Abstract
Mammalian transglutaminases (TGs) are a family of enzymes that catalyze the formation of covalent crosslinks between glutamine and lysine residues in proteins. These catalytic reactions play roles in several essential biological processes, including blood coagulation, skin formation, and stabilization of the extracellular matrix. Among the members of this family, factor XIII and TGs 1-5 have been characterized well, but very little is known about the novel members TG6 and TG7. Recently, however, autoantibodies against TG6 were found in a patient with gluten ataxia, a disease caused by enzymatically modified gluten-derived peptides in neuronal cells. To characterize the possible physiological functions of TG6, in this study we screened a phage-displayed random peptide library to find highly reactive glutamine donor substrate peptides. From several candidate peptides, one sequence, designated Y25, appeared to have the highest reactivity. The Y25 sequence also has apparent isozyme specificity when evaluated by incorporation of the labeled glutamine acceptor substrate as a fusion protein with glutathione-S-transferase. Also, the sequence retained high reactivity as well as the isozyme specificity in the peptide form. Analyses with the biotin-labeled and fluorescence-labeled peptides showed TG6 to be an active enzyme and react to specific substrates in the skin, which is consistent with the results of the expression pattern of its transcripts.
Collapse
Affiliation(s)
- Mina Fukui
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Coagulation factor (F)XIII is best known for its role in fibrin stabilization and cross-linking of antifibrinolytic proteins to the fibrin clot. From patients with congenital FXIII deficiency, it is known that FXIII also has important functions in wound healing and maintaining pregnancy. Over the last decade more and more research groups with different backgrounds have studied FXIII and have unveiled putative novel functions for FXIII. FXIII, with its unique role as a transglutaminase among the other serine protease coagulation factors, is now recognized as a multifunctional protein involved in regulatory mechanisms and construction and repair processes beyond hemostasis with possible implications in many areas of medicine. The aim of this review was to give an overview of exciting novel findings and to highlight the remarkable diversity of functions attributed to FXIII. Of course, more research into the underlying mechanisms and (patho-)physiological relevance of the many described functions of FXIII is needed. It will be exciting to observe future developments in this area and to see if and how these interesting findings may be translated into clinical practice in the future.
Collapse
Affiliation(s)
- V Schroeder
- University Clinic of Hematology and Central Hematology Laboratory, University Hospital and University of Bern, Bern, Switzerland.
| | | |
Collapse
|
47
|
Abstract
FXIII (Factor XIII) is a Ca2+-dependent enzyme which forms covalent ϵ-(γ-glutamyl)lysine cross-links between the γ-carboxy-amine group of a glutamine residue and the ϵ-amino group of a lysine residue. FXIII was originally identified as a protein involved in fibrin clot stabilization; however, additional extracellular and intracellular roles for FXIII have been identified which influence thrombus resolution and tissue repair. The present review discusses the substrates of FXIIIa (activated FXIII) involved in thrombosis and wound healing with a particular focus on: (i) the influence of plasma FXIIIa on the formation of stable fibrin clots able to withstand mechanical and enzymatic breakdown through fibrin–fibrin cross-linking and cross-linking of fibrinolysis inhibitors, in particular α2-antiplasmin; (ii) the role of intracellular FXIIIa in clot retraction through cross-linking of platelet cytoskeleton proteins, including actin, myosin, filamin and vinculin; (iii) the role of intracellular FXIIIa in cross-linking the cytoplasmic tails of monocyte AT1Rs (angiotensin type 1 receptors) and potential effects on the development of atherosclerosis; and (iv) the role of FXIIIa on matrix deposition and tissue repair, including cross-linking of extracellular matrix proteins, such as fibronectin, collagen and von Willebrand factor, and the effects on matrix deposition and cell–matrix interactions. The review highlights the central role of FXIIIa in the regulation of thrombus stability, thrombus regulation, cell–matrix interactions and wound healing, which is supported by observations in FXIII-deficient humans and animals.
Collapse
|
48
|
Yin X, Chen Z, Liu Z, Song C. Tissue transglutaminase (TG2) activity regulates osteoblast differentiation and mineralization in the SAOS-2 cell line. Braz J Med Biol Res 2012; 45:693-700. [PMID: 22527131 PMCID: PMC3854245 DOI: 10.1590/s0100-879x2012007500060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 04/09/2012] [Indexed: 12/03/2022] Open
Abstract
Tissue transglutaminase (type II, TG2) has long been postulated to directly promote skeletal matrix calcification and play an important role in ossification. However, limited information is available on the expression, function and modulating mechanism of TG2 during osteoblast differentiation and mineralization. To address these issues, we cultured the well-established human osteosarcoma cell line SAOS-2 with osteo-inductive conditioned medium and set up three time points (culture days 4, 7, and 14) to represent different stages of SAOS-2 differentiation. Osteoblast markers, mineralization, as well as TG2 expression and activity, were then assayed in each stage. Furthermore, we inhibited TG activity with cystamine and then checked SAOS-2 differentiation and mineralization in each stage. The results showed that during the progression of osteoblast differentiation SAOS-2 cells presented significantly high levels of osteocalcin (OC) mRNA, bone morphogenetic protein-2 (BMP-2) and collagen I, significantly high alkaline phosphatase (ALP) activity, and the increased formation of calcified matrix. With the same tendency, TG2 expression and activity were up-regulated. Furthermore, inhibition of TG activity resulted in a significant decrease of OC, collagen I, and BMP-2 mRNA and of ALP activity and mineralization. This study demonstrated that TG2 is involved in osteoblast differentiation and may play a role in the initiation and regulation of the mineralization processes. Moreover, the modulating effects of TG2 on osteoblasts may be related to BMP-2.
Collapse
Affiliation(s)
- Xiaoxue Yin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | | | | | | |
Collapse
|
49
|
Piercy-Kotb SA, Mousa A, Al-Jallad HF, Myneni VD, Chicatun F, Nazhat SN, Kaartinen MT. Factor XIIIA transglutaminase expression and secretion by osteoblasts is regulated by extracellular matrix collagen and the MAP kinase signaling pathway. J Cell Physiol 2012; 227:2936-46. [DOI: 10.1002/jcp.23040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Nurminskaya MV, Belkin AM. Cellular functions of tissue transglutaminase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:1-97. [PMID: 22364871 PMCID: PMC3746560 DOI: 10.1016/b978-0-12-394305-7.00001-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transglutaminase 2 (TG2 or tissue transglutaminase) is a highly complex multifunctional protein that acts as transglutaminase, GTPase/ATPase, protein disulfide isomerase, and protein kinase. Moreover, TG2 has many well-documented nonenzymatic functions that are based on its noncovalent interactions with multiple cellular proteins. A vast array of biochemical activities of TG2 accounts for its involvement in a variety of cellular processes, including adhesion, migration, growth, survival, apoptosis, differentiation, and extracellular matrix organization. In turn, the impact of TG2 on these processes implicates this protein in various physiological responses and pathological states, contributing to wound healing, inflammation, autoimmunity, neurodegeneration, vascular remodeling, tumor growth and metastasis, and tissue fibrosis. TG2 is ubiquitously expressed and is particularly abundant in endothelial cells, fibroblasts, osteoblasts, monocytes/macrophages, and smooth muscle cells. The protein is localized in multiple cellular compartments, including the nucleus, cytosol, mitochondria, endolysosomes, plasma membrane, and cell surface and extracellular matrix, where Ca(2+), nucleotides, nitric oxide, reactive oxygen species, membrane lipids, and distinct protein-protein interactions in the local microenvironment jointly regulate its activities. In this review, we discuss the complex biochemical activities and molecular interactions of TG2 in the context of diverse subcellular compartments and evaluate its wide ranging and cell type-specific biological functions and their regulation.
Collapse
Affiliation(s)
- Maria V Nurminskaya
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|