1
|
Meger J, Kozioł C, Pałucka M, Burczyk J, Chybicki IJ. Genetic resources of common ash (Fraxinus excelsior L.) in Poland. BMC PLANT BIOLOGY 2024; 24:186. [PMID: 38481155 PMCID: PMC10935948 DOI: 10.1186/s12870-024-04886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Knowledge of genetic structure and the factors that shape it has an impact on forest management practices. European ash (Fraxinus excelsior L.) has declined dramatically throughout its range as a result of a disease caused by the fungus Hymenoscyphus fraxineus. Despite the need for conservation and restoration of the species, genetic data required to guide these efforts at the country level are scarce. Thereofore, we studied the chloroplast and nuclear genetic diversity of 26 natural common ash populations (1269 trees) in Poland. RESULTS Chloroplast polymorphisms grouped the populations into two geographically structured phylogenetic lineages ascribed to different glacial refugia (the Balkans and the Eastern Alps). However, the populations demonstrated high genetic diversity (mean AR = 12.35; mean Ho = 0.769; mean He = 0.542) but low differentiation based on nuclear microsatellites (FST = 0.045). Significant spatial genetic structure, consistent with models of isolation by distance, was detected in 14 out of 23 populations. Estimated effective population size was moderate-to-high, with a harmonic mean of 57.5 individuals per population. CONCLUSIONS Genetic diversity was not homogeneously distributed among populations within phylogenetic gene pools, indicating that ash populations are not equal as potential sources of reproductive material. Genetic differences among populations could be related to their histories, including founder effects or gene flow between evolutionary lineages (admixture). Our results suggest that ash stands across Poland could be treated as two main management units (seed zones). Therefore, despite the homogenizing effect of pollen gene flow known for this species, the genetic structure should be taken into account in the management of the genetic resources of the common ash. Although ash dieback poses an additional challenge for the management of genetic resources, efforts should be directed towards protecting populations with high genetic diversity within defined phylogenetic units, as they may be an important source of adaptive variation for future stands.
Collapse
Affiliation(s)
- Joanna Meger
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, Bydgoszcz, 85-064, Poland.
| | - Czesław Kozioł
- Szklarska Poręba Forest District, Krasińskiego 6, Szklarska Poręba, 58-580, Poland
| | | | - Jarosław Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, Bydgoszcz, 85-064, Poland
| | - Igor J Chybicki
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, Bydgoszcz, 85-064, Poland.
| |
Collapse
|
2
|
Doonan JM, Kosawang C, Eisenring M, Ladd T, Roe AD, Budde KB, Jørgensen HJL, Queloz V, Gossner MM, Nielsen LR. Transcriptome profiling of Fraxinus excelsior genotypes infested by emerald ash borer. Sci Data 2023; 10:680. [PMID: 37798274 PMCID: PMC10556020 DOI: 10.1038/s41597-023-02588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
European ash, Fraxinus excelsior is facing the double threat of ongoing devastation by the invasive fungal pathogen, Hymenoscyphus fraxineus and the imminent arrival of the non-native emerald ash borer (EAB), Agrilus planipennis. The spread of EAB which is currently moving westwards from European Russia and Ukraine into central Europe, poses an additional substantial threat to European ash, F. excelsior. While the molecular basis for resistance or variation in resistance among European ash genotypes is heavily investigated, comparatively little is known about the molecular ash traits involved in resistance against EAB. In this study we have gathered transcriptomic data from EAB inoculated genotypes of F. excelsior that have previously shown different levels of susceptibility to EAB. Resultant datasets show differential gene expression in susceptible and resistant genotypes in response to EAB infestation. This data will provide important information on the molecular basis of resistance to the EAB and allow the development of management plans to combat a pending threat of a culturally and ecologically important European tree species.
Collapse
Affiliation(s)
- James M Doonan
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark.
| | - Chatchai Kosawang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark
| | - Michael Eisenring
- Forest Health and biotic Interactions, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Tim Ladd
- Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Amanda D Roe
- Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Katharina B Budde
- Buesgen Institute of Forest Genetics and Forest Tree Breeding, Georg-August Universität Göttingen, Buesgenweg 2, 37077, Goettingen, Germany
| | - Hans Jørgen Lyngs Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Valentin Queloz
- Forest Health and biotic Interactions, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Martin M Gossner
- Forest Health and biotic Interactions, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - Lene R Nielsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
3
|
Chiu CC, Pelletier G, Stival Sena J, Roux-Dalvai F, Prunier J, Droit A, Séguin A. Integrative analysis of green ash phloem transcripts and proteins during an emerald ash borer infestation. BMC PLANT BIOLOGY 2023; 23:123. [PMID: 36869316 PMCID: PMC9983263 DOI: 10.1186/s12870-023-04108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Emerald ash borer (Agrilus planipennis; EAB) is an Asian insect species that has been invasive to North America for 20 years. During this time, the emerald ash borer has killed tens of millions of American ash (Fraxinus spp) trees. Understanding the inherent defenses of susceptible American ash trees will provide information to breed new resistant varieties of ash trees. RESULTS We have performed RNA-seq on naturally infested green ash (F. pennsylvanica) trees at low, medium and high levels of increasing EAB infestation and proteomics on low and high levels of EAB infestation. Most significant transcript changes we detected occurred between the comparison of medium and high levels of EAB infestation, indicating that the tree is not responding to EAB until it is highly infested. Our integrative analysis of the RNA-Seq and proteomics data identified 14 proteins and 4 transcripts that contribute most to the difference between highly infested and low infested trees. CONCLUSIONS The putative functions of these transcripts and proteins suggests roles of phenylpropanoid biosynthesis and oxidation, chitinase activity, pectinesterase activity, strigolactone signaling, and protein turnover.
Collapse
Affiliation(s)
- Christine C Chiu
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Quebec City, QC, Canada.
| | - Gervais Pelletier
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Quebec City, QC, Canada
| | - Juliana Stival Sena
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Quebec City, QC, Canada
| | - Florence Roux-Dalvai
- CHU de Québec-Laval University Research Centre, Université Laval, QC, Quebec City, Canada
| | - Julien Prunier
- CHU de Québec-Laval University Research Centre, Université Laval, QC, Quebec City, Canada
| | - Arnaud Droit
- CHU de Québec-Laval University Research Centre, Université Laval, QC, Quebec City, Canada
| | - Armand Séguin
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Quebec City, QC, Canada
| |
Collapse
|
4
|
New developments in the field of genomic technologies and their relevance to conservation management. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01415-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractRecent technological advances in the field of genomics offer conservation managers and practitioners new tools to explore for conservation applications. Many of these tools are well developed and used by other life science fields, while others are still in development. Considering these technological possibilities, choosing the right tool(s) from the toolbox is crucial and can pose a challenging task. With this in mind, we strive to inspire, inform and illuminate managers and practitioners on how conservation efforts can benefit from the current genomic and biotechnological revolution. With inspirational case studies we show how new technologies can help resolve some of the main conservation challenges, while also informing how implementable the different technologies are. We here focus specifically on small population management, highlight the potential for genetic rescue, and discuss the opportunities in the field of gene editing to help with adaptation to changing environments. In addition, we delineate potential applications of gene drives for controlling invasive species. We illuminate that the genomic toolbox offers added benefit to conservation efforts, but also comes with limitations for the use of these novel emerging techniques.
Collapse
|
5
|
Sahraei SE, Cleary M, Stenlid J, Brandström Durling M, Elfstrand M. Transcriptional responses in developing lesions of European common ash (Fraxinus excelsior) reveal genes responding to infection by Hymenoscyphus fraxineus. BMC PLANT BIOLOGY 2020; 20:455. [PMID: 33023496 PMCID: PMC7541206 DOI: 10.1186/s12870-020-02656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND With the expanding ash dieback epidemic that has spread across the European continent, an improved functional understanding of the disease development in afflicted hosts is needed. The study investigated whether differences in necrosis extension between common ash (Fraxinus excelsior) trees with different levels of susceptibility to the fungus Hymenoscyphus fraxineus are associated with, and can be explained by, the differences in gene expression patterns. We inoculated seemingly healthy branches of each of two resistant and susceptible ash genotypes with H. fraxineus grown in a common garden. RESULTS Ten months after the inoculation, the length of necrosis on the resistant genotypes were shorter than on the susceptible genotypes. RNA sequencing of bark samples collected at the border of necrotic lesions and from healthy tissues distal to the lesion revealed relatively limited differences in gene expression patterns between susceptible and resistant genotypes. At the necrosis front, only 138 transcripts were differentially expressed between the genotype categories while 1082 were differentially expressed in distal, non-symptomatic tissues. Among these differentially expressed genes, several genes in the mevalonate (MVA) and iridoid pathways were found to be co-regulated, possibly indicating increased fluxes through these pathways in response to H. fraxineus. Comparison of transcriptional responses of symptomatic and non-symptomatic ash in a controlled greenhouse experiment revealed a relatively small set of genes that were differentially and concordantly expressed in both studies. This gene-set included the rate-limiting enzyme in the MVA pathway and a number of transcription factors. Furthermore, several of the concordantly expressed candidate genes show significant similarity to genes encoding players in the abscisic acid- or Jasmonate-signalling pathways. CONCLUSIONS A set of candidate genes, concordantly expressed between field and greenhouse experiments, was identified. The candidates are associated with hormone signalling and specialized metabolite biosynthesis pathways indicating the involvement of these pathways in the response of the host to infection by H. fraxineus.
Collapse
Affiliation(s)
- Shadi Eshghi Sahraei
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Michelle Cleary
- Southern Swedish Forest Research Center, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
6
|
Wu D, Koch J, Coggeshall M, Carlson J. The first genetic linkage map for Fraxinus pennsylvanica and syntenic relationships with four related species. PLANT MOLECULAR BIOLOGY 2019; 99:251-264. [PMID: 30604323 DOI: 10.1007/s11103-018-0815-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
The genetic linkage map for green ash (Fraxinus pennsylvanica) contains 1201 DNA markers in 23 linkage groups spanning 2008.87cM. The green ash map shows stronger synteny with coffee than tomato. Green ash (Fraxinus pennsylvanica) is an outcrossing, diploid (2n = 46) hardwood tree species, native to North America. Native ash species in North America are being threatened by the rapid spread of the emerald ash borer (EAB, Agrilus planipennis), an invasive pest from Asia. Green ash, the most widely distributed ash species, is severely affected by EAB infestation, yet few genomic resources for genetic studies and improvement of green ash are available. In this study, a total of 5712 high quality single nucleotide polymorphisms (SNPs) were discovered using a minimum allele frequency of 1% across the entire genome through genotyping-by-sequencing. We also screened hundreds of genomic- and EST-based microsatellite markers (SSRs) from previous de novo assemblies (Staton et al., PLoS ONE 10:e0145031, 2015; Lane et al., BMC Genom 17:702, 2016). A first genetic linkage map of green ash was constructed from 90 individuals in a full-sib family, combining 2719 SNP and 84 SSR segregating markers among the parental maps. The consensus SNP and SSR map contains a total of 1201 markers in 23 linkage groups spanning 2008.87 cM, at an average inter-marker distance of 1.67 cM with a minimum logarithm of odds of 6 and maximum recombination fraction of 0.40. Comparisons of the organization the green ash map with the genomes of asterid species coffee and tomato, and genomes of the rosid species poplar and peach, showed areas of conserved gene order, with overall synteny strongest with coffee.
Collapse
Affiliation(s)
- Di Wu
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jennifer Koch
- USDA Forest Service, Northern Research Station, Project NRS-16, 359 Main Road, Delaware, OH, 43015, USA
| | - Mark Coggeshall
- Department of Forestry, Center for Agroforestry, University of Missouri, Columbia, MO, 65211, USA
- USDA Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center, Project NRS-14, 715 W. State Street, West Lafayette, IN, 47907, USA
| | - John Carlson
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
7
|
Semizer-Cuming D, Kjær ED, Finkeldey R. Gene flow of common ash (Fraxinus excelsior L.) in a fragmented landscape. PLoS One 2017; 12:e0186757. [PMID: 29053740 PMCID: PMC5650178 DOI: 10.1371/journal.pone.0186757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 10/06/2017] [Indexed: 12/24/2022] Open
Abstract
Gene flow dynamics of common ash (Fraxinus excelsior L.) is affected by several human activities in Central Europe, including habitat fragmentation, agroforestry expansion, controlled and uncontrolled transfer of reproductive material, and a recently introduced emerging infectious disease, ash dieback, caused by Hymenoscyphus fraxineus. Habitat fragmentation may alter genetic connectivity and effective population size, leading to loss of genetic diversity and increased inbreeding in ash populations. Gene flow from cultivated trees in landscapes close to their native counterparts may also influence the adaptability of future generations. The devastating effects of ash dieback have already been observed in both natural and managed populations in continental Europe. However, potential long-term effects of genetic bottlenecks depend on gene flow across fragmented landscapes. For this reason, we studied the genetic connectivity of ash trees in an isolated forest patch of a fragmented landscape in Rösenbeck, Germany. We applied two approaches to parentage analysis to estimate gene flow patterns at the study site. We specifically investigated the presence of background pollination at the landscape level and the degree of genetic isolation between native and cultivated trees. Local meteorological data was utilized to understand the effect of wind on the pollen and seed dispersal patterns. Gender information of the adult trees was considered for calculating the dispersal distances. We found that the majority of the studied seeds (55-64%) and seedlings (75-98%) in the forest patch were fathered and mothered by the trees within the same patch. However, we determined a considerable amount of pollen flow (26-45%) from outside of the study site, representing background pollination at the landscape level. Limited pollen flow was observed from neighbouring cultivated trees (2%). Both pollen and seeds were dispersed in all directions in accordance with the local wind directions. Whereas there was no positive correlation between pollen dispersal distance and wind speed, the correlation between seed dispersal distance and wind speed was significant (0.71, p < 0.001), indicating that strong wind favours long-distance dispersal of ash seeds. Finally, we discussed the implications of establishing gene conservation stands and the use of enrichment planting in the face of ash dieback.
Collapse
Affiliation(s)
- Devrim Semizer-Cuming
- Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Erik Dahl Kjær
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Reiner Finkeldey
- Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
|
9
|
Figueroa-Yañez L, Pereira-Santana A, Arroyo-Herrera A, Rodriguez-Corona U, Sanchez-Teyer F, Espadas-Alcocer J, Espadas-Gil F, Barredo-Pool F, Castaño E, Rodriguez-Zapata LC. RAP2.4a Is Transported through the Phloem to Regulate Cold and Heat Tolerance in Papaya Tree (Carica papaya cv. Maradol): Implications for Protection Against Abiotic Stress. PLoS One 2016; 11:e0165030. [PMID: 27764197 PMCID: PMC5072549 DOI: 10.1371/journal.pone.0165030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 10/05/2016] [Indexed: 11/18/2022] Open
Abstract
Plants respond to stress through metabolic and morphological changes that increase their ability to survive and grow. To this end, several transcription factor families are responsible for transmitting the signals that are required for these changes. Here, we studied the transcription factor superfamily AP2/ERF, particularly, RAP2.4 from Carica papaya cv. Maradol. We isolated four genes (CpRap2.4a, CpRAap2.4b, CpRap2.1 and CpRap2.10), and an in silico analysis showed that the four genes encode proteins that contain a conserved APETALA2 (AP2) domain located within group I and II transcription factors of the AP2/ERF superfamily. Semiquantitative PCR experiments indicated that each CpRap2 gene is differentially expressed under stress conditions, such as extreme temperatures. Moreover, genetic transformants of tobacco plants overexpressing CpRap2.4a and CpRap2.4b genes show a high level of tolerance to cold and heat stress compared to non-transformed plants. Confocal microscopy analysis of tobacco transgenic plants showed that CpRAP2.4a and CpRAP2.4b proteins were mainly localized to the nuclei of cells from the leaves and roots and also in the sieve elements. Moreover, the movement of CpRap2.4a RNA in tobacco grafting was analyzed. Our results indicate that CpRap2.4a and CpRap2.4b RNA in the papaya tree have a functional role in the response to stress conditions such as exposure to extreme temperatures via direct translation outside the parental RNA cell.
Collapse
Affiliation(s)
- Luis Figueroa-Yañez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | | | - Ana Arroyo-Herrera
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Ulises Rodriguez-Corona
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Felipe Sanchez-Teyer
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Jorge Espadas-Alcocer
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Francisco Espadas-Gil
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Felipe Barredo-Pool
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Enrique Castaño
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | | |
Collapse
|
10
|
Figueroa-Yañez L, Pereira-Santana A, Arroyo-Herrera A, Rodriguez-Corona U, Sanchez-Teyer F, Espadas-Alcocer J, Espadas-Gil F, Barredo-Pool F, Castaño E, Rodriguez-Zapata LC. RAP2.4a Is Transported through the Phloem to Regulate Cold and Heat Tolerance in Papaya Tree (Carica papaya cv. Maradol): Implications for Protection Against Abiotic Stress. PLoS One 2016; 11:e0165030. [DOI: https:/doi.org/10.1371/journal.pone.0165030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
|
11
|
Lane T, Best T, Zembower N, Davitt J, Henry N, Xu Y, Koch J, Liang H, McGraw J, Schuster S, Shim D, Coggeshall MV, Carlson JE, Staton ME. The green ash transcriptome and identification of genes responding to abiotic and biotic stresses. BMC Genomics 2016; 17:702. [PMID: 27589953 PMCID: PMC5009568 DOI: 10.1186/s12864-016-3052-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/27/2016] [Indexed: 11/25/2022] Open
Abstract
Background To develop a set of transcriptome sequences to support research on environmental stress responses in green ash (Fraxinus pennsylvanica), we undertook deep RNA sequencing of green ash tissues under various stress treatments. The treatments, including emerald ash borer (EAB) feeding, heat, drought, cold and ozone, were selected to mimic the increasing threats of climate change and invasive pests faced by green ash across its native habitat. Results We report the generation and assembly of RNA sequences from 55 green ash samples into 107,611 putative unique transcripts (PUTs). 52,899 open reading frames were identified. Functional annotation of the PUTs by comparison to the Uniprot protein database identified matches for 63 % of transcripts and for 98 % of transcripts with ORFs. Further functional annotation identified conserved protein domains and assigned gene ontology terms to the PUTs. Examination of transcript expression across different RNA libraries revealed that expression patterns clustered based on tissues regardless of stress treatment. The transcripts from stress treatments were further examined to identify differential expression. Tens to hundreds of differentially expressed PUTs were identified for each stress treatment. A set of 109 PUTs were found to be consistently up or down regulated across three or more different stress treatments, representing basal stress response candidate genes in green ash. In addition, 1956 simple sequence repeats were identified in the PUTs, of which we identified 465 high quality DNA markers and designed flanking PCR primers. Conclusions North American native ash trees have suffered extensive mortality due to EAB infestation, creating a need to breed or select for resistant green ash genotypes. Stress from climate change is an additional concern for longevity of native ash populations. The use of genomics could accelerate management efforts. The green ash transcriptome we have developed provides important sequence information, genetic markers and stress-response candidate genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3052-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Lane
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37966, USA
| | - Teodora Best
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| | - Nicole Zembower
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jack Davitt
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37966, USA
| | - Nathan Henry
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37966, USA
| | - Yi Xu
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, USA.,Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Jennifer Koch
- Northern Research Station, USDA Forest Service, Delaware, OH, 43015, USA
| | - Haiying Liang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - John McGraw
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Stephan Schuster
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Donghwan Shim
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark V Coggeshall
- Department of Forestry, University of Missouri, Columbia, MO, 65211, USA
| | - John E Carlson
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| | - Margaret E Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37966, USA.
| |
Collapse
|
12
|
Rigsby CM, Herms DA, Bonello P, Cipollini D. Higher Activities of Defense-Associated Enzymes may Contribute to Greater Resistance of Manchurian Ash to Emerald Ash Borer Than A closely Related and Susceptible Congener. J Chem Ecol 2016; 42:782-792. [PMID: 27484881 DOI: 10.1007/s10886-016-0736-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 06/18/2016] [Accepted: 06/22/2016] [Indexed: 11/25/2022]
Abstract
Emerald ash borer (EAB) is an invasive beetle native to Asia that infests and kills ash (Fraxinus spp.) in North America. Previous experiments indicated that larvae feeding on co-evolved, resistant Manchurian ash (F. mandshurica) have increased antioxidant and quinone-protective enzyme activities compared to larvae feeding on susceptible North American species. Here, we examined mechanisms of host-generated oxidative and quinone-based stress and other putative defenses in Manchurian ash and the closely related and chemically similar, but susceptible, black ash (F. nigra), with and without exogenous application of methyl jasmonate (MeJA) to induce resistance mechanisms. Peroxidase activities were 4.6-13.3 times higher in Manchurian than black ash, although both species appeared to express the same three peroxidase isozymes. Additionally, peroxidase-mediated protein cross-linking activity was stronger in Manchurian ash. Polyphenol oxidase, β-glucosidase, chitinase, and lipoxygenase activities also were greater in Manchurian ash, but only lipoxygenase activity increased with MeJA application. Phloem H2O2 levels were similar and were increased by MeJA application in both species. Lastly, trypsin inhibitor activity was detected in methanol and water extracts that were not allowed to oxidize, indicating the presence of phenolic-based trypsin inhibitors. However, no proteinaceous trypsin inhibitor activity was detected in either species. In response to MeJA application, Manchurian ash had higher trypsin inhibitor activity than black ash using the unoxidized water extracts, but no treatment effects were detected using methanol extracts. Based on these results we hypothesize that peroxidases, lignin polymerization, and quinone generation contribute to the greater resistance to EAB displayed by Manchurian ash.
Collapse
Affiliation(s)
- Chad M Rigsby
- Department of Biological Sciences and Environmental Sciences PhD Program, Wright State University, Dayton, OH, 45435, USA.
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI, 02881, USA.
| | - Daniel A Herms
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Don Cipollini
- Department of Biological Sciences and Environmental Sciences PhD Program, Wright State University, Dayton, OH, 45435, USA
| |
Collapse
|
13
|
Zhang Y, Han X, Sang J, He X, Liu M, Qiao G, Zhuo R, He G, Hu J. Transcriptome analysis of immature xylem in the Chinese fir at different developmental phases. PeerJ 2016; 4:e2097. [PMID: 27330860 PMCID: PMC4906661 DOI: 10.7717/peerj.2097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Background.Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] is one of the most important native tree species for timber production in southern China. An understanding of overall fast growing stage, stem growth stage and senescence stage cambium transcriptome variation is lacking. We used transcriptome sequencing to identify the repertoire of genes expressed during development of xylem tissue in Chinese fir, aiming to delineate the molecular mechanisms of wood formation. Results. We carried out transcriptome sequencing at three different cultivation ages (7Y, 15Y and 21Y) generating 68.71 million reads (13.88 Gbp). A total of 140,486 unigenes with a mean size of 568.64 base pairs (bp) were obtained via de novo assembly. Of these, 27,427 unigenes (19.52%) were further annotated by comparison to public protein databases. A total of 5,331 (3.79%) unigenes were mapped into 118 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Differentially expressed genes (DEG) analysis identified 3, 16 and 5,899 DEGs from the comparison of 7Y vs. 15Y, 7Y vs. 21Y and 15Y vs. 21Y, respectively, in the immature xylem tissues, including 2,638 significantly up-regulated and 3,280 significantly down-regulated genes. Besides, five NAC transcription factors, 190 MYB transcription factors, and 34 WRKY transcription factors were identified respectively from Chinese fir transcriptome. Conclusion. Our results revealed the active transcriptional pathways and identified the DEGs at different cultivation phases of Chinese fir wood formation. This transcriptome dataset will aid in understanding and carrying out future studies on the molecular basis of Chinese fir wood formation and contribute to future artificial production and applications.
Collapse
Affiliation(s)
- Yunxing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
- Institute of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo, Henan, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jian Sang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xuelian He
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Guiping He
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
14
|
Imadi SR, Kazi AG, Ahanger MA, Gucel S, Ahmad P. Plant transcriptomics and responses to environmental stress: an overview. J Genet 2016; 94:525-37. [PMID: 26440096 DOI: 10.1007/s12041-015-0545-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Different stresses include nutrient deficiency, pathogen attack, exposure to toxic chemicals etc. Transcriptomic studies have been mainly applied to only a few plant species including the model plant, Arabidopsis thaliana. These studies have provided valuable insights into the genetic networks of plant stress responses. Transcriptomics applied to cash crops including barley, rice, sugarcane, wheat and maize have further helped in understanding physiological and molecular responses in terms of genome sequence, gene regulation, gene differentiation, posttranscriptional modifications and gene splicing. On the other hand, comparative transcriptomics has provided more information about plant's response to diverse stresses. Thus, transcriptomics, together with other biotechnological approaches helps in development of stress tolerance in crops against the climate change.
Collapse
Affiliation(s)
- Sameen Ruqia Imadi
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, H-12 Campus, Islamabad 25000,
| | | | | | | | | |
Collapse
|
15
|
Villari C, Herms DA, Whitehill JGA, Cipollini D, Bonello P. Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for wood-boring insects that kill angiosperms. THE NEW PHYTOLOGIST 2016; 209:63-79. [PMID: 26268949 DOI: 10.1111/nph.13604] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/07/2015] [Indexed: 05/13/2023]
Abstract
We review the literature on host resistance of ash to emerald ash borer (EAB, Agrilus planipennis), an invasive species that causes widespread mortality of ash. Manchurian ash (Fraxinus mandshurica), which coevolved with EAB, is more resistant than evolutionarily naïve North American and European congeners. Manchurian ash was less preferred for adult feeding and oviposition than susceptible hosts, more resistant to larval feeding, had higher constitutive concentrations of bark lignans, coumarins, proline, tyramine and defensive proteins, and was characterized by faster oxidation of phenolics. Consistent with EAB being a secondary colonizer of coevolved hosts, drought stress decreased the resistance of Manchurian ash, but had no effect on constitutive bark phenolics, suggesting that they do not contribute to increased susceptibility in response to drought stress. The induced resistance of North American species to EAB in response to the exogenous application of methyl jasmonate was associated with increased bark concentrations of verbascoside, lignin and/or trypsin inhibitors, which decreased larval survival and/or growth in bioassays. This finding suggests that these inherently susceptible species possess latent defenses that are not induced naturally by larval colonization, perhaps because they fail to recognize larval cues or respond quickly enough. Finally, we propose future research directions that would address some critical knowledge gaps.
Collapse
Affiliation(s)
- Caterina Villari
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel A Herms
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, 44691, USA
| | - Justin G A Whitehill
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Don Cipollini
- Department of Biological Sciences, Wright State University, Dayton, OH, 45435, USA
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
16
|
Yang Y, Mao L, Jittayasothorn Y, Kang Y, Jiao C, Fei Z, Zhong GY. Messenger RNA exchange between scions and rootstocks in grafted grapevines. BMC PLANT BIOLOGY 2015; 15:251. [PMID: 26480945 PMCID: PMC4612405 DOI: 10.1186/s12870-015-0626-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/23/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Grafting has been widely practiced for centuries in the propagation and production of many vegetable and fruit species. However, the underlying molecular and genetic mechanisms for how the graft partners interact with each other to produce a successful graft remain largely unknown. We hypothesized that genome-wide mRNA exchanges, which were recently documented in grafted model plant species, are a general phenomenon widely present in grafted plants, including those in vegetable and fruit species, and have specific genotype- and environment-dependent characteristics modulating plant performance. METHODS Using diagnostic SNPs derived from high throughput genome sequencing, we identified and characterized the patterns of genome-wide mRNA exchanges across graft junctions in grafted grapevines grown in the in vitro and field conditions. RESULTS We identified more than 3000 genes transporting mRNAs across graft junctions. These genes were involved in diverse biological processes and those involved in basic cellular, biosynthetic, catabolic, and metabolic activities, as well as responses to stress and signal transduction, were highly enriched. Field-grown mature grafts had much fewer genes transmitting mRNAs than the in vitro young grafts (987 vs. 2679). These mobile mRNAs could move directionally or bi-directionally between scions and rootstocks. The mRNA transmission rates of these genes were generally low, with 65% or more having transmission rates lower than 0.01. Furthermore, genotypes, graft combinations and growth environments had impact on the directions of mRNA movement as well as the numbers and species of mRNAs being exchanged. Moreover, we found evidence for the presences of both passive and selective mechanisms underlying long distance mRNA trafficking in grafted grapevines. CONCLUSIONS We extended the studies of mRNA exchanges in model species to grapevines and demonstrated that genomic-scale mRNA exchange across graft junctions occurred in grapevines in a passive or genotype and environment-dependent manner.
Collapse
Affiliation(s)
- Yingzhen Yang
- United States Department of Agriculture, Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY, 14456, USA.
| | - Linyong Mao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
- Present address: Department of Biochemistry & Molecular Biology, Howard University, 520 W Street, NW, Washington, D. C, 20059, USA.
| | - Yingyos Jittayasothorn
- United States Department of Agriculture, Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY, 14456, USA.
- Present address: Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Youngmin Kang
- United States Department of Agriculture, Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY, 14456, USA.
- Present address: K-herb Research Center, Korea Institute of Oriental Medicine, Deajeon, 305-811, Republic of Korea.
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
- United States Department of Agriculture, Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| | - Gan-Yuan Zhong
- United States Department of Agriculture, Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY, 14456, USA.
| |
Collapse
|
17
|
Galeano E, Vasconcelos TS, Vidal M, Mejia-Guerra MK, Carrer H. Large-scale transcriptional profiling of lignified tissues in Tectona grandis. BMC PLANT BIOLOGY 2015; 15:221. [PMID: 26369560 PMCID: PMC4570228 DOI: 10.1186/s12870-015-0599-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 09/02/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Currently, Tectona grandis is one of the most valuable trees in the world and no transcript dataset related to secondary xylem is available. Considering how important the secondary xylem and sapwood transition from young to mature trees is, little is known about the expression differences between those successional processes and which transcription factors could regulate lignin biosynthesis in this tropical tree. Although MYB transcription factors are one of the largest superfamilies in plants related to secondary metabolism, it has not yet been characterized in teak. These results will open new perspectives for studies of diversity, ecology, breeding and genomic programs aiming to understand deeply the biology of this species. RESULTS We present a widely expressed gene catalog for T. grandis using Illumina technology and the de novo assembly. A total of 462,260 transcripts were obtained, with 1,502 and 931 genes differentially expressed for stem and branch secondary xylem, respectively, during age transition. Analysis of stem and branch secondary xylem indicates substantial similarity in gene ontologies including carbohydrate enzymes, response to stress, protein binding, and allowed us to find transcription factors and heat-shock proteins differentially expressed. TgMYB1 displays a MYB domain and a predicted coiled-coil (CC) domain, while TgMYB2, TgMYB3 and TgMYB4 showed R2R3-MYB domain and grouped with MYBs from several gymnosperms and flowering plants. TgMYB1, TgMYB4 and TgCES presented higher expression in mature secondary xylem, in contrast with TgMYB2, TgHsp1, TgHsp2, TgHsp3, and TgBi whose expression is higher in young lignified tissues. TgMYB3 is expressed at lower level in secondary xylem. CONCLUSIONS Expression patterns of MYB transcription factors and heat-shock proteins in lignified tissues are dissimilar when tree development was evaluated, obtaining more expression of TgMYB1 and TgMYB4 in lignified tissues of 60-year-old trees, and more expression in TgHsp1, TgHsp2, TgHsp3 and TgBi in stem secondary xylem of 12-year-old trees. We are opening a door for further functional characterization by reverse genetics and marker-assisted selection with those genes. Investigation of some of the key regulators of lignin biosynthesis in teak, however, could be a valuable step towards understanding how rigidity of teak wood and extractives content are different from most other woods. The obtained transcriptome data represents new sequences of T. grandis deposited in public databases, representing an unprecedented opportunity to discover several related-genes associated with secondary xylem such as transcription factors and stress-related genes in a tropical tree.
Collapse
Affiliation(s)
- Esteban Galeano
- Laboratório de Biotecnologia Agrícola (CEBTEC), Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil.
| | - Tarcísio Sales Vasconcelos
- Laboratório de Biotecnologia Agrícola (CEBTEC), Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil.
| | - Mabel Vidal
- CAPS Computational Biology Laboratory (CCBL), Center for Applied Plant Sciences, Ohio State University, 206 Rightmire Hall, 1060 Carmack Road, Columbus, Ohio, 43210, United States.
| | - Maria Katherine Mejia-Guerra
- CAPS Computational Biology Laboratory (CCBL), Center for Applied Plant Sciences, Ohio State University, 206 Rightmire Hall, 1060 Carmack Road, Columbus, Ohio, 43210, United States.
| | - Helaine Carrer
- Laboratório de Biotecnologia Agrícola (CEBTEC), Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|
18
|
Assembly and Analysis of Differential Transcriptome Responses of Hevea brasiliensis on Interaction with Microcyclus ulei. PLoS One 2015; 10:e0134837. [PMID: 26287380 PMCID: PMC4564276 DOI: 10.1371/journal.pone.0134837] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 07/14/2015] [Indexed: 12/16/2022] Open
Abstract
Natural rubber (Hevea brasiliensis) is a tropical tree used commercially for the production of latex, from which 40,000 products are generated. The fungus Microcyclus ulei infects this tree, causing South American leaf blight (SALB) disease. This disease causes developmental delays and significant crop losses, thereby decreasing the production of latex. Currently several groups are working on obtaining clones of rubber tree with durable resistance to SALB through the use of extensive molecular biology techniques. In this study, we used a secondary clone that was resistant to M. ulei isolate GCL012. This clone, FX 3864 was obtained by crossing between clones PB 86 and B 38 (H. brasiliensis x H. brasiliensis). RNA-Seq high-throughput sequencing technology was used to analyze the differential expression of the FX 3864 clone transcriptome at 0 and 48 h post infection (hpi) with the M. ulei isolate GCL012. A total of 158,134,220 reads were assembled using the de novo assembly strategy to generate 90,775 contigs with an N50 of 1672. Using a reference-based assembly, 76,278 contigs were generated with an N50 of 1324. We identified 86 differentially expressed genes associated with the defense response of FX 3864 to GCL012. Seven putative genes members of the AP2/ERF ethylene (ET)-dependent superfamily were found to be down-regulated. An increase in salicylic acid (SA) was associated with the up-regulation of three genes involved in cell wall synthesis and remodeling, as well as in the down-regulation of the putative gene CPR5. The defense response of FX 3864 against the GCL012 isolate was associated with the antagonistic SA, ET and jasmonic acid (JA) pathways. These responses are characteristic of plant resistance to biotrophic pathogens.
Collapse
|
19
|
De Wit P, Pespeni MH, Palumbi SR. SNP genotyping and population genomics from expressed sequences - current advances and future possibilities. Mol Ecol 2015; 24:2310-23. [DOI: 10.1111/mec.13165] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Pierre De Wit
- Department of Biology and Environmental Sciences; University of Gothenburg; Sven Lovén Centre for Marine Science - Tjärnö; Hättebäcksvägen 7 Strömstad SE-452 96 Sweden
| | - Melissa H. Pespeni
- Department of Biology; University of Vermont; Marsh Life Science; Rm 326A 109 Carrigan Drive Burlington VT 05405 USA
| | - Stephen R. Palumbi
- Department of Biology; Stanford University; Hopkins Marine Station 120 Ocean view Blvd. Pacific Grove CA 93950 USA
| |
Collapse
|
20
|
Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Miñambres M, Walther D, Schulze WX, Paz-Ares J, Scheible WR, Kragler F. Endogenous Arabidopsis messenger RNAs transported to distant tissues. NATURE PLANTS 2015; 1:15025. [PMID: 27247031 DOI: 10.1038/nplants.2015.25] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/10/2015] [Indexed: 05/06/2023]
Abstract
The concept that proteins and small RNAs can move to and function in distant body parts is well established. However, non-cell-autonomy of small RNA molecules raises the question: To what extent are protein-coding messenger RNAs (mRNAs) exchanged between tissues in plants? Here we report the comprehensive identification of 2,006 genes producing mobile RNAs in Arabidopsis thaliana. The analysis of variant ecotype transcripts that were present in heterografted plants allowed the identification of mRNAs moving between various organs under normal or nutrient-limiting conditions. Most of these mobile transcripts seem to follow the phloem-dependent allocation pathway transporting sugars from photosynthetic tissues to roots via the vasculature. Notably, a high number of transcripts also move in the opposite, root-to-shoot direction and are transported to specific tissues including flowers. Proteomic data on grafted plants indicate the presence of proteins from mobile RNAs, allowing the possibility that they may be translated at their destination site. The mobility of a high number of mRNAs suggests that a postulated tissue-specific gene expression profile might not be predictive for the actual plant body part in which a transcript exerts its function.
Collapse
Affiliation(s)
- Christoph J Thieme
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Monica Rojas-Triana
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | - Ewelina Stecyk
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Christian Schudoma
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Wenna Zhang
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Lei Yang
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Miguel Miñambres
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, Madrid 28049, Spain
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart 70593, Germany
| | - Javier Paz-Ares
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, Madrid 28049, Spain
| | - Wolf-Rüdiger Scheible
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam 14476, Germany
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam 14476, Germany
| |
Collapse
|
21
|
Comparative transcriptomic analysis of the response to cold acclimation in Eucalyptus dunnii. PLoS One 2014; 9:e113091. [PMID: 25412179 PMCID: PMC4239045 DOI: 10.1371/journal.pone.0113091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/18/2014] [Indexed: 01/22/2023] Open
Abstract
Eucalyptus dunnii is an important macrophanerophyte with high economic value. However, low temperature stress limits its productivity and distribution. To study the cold response mechanisms of E. dunnii, 5 cDNA libraries were constructed from mRNA extracted from leaves exposed to cold stress for varying lengths of time and were evaluated by RNA-Seq analysis. The assembly of the Illumina datasets was optimized using various assembly programs and parameters. The final optimized assembly generated 205,325 transcripts with an average length of 1,701 bp and N50 of 2,627 bp, representing 349.38 Mb of the E. dunnii transcriptome. Among these transcripts, 134,358 transcripts (65.4%) were annotated in the Nr database. According to the differential analysis results, most transcripts were up-regulated as the cold stress prolonging, suggesting that these transcripts may be involved in the response to cold stress. In addition, the cold-relevant GO categories, such as ‘response to stress’ and ‘translational initiation’, were the markedly enriched GO terms. The assembly of the E. dunnii gene index and the GO classification performed in this study will serve as useful genomic resources for the genetic improvement of E. dunnii and also provide insights into the molecular mechanisms of cold acclimation in E. dunnii.
Collapse
|
22
|
Kim G, LeBlanc ML, Wafula EK, dePamphilis CW, Westwood JH. Plant science. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 2014; 345:808-11. [PMID: 25124438 DOI: 10.1126/science.1253122] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Movement of RNAs between cells of a single plant is well documented, but cross-species RNA transfer is largely unexplored. Cuscuta pentagona (dodder) is a parasitic plant that forms symplastic connections with its hosts and takes up host messenger RNAs (mRNAs). We sequenced transcriptomes of Cuscuta growing on Arabidopsis and tomato hosts to characterize mRNA transfer between species and found that mRNAs move in high numbers and in a bidirectional manner. The mobile transcripts represented thousands of different genes, and nearly half the expressed transcriptome of Arabidopsis was identified in Cuscuta. These findings demonstrate that parasitic plants can exchange large proportions of their transcriptomes with hosts, providing potential mechanisms for RNA-based interactions between species and horizontal gene transfer.
Collapse
Affiliation(s)
- Gunjune Kim
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Megan L LeBlanc
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eric K Wafula
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Claude W dePamphilis
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
23
|
Decreased emergence of emerald ash borer from ash treated with methyl jasmonate is associated with induction of general defense traits and the toxic phenolic compound verbascoside. Oecologia 2014; 176:1047-59. [PMID: 25231373 DOI: 10.1007/s00442-014-3082-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
The emerald ash borer (EAB; Agrilus planipennis Fairmaire) is causing widespread mortality of ash (Fraxinus spp.) in North America. To date, no mechanisms of host resistance have been identified against this pest. Methyl jasmonate was applied to susceptible North American and resistant Asian ash species to determine if it can elicit induced responses in bark that enhance resistance to EAB. In particular, phenolic compounds, lignin, and defense-related proteins were quantified, and compounds associated with resistance were subsequently tested directly against EAB larvae in bioassays with artificial diet. MeJA application decreased adult emergence in susceptible ash species, comparable to levels achieved by insecticide application. Concentration of the phenolic compound verbascoside sharply increased after MeJA application to green and white ash. When incorporated in an artificial diet, verbascoside decreased survival and growth of EAB neonates in a dose-dependent fashion. Lignin and trypsin inhibitors were also induced by MeJA, and analogs of both compounds reduced growth of EAB larvae in artificial diets. We conclude that the application of MeJA prior to EAB attack has the ability to enhance resistance of susceptible ash trees by inducing endogenous plant defenses, and report evidence that induction of verbascoside is a mechanism of resistance to EAB.
Collapse
|
24
|
Luo C, Zhang Q, Luo Z. Genome-wide transcriptome analysis of Chinese pollination-constant nonastringent persimmon fruit treated with ethanol. BMC Genomics 2014; 15:112. [PMID: 24507483 PMCID: PMC3922992 DOI: 10.1186/1471-2164-15-112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/04/2014] [Indexed: 11/10/2022] Open
Abstract
Background The persimmon Diospyros kaki Thunb. is an important commercial and deciduous fruit tree. The fruits have proanthocyanidin (PA) content of >25% of the dry weight and are astringent. PAs cause astringency that is often undesirable for human consumption; thus, the removal of astringency is an important practice in the persimmon industry. Soluble PAs can be converted to insoluble PAs by enclosing the fruit in a polyethylene bag containing diluted ethanol. The genomic resource development of the persimmon is delayed because of its large and complex genome. Second-generation sequencing is an efficient technique for generating huge sequences that can represent a large number of genes and their expression levels. Results We used 454 sequencing for the de novo transcriptome assembly of persimmon fruit treated with 5% ethanol (Tr library) and without treatment as the control (Co library) to investigate the genes and pathways that control PA biosynthesis and other secondary metabolites. We obtained 374.6 Mb in clean nucleotides comprising 624,690 and 626,203 clean sequencing reads from the Tr and Co libraries, respectively. We also identified 83,898 unigenes; 54,719 (~65.2%) unigenes were annotated based on similarity searches with known proteins. Up to 14,954 of the unigenes were assigned to the protein database Clusters of Orthologous Groups (COG), 24,337 were assigned to the term annotation database of Gene Ontology (GO), and 45,506 were assigned to 200 pathways in the database of Kyoto Encyclopedia of Genes and Genomes (KEGG). The two libraries were compared to identify the differentially expressed unigenes. The expression levels of genes involved in PA biosynthesis and tannin coagulation were analysed, and some of them were verified using quantitative real time PCR (qRT-PCR). Conclusions This study provides abundant genomic data for persimmon and offers comprehensive sequence resources for persimmon research. The transcriptome dataset will improve our understanding of the molecular mechanisms of tannin coagulation and other biochemical processes in persimmons.
Collapse
Affiliation(s)
| | | | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
25
|
Sequencing, De Novo assembly and annotation of the Colorado Potato Beetle, Leptinotarsa decemlineata, Transcriptome. PLoS One 2014; 9:e86012. [PMID: 24465841 PMCID: PMC3900453 DOI: 10.1371/journal.pone.0086012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 12/09/2013] [Indexed: 12/18/2022] Open
Abstract
Background The Colorado potato beetle (Leptinotarsa decemlineata) is a major pest and a serious threat to potato cultivation throughout the northern hemisphere. Despite its high importance for invasion biology, phenology and pest management, little is known about L. decemlineata from a genomic perspective. We subjected European L. decemlineata adult and larval transcriptome samples to 454-FLX massively-parallel DNA sequencing to characterize a basal set of genes from this species. We created a combined assembly of the adult and larval datasets including the publicly available midgut larval Roche 454 reads and provided basic annotation. We were particularly interested in diapause-specific genes and genes involved in pesticide and Bacillus thuringiensis (Bt) resistance. Results Using 454-FLX pyrosequencing, we obtained a total of 898,048 reads which, together with the publicly available 804,056 midgut larval reads, were assembled into 121,912 contigs. We established a repository of genes of interest, with 101 out of the 108 diapause-specific genes described in Drosophila montana; and 621 contigs involved in insecticide resistance, including 221 CYP450, 45 GSTs, 13 catalases, 15 superoxide dismutases, 22 glutathione peroxidases, 194 esterases, 3 ADAM metalloproteases, 10 cadherins and 98 calmodulins. We found 460 putative miRNAs and we predicted a significant number of single nucleotide polymorphisms (29,205) and microsatellite loci (17,284). Conclusions This report of the assembly and annotation of the transcriptome of L. decemlineata offers new insights into diapause-associated and insecticide-resistance-associated genes in this species and provides a foundation for comparative studies with other species of insects. The data will also open new avenues for researchers using L. decemlineata as a model species, and for pest management research. Our results provide the basis for performing future gene expression and functional analysis in L. decemlineata and improve our understanding of the biology of this invasive species at the molecular level.
Collapse
|
26
|
Liu H, Wang T, Wang J, Quan F, Zhang Y. Characterization of Liaoning cashmere goat transcriptome: sequencing, de novo assembly, functional annotation and comparative analysis. PLoS One 2013; 8:e77062. [PMID: 24130835 PMCID: PMC3793953 DOI: 10.1371/journal.pone.0077062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 08/30/2013] [Indexed: 12/03/2022] Open
Abstract
Background Liaoning cashmere goat is a famous goat breed for cashmere wool. In order to increase the transcriptome data and accelerate genetic improvement for this breed, we performed denovo transcriptome sequencing to generate the first expressed sequence tag dataset for the Liaoning cashmere goat, using next-generation sequencing technology. Results Transcriptome sequencing of Liaoning cashmere goat on a Roche 454 platform yielded 804,601 high-quality reads. Clustering and assembly of these reads produced a non-redundant set of 117,854 unigenes, comprising 13,194 isotigs and 104,660 singletons. Based on similarity searches with known proteins, 17,356 unigenes were assigned to 6,700 GO categories, and the terms were summarized into three main GO categories and 59 sub-categories. 3,548 and 46,778 unigenes had significant similarity to existing sequences in the KEGG and COG databases, respectively. Comparative analysis revealed that 42,254 unigenes were aligned to 17,532 different sequences in NCBI non-redundant nucleotide databases. 97,236 (82.51%) unigenes were mapped to the 30 goat chromosomes. 35,551 (30.17%) unigenes were matched to 11,438 reported goat protein-coding genes. The remaining non-matched unigenes were further compared with cattle and human reference genes, 67 putative new goat genes were discovered. Additionally, 2,781 potential simple sequence repeats were initially identified from all unigenes. Conclusion The transcriptome of Liaoning cashmere goat was deep sequenced, denovo assembled, and annotated, providing abundant data to better understand the Liaoning cashmere goat transcriptome. The potential simple sequence repeats provide a material basis for future genetic linkage and quantitative trait loci analyses.
Collapse
Affiliation(s)
- Hongliang Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Tingting Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Jinke Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
- * E-mail: (FQ); (YZ)
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
- * E-mail: (FQ); (YZ)
| |
Collapse
|
27
|
Herms DA, McCullough DG. Emerald ash borer invasion of North America: history, biology, ecology, impacts, and management. ANNUAL REVIEW OF ENTOMOLOGY 2013; 59:13-30. [PMID: 24112110 DOI: 10.1146/annurev-ento-011613-162051] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Since its accidental introduction from Asia, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has killed millions of ash trees in North America. As it continues to spread, it could functionally extirpate ash with devastating economic and ecological impacts. Little was known about EAB when it was first discovered in North America in 2002, but substantial advances in understanding of EAB biology, ecology, and management have occurred since. Ash species indigenous to China are generally resistant to EAB and may eventually provide resistance genes for introgression into North American species. EAB is characterized by stratified dispersal resulting from natural and human-assisted spread, and substantial effort has been devoted to the development of survey methods. Early eradication efforts were abandoned largely because of the difficulty of detecting and delineating infestations. Current management is focused on biological control, insecticide protection of high-value trees, and integrated efforts to slow ash mortality.
Collapse
Affiliation(s)
- Daniel A Herms
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691;
| | | |
Collapse
|
28
|
Neale DB, Langley CH, Salzberg SL, Wegrzyn JL. Open access to tree genomes: the path to a better forest. Genome Biol 2013; 14:120. [PMID: 23796049 PMCID: PMC3706761 DOI: 10.1186/gb-2013-14-6-120] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
An open-access culture and a well-developed comparative-genomics infrastructure must be developed in forest trees to derive the full potential of genome sequencing in this diverse group of plants that are the dominant species in much of the earth's terrestrial ecosystems.
Collapse
|
29
|
Rajarapu SP, Mittapalli O. Glutathione-S-transferase profiles in the emerald ash borer, Agrilus planipennis. Comp Biochem Physiol B Biochem Mol Biol 2013; 165:66-72. [DOI: 10.1016/j.cbpb.2013.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/24/2013] [Accepted: 02/25/2013] [Indexed: 02/06/2023]
|
30
|
Wang R, Xu S, Jiang Y, Jiang J, Li X, Liang L, He J, Peng F, Xia B. De novo sequence assembly and characterization of Lycoris aurea transcriptome using GS FLX titanium platform of 454 pyrosequencing. PLoS One 2013; 8:e60449. [PMID: 23593220 PMCID: PMC3621892 DOI: 10.1371/journal.pone.0060449] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 02/26/2013] [Indexed: 11/18/2022] Open
Abstract
Background Lycoris aurea, also called Golden Magic Lily, is an ornamentally and medicinally important species of the Amaryllidaceae family. To date, the sequencing of its whole genome is unavailable as a non-model organism. Transcriptomic information is also scarce for this species. In this study, we performed de novo transcriptome sequencing to produce the first comprehensive expressed sequence tag (EST) dataset for L. aurea using high-throughput sequencing technology. Methodology and Principal Findings Total RNA was isolated from leaves with sodium nitroprusside (SNP), salicylic acid (SA), or methyl jasmonate (MeJA) treatment, stems, and flowers at the bud, blooming, and wilting stages. Equal quantities of RNA from each tissue and stage were pooled to construct a cDNA library. Using 454 pyrosequencing technology, a total of 937,990 high quality reads (308.63 Mb) with an average read length of 329 bp were generated. Clustering and assembly of these reads produced a non-redundant set of 141,111 unique sequences, comprising 24,604 contigs and 116,507 singletons. All of the unique sequences were involved in the biological process, cellular component and molecular function categories by GO analysis. Potential genes and their functions were predicted by KEGG pathway mapping and COG analysis. Based on our sequence analysis and published literatures, many putative genes involved in Amaryllidaceae alkaloids synthesis, including PAL, TYDC OMT, NMT, P450, and other potentially important candidate genes, were identified for the first time in this Lycoris. Furthermore, 6,386 SSRs and 18,107 high-confidence SNPs were identified in this EST dataset. Conclusions The transcriptome provides an invaluable new data for a functional genomics resource and future biological research in L. aurea. The molecular markers identified in this study will provide a material basis for future genetic linkage and quantitative trait loci analyses, and will provide useful information for functional genomic research in future.
Collapse
Affiliation(s)
- Ren Wang
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing, China
- * E-mail: (RW); (BX)
| | - Sheng Xu
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing, China
| | - Yumei Jiang
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing, China
| | - Jingwei Jiang
- Bioinformatic Center, Nanjing Agricultural University, Nanjing, China
| | - Xiaodan Li
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing, China
| | - Lijian Liang
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing, China
| | - Jia He
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing, China
| | - Feng Peng
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing, China
| | - Bing Xia
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing, China
- * E-mail: (RW); (BX)
| |
Collapse
|
31
|
Hao DC, Chen SL, Xiao PG, Liu M. Application of High-Throughput Sequencing in Medicinal Plant Transcriptome Studies. Drug Dev Res 2012. [DOI: 10.1002/ddr.21041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute/School of Environment; Dalian Jiaotong University; Dalian; 116028; China
| | - Shi-Lin Chen
- Institute of Medicinal Plant Development; Chinese Academy of Medical sciences/Peking Union Medical College; Beijing; 100193; China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development; Chinese Academy of Medical sciences/Peking Union Medical College; Beijing; 100193; China
| | - Ming Liu
- Biotechnology Institute/School of Environment; Dalian Jiaotong University; Dalian; 116028; China
| |
Collapse
|
32
|
Shin SC, Kim SJ, Lee JK, Ahn DH, Kim MG, Lee H, Lee J, Kim BK, Park H. Transcriptomics and comparative analysis of three antarctic notothenioid fishes. PLoS One 2012; 7:e43762. [PMID: 22916302 PMCID: PMC3420891 DOI: 10.1371/journal.pone.0043762] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/24/2012] [Indexed: 11/18/2022] Open
Abstract
For the past 10 to 13 million years, Antarctic notothenioid fish have undergone extraordinary periods of evolution and have adapted to a cold and highly oxygenated Antarctic marine environment. While these species are considered an attractive model with which to study physiology and evolutionary adaptation, they are poorly characterized at the molecular level, and sequence information is lacking. The transcriptomes of the Antarctic fishes Notothenia coriiceps, Chaenocephalus aceratus, and Pleuragramma antarcticum were obtained by 454 FLX Titanium sequencing of a normalized cDNA library. More than 1,900,000 reads were assembled in a total of 71,539 contigs. Overall, 40% of the contigs were annotated based on similarity to known protein or nucleotide sequences, and more than 50% of the predicted transcripts were validated as full-length or putative full-length cDNAs. These three Antarctic fishes shared 663 genes expressed in the brain and 1,557 genes expressed in the liver. In addition, these cold-adapted fish expressed more Ub-conjugated proteins compared to temperate fish; Ub-conjugated proteins are involved in maintaining proteins in their native state in the cold and thermally stable Antarctic environments. Our transcriptome analysis of Antarctic notothenioid fish provides an archive for future studies in molecular mechanisms of fundamental genetic questions, and can be used in evolution studies comparing other fish.
Collapse
Affiliation(s)
- Seung Chul Shin
- Korea Polar Research Institute, Yeonsu-gu, Incheon, South Korea
| | - Su Jin Kim
- College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, South Korea
| | - Jong Kyu Lee
- Korea Polar Research Institute, Yeonsu-gu, Incheon, South Korea
| | - Do Hwan Ahn
- Korea Polar Research Institute, Yeonsu-gu, Incheon, South Korea
- University of Science & Technology, Yuseong-gu, Daejeon, South Korea
| | - Min Gyu Kim
- Korea Polar Research Institute, Yeonsu-gu, Incheon, South Korea
| | - Hyoungseok Lee
- Korea Polar Research Institute, Yeonsu-gu, Incheon, South Korea
| | - Jungeun Lee
- Korea Polar Research Institute, Yeonsu-gu, Incheon, South Korea
| | - Bum-Keun Kim
- Korea Food Research Institute, Bundang-gu, Sungnam, South Korea
| | - Hyun Park
- Korea Polar Research Institute, Yeonsu-gu, Incheon, South Korea
- University of Science & Technology, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
33
|
Gao Z, Luo W, Liu H, Zeng C, Liu X, Yi S, Wang W. Transcriptome analysis and SSR/SNP markers information of the blunt snout bream (Megalobrama amblycephala). PLoS One 2012; 7:e42637. [PMID: 22880060 PMCID: PMC3412804 DOI: 10.1371/journal.pone.0042637] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/09/2012] [Indexed: 11/23/2022] Open
Abstract
Background Blunt snout bream (Megalobrama amblycephala) is an herbivorous freshwater fish species native to China and has been recognized as a main aquaculture species in the Chinese freshwater polyculture system with high economic value. Right now, only limited EST resources were available for M. amblycephala. Recent advances in large-scale RNA sequencing provide a fast, cost-effective, and reliable approach to generate large expression datasets for functional genomic analysis, which is especially suitable for non-model species with un-sequenced genomes. Methodology and Principal Findings Using 454 pyrosequencing, a total of 1,409,706 high quality reads (total length 577 Mbp) were generated from the normalized cDNA of pooled M. amblycephala individuals. These sequences were assembled into 26,802 contigs and 73,675 singletons. After BLAST searches against the NCBI non-redundant (NR) and UniProt databases with an arbitrary expectation value of E−10, over 40,000 unigenes were functionally annotated and classified using the FunCat functional annotation scheme. A comparative genomics approach revealed a substantial proportion of genes expressed in M. amblycephala tanscriptome to be shared across the genomes of zebrafish, medaka, tetraodon, fugu, stickleback, human, mouse, and chicken, and identified a substantial number of potentially novel M. amblycephala genes. A total number of 4,952 SSRs were found and 116 polymorphic loci have been characterized. A significant number of SNPs (25,697) and indels (23,287) were identified based on specific filter criteria in the M. amblycephala. Conclusions This study is the first comprehensive transcriptome analysis for a fish species belonging to the genus Megalobrama. These large EST resources are expected to be valuable for the development of molecular markers, construction of gene-based linkage map, and large-scale expression analysis of M. amblycephala, as well as comparative genome analysis for the genus Megalobrama fish species. The identified SSR and SNP markers will greatly benefit its breeding program and whole genome association studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weimin Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|
34
|
Ma K, Qiu G, Feng J, Li J. Transcriptome analysis of the oriental river prawn, Macrobrachium nipponense using 454 pyrosequencing for discovery of genes and markers. PLoS One 2012; 7:e39727. [PMID: 22745820 PMCID: PMC3380025 DOI: 10.1371/journal.pone.0039727] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/25/2012] [Indexed: 12/02/2022] Open
Abstract
Background The oriental river prawn, Macrobrachium nipponense, is an economically and nutritionally important species of the Palaemonidae family of decapod crustaceans. To date, the sequencing of its whole genome is unavailable as a non-model organism. Transcriptomic information is also scarce for this species. In this study, we performed de novo transcriptome sequencing to produce the first comprehensive expressed sequence tag (EST) dataset for M. nipponense using high-throughput sequencing technologies. Methodology and Principal Findings Total RNA was isolated from eyestalk, gill, heart, ovary, testis, hepatopancreas, muscle, and embryos at the cleavage, gastrula, nauplius and zoea stages. Equal quantities of RNA from each tissue and stage were pooled to construct a cDNA library. Using 454 pyrosequencing technology, we generated a total of 984,204 high quality reads (338.59Mb) with an average length of 344 bp. Clustering and assembly of these reads produced a non-redundant set of 81,411 unique sequences, comprising 42,551 contigs and 38,860 singletons. All of the unique sequences were involved in the molecular function (30,425), cellular component (44,112) and biological process (67,679) categories by GO analysis. Potential genes and their functions were predicted by KEGG pathway mapping and COG analysis. Based on our sequence analysis and published literature, many putative genes involved in sex determination, including DMRT1, FTZ-F1, FOXL2, FEM1 and other potentially important candidate genes, were identified for the first time in this prawn. Furthermore, 6,689 SSRs and 18,107 high-confidence SNPs were identified in this EST dataset. Conclusions The transcriptome provides an invaluable new data for a functional genomics resource and future biological research in M. nipponense. The molecular markers identified in this study will provide a material basis for future genetic linkage and quantitative trait loci analyses, and will be essential for accelerating aquaculture breeding programs with this species.
Collapse
Affiliation(s)
- Keyi Ma
- Key laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, P. R. China
| | - Gaofeng Qiu
- Key laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, P. R. China
- E-Institute of Shanghai Universities, Shanghai Ocean University, Shanghai, P. R. China
- * E-mail: (GQ); (JL)
| | - Jianbin Feng
- Key laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, P. R. China
| | - Jiale Li
- Key laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, P. R. China
- E-Institute of Shanghai Universities, Shanghai Ocean University, Shanghai, P. R. China
- * E-mail: (GQ); (JL)
| |
Collapse
|
35
|
Tao X, Gu YH, Wang HY, Zheng W, Li X, Zhao CW, Zhang YZ. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam]. PLoS One 2012; 7:e36234. [PMID: 22558397 PMCID: PMC3338685 DOI: 10.1371/journal.pone.0036234] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 03/29/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Sweet potato (Ipomoea batatas L. [Lam.]) ranks among the top six most important food crops in the world. It is widely grown throughout the world with high and stable yield, strong adaptability, rich nutrient content, and multiple uses. However, little is known about the molecular biology of this important non-model organism due to lack of genomic resources. Hence, studies based on high-throughput sequencing technologies are needed to get a comprehensive and integrated genomic resource and better understanding of gene expression patterns in different tissues and at various developmental stages. METHODOLOGY/PRINCIPAL FINDINGS Illumina paired-end (PE) RNA-Sequencing was performed, and generated 48.7 million of 75 bp PE reads. These reads were de novo assembled into 128,052 transcripts (≥ 100 bp), which correspond to 41.1 million base pairs, by using a combined assembly strategy. Transcripts were annotated by Blast2GO and 51,763 transcripts got BLASTX hits, in which 39,677 transcripts have GO terms and 14,117 have ECs that are associated with 147 KEGG pathways. Furthermore, transcriptome differences of seven tissues were analyzed by using Illumina digital gene expression (DGE) tag profiling and numerous differentially and specifically expressed transcripts were identified. Moreover, the expression characteristics of genes involved in viral genomes, starch metabolism and potential stress tolerance and insect resistance were also identified. CONCLUSIONS/SIGNIFICANCE The combined de novo transcriptome assembly strategy can be applied to other organisms whose reference genomes are not available. The data provided here represent the most comprehensive and integrated genomic resources for cloning and identifying genes of interest in sweet potato. Characterization of sweet potato transcriptome provides an effective tool for better understanding the molecular mechanisms of cellular processes including development of leaves and storage roots, tissue-specific gene expression, potential biotic and abiotic stress response in sweet potato.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi-Zheng Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Center for Functional Genomics and Bioinformatics, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
36
|
Moreira R, Balseiro P, Planas JV, Fuste B, Beltran S, Novoa B, Figueras A. Transcriptomics of in vitro immune-stimulated hemocytes from the Manila clam Ruditapes philippinarum using high-throughput sequencing. PLoS One 2012; 7:e35009. [PMID: 22536348 PMCID: PMC3334963 DOI: 10.1371/journal.pone.0035009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/08/2012] [Indexed: 11/30/2022] Open
Abstract
Background The Manila clam (Ruditapes philippinarum) is a worldwide cultured bivalve species with important commercial value. Diseases affecting this species can result in large economic losses. Because knowledge of the molecular mechanisms of the immune response in bivalves, especially clams, is scarce and fragmentary, we sequenced RNA from immune-stimulated R. philippinarum hemocytes by 454-pyrosequencing to identify genes involved in their immune defense against infectious diseases. Methodology and Principal Findings High-throughput deep sequencing of R. philippinarum using 454 pyrosequencing technology yielded 974,976 high-quality reads with an average read length of 250 bp. The reads were assembled into 51,265 contigs and the 44.7% of the translated nucleotide sequences into protein were annotated successfully. The 35 most frequently found contigs included a large number of immune-related genes, and a more detailed analysis showed the presence of putative members of several immune pathways and processes like the apoptosis, the toll like signaling pathway and the complement cascade. We have found sequences from molecules never described in bivalves before, especially in the complement pathway where almost all the components are present. Conclusions This study represents the first transcriptome analysis using 454-pyrosequencing conducted on R. philippinarum focused on its immune system. Our results will provide a rich source of data to discover and identify new genes, which will serve as a basis for microarray construction and the study of gene expression as well as for the identification of genetic markers. The discovery of new immune sequences was very productive and resulted in a large variety of contigs that may play a role in the defense mechanisms of Ruditapes philippinarum.
Collapse
Affiliation(s)
- Rebeca Moreira
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Spain
| | - Pablo Balseiro
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Spain
| | - Josep V. Planas
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona i Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | - Berta Fuste
- Centros Científicos y Tecnológicos de la UB, Universitat de Barcelona, Barcelona, Spain
| | - Sergi Beltran
- Centros Científicos y Tecnológicos de la UB, Universitat de Barcelona, Barcelona, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Spain
- * E-mail:
| |
Collapse
|
37
|
Jung H, Lyons RE, Dinh H, Hurwood DA, McWilliam S, Mather PB. Transcriptomics of a giant freshwater prawn (Macrobrachium rosenbergii): de novo assembly, annotation and marker discovery. PLoS One 2011; 6:e27938. [PMID: 22174756 PMCID: PMC3234237 DOI: 10.1371/journal.pone.0027938] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/28/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Giant freshwater prawn (Macrobrachium rosenbergii or GFP), is the most economically important freshwater crustacean species. However, as little is known about its genome, 454 pyrosequencing of cDNA was undertaken to characterise its transcriptome and identify genes important for growth. METHODOLOGY AND PRINCIPAL FINDINGS A collection of 787,731 sequence reads (244.37 Mb) obtained from 454 pyrosequencing analysis of cDNA prepared from muscle, ovary and testis tissues taken from 18 adult prawns was assembled into 123,534 expressed sequence tags (ESTs). Of these, 46% of the 8,411 contigs and 19% of 115,123 singletons possessed high similarity to sequences in the GenBank non-redundant database, with most significant (E value < 1e(-5)) contig (80%) and singleton (84%) matches occurring with crustacean and insect sequences. KEGG analysis of the contig open reading frames identified putative members of several biological pathways potentially important for growth. The top InterProScan domains detected included RNA recognition motifs, serine/threonine-protein kinase-like domains, actin-like families, and zinc finger domains. Transcripts derived from genes such as actin, myosin heavy and light chain, tropomyosin and troponin with fundamental roles in muscle development and construction were abundant. Amongst the contigs, 834 single nucleotide polymorphisms, 1198 indels and 658 simple sequence repeats motifs were also identified. CONCLUSIONS The M. rosenbergii transcriptome data reported here should provide an invaluable resource for improving our understanding of this species' genome structure and biology. The data will also instruct future functional studies to manipulate or select for genes influencing growth that should find practical applications in aquaculture breeding programs.
Collapse
Affiliation(s)
- Hyungtaek Jung
- Biogeosciences, Queensland University of Technology, Brisbane, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
38
|
Sloan DB, Keller SR, Berardi AE, Sanderson BJ, Karpovich JF, Taylor DR. De novo transcriptome assembly and polymorphism detection in the flowering plant Silene vulgaris (Caryophyllaceae). Mol Ecol Resour 2011; 12:333-43. [PMID: 21999839 DOI: 10.1111/j.1755-0998.2011.03079.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Members of the angiosperm genus Silene are widely used in studies of ecology and evolution, but available genomic and population genetic resources within Silene remain limited. Deep transcriptome (i.e. expressed sequence tag or EST) sequencing has proven to be a rapid and cost-effective means to characterize gene content and identify polymorphic markers in non-model organisms. In this study, we report the results of 454 GS-FLX Titanium sequencing of a polyA-selected and normalized cDNA library from Silene vulgaris. The library was generated from a single pool of transcripts, combining RNA from leaf, root and floral tissue from three genetically divergent European subpopulations of S. vulgaris. A single full-plate 454 run produced 959,520 reads totalling 363.6 Mb of sequence data with an average read length of 379.0 bp after quality trimming and removal of custom library adaptors. We assembled 832,251 (86.7%) of these reads into 40,964 contigs, which have a total length of 25.4 Mb and can be organized into 18,178 graph-based clusters or 'isogroups'. Assembled sequences were annotated based on homology to genes in multiple public databases. Analysis of sequence variants identified 13,432 putative single-nucleotide polymorphisms (SNPs) and 1320 simple sequence repeats (SSRs) that are candidates for microsatellite analysis. Estimates of nucleotide diversity from 1577 contigs were used to generate genome-wide distributions that revealed several outliers with high diversity. All of these resources are publicly available through NCBI and/or our website (http://silenegenomics.biology.virginia.edu) and should provide valuable genomic and population genetic tools for the Silene research community.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Nie Q, Fang M, Jia X, Zhang W, Zhou X, He X, Zhang X. Analysis of muscle and ovary transcriptome of Sus scrofa: assembly, annotation and marker discovery. DNA Res 2011; 18:343-51. [PMID: 21729922 PMCID: PMC3190955 DOI: 10.1093/dnares/dsr021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pig (Sus scrofa) is an important organism for both agricultural and medical purpose. This study aims to investigate the S. scrofa transcriptome by the use of Roche 454 pyrosequencing. We obtained a total of 558 743 and 528 260 reads for the back-leg muscle and ovary tissue each. The overall 1 087 003 reads give rise to 421 767 341 bp total residues averaging 388 bp per read. The de novo assemblies yielded 11 057 contigs and 60 270 singletons for the back-leg muscle, 12 204 contigs and 70 192 singletons for the ovary and 18 938 contigs and 102 361 singletons for combined tissues. The overall GC content of S. scrofa transcriptome is 42.3% for assembled contigs. Alternative splicing was found within 4394 contigs, giving rise to 1267 isogroups or genes. A total of 56 589 transcripts are involved in molecular function (40 916), biological process (38 563), cellular component (35 787) by further gene ontology analyses. Comparison analyses showed that 336 and 553 genes had significant higher expression in the back-leg muscle and ovary each. In addition, we obtained a total of 24 214 single-nucleotide polymorphisms and 11 928 simple sequence repeats. These results contribute to the understanding of the genetic makeup of S. scrofa transcriptome and provide useful information for functional genomic research in future.
Collapse
Affiliation(s)
- Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|