1
|
Odendaal ML, de Steenhuijsen Piters WAA, Franz E, Chu MLJN, Groot JA, van Logchem EM, Hasrat R, Kuiling S, Pijnacker R, Mariman R, Trzciński K, van der Klis FRM, Sanders EAM, Smit LAM, Bogaert D, Bosch T. Host and environmental factors shape upper airway microbiota and respiratory health across the human lifespan. Cell 2024; 187:4571-4585.e15. [PMID: 39094567 DOI: 10.1016/j.cell.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
Our understanding of the normal variation in the upper respiratory tract (URT) microbiota across the human lifespan and how these relate to host, environment, and health is limited. We studied the microbiota of 3,104 saliva (<10 year-olds)/oropharynx (≥10 year-olds) and 2,485 nasopharynx samples of 3,160 Dutch individuals 0-87 years of age, participating in a cross-sectional population-wide study (PIENTER-3) using 16S-rRNA sequencing. The microbiota composition was strongly related to age, especially in the nasopharynx, with maturation occurring throughout childhood and adolescence. Clear niche- and age-specific associations were found between the microbiota composition and host/environmental factors and health outcomes. Among others, social interaction, sex, and season were associated with the nasopharyngeal microbial community. By contrast, the oral microbiota was more related to antibiotics, tobacco, and alcohol use. We present an atlas of the URT microbiota across the lifespan in association with environment and health, establishing a baseline for future research.
Collapse
Affiliation(s)
- Mari-Lee Odendaal
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mei Ling J N Chu
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - James A Groot
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Elske M van Logchem
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Raiza Hasrat
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sjoerd Kuiling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Roan Pijnacker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Rob Mariman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Krzysztof Trzciński
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Fiona R M van der Klis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Debby Bogaert
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
2
|
Kristinsdottir I, Haraldsson A, Thors V. Tonsillectomies are associated with an increased risk of meningococcal carriage. Infect Dis (Lond) 2024; 56:653-656. [PMID: 38757148 DOI: 10.1080/23744235.2024.2354310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Neisseria meningitidis is a commensal organism with the potential to cause life-threatening disease. Colonisation is most common in adolescence and young adulthood. Various social factors have been associated with an increased risk of meningococcal carriage, but less is known about host factors that may influence the carriage status. Tonsillectomies have been shown to alter the pharyngeal microflora. This study assessed whether a history of tonsillectomy affects the risk of meningococcal colonisation. METHODS Oropharyngeal swabs were collected from 15- to 16-year-old adolescents and 18- to 20-year-old young adults. Conventional culture methods and qPCR were used to detect meningococci. 16S qPCR was done to assess bacterial abundance in the samples. Data on history of tonsillectomies were collected from a central national database and the national university hospital. RESULTS A total of 722 samples were collected; 197 from adolescents and 525 from young adults. Thirty-five participants were colonised with meningococci (4.8%). Eighty-eight participants had undergone a tonsillectomy, of which 10 (11.4%) carried meningococci, compared to 4% of those that had not. Prior tonsillectomy was associated with a threefold increased risk of meningococcal colonisation (OR 3.10, 95% CI 1.44-6.70, p = 0.004). Tonsillectomies remained a risk factor after adjusting for age, sex, recent antibiotic use and meningococcal vaccinations (aOR 2.49, 95% CI 1.13-5.48, p = 0.024). CONCLUSIONS A history of tonsillectomy is associated with an increased risk of meningococcal colonisation. More studies are needed to shed light on the effects of tonsillectomies on the pharyngeal microbiome.
Collapse
Affiliation(s)
- Iris Kristinsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
| | - Asgeir Haraldsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
| | - Valtyr Thors
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
3
|
Missa KF, Diallo K, Bla KB, Tuo KJ, Gboko KDT, Tiémélé LS, Ouattara AF, Gragnon BG, Ngoi JM, Wilkinson RJ, Awandare GA, Bonfoh B. Association of symptomatic upper respiratory tract infections with the alteration of the oropharyngeal microbiome in a cohort of school children in Côte d'Ivoire. Front Microbiol 2024; 15:1412923. [PMID: 38993497 PMCID: PMC11238735 DOI: 10.3389/fmicb.2024.1412923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction The oropharyngeal microbiome plays an important role in protection against infectious agents when in balance. Despite use of vaccines and antibiotic therapy to prevent respiratory tract infections, they remain one of the major causes of mortality and morbidity in Low- and middle-income countries. Hence the need to explore other approaches to prevention by identifying microbial biomarkers that could be leveraged to modify the microbiota in order to enhance protection against pathogenic bacteria. The aim of this study was to analyze the oropharyngeal microbiome (OPM) of schoolchildren in Côte d'Ivoire presenting symptoms of upper respiratory tract infections (URTI) for better prevention strategy. Methods Primary schools' children in Korhogo (n = 37) and Abidjan (n = 39) were followed for six months with monthly oropharyngeal sampling. Clinical diagnostic of URT infection was performed and nucleic acid extracted from oropharyngeal swabs were used for 16S rRNA metagenomic analysis and RT-PCR. Results The clinical examination of children's throat in Abidjan and Korhogo identified respectively 17 (43.59%) and 15 (40.54%) participants with visible symptoms of URTIs, with 26 episodes of infection in Abidjan and 24 in Korhogo. Carriage of Haemophilus influenzae (12%), Streptococcus pneumoniae (6%) and SARS-CoV-2 (6%) was confirmed by PCR. A significant difference in alpha diversity was found between children colonized by S. pneumoniae and those that were not (p = 0.022). There was also a significant difference in alpha diversity between children colonised with H. influenzae and those who were not (p = 0.017). No significant difference was found for SARS-CoV-2. Sphingomonas, Ralstonia and Rothia were significantly enriched in non-carriers of S. pneumoniae; Actinobacillus was significantly enriched in non-carriers of H. influenzae; Actinobacillus and Porphyromonas were significantly enriched in non-carriers of SARS-CoV-2 (p < 0.001). Discussion Nearly 40% of children showed clinical symptoms of infection not related to geographical location. The OPM showed an imbalance during H. influenzae and S. pneumoniae carriage. This study provides a baseline understanding of microbiome markers in URTIs in children for future research, to develop targeted interventions aimed at restoring the microbial balance and reducing the symptoms associated with RTIs.
Collapse
Affiliation(s)
- Kouassi Firmin Missa
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny de Cocody, Abidjan, Côte d'Ivoire
| | - Kanny Diallo
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- West African Centre for Cell Biology of Infectious Pathogens, Accra, Ghana
| | - Kouakou Brice Bla
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny de Cocody, Abidjan, Côte d'Ivoire
| | - Kolotioloman Jérémie Tuo
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Laboratoire de Microbiologie, Biotechnologies et Bio-informatique, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Kossia Debia Thérèse Gboko
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Laurent-Simon Tiémélé
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Allassane Foungoye Ouattara
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Laboratoire de Cytologie et Biologie Animale, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Biego Guillaume Gragnon
- Laboratoire de Cytologie et Biologie Animale, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | | | - Robert J Wilkinson
- Laboratoire National d'Appui au Développement Agricole, Laboratoire Régional de Korhogo, Korhogo, Côte d'Ivoire
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Accra, Ghana
| | - Bassirou Bonfoh
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| |
Collapse
|
4
|
Saha B, A T R, Adhikary S, Banerjee A, Radhakrishnan AK, Duttaroy AK, Pathak S. Exploring the Relationship Between Diet, Lifestyle and Gut Microbiome in Colorectal Cancer Development: A Recent Update. Nutr Cancer 2024; 76:789-814. [PMID: 39207359 DOI: 10.1080/01635581.2024.2367266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. Despite advances in treatment modalities, its prevalence continues to rise, notably among younger populations. Unhealthy dietary habits, sedentary routines, and obesity have been identified as one of the key contributors to the development of colorectal cancer, apart from genetic and epigenetic modifications. Recognizing the profound impact of diet and lifestyle on the intricate gut microbiota ecosystem offers a promising avenue for understanding CRC development and its treatment. Gut dysbiosis, characterized by imbalances favoring harmful microbes over beneficial ones, has emerged as a defining feature of CRC. Changes in diet and lifestyle can profoundly alter the composition of gut microbes and the metabolites they produce, potentially contributing to CRC onset. Focusing on recent evidence, this review discussed various dietary factors, such as high consumption of red and processed meats and low fiber intake, and lifestyle factors, including obesity, lack of physical activity, smoking, and excessive alcohol consumption, that influence the gut microbiome composition and elevate CRC risk.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Rithi A T
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
5
|
Pol S, Kallonen T, Mäklin T, Sar P, Hopkins J, Soeng S, Miliya T, Ling CL, Bentley SD, Corander J, Turner P. Exploring the pediatric nasopharyngeal bacterial microbiota with culture-based MALDI-TOF mass spectrometry and targeted metagenomic sequencing. mBio 2024; 15:e0078424. [PMID: 38682956 PMCID: PMC11237702 DOI: 10.1128/mbio.00784-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
The nasopharynx is an important reservoir of disease-associated and antimicrobial-resistant bacterial species. This proof-of-concept study assessed the utility of a combined culture, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), and targeted metagenomic sequencing workflow for the study of the pediatric nasopharyngeal bacterial microbiota. Nasopharyngeal swabs and clinical metadata were collected from Cambodian children during a hospital outpatient visit and then biweekly for 12 weeks. Swabs were cultured on chocolate and blood-gentamicin agar, and all colony morphotypes were identified by MALDI-TOF MS. Metagenomic sequencing was done on a scrape of all colonies from a chocolate agar culture and processed using the mSWEEP pipeline. One hundred one children were enrolled, yielding 620 swabs. MALDI-TOF MS identified 106 bacterial species/40 genera: 20 species accounted for 88.5% (2,190/2,474) of isolates. Colonization by Moraxella catarrhalis (92.1% of children on ≥1 swab), Haemophilus influenzae (87.1%), and Streptococcus pneumoniae (83.2%) was particularly common. In S. pneumoniae-colonized children, a median of two serotypes [inter-quartile range (IQR) 1-2, range 1-4] was detected. For the 21 bacterial species included in the mSWEEP database and identifiable by MALDI-TOF, detection by culture + MALDI-TOF MS and culture + mSWEEP was highly concordant with a median species-level agreement of 96.9% (IQR 86.8%-98.8%). mSWEEP revealed highly dynamic lineage-level colonization patterns for S. pneumoniae which were quite different to those for S. aureus. A combined culture, MALDI-TOF MS, targeted metagenomic sequencing approach for the exploration of the young child nasopharyngeal microbiome was technically feasible, and each component yielded complementary data. IMPORTANCE The human upper respiratory tract is an important source of disease-causing and antibiotic-resistant bacteria. However, understanding the interactions and stability of these bacterial populations is technically challenging. We used a combination of approaches to determine colonization patterns over a 3-month period in 101 Cambodian children. The combined approach was feasible to implement, and each component gave complementary data to enable a better understanding of the complex patterns of bacterial colonization.
Collapse
Affiliation(s)
- Sreymom Pol
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Teemu Kallonen
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Tommi Mäklin
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Poda Sar
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Jill Hopkins
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Sona Soeng
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Thyl Miliya
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Clare L Ling
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | | | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Paciência I, Sharma N, Hugg TT, Rantala AK, Heibati B, Al-Delaimy WK, Jaakkola MS, Jaakkola JJ. The Role of Biodiversity in the Development of Asthma and Allergic Sensitization: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:66001. [PMID: 38935403 PMCID: PMC11218706 DOI: 10.1289/ehp13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Changes in land use and climate change have been reported to reduce biodiversity of both the environment and human microbiota. These reductions in biodiversity may lead to inadequate and unbalanced stimulation of immunoregulatory circuits and, ultimately, to clinical diseases, such as asthma and allergies. OBJECTIVE We summarized available empirical evidence on the role of inner (gut, skin, and airways) and outer (air, soil, natural waters, plants, and animals) layers of biodiversity in the development of asthma, wheezing, and allergic sensitization. METHODS We conducted a systematic search in SciVerse Scopus, PubMed MEDLINE, and Web of Science up to 5 March 2024 to identify relevant human studies assessing the relationships between inner and outer layers of biodiversity and the risk of asthma, wheezing, or allergic sensitization. The protocol was registered in PROSPERO (CRD42022381725). RESULTS A total of 2,419 studies were screened and, after exclusions and a full-text review of 447 studies, 82 studies were included in the comprehensive, final review. Twenty-nine studies reported a protective effect of outer layer biodiversity in the development of asthma, wheezing, or allergic sensitization. There were also 16 studies suggesting an effect of outer layer biodiversity on increasing asthma, wheezing, or allergic sensitization. However, there was no clear evidence on the role of inner layer biodiversity in the development of asthma, wheezing, and allergic sensitization (13 studies reported a protective effect and 15 reported evidence of an increased risk). CONCLUSIONS Based on the reviewed literature, a future systematic review could focus more specifically on outer layer biodiversity and asthma. It is unlikely that association with inner layer biodiversity would have enough evidence for systematic review. Based on this comprehensive review, there is a need for population-based longitudinal studies to identify critical periods of exposure in the life course into adulthood and to better understand mechanisms linking environmental exposures and changes in microbiome composition, diversity, and/or function to development of asthma and allergic sensitization. https://doi.org/10.1289/EHP13948.
Collapse
Affiliation(s)
- Inês Paciência
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Needhi Sharma
- University of California, San Diego, San Diego, California, USA
| | - Timo T. Hugg
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aino K. Rantala
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Behzad Heibati
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Maritta S. Jaakkola
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jouni J.K. Jaakkola
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Finnish Meteorological Institute, Helsinki, Finland
| |
Collapse
|
7
|
McCauley KE, Durack J, Lynch KV, Fadrosh DW, Fujimura KE, Vundla F, Özçam M, LeBeau P, Caltroni A, Burns P, Tran HT, Bacharier LB, Kattan M, O'Connor GT, Wood RA, Togias A, Boushey HA, Jackson DJ, Gern JE, Lynch SV. Early-life nasal microbiota dynamics relate to longitudinal respiratory phenotypes in urban children. J Allergy Clin Immunol 2024; 153:1563-1573. [PMID: 38423369 PMCID: PMC11162315 DOI: 10.1016/j.jaci.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Five distinct respiratory phenotypes based on latent classes of longitudinal patterns of wheezing, allergic sensitization. and pulmonary function measured in urban children from ages from 0 to 7 years have previously been described. OBJECTIVE Our aim was to determine whether distinct respiratory phenotypes are associated with early-life upper respiratory microbiota development and environmental microbial exposures. METHODS Microbiota profiling was performed using 16S ribosomal RNA-based sequencing of nasal samples collected at age 12 months (n = 120) or age 36 months (n = 142) and paired house dust samples collected at 3 months (12-month, n = 73; 36-month, n = 90) from all 4 centers in the Urban Environment and Childhood Asthma (URECA) cohort. RESULTS In these high-risk urban children, nasal microbiota increased in diversity between ages 12 and 36 months (ß = 2.04; P = .006). Age-related changes in microbiota evenness differed significantly by respiratory phenotypes (interaction P = .0007), increasing most in the transient wheeze group. At age 12 months, respiratory illness (R2 = 0.055; P = .0001) and dominant bacterial genus (R2 = 0.59; P = .0001) explained variance in nasal microbiota composition, and enrichment of Moraxella and Haemophilus members was associated with both transient and high-wheeze respiratory phenotypes. By age 36 months, nasal microbiota was significantly associated with respiratory phenotypes (R2 = 0.019; P = .0376), and Moraxella-dominated microbiota was associated specifically with atopy-associated phenotypes. Analysis of paired house dust and nasal samples indicated that 12 month olds with low wheeze and atopy incidence exhibited the largest number of shared bacterial taxa with their environment. CONCLUSION Nasal microbiota development over the course of early childhood and composition at age 3 years are associated with longitudinal respiratory phenotypes. These data provide evidence supporting an early-life window of airway microbiota development that is influenced by environmental microbial exposures in infancy and associates with wheeze- and atopy-associated respiratory phenotypes through age 7 years.
Collapse
Affiliation(s)
- Kathryn E McCauley
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Juliana Durack
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Kole V Lynch
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Douglas W Fadrosh
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Kei E Fujimura
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Faith Vundla
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Mustafa Özçam
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | | | | | | | | | - Leonard B Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine in St Louis, St Louis, Mo
| | - Meyer Kattan
- Department of Pediatrics, Columbia University, New York, NY
| | - George T O'Connor
- Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Robert A Wood
- Departments of Pediatrics and Allergy and Immunology, Johns Hopkins University, Baltimore, Md
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Homer A Boushey
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| | - Susan V Lynch
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif.
| |
Collapse
|
8
|
Xu K, Yan Z, Tao C, Wang F, Zheng X, Ma Y, Sun Y, Zheng Y, Jia Z. A novel bioprospecting strategy via 13C-based high-throughput probing of active methylotrophs inhabiting oil reservoir surface soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171686. [PMID: 38485026 DOI: 10.1016/j.scitotenv.2024.171686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Methane-oxidizing bacteria (MOB) have long been considered as a microbial indicator for oil and gas prospecting. However, due to the phylogenetically narrow breath of ecophysiologically distinct MOB, classic culture-dependent approaches could not discriminate MOB population at fine resolution, and accurately reflect the abundance of active MOB in the soil above oil and gas reservoirs. Here, we presented a novel microbial anomaly detection (MAD) strategy to quantitatively identify specific indicator methylotrophs in the surface soils for bioprospecting oil and gas reservoirs by using a combination of 13C-DNA stable isotope probing (SIP), high-throughput sequencing (HTS), quantitative PCR (qPCR) and geostatistical analysis. The Chunguang oilfield of the Junggar Basin was selected as a model system in western China, and type I methanotrophic Methylobacter was most active in the topsoil above the productive oil wells, while type II methanotrophic Methylosinus predominated in the dry well soils, exhibiting clear differences between non- and oil reservoir soils. Similar results were observed by quantification of Methylobacter pmoA genes as a specific bioindicator for the prediction of unknown reservoirs by grid sampling. A microbial anomaly distribution map based on geostatistical analysis further showed that the anomalous zones were highly consistent with petroleum, geological and seismic data, and validated by subsequent drilling. Over seven years, a total of 24 wells have been designed and drilled into the targeted anomaly, and the success rate via the MAD prospecting strategy was 83 %. Our results suggested that molecular techniques are powerful tools for oil and gas prospecting. This study indicates that the exploration efficiency could be significantly improved by integrating multi-disciplinary information in geophysics and geomicrobiology while reducing the drilling risk to a greater extent.
Collapse
Affiliation(s)
- Kewei Xu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China.
| | - Zhengfei Yan
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cheng Tao
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuying Zheng
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China
| | - Yuanyuan Ma
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China
| | - Yongge Sun
- Department of Earth Science, Zhejiang University, Hangzhou 310027, China
| | - Yan Zheng
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Black Soils Conservation and Utilization, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
9
|
Harris-Jones TN, Chan JM, Hackett KT, Weyand NJ, Schaub RE, Dillard JP. Peptidoglycan fragment release and NOD activation by commensal Neisseria species from humans and other animals. Infect Immun 2024; 92:e0000424. [PMID: 38563734 PMCID: PMC11075463 DOI: 10.1128/iai.00004-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Neisseria gonorrhoeae, a human restricted pathogen, releases inflammatory peptidoglycan (PG) fragments that contribute to the pathophysiology of pelvic inflammatory disease. The genus Neisseria is also home to multiple species of human- or animal-associated Neisseria that form part of the normal microbiota. Here we characterized PG release from the human-associated nonpathogenic species Neisseria lactamica and Neisseria mucosa and animal-associated Neisseria from macaques and wild mice. An N. mucosa strain and an N. lactamica strain were found to release limited amounts of the proinflammatory monomeric PG fragments. However, a single amino acid difference in the PG fragment permease AmpG resulted in increased PG fragment release in a second N. lactamica strain examined. Neisseria isolated from macaques also showed substantial release of PG monomers. The mouse colonizer Neisseria musculi exhibited PG fragment release similar to that seen in N. gonorrhoeae with PG monomers being the predominant fragments released. All the human-associated species were able to stimulate NOD1 and NOD2 responses. N. musculi was a poor inducer of mouse NOD1, but ldcA mutation increased this response. The ability to genetically manipulate N. musculi and examine effects of different PG fragments or differing amounts of PG fragments during mouse colonization will lead to a better understanding of the roles of PG in Neisseria infections. Overall, we found that only some nonpathogenic Neisseria have diminished release of proinflammatory PG fragments, and there are differences even within a species as to types and amounts of PG fragments released.
Collapse
Affiliation(s)
- Tiffany N. Harris-Jones
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jia Mun Chan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kathleen T. Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan J. Weyand
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Peters S, Mohort K, Claus H, Stigloher C, Schubert-Unkmeir A. Interaction of Neisseria meningitidis carrier and disease isolates of MenB cc32 and MenW cc22 with epithelial cells of the nasopharyngeal barrier. Front Cell Infect Microbiol 2024; 14:1389527. [PMID: 38756230 PMCID: PMC11096551 DOI: 10.3389/fcimb.2024.1389527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Neisseria meningitidis (Nm, the meningococcus) is considered an asymptomatic colonizer of the upper respiratory tract and a transient member of its microbiome. It is assumed that the spread of N. meningitidis into the bloodstream occurs via transcytosis of the nasopharyngeal epithelial barrier without destroying the barrier layer. Here, we used Calu-3 respiratory epithelial cells that were grown under air-liquid-interface conditions to induce formation of pseudostratified layers and mucus production. The number of bacterial localizations in the outer mucus, as well as cellular adhesion, invasion and transmigration of different carrier and disease N. meningitidis isolates belonging to MenB:cc32 and MenW:cc22 lineages was assessed. In addition, the effect on barrier integrity and cytokine release was determined. Our findings showed that all strains tested resided primarily in the outer mucus layer after 24 h of infection (>80%). Nonetheless, both MenB:cc32 and MenW:cc22 carrier and disease isolates reached the surface of the epithelial cells and overcame the barrier. Interestingly, we observed a significant difference in the number of bacteria transmigrating the epithelial cell barrier, with the representative disease isolates being more efficient to transmigrate compared to carrier isolates. This could be attributed to the capacity of the disease isolates to invade, however could not be assigned to expression of the outer membrane protein Opc. Moreover, we found that the representative meningococcal isolates tested in this study did not damage the epithelial barrier, as shown by TEER measurement, FITC-dextran permeability assays, and expression of cell-junction components.
Collapse
Affiliation(s)
- Simon Peters
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Katherina Mohort
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
11
|
Smulders T, Van Der Schee MP, Maitland-Van Der Zee AH, Dikkers FG, Van Drunen CM. Influence of the gut and airway microbiome on asthma development and disease. Pediatr Allergy Immunol 2024; 35:e14095. [PMID: 38451070 DOI: 10.1111/pai.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
There are ample data to suggest that early-life dysbiosis of both the gut and/or airway microbiome can predispose a child to develop along a trajectory toward asthma. Although individual studies show clear associations between dysbiosis and asthma development, it is less clear what (collection of) bacterial species is mechanistically responsible for the observed effects. This is partly due to issues related to the asthma diagnosis and the broad spectrum of anatomical sites, sample techniques, and analysis protocols that are used in different studies. Moreover, there is limited attention for potential differences in the genetics of individuals that would affect the outcome of the interaction between the environment and that individual. Despite these challenges, the first bacterial components were identified that are able to affect the transcriptional state of human cells, ergo the immune system. Such molecules could in the future be the basis for intervention studies that are now (necessarily) restricted to a limited number of bacterial species. For this transition, it might be prudent to develop an ex vivo human model of a local mucosal immune system to better and safer explore the impact of such molecules. With this approach, we might move beyond association toward understanding of causality.
Collapse
Affiliation(s)
- Tamar Smulders
- Department of Otorhinolaryngology/Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Paediatric Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Marc P Van Der Schee
- Department of Paediatric Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Anke H Maitland-Van Der Zee
- Department of Paediatric Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Frederik G Dikkers
- Department of Otorhinolaryngology/Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cornelis M Van Drunen
- Department of Otorhinolaryngology/Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Yarlagadda T, Zhu Y, Snape N, Carey A, Bryan E, Maresco-Pennisi D, Coleman A, Cervin A, Spann K. Lactobacillus rhamnosus dampens cytokine and chemokine secretion from primary human nasal epithelial cells infected with rhinovirus. J Appl Microbiol 2024; 135:lxae018. [PMID: 38268489 DOI: 10.1093/jambio/lxae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
AIMS To investigate the effect of Lactobacillus rhamnosus on viral replication and cellular response to human rhinovirus (HRV) infection, including the secretion of antiviral and inflammatory mediators from well-differentiated nasal epithelial cells (WD-NECs). METHODS AND RESULTS The WD-NECs from healthy adult donors (N = 6) were cultured in vitro, exposed to different strains of L. rhamnosus (D3189, D3160, or LB21), and infected with HRV (RV-A16) after 24 h. Survival and adherence capacity of L. rhamnosus in a NEC environment were confirmed using CFSE-labelled isolates, immunofluorescent staining, and confocal microscopy. Shed virus and viral replication were quantified using TCID50 assays and RT-qPCR, respectively. Cytotoxicity was measured by lactate dehydrogenase (LDH) activity. Pro-inflammatory mediators were measured by multiplex immunoassay, and interferon (IFN)-λ1/3 was measured using a standard ELISA kit. Lactobacillus rhamnosus was able to adhere to and colonize WD-NECs prior to the RV-A16 infection. Lactobacillus rhamnosus did not affect shed RV-A16, viral replication, RV-A16-induced IFN-λ1/3 production, or LDH release. Pre-exposure to L. rhamnosus, particularly D3189, reduced the secretion of RV-A16-induced pro-inflammatory mediators by WD-NECs. CONCLUSIONS These findings demonstrate that L. rhamnosus differentially modulates RV-A16-induced innate inflammatory immune responses in primary NECs from healthy adults.
Collapse
Affiliation(s)
- Tejasri Yarlagadda
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane 4000, Australia
| | - Yanshan Zhu
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Australia
| | - Natale Snape
- University of Queensland Frazer Institute, Woolloongabba 4102, Australia
| | - Alison Carey
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane 4000, Australia
| | - Emily Bryan
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane 4000, Australia
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Herston 4006, Australia
| | - Diane Maresco-Pennisi
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Herston 4006, Australia
| | - Andrea Coleman
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Herston 4006, Australia
| | - Anders Cervin
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Herston 4006, Australia
| | - Kirsten Spann
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
13
|
Miellet WR, Mariman R, van Veldhuizen J, Badoux P, Wijmenga-Monsuur AJ, Litt D, Bosch T, Miller E, Fry NK, van Houten MA, Rots NY, Sanders EAM, Trzciński K. Impact of age on pneumococcal colonization of the nasopharynx and oral cavity: an ecological perspective. ISME COMMUNICATIONS 2024; 4:ycae002. [PMID: 38390521 PMCID: PMC10881297 DOI: 10.1093/ismeco/ycae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Pneumococcal carriage studies have suggested that pneumococcal colonization in adults is largely limited to the oral cavity and oropharynx. In this study, we used total abundance-based β-diversity (dissimilarity) and β-diversity components to characterize age-related differences in pneumococcal serotype composition of respiratory samples. quantitative PCR (qPCR) was applied to detect pneumococcal serotypes in nasopharyngeal samples collected from 946 toddlers and 602 adults, saliva samples collected from a subset of 653 toddlers, and saliva and oropharyngeal samples collected from a subset of 318 adults. Bacterial culture rates from nasopharyngeal samples were used to characterize age-related differences in rates of colonizing bacteria. Dissimilarity in pneumococcal serotype composition was low among saliva and nasopharyngeal samples from children. In contrast, respiratory samples from adults exhibited high serotype dissimilarity, which predominantly consisted of abundance gradients and was associated with reduced nasopharyngeal colonization. Age-related serotype dissimilarity was high among nasopharyngeal samples and relatively low for saliva samples. Reduced nasopharyngeal colonization by pneumococcal serotypes coincided with significantly reduced Moraxella catarrhalis and Haemophilus influenzae and increased Staphylococcus aureus nasopharyngeal colonization rates among adults. Findings from this study suggest that within-host environmental conditions, utilized in the upper airways by pneumococcus and other bacteria, undergo age-related changes. It may result in a host-driven ecological succession of bacterial species colonizing the nasopharynx and lead to competitive exclusion of pneumococcus from the nasopharynx but not from the oral habitat. This explains the poor performance of nasopharyngeal samples for pneumococcal carriage among adults and indicates that in adults saliva more accurately represents the epidemiology of pneumococcal carriage than nasopharyngeal samples.
Collapse
Affiliation(s)
- Willem R Miellet
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht (UMCU), Wilhelmina Children's Hospital, Utrecht, 3584 CX, The Netherlands
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Rob Mariman
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Janieke van Veldhuizen
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Paul Badoux
- Regional Laboratory of Public Health (Streeklab) Haarlem, Haarlem, 2035 RC, The Netherlands
| | - Alienke J Wijmenga-Monsuur
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - David Litt
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU) and Immunisation and Vaccine Preventable Diseases Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | - Thijs Bosch
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Elizabeth Miller
- School of Hygiene and Tropical Medicine, Department of Infectious Disease Epidemiology, London, WC1E 7HT, United Kingdom
| | - Norman K Fry
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU) and Immunisation and Vaccine Preventable Diseases Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | | | - Nynke Y Rots
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Elisabeth A M Sanders
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht (UMCU), Wilhelmina Children's Hospital, Utrecht, 3584 CX, The Netherlands
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht (UMCU), Wilhelmina Children's Hospital, Utrecht, 3584 CX, The Netherlands
| |
Collapse
|
14
|
Mustafa AS, Habibi N. Spatial Variations in the Nasal Microbiota of Staff Working in a Healthcare-Associated Research Core Facility. Med Princ Pract 2023; 33:66-73. [PMID: 38147830 PMCID: PMC10896616 DOI: 10.1159/000535983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
OBJECTIVE Workers in the healthcare sector are exposed to a multitude of bacterial genera. The location of their work contributes significantly to shaping personal microbiomes. In this study, we investigated the role of the workspace on the nasal bacteriome of staff working in a healthcare-associated research facility. METHODS The anterior nares of 10 staff working in different laboratories on the ground and first floor of the research facility were aseptically swabbed. Genomic DNA from each sample was used to amplify the V3 and V4 regions of the 16S rRNA gene. The amplified products were sequenced using the MiSeq sequencer (Illumina). Operational taxonomic units were filtered through MG-RAST v.3.6. Taxonomic profiling and visualizations were performed in MicrobiomeAnalyst v2.0. RESULTS The Wilcoxson Sum test at median abundances (p < 0.05) indicated that seven taxa (Micromonosporaceae, Micromonospora, Lactobacillaceae, Lactobacillus, Betaproteobacteria, Burkholderiales, Pectobacterium) were significantly diverse between ground-floor and first-floor workers. The analysis of similarity coefficient was 0.412 (p < 0.03) between the ground and the first-floor workers. Random forest analysis predicted 15 features that were significantly different (p < 0.05) in individuals working in different laboratories. Species richness and evenness also differed according to the placement of individuals in respective laboratories. CONCLUSION These findings add to the knowledge that the healthcare support staff are at a speculated occupational risk. A slight shift in the abundances of bacterial genera and species might lead to unwanted consequences. Continual monitoring is thus warranted.
Collapse
Affiliation(s)
- Abu Salim Mustafa
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Nazima Habibi
- OMICS Research Unit and Research Core Facility, College of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
- Current address: Biotechnology Program, Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| |
Collapse
|
15
|
Devi P, Kumari P, Yadav A, Tarai B, Budhiraja S, Shamim U, Pandey R. Longitudinal study across SARS-CoV-2 variants identifies transcriptionally active microbes (TAMs) associated with Delta severity. iScience 2023; 26:107779. [PMID: 37701571 PMCID: PMC10493601 DOI: 10.1016/j.isci.2023.107779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Emergence of new SARS-CoV-2 VOCs jeopardize global vaccine and herd immunity safeguards. VOCs interactions with host microbiota might affect clinical course and outcome. This longitudinal investigation involving Pre-VOC and VOCs (Delta & Omicron) holo-transcriptome based nasopharyngeal microbiome at taxonomic levels followed by metabolic pathway analysis and integrative host-microbiome interaction. VOCs showed enrichment of Proteobacteria with dominance of Pseudomonas. Interestingly, Proteobacteria with superiority of Pseudomonas and Acinetobacter, were highlights of Delta VOC rather than Omicron. Common species comprising the core microbiome across all variants, reiterated the significance of Klebsiella pneumoniae in Delta, and its association with metabolic pathways enhancing inflammation in patients. Microbe-host gene correlation network revealed Acinetobacter baumannii, Pseudomonas stutzeri, and Pseudomonas aeuroginosa modulating immune pathways, which might augment clinical severity in Delta. Importantly, opportunistic species of Acinetobacter, Enterococcus, Prevotella, and Streptococcus were abundant in Delta-mortality. The study establishes a functional association between elevated nasal pathobionts and dysregulated host response, particularly for Delta.
Collapse
Affiliation(s)
- Priti Devi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pallawi Kumari
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Aanchal Yadav
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Uzma Shamim
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Kloepfer KM, Kennedy JL. Childhood respiratory viral infections and the microbiome. J Allergy Clin Immunol 2023; 152:827-834. [PMID: 37607643 PMCID: PMC10592030 DOI: 10.1016/j.jaci.2023.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
The human microbiome associated with the respiratory tract is diverse, heterogeneous, and dynamic. The diversity and complexity of the microbiome and the interactions between microorganisms, host cells, and the host immune system are complex and multifactorial. Furthermore, the lymphatics provide a direct highway, the gut-lung axis, for the gut microbiome to affect outcomes related to respiratory disease and the host immune response. Viral infections in the airways can also alter the presence or absence of bacterial species, which might increase the risks for allergies and asthma. Viruses infect the airway epithelium and interact with the host to promote inflammatory responses that can trigger a wheezing illness. This immune response may alter the host's immune response to microbes and allergens, leading to T2 inflammation. However, exposure to specific bacteria may also tailor the host's response long before the virus has infected the airway. The frequency of viral infections, age at infection, sampling season, geographic location, population differences, and preexisting composition of the microbiota have all been linked to changes in microbiota diversity and stability. This review aims to evaluate the current reported evidence for microbiome interactions and the influences that viral infection may have on respiratory and gut microbiota, affecting respiratory outcomes in children.
Collapse
Affiliation(s)
- Kirsten M Kloepfer
- Pulmonology, Allergy/Immunology, and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind.
| | - Joshua L Kennedy
- Pulmonology, Allergy, and Critical Care Medicine, University of Arkansas for Medical Sciences, Little Rock, Ark; Allergy and Immunology, Department of Pediatrics, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Ark; Arkansas Children's Research Institute, Little Rock, Ark
| |
Collapse
|
17
|
Paulo AC, Lança J, Almeida ST, Hilty M, Sá-Leão R. The upper respiratory tract microbiota of healthy adults is affected by Streptococcus pneumoniae carriage, smoking habits, and contact with children. MICROBIOME 2023; 11:199. [PMID: 37658443 PMCID: PMC10474643 DOI: 10.1186/s40168-023-01640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND The microbiota of the upper respiratory tract is increasingly recognized as a gatekeeper of respiratory health. Despite this, the microbiota of healthy adults remains understudied. To address this gap, we investigated the composition of the nasopharyngeal and oropharyngeal microbiota of healthy adults, focusing on the effect of Streptococcus pneumoniae carriage, smoking habits, and contact with children. RESULTS Differential abundance analysis indicated that the microbiota of the oropharynx was significantly different from that of the nasopharynx (P < 0.001) and highly discriminated by a balance between the classes Negativicutes and Bacilli (AUC of 0.979). Moreover, the oropharynx was associated with a more homogeneous microbiota across individuals, with just two vs. five clusters identified in the nasopharynx. We observed a shift in the nasopharyngeal microbiota of carriers vs. noncarriers with an increased relative abundance of Streptococcus, which summed up to 30% vs. 10% in noncarriers and was not mirrored in the oropharynx. The oropharyngeal microbiota of smokers had a lower diversity than the microbiota of nonsmokers, while no differences were observed in the nasopharyngeal microbiota. In particular, the microbiota of smokers, compared with nonsmokers, was enriched (on average 16-fold) in potential pathogenic taxa involved in periodontal diseases of the genera Bacillus and Burkholderia previously identified in metagenomic studies of cigarettes. The microbiota of adults with contact with children resembled the microbiota of children. Specifically, the nasopharyngeal microbiota of these adults had, on average, an eightfold increase in relative abundance in Streptococcus sp., Moraxella catarrhalis, and Haemophilus influenzae, pathobionts known to colonize the children's upper respiratory tract, and a fourfold decrease in Staphylococcus aureus and Staphylococcus lugdunensis. CONCLUSIONS Our study showed that, in adults, the presence of S. pneumoniae in the nasopharynx is associated with a shift in the microbiota and dominance of the Streptococcus genus. Furthermore, we observed that smoking habits are associated with an increase in bacterial genera commonly linked to periodontal diseases. Interestingly, our research also revealed that adults who have regular contact with children have a microbiota enriched in pathobionts frequently carried by children. These findings collectively contribute to a deeper understanding of how various factors influence the upper respiratory tract microbiota in adults. Video Abstract.
Collapse
Affiliation(s)
- A Cristina Paulo
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - João Lança
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sónia T Almeida
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Markus Hilty
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Raquel Sá-Leão
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
18
|
Bowdish DM, Rossi L, Loeb M, Johnstone J, Schenck LP, Fontes M, Surette MG, Whelan FJ. The impact of respiratory infections and probiotic use on the nasal microbiota of frail residents in long-term care homes. ERJ Open Res 2023; 9:00212-2023. [PMID: 37753289 PMCID: PMC10518876 DOI: 10.1183/23120541.00212-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 09/28/2023] Open
Abstract
Background Residents in long-term care homes, who tend to be of advanced age and frail, are at increased risk of respiratory infections. The respiratory microbiota is known to change with age, but whether these changes contribute to the risk of infection is not known. Our goal was to determine how the nasal microbiota of frail older adults changes during symptoms of influenza-like illness (ILI) and how this may be impacted by enrolment in a placebo-controlled trial testing the feasibility of administering a Lactobacillus rhamnosus GG probiotic to prevent respiratory infection (2014-2017). Methods The microbiome of the nasal (mid-turbinate) of 150 residents of long-term care homes was interrogated using 16S rRNA gene sequencing. Results We identified a diverse and individualised microbiota which could be separated into nine distinct clusters based on Bray-Curtis distances. Samples collected during symptoms of ILI differed statistically from those collected pre- and post-cold and influenza season, and we observed decreased temporal stability (as measured by movement between clusters) in individuals who experienced ILI compared to those who did not. Conclusions The use of probiotics decreased ILI-induced changes to the microbiota; however, it is not clear whether this decrease is sufficient to prevent respiratory illness.
Collapse
Affiliation(s)
- Dawn M.E. Bowdish
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Laura Rossi
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Mark Loeb
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jennie Johnstone
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Louis P. Schenck
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Michelle Fontes
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Michael G. Surette
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Fiona J. Whelan
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
19
|
Graham AS, Ben-Azu B, Tremblay MÈ, Torre P, Senekal M, Laughton B, van der Kouwe A, Jankiewicz M, Kaba M, Holmes MJ. A review of the auditory-gut-brain axis. Front Neurosci 2023; 17:1183694. [PMID: 37600010 PMCID: PMC10435389 DOI: 10.3389/fnins.2023.1183694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Hearing loss places a substantial burden on medical resources across the world and impacts quality of life for those affected. Further, it can occur peripherally and/or centrally. With many possible causes of hearing loss, there is scope for investigating the underlying mechanisms involved. Various signaling pathways connecting gut microbes and the brain (the gut-brain axis) have been identified and well established in a variety of diseases and disorders. However, the role of these pathways in providing links to other parts of the body has not been explored in much depth. Therefore, the aim of this review is to explore potential underlying mechanisms that connect the auditory system to the gut-brain axis. Using select keywords in PubMed, and additional hand-searching in google scholar, relevant studies were identified. In this review we summarize the key players in the auditory-gut-brain axis under four subheadings: anatomical, extracellular, immune and dietary. Firstly, we identify important anatomical structures in the auditory-gut-brain axis, particularly highlighting a direct connection provided by the vagus nerve. Leading on from this we discuss several extracellular signaling pathways which might connect the ear, gut and brain. A link is established between inflammatory responses in the ear and gut microbiome-altering interventions, highlighting a contribution of the immune system. Finally, we discuss the contribution of diet to the auditory-gut-brain axis. Based on the reviewed literature, we propose numerous possible key players connecting the auditory system to the gut-brain axis. In the future, a more thorough investigation of these key players in animal models and human research may provide insight and assist in developing effective interventions for treating hearing loss.
Collapse
Affiliation(s)
- Amy S. Graham
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Peter Torre
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA, United States
| | - Marjanne Senekal
- Department of Human Biology, Division of Physiological Sciences, University of Cape Town, Cape Town, South Africa
| | - Barbara Laughton
- Family Clinical Research Unit, Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Andre van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Marcin Jankiewicz
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Mamadou Kaba
- Department of Pathology, Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Martha J. Holmes
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
20
|
Cai S, Gao J, Liu X, Yang J, Feng D, Li G, Li S, Yang H, Wang Z, Yi X, Zhou Y. Seasonal Dynamics of the Upper Respiratory Tract Microbiome in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:1267-1276. [PMID: 37362620 PMCID: PMC10290470 DOI: 10.2147/copd.s403198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Increasing evidence suggests that seasonal changes can trigger the alternation of airway microbiome. However, the dynamics of the upper airway bacterial ecology of chronic obstructive pulmonary disease (COPD) patients across different seasons remains unclear. Methods In this study, we present a 16S ribosomal RNA survey of the airway microbiome on 72 swab samples collected in different months (March, May, July, September, and November) in 2019 from 18 COPD patients and from six resampled patients in November in 2020. Results Our study uncovered a dynamic airway microbiota where changes appeared to be associated with seasonal alternation in COPD patients. Twelve clusters of temporal patterns were displayed by differential and clustering analysis along the time course, systematically revealing distinct microbial taxa that prefer to grow in cool and warm seasons, respectively. Moreover, the upper airway microbiome composition was relatively stable in the same season in different years. Discussion Given the tight association between airway microbiome and COPD disease progression, this study can provide useful information for clinically understanding the seasonal trend of disease phenotypes in COPD patients.
Collapse
Affiliation(s)
- Shuping Cai
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guang Dong, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, the Seventh Affiliated Hospital of SUN YAT-SEN University, Shenzhen, Guang Dong, People’s Republic of China
| | - Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, People’s Republic of China
| | - Xiaomin Liu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, People’s Republic of China
| | - Junhao Yang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, People’s Republic of China
| | - Dingyun Feng
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guang Dong, People’s Republic of China
| | - Guijun Li
- Department of Pulmonary and Critical Care Medicine, the Seventh Affiliated Hospital of SUN YAT-SEN University, Shenzhen, Guang Dong, People’s Republic of China
| | - Sijia Li
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guang Dong, People’s Republic of China
| | - Hailing Yang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guang Dong, People’s Republic of China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, People’s Republic of China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, People’s Republic of China
| | - Yuqi Zhou
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guang Dong, People’s Republic of China
| |
Collapse
|
21
|
Gierse LC, Meene A, Skorka S, Cuypers F, Surabhi S, Ferrero-Bordera B, Kreikemeyer B, Becher D, Hammerschmidt S, Siemens N, Urich T, Riedel K. Impact of Pneumococcal and Viral Pneumonia on the Respiratory and Intestinal Tract Microbiomes of Mice. Microbiol Spectr 2023; 11:e0344722. [PMID: 36988458 PMCID: PMC10269894 DOI: 10.1128/spectrum.03447-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
With 2.56 million deaths worldwide annually, pneumonia is one of the leading causes of death. The most frequent causative pathogens are Streptococcus pneumoniae and influenza A virus. Lately, the interaction between the pathogens, the host, and its microbiome have gained more attention. The microbiome is known to promote the immune response toward pathogens; however, our knowledge on how infections affect the microbiome is still scarce. Here, the impact of colonization and infection with S. pneumoniae and influenza A virus on the structure and function of the respiratory and gastrointestinal microbiomes of mice was investigated. Using a meta-omics approach, we identified specific differences between the bacterial and viral infection. Pneumococcal colonization had minor effects on the taxonomic composition of the respiratory microbiome, while acute infections caused decreased microbial complexity. In contrast, richness was unaffected following H1N1 infection. Within the gastrointestinal microbiome, we found exclusive changes in structure and function, depending on the pathogen. While pneumococcal colonization had no effects on taxonomic composition of the gastrointestinal microbiome, increased abundance of Akkermansiaceae and Spirochaetaceae as well as decreased amounts of Clostridiaceae were exclusively found during invasive S. pneumoniae infection. The presence of Staphylococcaceae was specific for viral pneumonia. Investigation of the intestinal microbiomés functional composition revealed reduced expression of flagellin and rubrerythrin and increased levels of ATPase during pneumococcal infection, while increased amounts of acetyl coenzyme A (acetyl-CoA) acetyltransferase and enoyl-CoA transferase were unique after H1N1 infection. In conclusion, identification of specific taxonomic and functional profiles of the respiratory and gastrointestinal microbiome allowed the discrimination between bacterial and viral pneumonia. IMPORTANCE Pneumonia is one of the leading causes of death worldwide. Here, we compared the impact of bacterial- and viral-induced pneumonia on the respiratory and gastrointestinal microbiome. Using a meta-omics approach, we identified specific profiles that allow discrimination between bacterial and viral causative.
Collapse
Affiliation(s)
| | - Alexander Meene
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sebastian Skorka
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Fabian Cuypers
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Surabhi Surabhi
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | | | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology and Hygiene, Rostock University Medical Centre, Rostock, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
22
|
Claassen-Weitz S, Gardner-Lubbe S, Xia Y, Mwaikono KS, Mounaud SH, Nierman WC, Workman L, Zar HJ, Nicol MP. Succession and determinants of the early life nasopharyngeal microbiota in a South African birth cohort. MICROBIOME 2023; 11:127. [PMID: 37271810 PMCID: PMC10240772 DOI: 10.1186/s40168-023-01563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/30/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Bacteria colonizing the nasopharynx play a key role as gatekeepers of respiratory health. Yet, dynamics of early life nasopharyngeal (NP) bacterial profiles remain understudied in low- and middle-income countries (LMICs), where children have a high prevalence of risk factors for lower respiratory tract infection. We investigated longitudinal changes in NP bacterial profiles, and associated exposures, among healthy infants from low-income households in South Africa. METHODS We used short fragment (V4 region) 16S rRNA gene amplicon sequencing to characterize NP bacterial profiles from 103 infants in a South African birth cohort, at monthly intervals from birth through the first 12 months of life and six monthly thereafter until 30 months. RESULTS Corynebacterium and Staphylococcus were dominant colonizers at 1 month of life; however, these were rapidly replaced by Moraxella- or Haemophilus-dominated profiles by 4 months. This succession was almost universal and largely independent of a broad range of exposures. Warm weather (summer), lower gestational age, maternal smoking, no day-care attendance, antibiotic exposure, or low height-for-age z score at 12 months were associated with higher alpha and beta diversity. Summer was also associated with higher relative abundances of Staphylococcus, Streptococcus, Neisseria, or anaerobic gram-negative bacteria, whilst spring and winter were associated with higher relative abundances of Haemophilus or Corynebacterium, respectively. Maternal smoking was associated with higher relative abundances of Porphyromonas. Antibiotic therapy (or isoniazid prophylaxis for tuberculosis) was associated with higher relative abundance of anerobic taxa (Porphyromonas, Fusobacterium, and Prevotella) and with lower relative abundances of health associated-taxa Corynebacterium and Dolosigranulum. HIV-exposure was associated with higher relative abundances of Klebsiella or Veillonella and lower relative abundances of an unclassified genus within the family Lachnospiraceae. CONCLUSIONS In this intensively sampled cohort, there was rapid and predictable replacement of early profiles dominated by health-associated Corynebacterium and Dolosigranulum with those dominated by Moraxella and Haemophilus, independent of exposures. Season and antibiotic exposure were key determinants of NP bacterial profiles. Understudied but highly prevalent exposures prevalent in LMICs, including maternal smoking and HIV-exposure, were associated with NP bacterial profiles. Video Abstract.
Collapse
Affiliation(s)
- Shantelle Claassen-Weitz
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sugnet Gardner-Lubbe
- Department of Statistics and Actuarial Science, Faculty of Economic and Management Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Yao Xia
- Marshall Centre, Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, Australia
- Center for Artificial Intelligence and Machine Learning, School of Science, Edith Cowan University, Joondalup, Australia
| | - Kilaza S. Mwaikono
- Computational Biology Group and H3ABioNet, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Department of Science and Laboratory Technology, Dar Es Salaam Institute of Technology, Dar Es Salaam, Tanzania
| | | | | | - Lesley Workman
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
- SAMRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
- SAMRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark P. Nicol
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Marshall Centre, Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
23
|
Steuart R, Ale GB, Woolums A, Xia N, Benscoter D, Russell CJ, Shah SS, Thomson J. Respiratory culture organism isolation and test characteristics in children with tracheostomies with and without acute respiratory infection. Pediatr Pulmonol 2023; 58:1481-1491. [PMID: 36751142 DOI: 10.1002/ppul.26349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Among children with tracheostomies, little is known about how respiratory culture results differ between states with and without acute respiratory infections (ARI), or the overall test performance of respiratory cultures. OBJECTIVE To determine the association of respiratory culture organism isolation with diagnosis of ARI in children with tracheostomies, and assess test characteristics of respiratory cultures in the diagnosis of bacterial ARI (bARI). METHODS This single-center, retrospective cohort study included respiratory cultures of children with tracheostomies obtained between 2010 and 2018. The primary predictor was ARI diagnosis code at the time of culture; the primary outcomes were respiratory culture organism isolation and species identified. Generalized estimating equations were used to assess for association between ARI diagnosis and isolation of any organism while controlling for potential confounders and accounting for within-patient clustering. A multinomial logistic regression equation assessed for association with specific species. Test characteristics were calculated using bARI diagnosis as the reference standard. RESULTS Among 3578 respiratory cultures from 533 children (median 4 cultures/child, interquartile range (IQR): 1-9), 25.9% were obtained during ARI and 17.2% had ≥1 organism. Children with ARI diagnosis had higher odds of organism identification (adjusted odds ratio 1.29, 95% confidence interval [CI] 1.16-1.44). When controlling for covariates, ARI was associated with isolation of Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae, and Streptococcus pyogenes. Test characteristics revealed a 24.3% sensitivity, 85.2% specificity, 36.5% positive predictive value, and 76.3% negative predictive value in screening for bARI. CONCLUSION The utility of respiratory culture testing to screen for, diagnose, and direct treatment of ARI in children with tracheostomies is limited.
Collapse
Affiliation(s)
- Rebecca Steuart
- Department of Pediatrics, Section of Special Needs, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Complex Care Program, Children's Wisconsin, Milwaukee, Wisconsin, USA
| | - Guillermo B Ale
- Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Pulmonary and Sleep Medicine, Children's of Alabama, Birmingham, Alabama, USA
| | - Abigail Woolums
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nicole Xia
- Department of Pediatrics, Section of Special Needs, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Dan Benscoter
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christopher J Russell
- Division of Hospital Medicine, Children's Hospital of Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Samir S Shah
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Hospital Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joanna Thomson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- James M Anderson Center for Health Systems Excellence, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
24
|
Panumasvivat J, Pratchayasakul W, Sapbamrer R, Chattipakorn N, Chattipakorn SC. The possible role of particulate matter on the respiratory microbiome: evidence from in vivo to clinical studies. Arch Toxicol 2023; 97:913-930. [PMID: 36781433 DOI: 10.1007/s00204-023-03452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Environmental pollution, which contains ambient particulate matter, has been shown to have a significant impact on human health and longevity over the past 30 years. Recent studies clearly showed that exposure to particulate matter directly caused adverse effects on the respiratory system via various mechanisms including the accumulation of free radical peroxidation, the imbalance of intercellular calcium regulation, and inflammation, resulting in respiratory diseases. Recent evidence showed the importance of the role of the respiratory microbiome on lung immunity and lung development. In addition, previous studies have confirmed that several chronic respiratory diseases were associated with an alteration in the respiratory microbiome. However, there is still a lack of knowledge with regard to the changes in the respiratory microbiome with regard to the role of particulate matter exposure in respiratory diseases. Therefore, this review aims to summarize and discuss all the in vivo to clinical evidence which investigated the effect of particulate matter exposure on the respiratory microbiome and respiratory diseases. Any contradictory findings are incorporated and discussed. A summary of all these pieces of evidence may offer an insight into a therapeutic approach for the respiratory diseases related to particulate matter exposure and respiratory microbiome.
Collapse
Affiliation(s)
- Jinjuta Panumasvivat
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
25
|
Bogaert D, van Beveren GJ, de Koff EM, Lusarreta Parga P, Balcazar Lopez CE, Koppensteiner L, Clerc M, Hasrat R, Arp K, Chu MLJN, de Groot PCM, Sanders EAM, van Houten MA, de Steenhuijsen Piters WAA. Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites. Cell Host Microbe 2023; 31:447-460.e6. [PMID: 36893737 DOI: 10.1016/j.chom.2023.01.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023]
Abstract
Early-life microbiota seeding and subsequent development is crucial to future health. Cesarean-section (CS) birth, as opposed to vaginal delivery, affects early mother-to-infant transmission of microbes. Here, we assess mother-to-infant microbiota seeding and early-life microbiota development across six maternal and four infant niches over the first 30 days of life in 120 mother-infant pairs. Across all infants, we estimate that on average 58.5% of the infant microbiota composition can be attributed to any of the maternal source communities. All maternal source communities seed multiple infant niches. We identify shared and niche-specific host/environmental factors shaping the infant microbiota. In CS-born infants, we report reduced seeding of infant fecal microbiota by maternal fecal microbes, whereas colonization with breastmilk microbiota is increased when compared with vaginally born infants. Therefore, our data suggest auxiliary routes of mother-to-infant microbial seeding, which may compensate for one another, ensuring that essential microbes/microbial functions are transferred irrespective of disrupted transmission routes.
Collapse
Affiliation(s)
- Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK.
| | - Gina J van Beveren
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | - Emma M de Koff
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | - Paula Lusarreta Parga
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Carlos E Balcazar Lopez
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Lilian Koppensteiner
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Melanie Clerc
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Raiza Hasrat
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | - Kayleigh Arp
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | - Mei Ling J N Chu
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | - Pieter C M de Groot
- Department of Obstetrics and Gynaecology, Spaarne Gasthuis, 2035 RC Haarlem, the Netherlands
| | - Elisabeth A M Sanders
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | | | - Wouter A A de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands.
| |
Collapse
|
26
|
Pérez-Losada M, Castro-Nallar E, Laerte Boechat J, Delgado L, Azenha Rama T, Berrios-Farías V, Oliveira M. Nasal Bacteriomes of Patients with Asthma and Allergic Rhinitis Show Unique Composition, Structure, Function and Interactions. Microorganisms 2023; 11:microorganisms11030683. [PMID: 36985258 PMCID: PMC10056468 DOI: 10.3390/microorganisms11030683] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Allergic rhinitis and asthma are major public health concerns and economic burdens worldwide. However, little is known about nasal bacteriome dysbiosis during allergic rhinitis, alone or associated with asthma comorbidity. To address this knowledge gap we applied 16S rRNA high-throughput sequencing to 347 nasal samples from participants with asthma (AS = 12), allergic rhinitis (AR = 53), allergic rhinitis with asthma (ARAS = 183) and healthy controls (CT = 99). One to three of the most abundant phyla, and five to seven of the dominant genera differed significantly (p < 0.021) between AS, AR or ARAS and CT groups. All alpha-diversity indices of microbial richness and evenness changed significantly (p < 0.01) between AR or ARAS and CT, while all beta-diversity indices of microbial structure differed significantly (p < 0.011) between each of the respiratory disease groups and controls. Bacteriomes of rhinitic and healthy participants showed 72 differentially expressed (p < 0.05) metabolic pathways each related mainly to degradation and biosynthesis processes. A network analysis of the AR and ARAS bacteriomes depicted more complex webs of interactions among their members than among those of healthy controls. This study demonstrates that the nose harbors distinct bacteriotas during health and respiratory disease and identifies potential taxonomic and functional biomarkers for diagnostics and therapeutics in asthma and rhinitis.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Campus Talca, Universidad de Talca, Avda. Lircay s/n, Talca 3460000, Chile
- Centro de Ecología Integrativa, Campus Talca, Universidad de Talca, Avda. Lircay s/n, Talca 3460000, Chile
| | - José Laerte Boechat
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Luis Delgado
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Serviço de Imunoalergologia, Centro Hospitalar Universitário São João (CHUSJ), 4200-319 Porto, Portugal
| | - Tiago Azenha Rama
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Valentín Berrios-Farías
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Campus Talca, Universidad de Talca, Avda. Lircay s/n, Talca 3460000, Chile
- Centro de Ecología Integrativa, Campus Talca, Universidad de Talca, Avda. Lircay s/n, Talca 3460000, Chile
| | - Manuela Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Ipatimup-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
27
|
Abotsi RE, Dube FS, Rehman AM, Claassen-Weitz S, Xia Y, Simms V, Mwaikono KS, Gardner-Lubbe S, McHugh G, Ngwira LG, Kwambana-Adams B, Heyderman RS, Odland JØ, Ferrand RA, Nicol MP. Sputum bacterial load and bacterial composition correlate with lung function and are altered by long-term azithromycin treatment in children with HIV-associated chronic lung disease. MICROBIOME 2023; 11:29. [PMID: 36803868 PMCID: PMC9940396 DOI: 10.1186/s40168-023-01460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Long-term azithromycin (AZM) treatment reduces the frequency of acute respiratory exacerbation in children and adolescents with HIV-associated chronic lung disease (HCLD). However, the impact of this treatment on the respiratory bacteriome is unknown. METHOD African children with HCLD (defined as forced expiratory volume in 1 s z-score (FEV1z) less than - 1.0 with no reversibility) were enrolled in a placebo-controlled trial of once-weekly AZM given for 48-weeks (BREATHE trial). Sputum samples were collected at baseline, 48 weeks (end of treatment) and 72 weeks (6 months post-intervention in participants who reached this timepoint before trial conclusion). Sputum bacterial load and bacteriome profiles were determined using 16S rRNA gene qPCR and V4 region amplicon sequencing, respectively. The primary outcomes were within-participant and within-arm (AZM vs placebo) changes in the sputum bacteriome measured across baseline, 48 weeks and 72 weeks. Associations between clinical or socio-demographic factors and bacteriome profiles were also assessed using linear regression. RESULTS In total, 347 participants (median age: 15.3 years, interquartile range [12.7-17.7]) were enrolled and randomised to AZM (173) or placebo (174). After 48 weeks, participants in the AZM arm had reduced sputum bacterial load vs placebo arm (16S rRNA copies/µl in log10, mean difference and 95% confidence interval [CI] of AZM vs placebo - 0.54 [- 0.71; - 0.36]). Shannon alpha diversity remained stable in the AZM arm but declined in the placebo arm between baseline and 48 weeks (3.03 vs. 2.80, p = 0.04, Wilcoxon paired test). Bacterial community structure changed in the AZM arm at 48 weeks compared with baseline (PERMANOVA test p = 0.003) but resolved at 72 weeks. The relative abundances of genera previously associated with HCLD decreased in the AZM arm at 48 weeks compared with baseline, including Haemophilus (17.9% vs. 25.8%, p < 0.05, ANCOM ω = 32) and Moraxella (1% vs. 1.9%, p < 0.05, ANCOM ω = 47). This reduction was sustained at 72 weeks relative to baseline. Lung function (FEV1z) was negatively associated with bacterial load (coefficient, [CI]: - 0.09 [- 0.16; - 0.02]) and positively associated with Shannon diversity (0.19 [0.12; 0.27]). The relative abundance of Neisseria (coefficient, [standard error]: (2.85, [0.7], q = 0.01), and Haemophilus (- 6.1, [1.2], q < 0.001) were positively and negatively associated with FEV1z, respectively. An increase in the relative abundance of Streptococcus from baseline to 48 weeks was associated with improvement in FEV1z (3.2 [1.11], q = 0.01) whilst an increase in Moraxella was associated with decline in FEV1z (-2.74 [0.74], q = 0.002). CONCLUSIONS AZM treatment preserved sputum bacterial diversity and reduced the relative abundances of the HCLD-associated genera Haemophilus and Moraxella. These bacteriological effects were associated with improvement in lung function and may account for reduced respiratory exacerbations associated with AZM treatment of children with HCLD. Video Abstract.
Collapse
Affiliation(s)
- Regina E Abotsi
- Department of Molecular and Cell Biology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pharmaceutical Microbiology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Felix S Dube
- Department of Molecular and Cell Biology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Andrea M Rehman
- International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Shantelle Claassen-Weitz
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Yao Xia
- Marshall Centre, Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Victoria Simms
- International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Kilaza S Mwaikono
- Computational Biology Group and H3ABioNet, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam, Tanzania
| | - Sugnet Gardner-Lubbe
- Department of Statistics and Actuarial Science, Stellenbosch University, Stellenbosch, South Africa
| | - Grace McHugh
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Lucky G Ngwira
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Brenda Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Jon Ø Odland
- Department of Community Medicine, University of Tromsø, Tromsø, Norway
- International Research Laboratory for Reproductive Ecotoxicology (IL RET), The National Research University Higher School of Economics, Moscow, Russia
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Rashida A Ferrand
- Biomedical Research and Training Institute, Harare, Zimbabwe
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Mark P Nicol
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Marshall Centre, Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, Australia.
| |
Collapse
|
28
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
29
|
Antibiotic Susceptibility and Molecular Typing of Invasive Haemophilus influenzae Isolates, with Emergence of Ciprofloxacin Resistance, 2017-2021, Italy. Microorganisms 2023; 11:microorganisms11020315. [PMID: 36838281 PMCID: PMC9965257 DOI: 10.3390/microorganisms11020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Haemophilus influenzae invasive disease is a severe infection that needs rapid antibiotic therapy. The aim of the study was to perform and evaluate the serotype distribution, antibiotic susceptibility and molecular characteristics of 392 H. influenzae invasive isolates collected during 2017-2021 in Italy. The majority of isolates were NTHi (305/392, 77.8%), followed by Hib (49/392, 12.5%). Ampicillin resistance was frequently detected (85/392, 21.7%): 12.2% were β-lactamase producers (all blaTEM except one blaROB), 9.4% were β-lactamase-negative ampicillin-resistant (BLNAR), with mutations in the ftsI gene. Six isolates were resistant to ciprofloxacin, with substitutions in GyrA and ParC. An MLST analysis revealed the occurrence of international resistant clones, such as ST103 and ST14, highlighting the importance of molecular surveillance.
Collapse
|
30
|
Zuurbier RP, Bogaert D, de Steenhuijsen Piters WAA, Arp K, Chu MLJN, Sanders EAM, van Houten MA. Asymptomatic Viral Presence in Early Life Precedes Recurrence of Respiratory Tract Infections. Pediatr Infect Dis J 2023; 42:59-65. [PMID: 36476532 DOI: 10.1097/inf.0000000000003732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Respiratory tract infections (RTIs) in infants are often caused by viruses. Although respiratory syncytial virus (RSV), influenza virus and human metapneumovirus (hMPV) can be considered the most pathogenic viruses in children, rhinovirus (RV) is often found in asymptomatic infants as well. Little is known about the health consequences of viral presence, especially early in life. We aimed to examine the dynamics of (a)symptomatic viral presence and relate early viral detection to susceptibility to RTIs in infants. METHODS In a prospective birth cohort of 117 infants, we tested 1304 nasopharyngeal samples obtained from 11 consecutive regular sampling moments, and during acute RTIs across the first year of life for 17 respiratory viruses by quantitative PCR. Associations between viral presence, viral (sub)type, viral load, viral co-detection and symptoms were tested by generalized estimating equation (GEE) models. RESULTS RV was the most detected virus. RV was negatively associated [GEE: adjusted odds ratio (aOR) 0.41 (95% CI 0.18-0.92)], and hMPV, RSV, parainfluenza 2 and 4 and human coronavirus HKU1 were positively associated with an acute RTI. Asymptomatic RV in early life was, however, associated with increased susceptibility to and recurrence of RTIs later in the first year of life (Kaplan-Meier survival analysis: P = 0.022). CONCLUSIONS Respiratory viruses, including the seasonal human coronaviruses, are often detected in infants, and are often asymptomatic. Early life RV presence is, though negatively associated with an acute RTI, associated with future susceptibility to and recurrence of RTIs. Further studies on potential ecologic or immunologic mechanisms are needed to understand these observations.
Collapse
Affiliation(s)
- Roy P Zuurbier
- From the Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht
- Spaarne Gasthuis Academy, Hoofddorp and Haarlem, The Netherlands
| | - Debby Bogaert
- From the Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht
- Medical Research Council and University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Kayleigh Arp
- From the Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Mei Ling J N Chu
- From the Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Elisabeth A M Sanders
- From the Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Marlies A van Houten
- Spaarne Gasthuis Academy, Hoofddorp and Haarlem, The Netherlands
- Department of Pediatrics, Spaarne Gasthuis, Hoofddorp and Haarlem, The Netherlands
| |
Collapse
|
31
|
Wiscovitch-Russo R, Taal AM, Kuelbs C, Oldfield LM, Ramar M, Singh H, Fedulov AV, Gonzalez-Juarbe N. Gut and lung microbiome profiles in pregnant mice. Front Microbiol 2022; 13:946779. [PMID: 36578567 PMCID: PMC9791091 DOI: 10.3389/fmicb.2022.946779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
In recent years, microbiome research has expanded from the gastrointestinal tract to other host sites previously thought to be abacterial such as the lungs. Yet, the effects of pregnancy in the lung and gut microbiome remains unclear. Here we examined the changes in the gut and lung microbiome in mice at 14 days of gestation. Lung tissue and stool samples were collected from pregnant and non-pregnant female BALB/c mice, DNA was isolated, amplified, and bacterial specific V4 16S rRNA gene was sequenced. Using an in-house bioinformatic pipeline we assessed the microbial composition of each organ using stool and lung tissue samples. The stool data showed that Lachnospiraceae and Lactobacillaceae were more abundant in the pregnant mice. Likewise, Lactobacillaceae were dominant in the lungs of pregnant mice. However, Streptococcaceae were dominant in the lungs of non-pregnant mice with a low microbial abundance in the pregnant mice. A permutation test showed that pregnancy significantly contributes to the variance in both the lung and stool microbiome. At the same time, we estimate that 49% of the total detected operational taxonomic units were shared between the stool and lung data. After removing common stool-associated bacteria from the lung dataset, no microbial differential abundance was detected between the pregnant and non-pregnant lung microbial community. Thus, pregnancy contributes to variance to the lung and stool microbiome but not in the unique lung microbiota.
Collapse
Affiliation(s)
| | - Aji Mary Taal
- J. Craig Venter Institute, Rockville, MD, United States
| | - Claire Kuelbs
- J. Craig Venter Institute, Rockville, MD, United States
| | | | - MohanKumar Ramar
- Department of Surgery, Division of Surgical Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | | | - Alexey V. Fedulov
- Department of Surgery, Division of Surgical Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | | |
Collapse
|
32
|
de Cock M, Fonville M, de Vries A, Bossers A, van den Bogert B, Hakze-van der Honing R, Koets A, Sprong H, van der Poel W, Maas M. Screen the unforeseen: Microbiome-profiling for detection of zoonotic pathogens in wild rats. Transbound Emerg Dis 2022; 69:3881-3895. [PMID: 36404584 PMCID: PMC10099244 DOI: 10.1111/tbed.14759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Wild rats can host various zoonotic pathogens. Detection of these pathogens is commonly performed using molecular techniques targeting one or a few specific pathogens. However, this specific way of surveillance could lead to (emerging) zoonotic pathogens staying unnoticed. This problem may be overcome by using broader microbiome-profiling techniques, which enable broad screening of a sample's bacterial or viral composition. In this study, we investigated if 16S rRNA gene amplicon sequencing would be a suitable tool for the detection of zoonotic bacteria in wild rats. Moreover, we used virome-enriched (VirCapSeq) sequencing to detect zoonotic viruses. DNA from kidney samples of 147 wild brown rats (Rattus norvegicus) and 42 black rats (Rattus rattus) was used for 16S rRNA gene amplicon sequencing of the V3-V4 hypervariable region. Blocking primers were developed to reduce the amplification of rat host DNA. The kidney bacterial composition was studied using alpha- and beta-diversity metrics and statistically assessed using PERMANOVA and SIMPER analyses. From the sequencing data, 14 potentially zoonotic bacterial genera were identified from which the presence of zoonotic Leptospira spp. and Bartonella tribocorum was confirmed by (q)PCR or Sanger sequencing. In addition, more than 65% of all samples were dominated (>50% reads) by one of three bacterial taxa: Streptococcus (n = 59), Mycoplasma (n = 39) and Leptospira (n = 25). These taxa also showed the highest contribution to the observed differences in beta diversity. VirCapSeq sequencing in rat liver samples detected the potentially zoonotic rat hepatitis E virus in three rats. Although 16S rRNA gene amplicon sequencing was limited in its capacity for species level identifications and can be more difficult to interpret due to the influence of contaminating sequences in these low microbial biomass samples, we believe it has potential to be a suitable pre-screening method in the future to get a better overview of potentially zoonotic bacteria that are circulating in wildlife.
Collapse
Affiliation(s)
- Marieke de Cock
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Manoj Fonville
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ankje de Vries
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Alex Bossers
- Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | - Ad Koets
- Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands.,Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hein Sprong
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Wim van der Poel
- Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Miriam Maas
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
33
|
Krawczyk AI, Röttjers S, Coimbra-Dores MJ, Heylen D, Fonville M, Takken W, Faust K, Sprong H. Tick microbial associations at the crossroad of horizontal and vertical transmission pathways. Parasit Vectors 2022; 15:380. [PMID: 36271430 PMCID: PMC9585727 DOI: 10.1186/s13071-022-05519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microbial communities can affect disease risk by interfering with the transmission or maintenance of pathogens in blood-feeding arthropods. Here, we investigated whether bacterial communities vary between Ixodes ricinus nymphs which were or were not infected with horizontally transmitted human pathogens. METHODS Ticks from eight forest sites were tested for the presence of Borrelia burgdorferi sensu lato, Babesia spp., Anaplasma phagocytophilum, and Neoehrlichia mikurensis by quantitative polymerase chain reaction (qPCR), and their microbiomes were determined by 16S rRNA amplicon sequencing. Tick bacterial communities clustered poorly by pathogen infection status but better by geography. As a second approach, we analysed variation in tick microorganism community structure (in terms of species co-infection) across space using hierarchical modelling of species communities. For that, we analysed almost 14,000 nymphs, which were tested for the presence of horizontally transmitted pathogens B. burgdorferi s.l., A. phagocytophilum, and N. mikurensis, and the vertically transmitted tick symbionts Rickettsia helvetica, Rickettsiella spp., Spiroplasma ixodetis, and Candidatus Midichloria mitochondrii. RESULTS With the exception of Rickettsiella spp., all microorganisms had either significant negative (R. helvetica and A. phagocytophilum) or positive (S. ixodetis, N. mikurensis, and B. burgdorferi s.l.) associations with M. mitochondrii. Two tick symbionts, R. helvetica and S. ixodetis, were negatively associated with each other. As expected, both B. burgdorferi s.l. and N. mikurensis had a significant positive association with each other and a negative association with A. phagocytophilum. Although these few specific associations do not appear to have a large effect on the entire microbiome composition, they can still be relevant for tick-borne pathogen dynamics. CONCLUSIONS Based on our results, we propose that M. mitochondrii alters the propensity of ticks to acquire or maintain horizontally acquired pathogens. The underlying mechanisms for some of these remarkable interactions are discussed herein and merit further investigation. Positive and negative associations between and within horizontally and vertically transmitted symbionts.
Collapse
Affiliation(s)
- Aleksandra Iwona Krawczyk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3720 MA, Bilthoven, The Netherlands. .,Laboratory of Entomology, Wageningen University & Research, 6708PB, Wageningen, The Netherlands.
| | - Sam Röttjers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Bacteriology, KU Leuven, Rega Institute for Medical Research, 3000, Leuven, Belgium
| | - Maria João Coimbra-Dores
- Centre for Environmental and Marine Studies (CESAM), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Dieter Heylen
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium.,Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Ln, Princeton, NJ, 08544, USA
| | - Manoj Fonville
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3720 MA, Bilthoven, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, 6708PB, Wageningen, The Netherlands
| | - Karoline Faust
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Bacteriology, KU Leuven, Rega Institute for Medical Research, 3000, Leuven, Belgium
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3720 MA, Bilthoven, The Netherlands.
| |
Collapse
|
34
|
Wasserman MG, Graham RJ, Mansbach JM. Airway Bacterial Colonization, Biofilms and Blooms, and Acute Respiratory Infection. Pediatr Crit Care Med 2022; 23:e476-e482. [PMID: 35767569 PMCID: PMC9529803 DOI: 10.1097/pcc.0000000000003017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mollie G Wasserman
- Department of General Pediatrics, Boston Children's Hospital, Boston, MA
| | - Robert J Graham
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital, Boston, MA
| | | |
Collapse
|
35
|
ÇAVUŞOĞLU C, YÜKSEL H, YAŞAR A, İNCİ T, POLAT F, AYDIN UYSAL A, AYKUT A. Investigation of nasopharyngeal microbiota in children with asthma and allergic rhinitis comorbidity. EGE TIP DERGISI 2022. [DOI: 10.19161/etd.1167440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim: The goal of this study was to compare the nasopharyngeal bacterial microbiota of healthy children with asthma and allergic rhinitis, identify potential microbial dysbiosis in patients.
Materials and Methods: The study included a total of 15 patients. There were five patients with asthma, five with allergic rhinitis, and five healthy controls. The upper respiratory tract microbiota were identified using 16S metagenomics analysis of nasal lavage samples.
Results: Firmucutes was the most prevalent phylum in the upper respiratory tract microbiota of asthma patients, while Proteobacteria were found in the healthy control and allergic rhinitis groups. Dolosigranulum was identified as the most dominant genus in the upper respiratory tract microbiota of asthma patients. Moraxella was the most prevalent genera in the upper respiratory tract microbiota of the healthy control group. When asthma patients were compared to the control group, the ratio of the Moraxella genus decreased while the ratios of Staphylococcus, Streptococcus, and Corynebacterium species increased.
Conclusion: In conclusion, it has not been determined that upper respiratory tract microbiota has a role in determining the pathogenesis of allergic rhinitis and asthma in childhood. The fact that there is a proportional difference between groups’ supports that there may be a possible difference if the entire airway microbiome is studied.
Collapse
Affiliation(s)
- Cengiz ÇAVUŞOĞLU
- Ege Üniversitesi Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, İzmir, Türkiye
| | - Hasan YÜKSEL
- Celâl Bayar Üniversitesi Tıp Fakültesi Çocuk Sağlığı ve Hastalıkları Anabilim Dalı, Manisa, Türkiye
| | - Adem YAŞAR
- Celâl Bayar Üniversitesi Tıp Fakültesi Çocuk Sağlığı ve Hastalıkları Anabilim Dalı, Manisa, Türkiye
| | - Tarık İNCİ
- Ege Üniversitesi Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, İzmir, Türkiye
| | - Furkan POLAT
- Ege Üniversitesi Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, İzmir, Türkiye
| | - Ayça AYDIN UYSAL
- Ege Üniversitesi Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, İzmir, Türkiye
| | - Ayça AYKUT
- Ege Üniversitesi Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, İzmir, Türkiye
| |
Collapse
|
36
|
Recurrent Acute Otitis Media Environmental Risk Factors: A Literature Review from the Microbiota Point of View. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute otitis media (AOM) constitutes a multifactorial disease, as several host and environmental factors contribute to its occurrence. Prevention of AOM represents one of the most important goals in pediatrics, both in developing countries, in which complications, mortality, and deafness remain possible consequences of the disease, compared to in developed countries, in which this condition has an important burden in terms of medical, social, and economical implications. The strategies for AOM prevention are based on reducing the burden of risk factors, through the application of behavioral, environmental, and therapeutic interventions. The introduction of culture-independent techniques has allowed high-throughput investigation of entire bacterial communities, providing novel insights into the pathogenesis of middle ear diseases through the identification of potential protective bacteria. The upper respiratory tract (URT) is a pivotal region in AOM pathogenesis, as it could act as a source of pathogens than of protective microorganisms for the middle ear (ME). Due to its direct connection with the external ambient, the URT is particularly exposed to the influence of environmental agents. The aim of this review was to evaluate AOM environmental risk factors and their impact on URT microbial communities, and to investigate AOM pathogenesis from the microbiota perspective.
Collapse
|
37
|
Heredia-Rodríguez M, Balbás-Álvarez S, Lorenzo-López M, Gómez-Pequera E, Jorge-Monjas P, Rojo-Rello S, Sánchez-De Prada L, Sanz-Muñoz I, Eiros JM, Martínez-Paz P, Gonzalo-Benito H, Tamayo-Velasco Á, Martín-Fernández M, Sánchez-Conde P, Tamayo E, Gómez-Sánchez E. PCR-based diagnosis of respiratory virus in postsurgical septic patients: A preliminary study before SARS-CoV-2 pandemic. Medicine (Baltimore) 2022; 101:e29902. [PMID: 35960076 PMCID: PMC9370242 DOI: 10.1097/md.0000000000029902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 01/04/2023] Open
Abstract
Respiratory viruses are part of the normal microbiota of the respiratory tract, which sometimes cause infection with/without respiratory insufficiency and the need for hospital or ICU admission. The aim of this study is to determine the prevalence of respiratory viruses in nontransplanted postoperative septic patients as well as lymphocyte count influence in their presence and its relationship to mortality. 223 nontransplanted postsurgical septic patients were recruited on the Intensive Care Unit (ICU) at Hospital Clínico Universitario de Valladolid prior to the SARS-COV-2 pandemic. Patients were split into 2 groups according to the presence/absence of respiratory viruses. Multivariate logistic regression analysis was used to identify independent factors related to positive respiratory virus PCR test. Respiratory viruses were isolated in 28.7% of patients. 28-day mortality was not significantly different between virus-positive and virus-negative groups. Logistic regression analysis revealed that lymphocyte count ≤ 928/µl is independently associated with a positive PCR result [OR 3.76, 95% CI (1.71-8.26), P = .001] adjusted by platelet count over 128,500/µL [OR 4.27, 95% CI (1.92-9.50) P < .001] and the presence of hypertension [OR 2.69, 95% CI (1.13-6.36) P = .025] as confounding variables. Respiratory viruses' detection by using PCR in respiratory samples of nontransplanted postoperative septic patients is frequent. These preliminary results revealed that the presence of lymphopenia on sepsis diagnosis is independently associated to a positive virus result, which is not related to a higher 28-day mortality.
Collapse
Affiliation(s)
- María Heredia-Rodríguez
- Department of Anaesthesiology and Critical Care, Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), Salamanca, Spain
- Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Group for Biomedical Research in Critical Care Medicine (BioCritic), Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Sara Balbás-Álvarez
- Department of Anaesthesiology and Critical Care, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Mario Lorenzo-López
- Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Group for Biomedical Research in Critical Care Medicine (BioCritic), Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Department of Anaesthesiology and Critical Care, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Estefanía Gómez-Pequera
- Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Group for Biomedical Research in Critical Care Medicine (BioCritic), Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Department of Anaesthesiology and Critical Care, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Pablo Jorge-Monjas
- Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Group for Biomedical Research in Critical Care Medicine (BioCritic), Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Department of Anaesthesiology and Critical Care, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Silvia Rojo-Rello
- Department of Microbiology, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Laura Sánchez-De Prada
- Department of Microbiology, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Ivan Sanz-Muñoz
- Department of Microbiology, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - José María Eiros
- Department of Microbiology, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Pedro Martínez-Paz
- Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Group for Biomedical Research in Critical Care Medicine (BioCritic), Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Hugo Gonzalo-Benito
- Group for Biomedical Research in Critical Care Medicine (BioCritic), Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Research Unit, Hospital Clínico Universitario de Valladolid, Instituto de Estudios en Ciencias de la Salud de Castilla y León (ICSCyL), Valladolid, Spain
| | - Álvaro Tamayo-Velasco
- Group for Biomedical Research in Critical Care Medicine (BioCritic), Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Department of Hematology, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Marta Martín-Fernández
- Group for Biomedical Research in Critical Care Medicine (BioCritic), Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Department of Medicine, Dermatology and Toxicology, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Pilar Sánchez-Conde
- Department of Anaesthesiology and Critical Care, Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), Salamanca, Spain
- Department of Surgery, Faculty of Medicine, Universidad de Salamanca, Salamanca, Spain
| | - Eduardo Tamayo
- Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Group for Biomedical Research in Critical Care Medicine (BioCritic), Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Department of Anaesthesiology and Critical Care, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Esther Gómez-Sánchez
- Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Group for Biomedical Research in Critical Care Medicine (BioCritic), Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Department of Anaesthesiology and Critical Care, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| |
Collapse
|
38
|
Briceño O, Gónzalez-Navarro M, Montufar N, Chávez-Torres M, Abato I, Espinosa-Sosa A, Ablanedo-Terrazas Y, Luna-Villalobos Y, Ávila-Ríos S, Reyes-Terán G, Pinto-Cardoso S. Mucosal immune cell populations and the bacteriome of adenoids and tonsils from people living with HIV on suppressive antiretroviral therapy. Front Microbiol 2022; 13:958739. [PMID: 36033845 PMCID: PMC9404693 DOI: 10.3389/fmicb.2022.958739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Ear, nose, and throat (ENT) conditions are prevalent in people living with HIV (PLWH) and occur at all strata of CD4 counts and despite antiretroviral therapy (ART). ENT conditions are underreported in PLWH. Also, little is known about the adenotonsillar microbiota and its relation to resident adaptive and innate immune cells. To bridge this gap, we characterized immune cell populations and the bacterial microbiota of two anatomical sites (adenoids, tonsils) and the oral cavity. Adenoids and tonsils were obtained from PLWH (n = 23) and HIV-seronegative individuals (SN, n = 16) after nasal surgery and tonsillectomy and processed for flow cytometry. Nasopharyngeal, oropharyngeal swabs, and oral rinses were collected prior to surgery for 16S sequencing. Wilcoxon rank sum test, principal coordinate analysis, permutational multivariate analysis of variance, and linear discriminant analysis (LEfSe) were used to assess differences between PLWH and SN. Spearman’s correlations were performed to explore interactions between the bacteriome and mucosal immune cells. Of the 39 individuals included, 30 (77%) were men; the median age was 32 years. All PLWH were on ART, with a median CD4 of 723 cells. ENT conditions were classified as inflammatory or obstructive, with no differences observed between PLWH and SN. PLWH had higher frequencies of activated CD4+ and CD8+ T cells, increased T helper (Th)1 and decreased Th2 cells; no differences were observed for B cells and innate immune cells. Alpha diversity was comparable between PLWH and SN at all 3 anatomical sites (adenoids, tonsils, and oral cavity). The impact of HIV infection on the bacterial community structure at each site, as determined by Permutational multivariate analysis of variance, was minor and not significant. Two discriminant genera were identified in adenoids using LEfSe: Staphylococcus for PLWH and Corynebacterium for SN. No discriminant genera were identified in the oropharynx and oral cavity. Niche-specific differences in microbial diversity and communities were observed. PLWH shared less of a core microbiota than SN. In the oropharynx, correlation analysis revealed that Th17 cells were inversely correlated with bacterial richness and diversity, Filifactor, Actinomyces and Treponema; and positively correlated with Streptococcus. Our study contributes toward understanding the role of the adenotonsillar microbiota in the pathophysiology of ENT conditions.
Collapse
Affiliation(s)
- Olivia Briceño
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Mauricio Gónzalez-Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Nadia Montufar
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Monserrat Chávez-Torres
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Indira Abato
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Ariana Espinosa-Sosa
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Yuria Ablanedo-Terrazas
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Yara Luna-Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Gustavo Reyes-Terán
- Comisión Coordinadora de Institutos Nacional de Salud y Hospitales de Alta Especialidad, Secretaría de Salud, Ciudad de México, Mexico
| | - Sandra Pinto-Cardoso
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
- *Correspondence: Sandra Pinto-Cardoso,
| |
Collapse
|
39
|
Krawczyk AI, Röttjers L, Fonville M, Takumi K, Takken W, Faust K, Sprong H. Quantitative microbial population study reveals geographical differences in bacterial symbionts of Ixodes ricinus. MICROBIOME 2022; 10:120. [PMID: 35927748 PMCID: PMC9351266 DOI: 10.1186/s40168-022-01276-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 04/20/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Ixodes ricinus ticks vector pathogens that cause serious health concerns. Like in other arthropods, the microbiome may affect the tick's biology, with consequences for pathogen transmission. Here, we explored the bacterial communities of I. ricinus across its developmental stages and six geographic locations by the 16S rRNA amplicon sequencing, combined with quantification of the bacterial load. RESULTS A wide range of bacterial loads was found. Accurate quantification of low microbial biomass samples permitted comparisons to high biomass samples, despite the presence of contaminating DNA. The bacterial communities of ticks were associated with geographical location rather than life stage, and differences in Rickettsia abundance determined this association. Subsequently, we explored the geographical distribution of four vertically transmitted symbionts identified in the microbiome analysis. For that, we screened 16,555 nymphs from 19 forest sites for R. helvetica, Rickettsiella spp., Midichloria mitochondrii, and Spiroplasma ixodetis. Also, the infection rates and distributions of these symbionts were compared to the horizontally transmitted pathogens Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, and Neoehrlichia mikurensis. The infection rates of all vertically transmitted symbionts differed between the study sites, and none of the symbionts was present in all tested ticks suggesting a facultative association with I. ricinus. The proportions in which symbionts occurred in populations of I. ricinus were highly variable, but geographically close study sites expressed similar proportions. These patterns were in contrast to what we observed for horizontally transmitted pathogens. Lastly, nearly 12% of tested nymphs were free of any targeted microorganisms, which is in line with the microbiome analyses. CONCLUSIONS Our results show that the microbiome of I. ricinus is highly variable, but changes gradually and ticks originating from geographically close forest sites express similar bacterial communities. This suggests that geography-related factors affect the infection rates of vertically transmitted symbionts in I. ricinus. Since some symbionts, such as R. helvetica can cause disease in humans, we propose that public health investigations consider geographical differences in its infection rates.
Collapse
Affiliation(s)
- Aleksandra I Krawczyk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, Bilthoven, 3720 MA, the Netherlands.
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Lisa Röttjers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Bacteriology, Rega Institute, Leuven, Belgium
| | - Manoj Fonville
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, Bilthoven, 3720 MA, the Netherlands
| | - Katshuisa Takumi
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, Bilthoven, 3720 MA, the Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Karoline Faust
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Bacteriology, Rega Institute, Leuven, Belgium
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, Bilthoven, 3720 MA, the Netherlands.
| |
Collapse
|
40
|
Rocafort M, Henares D, Brotons P, Launes C, Fernandez de Sevilla M, Fumado V, Barrabeig I, Arias S, Redin A, Ponomarenko J, Mele M, Millat-Martinez P, Claverol J, Balanza N, Mira A, Garcia-Garcia JJ, Bassat Q, Jordan I, Muñoz-Almagro C. Impact of COVID-19 Lockdown on the Nasopharyngeal Microbiota of Children and Adults Self-Confined at Home. Viruses 2022; 14:v14071521. [PMID: 35891502 PMCID: PMC9315980 DOI: 10.3390/v14071521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/25/2023] Open
Abstract
The increased incidence of COVID-19 cases and deaths in Spain in March 2020 led to the declaration by the Spanish government of a state of emergency imposing strict confinement measures on the population. The objective of this study was to characterize the nasopharyngeal microbiota of children and adults and its relation to SARS-CoV-2 infection and COVID-19 severity during the pandemic lockdown in Spain. This cross-sectional study included family households located in metropolitan Barcelona, Spain, with one adult with a previous confirmed COVID-19 episode and one or more exposed co-habiting child contacts. Nasopharyngeal swabs were used to determine SARS-CoV-2 infection status, characterize the nasopharyngeal microbiota and determine common respiratory DNA/RNA viral co-infections. A total of 173 adult cases and 470 exposed children were included. Overall, a predominance of Corynebacterium and Dolosigranulum and a limited abundance of common pathobionts including Haemophilus and Streptococcus were found both among adults and children. Children with current SARS-CoV-2 infection presented higher bacterial richness and increased Fusobacterium, Streptococcus and Prevotella abundance than non-infected children. Among adults, persistent SARS-CoV-2 RNA was associated with an increased abundance of an unclassified member of the Actinomycetales order. COVID-19 severity was associated with increased Staphylococcus and reduced Dolosigranulum abundance. The stringent COVID-19 lockdown in Spain had a significant impact on the nasopharyngeal microbiota of children, reflected in the limited abundance of common respiratory pathobionts and the predominance of Corynebacterium, regardless of SARS-CoV-2 detection. COVID-19 severity in adults was associated with decreased nasopharynx levels of healthy commensal bacteria.
Collapse
Affiliation(s)
- Muntsa Rocafort
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
| | - Desiree Henares
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
| | - Pedro Brotons
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Medicine Department, Universitat Internacional de Catalunya, Sant Cugat, 08195 Barcelona, Spain
| | - Cristian Launes
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Mariona Fernandez de Sevilla
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Victoria Fumado
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Irene Barrabeig
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Epidemiological Surveillance Unit, Department of Health, Generalitat de Catalunya, 08907 Barcelona, Spain
| | - Sara Arias
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (S.A.); (P.M.-M.); (N.B.)
| | - Alba Redin
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- Medicine Department, Universitat Internacional de Catalunya, Sant Cugat, 08195 Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain;
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Maria Mele
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Pere Millat-Martinez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (S.A.); (P.M.-M.); (N.B.)
| | - Joana Claverol
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
| | - Nuria Balanza
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (S.A.); (P.M.-M.); (N.B.)
| | - Alex Mira
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Department of Health and Genomics, Center for Advanced Research in Public Health, Fundacion para el Fomento de la Investigacion Sanitaria y Biomedica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain
| | - Juan J. Garcia-Garcia
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Quique Bassat
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (S.A.); (P.M.-M.); (N.B.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça Maputo 1929, Mozambique
| | - Iolanda Jordan
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Carmen Muñoz-Almagro
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Medicine Department, Universitat Internacional de Catalunya, Sant Cugat, 08195 Barcelona, Spain
- Correspondence: ; Tel.: +34-673302405; Fax: +34-932803626
| |
Collapse
|
41
|
McCauley KE, Flynn K, Calatroni A, DiMassa V, LaMere B, Fadrosh DW, Lynch KV, Gill MA, Pongracic JA, Khurana Hershey GK, Kercsmar CM, Liu AH, Johnson CC, Kim H, Kattan M, O'Connor GT, Bacharier LB, Teach SJ, Gergen PJ, Wheatley LM, Togias A, LeBeau P, Presnell S, Boushey HA, Busse WW, Gern JE, Jackson DJ, Altman MC, Lynch SV. Seasonal airway microbiome and transcriptome interactions promote childhood asthma exacerbations. J Allergy Clin Immunol 2022; 150:204-213. [PMID: 35149044 DOI: 10.1016/j.jaci.2022.01.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Seasonal variation in respiratory illnesses and exacerbations in pediatric populations with asthma is well described, though whether upper airway microbes play season-specific roles in these events is unknown. OBJECTIVE We hypothesized that nasal microbiota composition is seasonally dynamic and that discrete microbe-host interactions modify risk of asthma exacerbation in a season-specific manner. METHODS Repeated nasal samples from children with exacerbation-prone asthma collected during periods of respiratory health (baseline; n = 181 samples) or first captured respiratory illness (n = 97) across all seasons, underwent bacterial (16S ribosomal RNA gene) and fungal (internal transcribed spacer region 2) biomarker sequencing. Virus detection was performed by multiplex PCR. Paired nasal transcriptome data were examined for seasonal dynamics and integrative analyses. RESULTS Upper airway bacterial and fungal microbiota and rhinovirus detection exhibited significant seasonal dynamics. In seasonally adjusted analysis, variation in both baseline and respiratory illness microbiota related to subsequent exacerbation. Specifically, in the fall, when respiratory illness and exacerbation events were most frequent, several Moraxella and Haemophilus members were enriched both in virus-positive respiratory illnesses and those that progressed to exacerbations. The abundance of 2 discrete bacterial networks, characteristically comprising either Streptococcus or Staphylococcus, exhibited opposing interactions with an exacerbation-associated SMAD3 nasal epithelial transcriptional module to significantly increase the odds of subsequent exacerbation (odds ratio = 14.7, 95% confidence interval = 1.50-144, P = .02; odds ratio = 39.17, 95% confidence interval = 2.44-626, P = .008, respectively). CONCLUSIONS Upper airway microbiomes covary with season and with seasonal trends in respiratory illnesses and asthma exacerbations. Seasonally adjusted analyses reveal specific bacteria-host interactions that significantly increase risk of asthma exacerbation in these children.
Collapse
Affiliation(s)
| | - Kaitlin Flynn
- Systems Immunology Program, Benaroya Research Institute, Seattle, Wash
| | | | - Vincent DiMassa
- Department of Medicine, University of California, San Francisco, Calif
| | - Brandon LaMere
- Department of Medicine, University of California, San Francisco, Calif
| | - Douglas W Fadrosh
- Department of Medicine, University of California, San Francisco, Calif
| | - Kole V Lynch
- Department of Medicine, University of California, San Francisco, Calif
| | - Michelle A Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex
| | | | | | | | - Andrew H Liu
- Department of Allergy and Immunology, Children's Hospital Colorado, Unversity of Colorado School of Medicine, Aurora, Colo
| | | | | | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, NY
| | - George T O'Connor
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Leonard B Bacharier
- Division of Allergy, Immunology, and Pulmonary Medicine, Washington University, St Louis, Mo
| | | | - Peter J Gergen
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Lisa M Wheatley
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Alkis Togias
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | | | - Scott Presnell
- Systems Immunology Program, Benaroya Research Institute, Seattle, Wash
| | - Homer A Boushey
- Department of Medicine, University of California, San Francisco, Calif
| | - William W Busse
- University of Wisconsin School of Medicine and Public Health, Madison, Wisc
| | - James E Gern
- University of Wisconsin School of Medicine and Public Health, Madison, Wisc
| | - Daniel J Jackson
- University of Wisconsin School of Medicine and Public Health, Madison, Wisc
| | - Matthew C Altman
- Systems Immunology Program, Benaroya Research Institute, Seattle, Wash; Department of Allergy and Infectious Diseases, University of Washington, Seattle, Wash.
| | - Susan V Lynch
- Department of Medicine, University of California, San Francisco, Calif.
| | | |
Collapse
|
42
|
Hou J, Song Y, Leung ASY, Tang MF, Shi M, Wang EY, Tsun JGS, Chan RWY, Wong GWK, Tsui SKW, Leung TF. Temporal Dynamics of the Nasopharyngeal Microbiome and its Relationship with Childhood Asthma Exacerbation. Microbiol Spectr 2022; 10:e0012922. [PMID: 35546575 PMCID: PMC9241764 DOI: 10.1128/spectrum.00129-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/21/2022] [Indexed: 12/25/2022] Open
Abstract
Despite distinct nasopharyngeal microbiome (NPM) profiles between asthmatics and healthy subjects, little is known about the NPM dynamics and its relation to childhood asthma exacerbation (AE). We investigated NPM changes by longitudinally collecting 135 flocked nasopharyngeal swabs (FNPSs) from 33 school-age asthmatic children at six time points (2 to 4-week intervals) from September to December 2017 in Hong Kong. Subjects were categorized into AE and stable asthma (AS) groups according to whether they experienced any exacerbation during follow-up. One-off FNPSs from nine nonasthmatic children were included as controls. Microbiota profiles were analyzed using 16S rRNA gene sequencing. All 144 NPMs were classified into six microbiome profile groups (MPGs), each dominated by Moraxella, Corynebacterium 1, Dolosigranulum, Staphylococcus, Streptococcus, or Anoxybacillus. The microbial diversity and compositions of NPM in exacerbation samples were different from both baseline samples and those from healthy controls. Moraxella and Dolosigranulum-dominated NPM exhibited high temporal stability revealed by MPG transition analysis. NPM diversity decreased whereas microbial composition remained similar over time. The relative abundances of Moraxella increased while Corynebacterium 1, Anoxybacillus, and Pseudomonas decreased longitudinally. However, these temporal patterns did not differ between AE and AS groups, suggesting that short-term dynamic patterns were not sufficient to predict AE occurrence. Asthmatic NPM underwent Moraxella expansion during AE and presented a high microbiome resilience (recovery potential) after AE resolution. Microbial pathways involved in methane, ketone bodies, and vitamin B3 metabolisms were enhanced during AE and primarily contributed by Moraxella. IMPORTANCE Evidence on the dynamic changes of NPM in asthmatic patients remains limited. Here, we present that asthmatic NPMs deviating from a healthy status still showed resilience after disturbance. Our data imply from a longitudinal perspective that Moraxella increase is closely related to AE occurrence. The finding of functional dysbiosis (imbalance) during AE offers a plausible explanation for the known association between nasopharyngeal Moraxella expansion and increased AE risk. This work serves as a basis for future long-term prospective studies leveraging multiomics approaches to elucidate the temporal association between NPM and pediatric AE.
Collapse
Affiliation(s)
- Jinpao Hou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuping Song
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
- Department of Pediatrics, Prince of Wales Hospital, Hong Kong, China
| | - Agnes Sze Yin Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
- Department of Pediatrics, Prince of Wales Hospital, Hong Kong, China
| | - Man Fung Tang
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
- Department of Pediatrics, Prince of Wales Hospital, Hong Kong, China
- Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Mai Shi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Evy Yiwei Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph Gar Shun Tsun
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
- Department of Pediatrics, Prince of Wales Hospital, Hong Kong, China
| | - Renee Wan Yi Chan
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
- Department of Pediatrics, Prince of Wales Hospital, Hong Kong, China
- Chinese University of Hong Kong-University Medical Center Utrecht Joint Research Laboratory of Respiratory Virus and Immunobiology, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary Wing Kin Wong
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
- Department of Pediatrics, Prince of Wales Hospital, Hong Kong, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Center, The Chinese University of Hong Kong, Hong Kong, China
- Center for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting Fan Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
- Department of Pediatrics, Prince of Wales Hospital, Hong Kong, China
- Chinese University of Hong Kong-University Medical Center Utrecht Joint Research Laboratory of Respiratory Virus and Immunobiology, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
43
|
Tchoupou Saha OLF, Dubourg G, Yacouba A, Bossi V, Raoult D, Lagier JC. Profile of the Nasopharyngeal Microbiota Affecting the Clinical Course in COVID-19 Patients. Front Microbiol 2022; 13:871627. [PMID: 35655997 PMCID: PMC9152678 DOI: 10.3389/fmicb.2022.871627] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
While populations at risk for severe SARS-CoV-2 infections have been clearly identified, susceptibility to the infection and its clinical course remain unpredictable. As the nasopharyngeal microbiota may promote the acquisition of several respiratory infections and have an impact on the evolution of their outcome, we studied the nasopharyngeal microbiota of COVID-19 patients in association with baseline disease-related clinical features compared to that of patients tested negative. We retrospectively analyzed 120 nasopharyngeal pseudonymized samples, obtained for diagnosis, divided into groups (infected patients with a favorable outcome, asymptomatic, and deceased patients) and patients tested negative for SARS-CoV-2, by using Illumina-16S ribosomal ribonucleic acid (rRNA) sequencing and specific polymerase chain reaction (PCR) targeting pathogens. We first found a depletion of anaerobes among COVID-19 patients, irrespective of the clinical presentation of the infection (p < 0.029). We detected 9 taxa discriminating patients tested positive for SARS-CoV-2 from those that were negative including Corynebacterium propinquum/pseudodiphtericum (p ≤ 0.05), Moraxella catarrhalis (p ≤ 0.05), Bacillus massiliamazoniensis (p ≤ 0.01), Anaerobacillus alkalidiazotrophicus (p ≤ 0.05), Staphylococcus capitis subsp. capitis (p ≤ 0.001), and Afipia birgiae (p ≤ 0.001) with 16S rRNA sequencing, and Streptococcus pneumoniae (p ≤ 0.01), Klebsiella pneumoniae (p ≤ 0.01), and Enterococcus faecalis (p ≤ 0.05) using real-time PCR. By designing a specific real-time PCR, we also demonstrated that C. propinquum is decreased in asymptomatic individuals compared to other SARS-CoV 2 positive patients. These findings indicate that the nasopharyngeal microbiota as in any respiratory infection plays a role in the clinical course of the disease. Further studies are needed to elucidate the potential role in the clinical course of the disease of M. catarrhalis, Corynebacterium accolens, and more specifically Corynebacterium propinquum/diphteriticum in order to include them as predictors of the severity of COVID-19.
Collapse
Affiliation(s)
- Ornella la Fortune Tchoupou Saha
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Grégory Dubourg
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Abdourahamane Yacouba
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | | | - Didier Raoult
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Jean-Christophe Lagier
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France.,IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
44
|
van Dorst MMAR, Azimi S, Wahyuni S, Amaruddin AI, Sartono E, Wammes LJ, Yazdanbakhsh M, Jochems SP. Differences in Bacterial Colonization and Mucosal Responses Between High and Low SES Children in Indonesia. Pediatr Infect Dis J 2022; 41:496-506. [PMID: 35363645 DOI: 10.1097/inf.0000000000003525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Increased nasopharyngeal carriage of pathogenic bacteria is found in low socioeconomic status (SES) settings. How SES affects local immune responses, important for controlling colonization, is currently unknown. OBJECTIVE Examining bacterial colonization and cytokine response in the nasal mucosa of children from high and low SES. METHODS Nasosorption samples were collected in October 2019 from 48 high SES and 50 low SES schoolchildren, in a cross-sectional study in Makassar, Indonesia. Twenty-five cytokines were measured in nasal fluid. Quantitative polymerase chain reaction was performed to determine carriage and density of Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrhalis and Staphylococcus aureus. Data were analyzed using multivariate regression. RESULTS H. influenzae and S. pneumoniae densities were increased in low SES settings compared to the high SES settings (P = 0.006, P = 0.026), with 6 and 67 times higher median densities, respectively. Densities of H. influenzae and S. pneumoniae were positively associated with levels of IL-1beta and IL-6. After correcting for bacterial density, IL-6 levels were higher in colonized children from high SES than low SES for H. influenzae and S. pneumoniae (both P = 0.039). CONCLUSION Increased densities of H. influenzae and S. pneumoniae were observed in low SES children, whereas IL-6 levels associated with colonization were reduced in these children, indicating that immune responses to bacterial colonization were altered by SES.
Collapse
Affiliation(s)
- Marloes M A R van Dorst
- From the Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Shohreh Azimi
- From the Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Sitti Wahyuni
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Aldian I Amaruddin
- From the Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Erliyani Sartono
- From the Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Linda J Wammes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria Yazdanbakhsh
- From the Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Simon P Jochems
- From the Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
45
|
Evidence for the intermediate disturbance hypothesis and exponential decay in replacement in Streptococcus pneumoniae following use of conjugate vaccines. Sci Rep 2022; 12:7510. [PMID: 35525872 PMCID: PMC9079081 DOI: 10.1038/s41598-022-11279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
Understanding how pneumococci respond to pneumococcal conjugate vaccines (PCVs) is crucial to predict the impact of upcoming higher-valency vaccines. However, stages in pneumococcal community succession following disturbance are poorly understood as long-time series on carriage are scarce and mostly evaluated at end-point measurements. We used a 20-year cross-sectional dataset of pneumococci carried by Portuguese children, and methods from community ecology, to study community assembly and diversity following use of PCV7 and PCV13. Two successional stages were detected upon introduction of each PCV: one in which non-vaccine serotypes increased in abundance, fitted by a broken-stick model, and a second in which the community returned to the original structure, fitted by a geometric series, but with different serotype profile and a drop in richness as great as 24%. A peak in diversity was observed for levels of intermediate vaccine uptake (30–40%) in agreement with the intermediate disturbance hypothesis. Serotype replacement was fitted by an exponential decay model (R2 = 80%, P < 0.001). The half-life for replacement was 8 years for PCV7 and 10 years for PCV13. The structure of the pneumococcal community is resilient to vaccine pressure. The increasing loss of diversity, however, suggests it could eventually reach a threshold beyond which it may no longer recover.
Collapse
|
46
|
Prasad P, Mahapatra S, Mishra R, Murmu KC, Aggarwal S, Sethi M, Mohapatra P, Ghosh A, Yadav R, Dodia H, Ansari SA, De S, Singh D, Suryawanshi A, Dash R, Senapati S, Beuria TK, Chattopadhyay S, Syed GH, Swain R, Raghav SK, Parida A. Long-read 16S-seq reveals nasopharynx microbial dysbiosis and enrichment of Mycobacterium and Mycoplasma in COVID-19 patients: a potential source of co-infection. Mol Omics 2022; 18:490-505. [PMID: 35506682 DOI: 10.1039/d2mo00044j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major global health concern. This virus infects the upper respiratory tract and causes pneumonia-like symptoms. So far, few studies have shown alterations in nasopharyngeal (NP) microbial diversity, enrichment of opportunistic pathogens and their role in co-infections during respiratory infections. Therefore, we hypothesized that microbial diversity changes, with increase in the population of opportunistic pathogens, during SARS-CoV2 infection in the nasopharynx, which may be involved in co-infection in COVID-19 patients. The 16S rRNA variable regions, V1-V9, of NP samples of control and COVID-19 (symptomatic and asymptomatic) patients were sequenced using the Oxford Nanopore™ technology. Comprehensive bioinformatics analysis for determining alpha/beta diversities, non-metric multidimensional scaling, correlation studies, canonical correspondence analysis, linear discriminate analysis, and dysbiosis index were used to analyze the control and COVID-19-specific NP microbiomes. We observed significant dysbiosis in the COVID-19 NP microbiome with an increase in the abundance of opportunistic pathogens at genus and species levels in asymptomatic/symptomatic patients. The significant abundance of Mycobacteria spp. and Mycoplasma spp. in symptomatic patients suggests their association and role in co-infections in COVID-19 patients. Furthermore, we found strong correlation of enrichment of Mycobacteria and Mycoplasma with the occurrences of chest pain and fever in symptomatic COVID-19 patients. This is the first study from India to show the abundance of Mycobacteria and Mycoplasma opportunistic pathogens in non-hospitalized COVID-19 patients and their relationship with symptoms, indicating the possibility of co-infections.
Collapse
Affiliation(s)
- Punit Prasad
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Soumendu Mahapatra
- Institute of Life Sciences, Bhubaneswar, Odisha, India. .,Kalinga Institute of Industrial Technology (KIIT), School of Biotechnology, Bhubaneswar, Odisha, India
| | | | | | | | - Manisha Sethi
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | | | - Arup Ghosh
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Rina Yadav
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Hiren Dodia
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | | | - Saikat De
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Deepak Singh
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | | | - Rupesh Dash
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | | | | | | | | | - Rajeeb Swain
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | | | - Ajay Parida
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
47
|
Zhao H, Chen S, Yang F, Wu H, Ba Y, Cui L, Chen R, Zhu J. Alternation of nasopharyngeal microbiota in healthy youth is associated with environmental factors: implication for respiratory diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:952-962. [PMID: 32866029 DOI: 10.1080/09603123.2020.1810209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The nasopharynx is a key niche of the upper respiratory tract which contains many commensal bacteria and potential pathogens. Dysbiosis of the nasopharyngeal (NP) microbiota is associated with a variety of respiratory diseases. Little is known about NP flora in healthy youth, nor about its relationship with environmental factors. We characterized NP microbiota using the 16S rRNA gene sequencing method, and compared microbial composition from subjects sampled in Spring and Fall when exposed to different environmental factors. Results showed that beta diversity was significantly different. Phyla Acidobacteria, Gemmatimonadetes, and genus Symbiobacterium were positively associated with PM2.5. Genera Streptococcus, Prevotella, and [Prevotella] were positively correlated with temperature (T). Ozone (O3) was associated with these floras for exposure that occurred 30 days prior to collection. These preliminary data suggest that the change in environmental factors between spring and fall can influence the composition of the NP microbiota, characterized by a significant correlation to specific taxa. These changes in NP microbiota might be a potential risk factor for respiratory disease.
Collapse
Affiliation(s)
- Hongcheng Zhao
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Fan Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huiying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Liuxin Cui
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ruiying Chen
- Department of Respiratory and Sleep Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyuan Zhu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Ozkan J, Willcox M, Coroneo M. A comparative analysis of the cephalic microbiome: The ocular, aural, nasal/nasopharyngeal, oral and facial dermal niches. Exp Eye Res 2022; 220:109130. [DOI: 10.1016/j.exer.2022.109130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/08/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
|
49
|
Yagi K, Asai N, Huffnagle GB, Lukacs NW, Fonseca W. Early-Life Lung and Gut Microbiota Development and Respiratory Syncytial Virus Infection. Front Immunol 2022; 13:877771. [PMID: 35444639 PMCID: PMC9013880 DOI: 10.3389/fimmu.2022.877771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
Several environmental factors can influence the development and establishment of the early-life microbiota. For example, exposure to different environmental factors from birth to childhood will shape the lung and gut microbiota and the development of the immune system, which will impact respiratory tract infection and widespread disease occurrence during infancy and later in life. Respiratory syncytial virus (RSV) infects most infants by the age of two and is the primary cause of bronchiolitis in children worldwide. Approximately a third of infants hospitalized with bronchiolitis develop asthma later in life. However, it is unclear what factors increase susceptibility to severe RSV-bronchiolitis and the subsequent asthma development. In recent years, the role of the gut and lung microbiota in airway diseases has received increased interest, and more studies have focused on this field. Different epidemiological studies and experimental animal models have associated early-life gut microbiota dysbiosis with an increased risk of lung disease later in life. This work will review published evidence that correlated environmental factors that affect the early-life microbiota composition and their role in developing severe RSV infection.
Collapse
Affiliation(s)
- Kazuma Yagi
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Nobuhiro Asai
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Gary B Huffnagle
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Mary H. Weiser Food Allergy Center, University of Michigan , Ann Arbor, MI, United States
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States.,Mary H. Weiser Food Allergy Center, University of Michigan , Ann Arbor, MI, United States
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
50
|
Li Y, van Houten CB, Boers SA, Jansen R, Cohen A, Engelhard D, Kraaij R, Hiltemann SD, Ju J, Fernández D, Mankoc C, González E, de Waal WJ, de Winter-de Groot KM, Wolfs TFW, Meijers P, Luijk B, Oosterheert JJ, Sankatsing SUC, Bossink AWJ, Stein M, Klein A, Ashkar J, Bamberger E, Srugo I, Odeh M, Dotan Y, Boico O, Etshtein L, Paz M, Navon R, Friedman T, Simon E, Gottlieb TM, Pri-Or E, Kronenfeld G, Oved K, Eden E, Stubbs AP, Bont LJ, Hays JP. The diagnostic value of nasal microbiota and clinical parameters in a multi-parametric prediction model to differentiate bacterial versus viral infections in lower respiratory tract infections. PLoS One 2022; 17:e0267140. [PMID: 35436301 PMCID: PMC9015155 DOI: 10.1371/journal.pone.0267140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background The ability to accurately distinguish bacterial from viral infection would help clinicians better target antimicrobial therapy during suspected lower respiratory tract infections (LRTI). Although technological developments make it feasible to rapidly generate patient-specific microbiota profiles, evidence is required to show the clinical value of using microbiota data for infection diagnosis. In this study, we investigated whether adding nasal cavity microbiota profiles to readily available clinical information could improve machine learning classifiers to distinguish bacterial from viral infection in patients with LRTI. Results Various multi-parametric Random Forests classifiers were evaluated on the clinical and microbiota data of 293 LRTI patients for their prediction accuracies to differentiate bacterial from viral infection. The most predictive variable was C-reactive protein (CRP). We observed a marginal prediction improvement when 7 most prevalent nasal microbiota genera were added to the CRP model. In contrast, adding three clinical variables, absolute neutrophil count, consolidation on X-ray, and age group to the CRP model significantly improved the prediction. The best model correctly predicted 85% of the ‘bacterial’ patients and 82% of the ‘viral’ patients using 13 clinical and 3 nasal cavity microbiota genera (Staphylococcus, Moraxella, and Streptococcus). Conclusions We developed high-accuracy multi-parametric machine learning classifiers to differentiate bacterial from viral infections in LRTI patients of various ages. We demonstrated the predictive value of four easy-to-collect clinical variables which facilitate personalized and accurate clinical decision-making. We observed that nasal cavity microbiota correlate with the clinical variables and thus may not add significant value to diagnostic algorithms that aim to differentiate bacterial from viral infections.
Collapse
Affiliation(s)
- Yunlei Li
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chantal B. van Houten
- Division of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan A. Boers
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Dan Engelhard
- Division of Paediatric Infectious Disease Unit, Hadassah-Hebrew University Medical Centre, Jerusalem, Israel
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Saskia D. Hiltemann
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jie Ju
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | - Wouter J. de Waal
- Department of Paediatrics, Diakonessenhuis, Utrecht, The Netherlands
| | - Karin M. de Winter-de Groot
- Department of Paediatric Respiratory Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tom F. W. Wolfs
- Division of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pieter Meijers
- Department of Paediatrics, Gelderse Vallei Hospital, Ede, The Netherlands
| | - Bart Luijk
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan Jelrik Oosterheert
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Aik W. J. Bossink
- Department of Respiratory Medicine, Diakonessenhuis Utrecht, Utrecht, The Netherlands
| | - Michal Stein
- Department of Paediatrics, Hillel Yaffe Medical Centre, Hadera, Israel
| | - Adi Klein
- Department of Paediatrics, Hillel Yaffe Medical Centre, Hadera, Israel
| | - Jalal Ashkar
- Department of Paediatrics, Hillel Yaffe Medical Centre, Hadera, Israel
| | - Ellen Bamberger
- MeMed, Tirat Carmel, Israel
- Department of Paediatrics, Bnai Zion Medical Centre, Haifa, Israel
| | - Isaac Srugo
- Department of Paediatrics, Bnai Zion Medical Centre, Haifa, Israel
| | - Majed Odeh
- Department of Internal Medicine A, Bnai Zion Medical Centre, Haifa, Israel
| | - Yaniv Dotan
- Pulmonary Division, Rambam Health Care Campus, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | | | | - Andrew P. Stubbs
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Louis J. Bont
- Division of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - John P. Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|