1
|
Mercurio S. SOX2-Sensing: Insights into the Role of SOX2 in the Generation of Sensory Cell Types in Vertebrates. Int J Mol Sci 2023; 24:ijms24087637. [PMID: 37108798 PMCID: PMC10141063 DOI: 10.3390/ijms24087637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The SOX2 transcription factor is a key regulator of nervous system development, and its mutation in humans leads to a rare disease characterized by severe eye defects, cognitive defects, hearing defects, abnormalities of the CNS and motor control problems. SOX2 has an essential role in neural stem cell maintenance in specific regions of the brain, and it is one of the master genes required for the generation of induced pluripotent stem cells. Sox2 is expressed in sensory organs, and this review will illustrate how it regulates the differentiation of sensory cell types required for hearing, touching, tasting and smelling in vertebrates and, in particular, in mice.
Collapse
Affiliation(s)
- Sara Mercurio
- Department of Biotechnologies and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
2
|
Paronett EM, Bryan CA, Maynard TM, LaMantia AS. Identity, lineage and fates of a temporally distinct progenitor population in the embryonic olfactory epithelium. Dev Biol 2023; 495:76-91. [PMID: 36627077 PMCID: PMC9926479 DOI: 10.1016/j.ydbio.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023]
Abstract
We defined a temporally and transcriptionally divergent precursor cohort in the medial olfactory epithelium (OE) shortly after it differentiates as a distinct tissue at mid-gestation in the mouse. This temporally distinct population of Ascl1+ cells in the dorsomedial OE is segregated from Meis1+/Pax7+ progenitors in the lateral OE, and does not appear to be generated by Pax7+ lateral OE precursors. The medial Ascl1+ precursors do not yield a substantial number of early-generated ORNs. Instead, they first generate additional proliferative precursors as well as a distinct population of frontonasal mesenchymal cells associated with the migratory mass that surrounds the nascent olfactory nerve. Parallel to these in vivo distinctions, isolated medial versus lateral OE precursors in vitro retain distinct proliferative capacities and modes of division that reflect their in vivo identities. At later fetal stages, these early dorsomedial Ascl1+ precursors cells generate spatially restricted subsets of ORNs as well as other non-neuronal cell classes. Accordingly, the initial compliment of ORNs and other OE cell types is derived from at least two distinct early precursor populations: lateral Meis1/Pax7+ precursors that generate primarily early ORNs, and a temporally, spatially, and transcriptionally distinct subset of medial Ascl1+ precursors that initially generate additional OE progenitors and apparent migratory mass cells before yielding a subset of ORNs and likely supporting cell classes.
Collapse
Affiliation(s)
- Elizabeth M Paronett
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC, 20037, USA
| | - Corey A Bryan
- Laboratory of Developmental Disorders and Genetics, The Fralin Biomedical Research Institute, Virginia Tech-Carilion School of Medicine, Roanoke, VA, USA
| | - Thomas M Maynard
- Center for Neurobiology Research, The Fralin Biomedical Research Institute, Virginia Tech-Carilion School of Medicine, Roanoke, VA, USA
| | - Anthony-S LaMantia
- Center for Neurobiology Research, The Fralin Biomedical Research Institute, Virginia Tech-Carilion School of Medicine, Roanoke, VA, USA; Department of Biological Sciences Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
3
|
Miyakawa M, Murakmai S, Uchiyama Y. Wide-ranging migration and destination of early olfactory placode-derived neurons in chick embryos. Anat Rec (Hoboken) 2023; 306:298-310. [PMID: 36104941 PMCID: PMC10087695 DOI: 10.1002/ar.25080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/15/2022] [Accepted: 09/11/2022] [Indexed: 01/27/2023]
Abstract
Cell migration from the olfactory placode (OP) is a well-known phenomenon wherein various cell types, such as gonadotropin-releasing hormone (GnRH)-producing neurons, migrate toward the telencephalon (TEL) during early embryonic development. However, the spatial relationship between early migratory cells and the forebrain is unclear. We examined the early development of whole-mount chick embryos to observe the three-dimensional spatial relationship among OP-derived migratory neurons, olfactory nerve (ON), and TEL. Migratory neurons that express highly polysialylated neural cell adhesion molecule (PSA-NCAM) emerge from the OP and spread over a relatively wide TEL area at the Hamburger and Hamilton (HH) stage 17. Most migratory neurons form a cellular cord between the olfactory pit and rostral TEL within HH18-20. The earliest axons from the olfactory epithelium (OE) were detected along this neuronal cord using DiI-labeling at HH21. Furthermore, a few PSA-NCAM-positive neurons were dispersed around the cellular cord and over the lateral TEL at HH18. A long cellular cord branch extending to the lateral TEL was transiently observed within HH18-24. These results suggest a novel migratory route of OP-derived neurons during the early developmental stages. Following GFP vector introduction into the OP of HH13-15 embryos, labeled neurons were detected around and within the lateral TEL at HH23 and HH27. At HH36, labeled cells were observed in the rostral-lateral TEL, including the olfactory bulb (OB) region. GFP-labeled and calretinin-positive neurons were detected in the OB, suggesting that early OP-derived neurons enter the forebrain and function as interneurons in the OB.
Collapse
Affiliation(s)
- Momoko Miyakawa
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Tokyo, Japan
| | - Shizuko Murakmai
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Identification of the Time Period during Which BMP Signaling Regulates Proliferation of Neural Progenitor Cells in Zebrafish. Int J Mol Sci 2023; 24:ijms24021733. [PMID: 36675251 PMCID: PMC9863262 DOI: 10.3390/ijms24021733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling regulates neural induction, neuronal specification, and neuronal differentiation. However, the role of BMP signaling in neural progenitors remains unclear. This is because interruption of BMP signaling before or during neural induction causes severe effects on subsequent neural developmental processes. To examine the role of BMP signaling in the development of neural progenitors in zebrafish, we bypassed the effect of BMP signaling on neural induction and suppressed BMP signaling at different time points during gastrulation using a temporally controlled transgenic line carrying a dominant-negative form of Bmp receptor type 1aa and a chemical inhibitor of BMP signaling, DMH1. Inhibiting BMP signaling from 8 hpf could bypass BMP regulation on neural induction, induce the number of proliferating neural progenitors, and reduce the number of neuronal precursors. Inhibiting BMP signaling upregulates the expression of the Notch downstream gene hairy/E(spl)-related 2 (her2). Inhibiting Notch signaling or knocking down the Her2 function reduced neural progenitor proliferation, whereas inactivating BMP signaling in Notch-Her2 deficient background restored the number of proliferating neural progenitors. These results reveal the time window for the proliferation of neural progenitors during zebrafish development and a fine balance between BMP and Notch signaling in regulating the proliferation of neural progenitor cells.
Collapse
|
5
|
Grisanti Canozo FJ, Zuo Z, Martin JF, Samee MAH. Cell-type modeling in spatial transcriptomics data elucidates spatially variable colocalization and communication between cell-types in mouse brain. Cell Syst 2022; 13:58-70.e5. [PMID: 34626538 PMCID: PMC8776574 DOI: 10.1016/j.cels.2021.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023]
Abstract
Single-cell spatial transcriptomics (sc-ST) holds the promise to elucidate architectural aspects of complex tissues. Such analyses require modeling cell types in sc-ST datasets through their integration with single-cell RNA-seq datasets. However, this integration, is nontrivial since the two technologies differ widely in the number of profiled genes, and the datasets often do not share many marker genes for given cell types. We developed a neural network model, spatial transcriptomics cell-types assignment using neural networks (STANN), to overcome these challenges. Analysis of STANN's predicted cell types in mouse olfactory bulb (MOB) sc-ST data delineated MOB architecture beyond its morphological layer-based conventional description. We find that cell-type proportions remain consistent within individual morphological layers but vary significantly between layers. Notably, even within a layer, cellular colocalization patterns and intercellular communication mechanisms show high spatial variations. These observations imply a refinement of major cell types into subtypes characterized by spatially localized gene regulatory networks and receptor-ligand usage.
Collapse
Affiliation(s)
| | - Zhen Zuo
- Baylor College of Medicine, Houston, TX 77030, USA
| | - James F Martin
- Baylor College of Medicine, Houston, TX 77030, USA; Texas Heart Institute, Houston, TX 77030, USA
| | | |
Collapse
|
6
|
Palaniappan TK, Slekiene L, Gunhaga L, Patthey C. Extensive apoptosis during the formation of the terminal nerve ganglion by olfactory placode-derived cells with distinct molecular markers. Differentiation 2019; 110:8-16. [PMID: 31539705 DOI: 10.1016/j.diff.2019.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
The terminal nerve ganglion (TNG) is a well-known structure of the peripheral nervous system in cartilaginous and teleost fishes. It derives from the olfactory placode during embryonic development. While the differentiation and migration of gonadotropin releasing hormone (GnRH)-expressing neurons from the olfactory placode has been well documented, the TNG has been neglected in birds and mammals, and its development is less well described. Here we describe the formation of a ganglion-like structure from migratory olfactory placodal cells in chicken. The TNG is surrounded by neural crest cells, but in contrast to other cranial sensory ganglia, we observed no neural crest corridor, and olfactory unsheathing cells appear only after the onset of neuronal migration. We identified Isl1 and Lhx2 as two transcription factors that label neuronal subpopulations in the forming TNG, distinct from GnRH1+ cells, thereby revealing a diversity of cell types during the formation of the TNG. We also provide evidence for extensive apoptosis in the terminal nerve ganglion shortly after its formation, but not in other cranial sensory ganglia. Moreover, at later stages placode-derived neurons expressing GnRH1, Isl1 and/or Lhx2 become incorporated in the telencephalon. The integration of TNG neurons into the telencephalon together with the earlier widespread apoptosis in the TNG might be an explanation why the TNG in mammals and birds is much smaller compared to other vertebrates.
Collapse
Affiliation(s)
| | - Lina Slekiene
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Cedric Patthey
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
7
|
Canonical Notch Signaling Directs the Fate of Differentiating Neurocompetent Progenitors in the Mammalian Olfactory Epithelium. J Neurosci 2018; 38:5022-5037. [PMID: 29739871 DOI: 10.1523/jneurosci.0484-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/31/2018] [Accepted: 05/04/2018] [Indexed: 12/24/2022] Open
Abstract
The adult olfactory epithelium (OE) has the remarkable capacity to regenerate fully both neurosensory and non-neuronal cell types after severe epithelial injury. Lifelong persistence of two stem cell populations supports OE regeneration when damaged: the horizontal basal cells (HBCs), dormant and held in reserve; and globose basal cells, a heterogeneous population most of which are actively dividing. Both populations regenerate all cell types of the OE after injury, but the mechanisms underlying neuronal versus non-neuronal lineage commitment after recruitment of the stem cell pools remains unknown. We used both retroviral transduction and mouse lines that permit conditional cell-specific genetic manipulation as well as the tracing of progeny to study the role of canonical Notch signaling in the determination of neuronal versus non-neuronal lineages in the regenerating adult OE. Excision of either Notch1 or Notch2 genes alone in HBCs did not alter progenitor fate during recovery from epithelial injury, whereas conditional knock-out of both Notch1 and Notch2 together, retroviral transduction of progenitors with a dominant-negative form of MAML (mastermind-like), or excision of the downstream cofactor RBPJ caused progeny to adopt a neuronal fate exclusively. Conversely, we show that overexpressing the Notch1-intracellular domain (N1ICD) either genetically or by transduction blocks neuronal differentiation completely. However, N1ICD overexpression requires both alleles of the canonical cofactor RBPJ to specify downstream lineage. Together, our results suggest that canonical RBPJ-dependent Notch signaling through redundant Notch1 and Notch2 receptors is both necessary and sufficient for determining neuronal versus non-neuronal differentiation in the regenerating adult OE.SIGNIFICANCE STATEMENT Despite the substantial reconstitution of the olfactory epithelium and its population of sensory neurons after injury, disruption and exhaustion of neurogenesis is a consequence of aging and a cause of olfactory dysfunction. Understanding the mechanisms underlying the generation of replacement neurons and non-neuronal cells is critical to any therapeutic strategy aimed at rebuilding a functional neuroepithelium. The results shown here demonstrate that canonical Notch signaling determines the balance between neurons and non-neuronal cells during restoration of the epithelium after injury. Moreover, the complexities of the multiple Notch pathways impinging on that decision are dissected in detail. Finally, RBPJ, the canonical Notch transcriptional cofactor, exhibits a heretofore unreported haploinsufficiency in setting the balance among the regenerating populations.
Collapse
|
8
|
Panaliappan TK, Wittmann W, Jidigam VK, Mercurio S, Bertolini JA, Sghari S, Bose R, Patthey C, Nicolis SK, Gunhaga L. Sox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation. Development 2018; 145:145/2/dev153791. [PMID: 29352015 PMCID: PMC5825848 DOI: 10.1242/dev.153791] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
Abstract
The transcription factor Sox2 is necessary to maintain pluripotency of embryonic stem cells, and to regulate neural development. Neurogenesis in the vertebrate olfactory epithelium persists from embryonic stages through adulthood. The role Sox2 plays for the development of the olfactory epithelium and neurogenesis within has, however, not been determined. Here, by analysing Sox2 conditional knockout mouse embryos and chick embryos deprived of Sox2 in the olfactory epithelium using CRISPR-Cas9, we show that Sox2 activity is crucial for the induction of the neural progenitor gene Hes5 and for subsequent differentiation of the neuronal lineage. Our results also suggest that Sox2 activity promotes the neurogenic domain in the nasal epithelium by restricting Bmp4 expression. The Sox2-deficient olfactory epithelium displays diminished cell cycle progression and proliferation, a dramatic increase in apoptosis and finally olfactory pit atrophy. Moreover, chromatin immunoprecipitation data show that Sox2 directly binds to the Hes5 promoter in both the PNS and CNS. Taken together, our results indicate that Sox2 is essential to establish, maintain and expand the neuronal progenitor pool by suppressing Bmp4 and upregulating Hes5 expression. Summary: Analysis of Sox2 mutant mouse and Sox2 CRISPR-targeted chick embryos reveals that Sox2 controls the establishment of sensory progenitors in the olfactory epithelium by suppressing Bmp4 and upregulating Hes5 expression.
Collapse
Affiliation(s)
| | - Walter Wittmann
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Vijay K Jidigam
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Sara Mercurio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Jessica A Bertolini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Soufien Sghari
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Raj Bose
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Cedric Patthey
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
9
|
Hooper JE, Feng W, Li H, Leach SM, Phang T, Siska C, Jones KL, Spritz RA, Hunter LE, Williams T. Systems biology of facial development: contributions of ectoderm and mesenchyme. Dev Biol 2017; 426:97-114. [PMID: 28363736 PMCID: PMC5530582 DOI: 10.1016/j.ydbio.2017.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
The rapid increase in gene-centric biological knowledge coupled with analytic approaches for genomewide data integration provides an opportunity to develop systems-level understanding of facial development. Experimental analyses have demonstrated the importance of signaling between the surface ectoderm and the underlying mesenchyme are coordinating facial patterning. However, current transcriptome data from the developing vertebrate face is dominated by the mesenchymal component, and the contributions of the ectoderm are not easily identified. We have generated transcriptome datasets from critical periods of mouse face formation that enable gene expression to be analyzed with respect to time, prominence, and tissue layer. Notably, by separating the ectoderm and mesenchyme we considerably improved the sensitivity compared to data obtained from whole prominences, with more genes detected over a wider dynamic range. From these data we generated a detailed description of ectoderm-specific developmental programs, including pan-ectodermal programs, prominence- specific programs and their temporal dynamics. The genes and pathways represented in these programs provide mechanistic insights into several aspects of ectodermal development. We also used these data to identify co-expression modules specific to facial development. We then used 14 co-expression modules enriched for genes involved in orofacial clefts to make specific mechanistic predictions about genes involved in tongue specification, in nasal process patterning and in jaw development. Our multidimensional gene expression dataset is a unique resource for systems analysis of the developing face; our co-expression modules are a resource for predicting functions of poorly annotated genes, or for predicting roles for genes that have yet to be studied in the context of facial development; and our analytic approaches provide a paradigm for analysis of other complex developmental programs.
Collapse
Affiliation(s)
- Joan E Hooper
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Weiguo Feng
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Craniofacial Biology, University of Colorado School of Dental Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Sonia M Leach
- Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| | - Tzulip Phang
- Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Medicine, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Charlotte Siska
- Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, 12800 E 17th Avenue, Aurora, CO 80045, USA.
| | - Lawrence E Hunter
- Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Trevor Williams
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Craniofacial Biology, University of Colorado School of Dental Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
10
|
Forni PE, Wray S. GnRH, anosmia and hypogonadotropic hypogonadism--where are we? Front Neuroendocrinol 2015; 36:165-77. [PMID: 25306902 PMCID: PMC4703044 DOI: 10.1016/j.yfrne.2014.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022]
Abstract
Gonadotropin releasing hormone (GnRH) neurons originate the nasal placode and migrate into the brain during prenatal development. Once within the brain, these cells become integral components of the hypothalamic-pituitary-gonadal axis, essential for reproductive function. Disruption of this system causes hypogonadotropic hypogonadism (HH). HH associated with anosmia is clinically defined as Kallman syndrome (KS). Recent work examining the developing nasal region has shed new light on cellular composition, cell interactions and molecular cues responsible for the development of this system in different species. This review discusses some developmental aspects, animal models and current advancements in our understanding of pathologies affecting GnRH. In addition we discuss how development of neural crest derivatives such as the glia of the olfactory system and craniofacial structures control GnRH development and reproductive function.
Collapse
Affiliation(s)
- Paolo E Forni
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, United States.
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
11
|
Abstract
Epigenetic modulations orchestrate with extracellular environmental cues to determine the spatial and temporal expression of key regulators in neural stem/progenitor cells to control their proliferation, fate specification, and differentiation. Here, Yao and Jin review the latest in our knowledge of epigenetic regulation in neurogenesis and offer a perspective for future studies. During embryonic and adult neurogenesis, neuronal stem cells follow a highly conserved path of differentiation to give rise to functional neurons at various developmental stages. Epigenetic regulation—including DNA modifications, histone modifications, and noncoding regulatory RNAs, such as microRNA (miRNA) and long noncoding RNA (lncRNA)—plays a pivotal role in embryonic and adult neurogenesis. Here we review the latest in our understanding of the epigenetic regulation in neurogenesis, with a particular focus on newly identified cytosine modifications and their dynamics, along with our perspective for future studies.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
12
|
Kuhlmann K, Tschapek A, Wiese H, Eisenacher M, Meyer HE, Hatt HH, Oeljeklaus S, Warscheid B. The membrane proteome of sensory cilia to the depth of olfactory receptors. Mol Cell Proteomics 2014; 13:1828-43. [PMID: 24748648 DOI: 10.1074/mcp.m113.035378] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the nasal cavity, the nonmotile cilium of olfactory sensory neurons (OSNs) constitutes the chemosensory interface between the ambient environment and the brain. The unique sensory organelle facilitates odor detection for which it includes all necessary components of initial and downstream olfactory signal transduction. In addition to its function in olfaction, a more universal role in modulating different signaling pathways is implicated, for example, in neurogenesis, apoptosis, and neural regeneration. To further extend our knowledge about this multifunctional signaling organelle, it is of high importance to establish a most detailed proteome map of the ciliary membrane compartment down to the level of transmembrane receptors. We detached cilia from mouse olfactory epithelia via Ca(2+)/K(+) shock followed by the enrichment of ciliary membrane proteins at alkaline pH, and we identified a total of 4,403 proteins by gel-based and gel-free methods in conjunction with high resolution LC/MS. This study is the first to report the detection of 62 native olfactory receptor proteins and to provide evidence for their heterogeneous expression at the protein level. Quantitative data evaluation revealed four ciliary membrane-associated candidate proteins (the annexins ANXA1, ANXA2, ANXA5, and S100A5) with a suggested function in the regulation of olfactory signal transduction, and their presence in ciliary structures was confirmed by immunohistochemistry. Moreover, we corroborated the ciliary localization of the potassium-dependent Na(+)/Ca(2+) exchanger (NCKX) 4 and the plasma membrane Ca(2+)-ATPase 1 (PMCA1) involved in olfactory signal termination, and we detected for the first time NCKX2 in olfactory cilia. Through comparison with transcriptome data specific for mature, ciliated OSNs, we finally delineated the membrane ciliome of OSNs. The membrane proteome of olfactory cilia established here is the most complete today, thus allowing us to pave new avenues for the study of diverse molecular functions and signaling pathways in and out of olfactory cilia and thus to advance our understanding of the biology of sensory organelles in general.
Collapse
Affiliation(s)
- Katja Kuhlmann
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum
| | - Astrid Tschapek
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum
| | - Heike Wiese
- the ¶Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg
| | - Martin Eisenacher
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum
| | - Helmut E Meyer
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, the ‖Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, and
| | - Hanns H Hatt
- the **Department of Cell Physiology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Silke Oeljeklaus
- the ¶Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg
| | - Bettina Warscheid
- the ¶Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg,
| |
Collapse
|
13
|
The indirect role of fibroblast growth factor-8 in defining neurogenic niches of the olfactory/GnRH systems. J Neurosci 2014; 33:19620-34. [PMID: 24336726 DOI: 10.1523/jneurosci.3238-13.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bone morphogenic protein-4 (BMP4) and fibroblast growth factor-8 (FGF8) are thought to have opposite roles in defining epithelial versus neurogenic fate in the developing olfactory/vomeronasal system. In particular, FGF8 has been implicated in specification of olfactory and gonadotropin releasing hormone-1 (GnRH) neurons, as well as in controlling olfactory stem cell survival. Using different knock-in mouse lines and Cre-lox-mediated lineage tracing, Fgf8 expression and cell lineage was analyzed in the developing nose in relation to the expression of Bmp4 and its antagonist Noggin (Nog). FGF8 is expressed by cells that acquire an epidermal, respiratory cell fate and not by stem cells that acquire neuronal olfactory or vomeronasal cell fate. Ectodermal and mesenchymal sources of BMP4 control the expression of BMP/TGFβ antagonist Nog, whereas mesenchymal sources of Nog define the neurogenic borders of the olfactory pit. Fgf8 hypomorph mouse models, Fgf8(neo/neo) and Fgf8(neo/null), displayed severe craniofacial defects together with overlapping defects in the olfactory pit including (1) lack of neuronal formation ventrally, where GnRH neurons normally form, and (2) altered expression of Bmp4 and Nog, with Nog ectopically expressed in the nasal mesenchyme and no longer defining the GnRH and vomeronasal neurogenic border. Together our data show that (1) FGF8 is not sufficient to induce ectodermal progenitors of the olfactory pit to acquire neural fate and (2) altered neurogenesis and lack of GnRH neuron specification after chronically reduced Fgf8 expression reflected dysgenesis of the nasal region and loss of a specific neurogenic permissive milieu that was defined by mesenchymal signals.
Collapse
|
14
|
Wittmann W, Iulianella A, Gunhaga L. Cux2 acts as a critical regulator for neurogenesis in the olfactory epithelium of vertebrates. Dev Biol 2014; 388:35-47. [PMID: 24512687 DOI: 10.1016/j.ydbio.2014.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 01/17/2023]
Abstract
Signaling pathways and transcription factors are crucial regulators of vertebrate neurogenesis, exerting their function in a spatial and temporal manner. Despite recent advances in our understanding of the molecular regulation of embryonic neurogenesis, little is known regarding how different signaling pathways interact to tightly regulate this process during the development of neuroepithelia. To address this, we have investigated the events lying upstream and downstream of a key neurogenic factor, the Cut-like homeodomain transcription factor-2 (Cux2), during embryonic neurogenesis in chick and mouse. By using the olfactory epithelium as a model for neurogenesis we have analyzed mouse embryos deficient in Cux2, as well as chick embryos exposed to Cux2 silencing (si) RNA or a Cux2 over-expression construct. We provide evidence that enhanced BMP activity increases Cux2 expression and suppresses olfactory neurogenesis in the chick olfactory epithelium. In addition, our results show that up-regulation of Cux2, either BMP-induced or ectopically over-expressed, reduce Delta1 expression and suppress proliferation. Interestingly, the loss of Cux2 activity, using mutant mice or siRNA in chick, also diminishes neurogenesis, Notch activity and cell proliferation in the olfactory epithelium. Our results suggest that controlled low levels of Cux2 activity are necessary for proper Notch signaling, maintenance of the proliferative pool and ongoing neurogenesis in the olfactory epithelium. Thus, we demonstrate a novel conserved mechanism in vertebrates in which levels of Cux2 activity play an important role for ongoing neurogenesis in the olfactory epithelium.
Collapse
Affiliation(s)
- Walter Wittmann
- Umeå Centre for Molecular Medicine, Umeå University, Building 6M 4th floor, 901 87 Umeå, Sweden.
| | - Angelo Iulianella
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada.
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, Building 6M 4th floor, 901 87 Umeå, Sweden.
| |
Collapse
|
15
|
Sensational placodes: neurogenesis in the otic and olfactory systems. Dev Biol 2014; 389:50-67. [PMID: 24508480 PMCID: PMC3988839 DOI: 10.1016/j.ydbio.2014.01.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/22/2022]
Abstract
For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.
Collapse
|
16
|
Wittmann W, Schimmang T, Gunhaga L. Progressive effects of N-myc deficiency on proliferation, neurogenesis, and morphogenesis in the olfactory epithelium. Dev Neurobiol 2014; 74:643-56. [PMID: 24376126 PMCID: PMC4237195 DOI: 10.1002/dneu.22162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/27/2013] [Accepted: 12/18/2013] [Indexed: 12/03/2022]
Abstract
N-myc belongs to the myc proto-oncogene family, which is
involved in numerous cellular processes such as proliferation, growth, apoptosis, and
differentiation. Conditional deletion of N-myc in the mouse nervous system
disrupted brain development, indicating that N-myc plays an essential role during
neural development. How the development of the olfactory epithelium and neurogenesis within are
affected by the loss of N-myc has, however, not been determined. To address these
issues, we examined an N-mycFoxg1Cre conditional mouse line, in which
N-myc is depleted in the olfactory epithelium. First changes in
N-myc mutants were detected at E11.5, with reduced proliferation and neurogenesis
in a slightly smaller olfactory epithelium. The phenotype was more pronounced at E13.5, with a
complete lack of Hes5-positive progenitor cells, decreased proliferation, and
neurogenesis. In addition, stereological analyses revealed reduced cell size of post-mitotic neurons
in the olfactory epithelium, which contributed to a smaller olfactory pit. Furthermore, we observed
diminished proliferation and neurogenesis also in the vomeronasal organ, which likewise was reduced
in size. In addition, the generation of gonadotropin-releasing hormone neurons was severely reduced
in N-myc mutants. Thus, diminished neurogenesis and proliferation in combination
with smaller neurons might explain the morphological defects in the N-myc depleted
olfactory structures. Moreover, our results suggest an important role for N-myc in
regulating ongoing neurogenesis, in part by maintaining the Hes5-positive
progenitor pool. In summary, our results provide evidence that N-myc deficiency in
the olfactory epithelium progressively diminishes proliferation and neurogenesis with negative
consequences at structural and cellular levels. © 2013 The Authors. Developmental
Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 74: 643–656, 2014
Collapse
Affiliation(s)
- Walter Wittmann
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | | | | |
Collapse
|
17
|
Quintana-Urzainqui I, Rodríguez-Moldes I, Candal E. Developmental, tract-tracing and immunohistochemical study of the peripheral olfactory system in a basal vertebrate: insights on Pax6 neurons migrating along the olfactory nerve. Brain Struct Funct 2014; 219:85-104. [PMID: 23224251 PMCID: PMC3889696 DOI: 10.1007/s00429-012-0486-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 11/16/2012] [Indexed: 11/02/2022]
Abstract
The olfactory system represents an excellent model for studying different aspects of the development of the nervous system ranging from neurogenesis to mechanisms of axon growth and guidance. Important findings in this field come from comparative studies. We have analyzed key events in the development of the olfactory system of the shark Scyliorhinus canicula by combining immunohistochemical and tract-tracing methods. We describe for the first time in a cartilaginous fish an early population of pioneer HuC/D-immunoreactive (ir) neurons that seemed to delaminate from the olfactory pit epithelium and migrate toward the telencephalon before the olfactory nerve was identifiable. A distinct, transient cell population, namely the migratory mass, courses later on in apposition to the developing olfactory nerve. It contains olfactory ensheathing glial (GFAP-ir) cells and HuC/D-ir neurons, some of which course toward an extrabulbar region. We also demonstrate that Pax6-ir cells coursing along the developing olfactory pathways in S. canicula are young migrating (HuC/D and DCX-ir) neurons of the migratory mass that do not form part of the terminal nerve pathway. Evidences that these Pax6 neurons originate in the olfactory epithelium are also reported. As Pax6 neurons in the olfactory epithelium show characteristics of olfactory receptor neurons, and migrating Pax6-ir neurons formed transient corridors along the course of olfactory axons at the entrance of the olfactory bulb, we propose that these neurons could play a role as guideposts for axons of olfactory receptor neurons growing toward the olfactory bulb.
Collapse
Affiliation(s)
- Idoia Quintana-Urzainqui
- Departamento de Biología Celular y Ecología, Edificio CIBUS Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Isabel Rodríguez-Moldes
- Departamento de Biología Celular y Ecología, Edificio CIBUS Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eva Candal
- Departamento de Biología Celular y Ecología, Edificio CIBUS Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
18
|
Lassiter RNT, Stark MR, Zhao T, Zhou CJ. Signaling mechanisms controlling cranial placode neurogenesis and delamination. Dev Biol 2013; 389:39-49. [PMID: 24315854 DOI: 10.1016/j.ydbio.2013.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 01/17/2023]
Abstract
The neurogenic cranial placodes are a unique transient epithelial niche of neural progenitor cells that give rise to multiple derivatives of the peripheral nervous system, particularly, the sensory neurons. Placode neurogenesis occurs throughout an extended period of time with epithelial cells continually recruited as neural progenitor cells. Sensory neuron development in the trigeminal, epibranchial, otic, and olfactory placodes coincides with detachment of these neuroblasts from the encompassing epithelial sheet, leading to delamination and ingression into the mesenchyme where they continue to differentiate as neurons. Multiple signaling pathways are known to direct placodal development. This review defines the signaling pathways working at the finite spatiotemporal period when neuronal selection within the placodes occurs, and neuroblasts concomitantly delaminate from the epithelium. Examining neurogenesis and delamination after initial placodal patterning and specification has revealed a common trend throughout the neurogenic placodes, which suggests that both activated FGF and attenuated Notch signaling activities are required for neurogenesis and changes in epithelial cell adhesion leading to delamination. We also address the varying roles of other pathways such as the Wnt and BMP signaling families during sensory neurogenesis and neuroblast delamination in the differing placodes.
Collapse
Affiliation(s)
- Rhonda N T Lassiter
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children-Northern California, CA 95817, USA; Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Sacramento, CA 95817, USA.
| | - Michael R Stark
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Tianyu Zhao
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children-Northern California, CA 95817, USA; Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children-Northern California, CA 95817, USA; Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Sacramento, CA 95817, USA; Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
19
|
Paschaki M, Cammas L, Muta Y, Matsuoka Y, Mak SS, Rataj-Baniowska M, Fraulob V, Dollé P, Ladher RK. Retinoic acid regulates olfactory progenitor cell fate and differentiation. Neural Dev 2013; 8:13. [PMID: 23829703 PMCID: PMC3717070 DOI: 10.1186/1749-8104-8-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/29/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In order to fulfill their chemosensory function, olfactory neurons are in direct contact with the external environment and are therefore exposed to environmental aggressive factors. Olfaction is maintained through life because, unlike for other sensory neuroepithelia, olfactory neurons have a unique capacity to regenerate after trauma. The mechanisms that control the ontogenesis and regenerative ability of these neurons are not fully understood. Here, we used various experimental approaches in two model systems (chick and mouse) to assess the contribution of retinoic acid signaling in the induction of the olfactory epithelium, the generation and maintenance of progenitor populations, and the ontogenesis and differentiation of olfactory neurons. RESULTS We show that retinoic acid signaling, although dispensable for initial induction of the olfactory placode, plays a key role in neurogenesis within this neuroepithelium. Retinoic acid depletion in the olfactory epithelium, both in chick and mouse models, results in a failure of progenitor cell maintenance and, consequently, differentiation of olfactory neurons is not sustained. Using an explant system, we further show that renewal of olfactory neurons is hindered if the olfactory epithelium is unable to synthesize retinoic acid. CONCLUSIONS Our data show that retinoic acid is not a simple placodal inductive signal, but rather controls olfactory neuronal production by regulating the fate of olfactory progenitor cells. Retinaldehyde dehydrogenase 3 (RALDH3) is the key enzyme required to generate retinoic acid within the olfactory epithelium.
Collapse
Affiliation(s)
- Marie Paschaki
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Notch2 regulates BMP signaling and epithelial morphogenesis in the ciliary body of the mouse eye. Proc Natl Acad Sci U S A 2013; 110:8966-71. [PMID: 23676271 DOI: 10.1073/pnas.1218145110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The ciliary body (CB) of the mammalian eye is responsible for secreting aqueous humor to maintain intraocular pressure, which is elevated in the eyes of glaucoma patients. It contains a folded two-layered epithelial structure comprising the nonpigmented inner ciliary epithelium (ICE), the pigmented outer ciliary epithelium (OCE), and the underlying stroma. Although the CB has an important function in the eye, its morphogenesis remains poorly studied. In this study, we show that conditional inactivation of the Jagged 1 (Jag1)-Notch2 signaling pathway in the developing CB abolishes its morphogenesis. Notch2 is expressed in the OCE of the CB, whereas Jag1 is expressed in the ICE. Conditional inactivation of Jag1 in the ICE or Notch2 in the OCE disrupts CB morphogenesis, but neither affects the specification of the CB region. Notch2 signaling in the OCE is required for promoting cell proliferation and maintaining bone morphogenetic protein (BMP) signaling, both of which have been suggested to be important for CB morphogenesis. Although Notch and BMP signaling pathways are known to cross-talk via the interaction between their downstream transcriptional factors, this study suggests that Notch2 maintains BMP signaling in the OCE possibly by repressing expression of secreted BMP inhibitors. Based on our findings, we propose that Jag1-Notch2 signaling controls CB morphogenesis at least in part by regulating cell proliferation and BMP signaling.
Collapse
|
21
|
Jidigam VK, Gunhaga L. Development of cranial placodes: insights from studies in chick. Dev Growth Differ 2012; 55:79-95. [PMID: 23278869 DOI: 10.1111/dgd.12027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 12/19/2022]
Abstract
This review focuses on how research, using chick as a model system, has contributed to our knowledge regarding the development of cranial placodes. This review highlights when and how molecular signaling events regulate early specification of placodal progenitor cells, as well as the development of individual placodes including morphological movements. In addition, we briefly describe various techniques used in chick that are important for studies in cell and developmental biology.
Collapse
Affiliation(s)
- Vijay K Jidigam
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
22
|
Parlier D, Moers V, Van Campenhout C, Preillon J, Leclère L, Saulnier A, Sirakov M, Busengdal H, Kricha S, Marine JC, Rentzsch F, Bellefroid EJ. The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis. Dev Biol 2012; 373:39-52. [PMID: 23064029 DOI: 10.1016/j.ydbio.2012.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 09/16/2012] [Accepted: 10/03/2012] [Indexed: 11/17/2022]
Abstract
The Dmrt (doublesex and mab-3 related transcription factor) genes encode a large family of evolutionarily conserved transcription factors whose function in sex specific differentiation has been well studied in all animal lineages. In vertebrates, their function is not restricted to the developing gonads. For example, Xenopus Dmrt4 is essential for neurogenesis in the olfactory system. Here we have isolated and characterized Xenopus Dmrt5 and found that it is coexpressed with Dmrt4 in the developing olfactory placodes. As Dmrt4, Dmrt5 is positively regulated in the ectoderm by neural inducers and negatively by proneural factors. Both Dmrt5 and Dmrt4 genes are also activated by the combined action of the transcription factor Otx2, broadly transcribed in the head ectoderm and of Notch signaling, activated in the anterior neural ridge. As for Dmrt4, knockdown of Dmrt5 impairs neurogenesis in the embryonic olfactory system and in neuralized animal caps. Conversely, its overexpression promotes neuronal differentiation in animal caps, a property that requires the conserved C-terminal DMA and DMB domains. We also found that the sea anenome Dmrt4/5 related gene NvDmrtb also induces neurogenesis in Xenopus animal caps and that conversely, its knockdown in Nematostella reduces elav-1 positive neurons. Together, our data identify Dmrt5 as a novel important regulator of neurogenesis whose function overlaps with that of Dmrt4 during Xenopus olfactory system development. They also suggest that Dmrt may have had a role in neurogenesis in the last common ancestor of cnidarians and bilaterians.
Collapse
Affiliation(s)
- Damien Parlier
- Laboratoire de Génétique du Développement, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), rue des Profs. Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ferreiro-Galve S, Candal E, Rodríguez-Moldes I. Dynamic expression of Pax6 in the shark olfactory system: evidence for the presence of Pax6 cells along the olfactory nerve pathway. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:79-90. [PMID: 22532471 DOI: 10.1002/jezb.21444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pax6 is involved in the control of neuronal specification, migration, and differentiation in the olfactory epithelium and in the generation of different interneuron subtypes in the olfactory bulb. Whether these roles are conserved during evolution is not known. Cartilaginous fish are extremely useful models for assessing the ancestral condition of brain organization because of their phylogenetic position. To shed light on the evolution of development of the olfactory system in vertebrates and on the involvement of Pax6 in this process, we analyzed by in situ hybridization and immunohistochemistry the expression pattern of Pax6 in the developing olfactory system in a basal vertebrate, the lesser spotted dogfish Scyliorhinus canicula. This small shark is becoming an important fish model in studies of vertebrate development. We report Pax6 expression in cells of the olfactory epithelium and olfactory bulb, and present the first evidence in vertebrates of strings of Pax6-expressing cells extending along the developing olfactory nerve. The results indicate the olfactory epithelium as the origin of these cells. These data are compatible with a role for Pax6 in the development of the olfactory epithelium and fibers, and provide a basis for future investigations into the mechanisms that regulate development of the olfactory system throughout evolution.
Collapse
Affiliation(s)
- Susana Ferreiro-Galve
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Compostela, Spain
| | | | | |
Collapse
|