1
|
Retzbach EP, Sheehan SA, Krishnan H, Zheng H, Zhao C, Goldberg GS. Independent effects of Src kinase and podoplanin on anchorage independent cell growth and migration. Mol Carcinog 2022; 61:677-689. [PMID: 35472679 PMCID: PMC9233000 DOI: 10.1002/mc.23410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/07/2022]
Abstract
The Src tyrosine kinase is a strong tumor promotor. Over a century of research has elucidated fundamental mechanisms that drive its oncogenic potential. Src phosphorylates effector proteins to promote hallmarks of tumor progression. For example, Src associates with the Cas focal adhesion adaptor protein to promote anchorage independent cell growth. In addition, Src phosphorylates Cas to induce Pdpn expression to promote cell migration. Pdpn is a transmembrane receptor that can independently increase cell migration in the absence of oncogenic Src kinase activity. However, to our knowledge, effects of Src kinase activity on anchorage independent cell growth and migration have not been examined in the absence of Pdpn expression. Here, we analyzed the effects of an inducible Src kinase construct in knockout cells with and without exogenous Pdpn expression on cell morphology migration and anchorage independent growth. We report that Src promoted anchorage independent cell growth in the absence of Pdpn expression. In contrast, Src was not able to promote cell migration in the absence of Pdpn expression. In addition, continued Src kinase activity was required for cells to assume a transformed morphology since cells reverted to a nontransformed morphology upon cessation of Src kinase activity. We also used phosphoproteomic analysis to identify 28 proteins that are phosphorylated in Src transformed cells in a Pdpn dependent manner. Taken together, these data indicate that Src utilizes Pdpn to promote transformed cell growth and motility in complementary, but parallel, as opposed to serial, pathways.
Collapse
Affiliation(s)
- Edward P. Retzbach
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Stephanie A. Sheehan
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University Stony Brook, NY, 11794-8661, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New jersey, New Brunswick, NJ, 08901, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New jersey, New Brunswick, NJ, 08901, USA
| | - Gary S. Goldberg
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| |
Collapse
|
2
|
Masuzawa Y, Kitazawa M. Xeno-Free Materials for Stabilizing Basic Fibroblast Growth Factor and Enhancing Cell Proliferation in Human Pluripotent Stem Cell Cultures. MATERIALS 2022; 15:ma15103687. [PMID: 35629712 PMCID: PMC9144957 DOI: 10.3390/ma15103687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/07/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are widely considered important for developing novel regenerative therapies. A major challenge to the growth and proliferation of iPSCs is the maintenance of their undifferentiated status in xeno- and feeder-free conditions. Basic fibroblast growth factor (bFGF) is known to contribute to the expansion of stem cells; however, bFGF is notoriously heat-labile and easily denatured. Here, we investigate the effects of a series of synthetic sulfated/sulfonated polymers and saccharides on the growth of iPSCs. We observed that these materials effectively prevented the reduction of bFGF levels in iPSC culture media during storage at 37 °C. Some of the tested materials also suppressed heat-induced decline in medium performance and maintained cell proliferation. Our results suggest that these sulfated materials can be used to improve the expansion culture of undifferentiated iPSCs and show the potential of cost effective, chemically defined materials for improvement of medium performance while culturing iPSCs.
Collapse
|
3
|
Sidhanth C, Bindhya S, Krishnapriya S, Manasa P, Shabna A, Alifia J, Patole C, Kumar V, Garg M, Ganesan TS. Phosphoproteome of signaling by ErbB2 in ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140768. [PMID: 35158093 DOI: 10.1016/j.bbapap.2022.140768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/07/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The gene for receptor tyrosine kinase ErbB2 is amplified in breast and ovarian tumours. The linear pathway by which signals are transduced through ErbB2 are well known. However, second generation questions that address spatial aspects of signaling remain. To address this, we have undertaken a mass spectrometry approach to identify phosphoproteins specific for ErbB2 using the inhibitors Lapatinib and CP724714 in ovarian cancer cells. The ErbB2 specific proteins identified in SKOV-3 cells were Myristoylated alanine-rich C-kinase substrate, Protein capicua homolog, Protein peptidyl isomerase G, Protein PRRC2C, Chromobox homolog1 and PRP4 homolog. We have evaluated three phosphoproteins PKM2, Aldose reductase and MARCKS in SKOV-3 cells. We observed that PKM2 was phosphorylated by EGF but was not inhibited by Lapatinib and CP724714. The activity of aldose reductase in reducing NADPH as a substrate was significantly higher in EGF stimulated cells which was inhibited by Lapatinib and CP724714 but not by Geftinib (EGFR inhibitor). MARCKS was phosphorylated on stimulation of SKOV-3 cells with EGF that was inhibited by Lapatinib and CP724714 which was dependent on the kinase activity of ErbB2. These results have identified phosphoproteins that are specific to ErbB2 which have not been previously reported and sets the basis for future experiments.
Collapse
Affiliation(s)
- C Sidhanth
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - S Bindhya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - S Krishnapriya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - P Manasa
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - A Shabna
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - J Alifia
- Mass Spectrometry Facility Proteomics, National Centre for Biological Sciences (NCBS), Bangalore, India
| | - C Patole
- Mass Spectrometry Facility Proteomics, National Centre for Biological Sciences (NCBS), Bangalore, India
| | - V Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
| | - M Garg
- Amity Institute of Molecular Medicine & Stem cell Research, Amity University, Delhi, India
| | - T S Ganesan
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India.
| |
Collapse
|
4
|
Zmuda F, Chamberlain LH. Regulatory effects of post-translational modifications on zDHHC S-acyltransferases. J Biol Chem 2020; 295:14640-14652. [PMID: 32817054 PMCID: PMC7586229 DOI: 10.1074/jbc.rev120.014717] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/15/2020] [Indexed: 01/09/2023] Open
Abstract
The human zDHHC S-acyltransferase family comprises 23 enzymes that mediate the S-acylation of a multitude of cellular proteins, including channels, receptors, transporters, signaling molecules, scaffolds, and chaperones. This reversible post-transitional modification (PTM) involves the attachment of a fatty acyl chain, usually derived from palmitoyl-CoA, to specific cysteine residues on target proteins, which affects their stability, localization, and function. These outcomes are essential to control many processes, including synaptic transmission and plasticity, cell growth and differentiation, and infectivity of viruses and other pathogens. Given the physiological importance of S-acylation, it is unsurprising that perturbations in this process, including mutations in ZDHHC genes, have been linked to different neurological pathologies and cancers, and there is growing interest in zDHHC enzymes as novel drug targets. Although zDHHC enzymes control a diverse array of cellular processes and are associated with major disorders, our understanding of these enzymes is surprisingly incomplete, particularly with regard to the regulatory mechanisms controlling these enzymes. However, there is growing evidence highlighting the role of different PTMs in this process. In this review, we discuss how PTMs, including phosphorylation, S-acylation, and ubiquitination, affect the stability, localization, and function of zDHHC enzymes and speculate on possible effects of PTMs that have emerged from larger screening studies. Developing a better understanding of the regulatory effects of PTMs on zDHHC enzymes will provide new insight into the intracellular dynamics of S-acylation and may also highlight novel approaches to modulate S-acylation for clinical gain.
Collapse
Affiliation(s)
- Filip Zmuda
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom.
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
5
|
Phosphoproteomics identifies a bimodal EPHA2 receptor switch that promotes embryonic stem cell differentiation. Nat Commun 2020; 11:1357. [PMID: 32170114 PMCID: PMC7070061 DOI: 10.1038/s41467-020-15173-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/25/2020] [Indexed: 11/08/2022] Open
Abstract
Embryonic Stem Cell (ESC) differentiation requires complex cell signalling network dynamics, although the key molecular events remain poorly understood. Here, we use phosphoproteomics to identify an FGF4-mediated phosphorylation switch centred upon the key Ephrin receptor EPHA2 in differentiating ESCs. We show that EPHA2 maintains pluripotency and restrains commitment by antagonising ERK1/2 signalling. Upon ESC differentiation, FGF4 utilises a bimodal strategy to disable EPHA2, which is accompanied by transcriptional induction of EFN ligands. Mechanistically, FGF4-ERK1/2-RSK signalling inhibits EPHA2 via Ser/Thr phosphorylation, whilst FGF4-ERK1/2 disrupts a core pluripotency transcriptional circuit required for Epha2 gene expression. This system also operates in mouse and human embryos, where EPHA receptors are enriched in pluripotent cells whilst surrounding lineage-specified trophectoderm expresses EFNA ligands. Our data provide insight into function and regulation of EPH-EFN signalling in ESCs, and suggest that segregated EPH-EFN expression coordinates cell fate with compartmentalisation during early embryonic development.
Collapse
|
6
|
Rahman MA, Manser C, Benlaouer O, Suckling J, Blackburn JK, Silva JP, Ushkaryov YA. C-terminal phosphorylation of latrophilin-1/ADGRL1 affects the interaction between its fragments. Ann N Y Acad Sci 2019; 1456:122-143. [PMID: 31553068 DOI: 10.1111/nyas.14242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/22/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
Latrophilin-1 is an adhesion G protein-coupled receptor that mediates the effect of α-latrotoxin, causing massive release of neurotransmitters from nerve terminals and endocrine cells. Autoproteolysis cleaves latrophilin-1 into two parts: the extracellular N-terminal fragment (NTF) and the heptahelical C-terminal fragment (CTF). NTF and CTF can exist as independent proteins in the plasma membrane, but α-latrotoxin binding to NTF induces their association and G protein-mediated signaling. We demonstrate here that CTF in synapses is phosphorylated on multiple sites. Phosphorylated CTF has a high affinity for NTF and copurifies with it on affinity columns and sucrose density gradients. Dephosphorylated CTF has a lower affinity for NTF and can behave as a separate protein. α-Latrotoxin (and possibly other ligands of latrophilin-1) binds both to the NTF-CTF complex and receptor-like protein tyrosine phosphatase σ, bringing them together. This leads to CTF dephosphorylation and facilitates CTF release from the complex. We propose that ligand-dependent phosphorylation-dephosphorylation of latrophilin-1 could affect the interaction between its fragments and functions as a G protein-coupled receptor.
Collapse
Affiliation(s)
- M Atiqur Rahman
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Catherine Manser
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ouafa Benlaouer
- School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Jason Suckling
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - John-Paul Silva
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yuri A Ushkaryov
- Department of Life Sciences, Imperial College London, London, United Kingdom
- School of Pharmacy, University of Kent, Chatham, United Kingdom
| |
Collapse
|
7
|
High-Throughput Assessment of Kinome-wide Activation States. Cell Syst 2019; 9:366-374.e5. [PMID: 31521607 PMCID: PMC6838672 DOI: 10.1016/j.cels.2019.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/13/2019] [Accepted: 08/13/2019] [Indexed: 02/02/2023]
Abstract
Aberrant kinase activity has been linked to a variety of disorders; however, methods to probe kinase activation states in cells have been lacking. Until now, kinase activity has mainly been deduced from either protein expression or substrate phosphorylation levels. Here, we describe a strategy to directly infer kinase activation through targeted quantification of T-loop phosphorylation, which serves as a critical activation switch in a majority of protein kinases. Combining selective phosphopeptide enrichment with robust targeted mass spectrometry, we provide highly specific assays for 248 peptides, covering 221 phosphosites in the T-loop region of 178 human kinases. Using these assays, we monitored the activation of 63 kinases through 73 T-loop phosphosites across different cell types, primary cells, and patient-derived tissue material. The sensitivity of our assays is highlighted by the reproducible detection of TNF-α-induced RIPK1 activation and the detection of 46 T-loop phosphorylation sites from a breast tumor needle biopsy. Robust targeted MS assays permit observation of conserved kinome activation sites 178 human kinases are characterized in high-throughput assays Kinase activation states are observed in human primary cells and needle biopsy Specific kinase activation states are induced during cell death and drug resistance
Collapse
|
8
|
Kunova Bosakova M, Nita A, Gregor T, Varecha M, Gudernova I, Fafilek B, Barta T, Basheer N, Abraham SP, Balek L, Tomanova M, Fialova Kucerova J, Bosak J, Potesil D, Zieba J, Song J, Konik P, Park S, Duran I, Zdrahal Z, Smajs D, Jansen G, Fu Z, Ko HW, Hampl A, Trantirek L, Krakow D, Krejci P. Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase. Proc Natl Acad Sci U S A 2019; 116:4316-4325. [PMID: 30782830 PMCID: PMC6410813 DOI: 10.1073/pnas.1800338116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor. ICK is involved in ciliogenesis and participates in control of ciliary length. FGF signaling partially abolished ICK's kinase activity, through FGFR-mediated ICK phosphorylation at conserved residue Tyr15, which interfered with optimal ATP binding. Activation of the FGF signaling pathway affected both primary cilia length and function in a manner consistent with cilia effects caused by inhibition of ICK activity. Moreover, knockdown and knockout of ICK rescued the FGF-mediated effect on cilia. We provide conclusive evidence that FGF signaling controls cilia via interaction with ICK.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Cilia/metabolism
- Fibroblast Growth Factors/metabolism
- HEK293 Cells
- Hedgehog Proteins/metabolism
- Humans
- Mice
- Mice, Knockout
- Models, Animal
- Molecular Docking Simulation
- NIH 3T3 Cells
- Phosphorylation
- Protein Interaction Domains and Motifs
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proteomics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Tomas Gregor
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Neha Basheer
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lukas Balek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Marketa Tomanova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Jana Fialova Kucerova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Juraj Bosak
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - David Potesil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, David Geffen School of Medicine University of California, Los Angeles, CA 90095
| | - Jieun Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 03722 Seoul, Korea
| | - Peter Konik
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Sohyun Park
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine University of California, Los Angeles, CA 90095
| | - Zbynek Zdrahal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - David Smajs
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Gert Jansen
- Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Zheng Fu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 03722 Seoul, Korea
| | - Ales Hampl
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine University of California, Los Angeles, CA 90095;
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| |
Collapse
|
9
|
Vitorino FNDL, Montoni F, Moreno JN, de Souza BF, Lopes MDC, Cordeiro B, Fonseca CS, Gilmore JM, Sardiu MI, Reis MS, Florens LA, Washburn MP, Armelin HA, da Cunha JPC. FGF2 Antiproliferative Stimulation Induces Proteomic Dynamic Changes and High Expression of FOSB and JUNB in K-Ras-Driven Mouse Tumor Cells. Proteomics 2018; 18:e1800203. [PMID: 30035358 DOI: 10.1002/pmic.201800203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/28/2018] [Indexed: 11/07/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is a well-known cell proliferation promoter; however, it can also induce cell cycle arrest. To gain insight into the molecular mechanisms of this antiproliferative effect, for the first time, the early systemic proteomic differences induced by this growth factor in a K-Ras-driven mouse tumor cell line using a quantitative proteomics approach are investigated. More than 2900 proteins are quantified, indicating that terms associated with metabolism, RNA processing, replication, and transcription are enriched among proteins differentially expressed upon FGF2 stimulation. Proteomic trend dynamics indicate that, for proteins mainly associated with DNA replication and carbohydrate metabolism, an FGF2 stimulus delays their abundance changes, whereas FGF2 stimulation accelerates other metabolic programs. Transcription regulatory network analysis indicates master regulators of FGF2 stimulation, including two critical transcription factors, FOSB and JUNB. Their expression dynamics, both in the Y1 cell line (a murine model of adenocarcinoma cells) and in two other human cell lines (SK-N-MC and UM-UC-3) also susceptible to FGF2 antiproliferative effects, are investigated. Both protein expression levels depend on fibroblast growth factor receptor (FGFR) and src signaling. JUNB and FOSB knockdown do not rescue cells from the growth arrest induced by FGF2; however, FOSB knockdown rescue cells from DNA replication delay, indicating that FOSB expression underlies one of the FGF2 antiproliferative effects, namely, S-phase progression delay.
Collapse
Affiliation(s)
- Francisca Nathalia de Luna Vitorino
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Fabio Montoni
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Jaqueline Neves Moreno
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Bruno Ferreira de Souza
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Mariana de Camargo Lopes
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Barbara Cordeiro
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Cecilia Sella Fonseca
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Joshua M Gilmore
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Mihaela I Sardiu
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Marcelo Silva Reis
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | | | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66045, USA
| | - Hugo Aguirre Armelin
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Julia Pinheiro Chagas da Cunha
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| |
Collapse
|
10
|
Steinberg SF. Post-translational modifications at the ATP-positioning G-loop that regulate protein kinase activity. Pharmacol Res 2018; 135:181-187. [PMID: 30048755 DOI: 10.1016/j.phrs.2018.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/27/2022]
Abstract
Protein kinases are a superfamily of enzymes that control a wide range of cellular functions. These enzymes share a highly conserved catalytic core that folds into a similar bilobar three-dimensional structure. One highly conserved region in the protein kinase core is the glycine-rich loop (or G-loop), a highly flexible loop that is characterized by a consensus GxGxxG sequence. The G-loop points toward the catalytic cleft and functions to bind and position ATP for phosphotransfer. Of note, in many protein kinases, the second and third glycine residues in the G-loop triad flank residues that can be targets for phosphorylation (Ser, Thr, or Tyr) or other post-translational modifications (ubiquitination, acetylation, O-GlcNAcylation, oxidation). There is considerable evidence that cyclin-dependent kinases are held inactive through inhibitory phosphorylation of the conserved Thr/Tyr residues in this position of the G-loop and that dephosphorylation by cellular phosphatases is required for CDK activation and progression through the cell cycle. This review summarizes literature that identifies residues in or adjacent to the G-loop in other protein kinases that are targets for functionally important post-translational modifications.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
11
|
Bllaci L, Torsetnes SB, Wierzbicka C, Shinde S, Sellergren B, Rogowska-Wrzesinska A, Jensen ON. Phosphotyrosine Biased Enrichment of Tryptic Peptides from Cancer Cells by Combining pY-MIP and TiO2 Affinity Resins. Anal Chem 2017; 89:11332-11340. [DOI: 10.1021/acs.analchem.7b02091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Loreta Bllaci
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| | - Silje B. Torsetnes
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| | - Celina Wierzbicka
- Department
of Biomedical Sciences, Malmö University, S-20506 Malmö, Sweden
| | - Sudhirkumar Shinde
- Department
of Biomedical Sciences, Malmö University, S-20506 Malmö, Sweden
| | - Börje Sellergren
- Department
of Biomedical Sciences, Malmö University, S-20506 Malmö, Sweden
| | - Adelina Rogowska-Wrzesinska
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| | - Ole N. Jensen
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| |
Collapse
|
12
|
A Novel Method for Analysis of Tyrosine Phosphopeptides Based on a Centrifugal Enrichment Device. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Protein Kinases in Pluripotency—Beyond the Usual Suspects. J Mol Biol 2017; 429:1504-1520. [DOI: 10.1016/j.jmb.2017.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
|
14
|
Charlet J, Tomari A, Dallosso AR, Szemes M, Kaselova M, Curry TJ, Almutairi B, Etchevers HC, McConville C, Malik KTA, Brown KW. Genome-wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma. Mol Carcinog 2016; 56:1290-1301. [PMID: 27862318 PMCID: PMC5396313 DOI: 10.1002/mc.22591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/03/2016] [Accepted: 11/11/2016] [Indexed: 01/07/2023]
Abstract
Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome‐wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome‐wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down‐regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest‐expressing tumors had reduced relapse‐free survival. Our functional studies showed that knock‐down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica Charlet
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ayumi Tomari
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Anthony R Dallosso
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Marianna Szemes
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Martina Kaselova
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Thomas J Curry
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Bader Almutairi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Heather C Etchevers
- Faculté de Médecine, Aix-Marseille University, GMGF, UMR_S910, Marseille, France.,Faculté de Médecine, INSERM U910, Marseille, France
| | - Carmel McConville
- Institute of Cancer & Genomic Sciences, University of Birmingham, UK
| | - Karim T A Malik
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Keith W Brown
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
15
|
Tan BSN, Kwek J, Wong CKE, Saner NJ, Yap C, Felquer F, Morris MB, Gardner DK, Rathjen PD, Rathjen J. Src Family Kinases and p38 Mitogen-Activated Protein Kinases Regulate Pluripotent Cell Differentiation in Culture. PLoS One 2016; 11:e0163244. [PMID: 27723793 PMCID: PMC5056717 DOI: 10.1371/journal.pone.0163244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/05/2016] [Indexed: 02/04/2023] Open
Abstract
Multiple pluripotent cell populations, which together comprise the pluripotent cell lineage, have been identified. The mechanisms that control the progression between these populations are still poorly understood. The formation of early primitive ectoderm-like (EPL) cells from mouse embryonic stem (mES) cells provides a model to understand how one such transition is regulated. EPL cells form from mES cells in response to l-proline uptake through the transporter Slc38a2. Using inhibitors of cell signaling we have shown that Src family kinases, p38 MAPK, ERK1/2 and GSK3β are required for the transition between mES and EPL cells. ERK1/2, c-Src and GSK3β are likely to be enforcing a receptive, primed state in mES cells, while Src family kinases and p38 MAPK are involved in the establishment of EPL cells. Inhibition of these pathways prevented the acquisition of most, but not all, features of EPL cells, suggesting that other pathways are required. L-proline activation of differentiation is mediated through metabolism and changes to intracellular metabolite levels, specifically reactive oxygen species. The implication of multiple signaling pathways in the process suggests a model in which the context of Src family kinase activation determines the outcomes of pluripotent cell differentiation.
Collapse
Affiliation(s)
- Boon Siang Nicholas Tan
- School of BioSciences, University of Melbourne, Parkville, Australia
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
| | - Joly Kwek
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
| | - Chong Kum Edwin Wong
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
| | - Nicholas J. Saner
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
| | - Charlotte Yap
- School of BioSciences, University of Melbourne, Parkville, Australia
| | - Fernando Felquer
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Michael B. Morris
- Australian Stem Cell Centre, Monash University, Clayton, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - David K. Gardner
- School of BioSciences, University of Melbourne, Parkville, Australia
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
| | - Peter D. Rathjen
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Joy Rathjen
- School of BioSciences, University of Melbourne, Parkville, Australia
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
- School of Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
16
|
Identification of Phosphorylated Cyclin-Dependent Kinase 1 Associated with Colorectal Cancer Survival Using Label-Free Quantitative Analyses. PLoS One 2016; 11:e0158844. [PMID: 27383761 PMCID: PMC4934865 DOI: 10.1371/journal.pone.0158844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/22/2016] [Indexed: 01/16/2023] Open
Abstract
Colorectal cancer is the most common form of cancer in the world, and the five-year survival rate is estimated to be almost 90% in the early stages. Therefore, the identification of potential biomarkers to assess the prognosis of early stage colorectal cancer patients is critical for further clinical treatment. Dysregulated tyrosine phosphorylation has been found in several diseases that play a significant regulator of signaling in cellular pathways. In this study, this strategy was used to characterize the tyrosine phosphoproteome of colorectal cell lines with different progression abilities (SW480 and SW620). We identified a total of 280 phosphotyrosine (pTyr) peptides comprising 287 pTyr sites from 261 proteins. Label-free quantitative analysis revealed the differential level of a total of 103 pTyr peptides between SW480 and SW620 cells. We showed that cyclin-dependent kinase I (CDK1) pTyr15 level in SW480 cells was 3.3-fold greater than in SW620 cells, and these data corresponded with the label-free mass spectrometry-based proteomic quantification analysis. High level CDK1 pTyr15 was associated with prolonged disease-free survival for stage II colorectal cancer patients (n = 79). Taken together, our results suggest that the CDK1 pTyr15 protein is a potential indicator of the progression of colorectal cancer.
Collapse
|
17
|
Langhans MT, Yu S, Tuan RS. Stem Cells in Skeletal Tissue Engineering: Technologies and Models. Curr Stem Cell Res Ther 2016; 11:453-474. [PMID: 26423296 DOI: 10.2174/1574888x10666151001115248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 12/14/2022]
Abstract
This review surveys the use of pluripotent and multipotent stem cells in skeletal tissue engineering. Specific emphasis is focused on evaluating the function and activities of these cells in the context of development in vivo, and how technologies and methods of stem cell-based tissue engineering for stem cells must draw inspiration from developmental biology. Information on the embryonic origin and in vivo differentiation of skeletal tissues is first reviewed, to shed light on the persistence and activities of adult stem cells that remain in skeletal tissues after embryogenesis. Next, the development and differentiation of pluripotent stem cells is discussed, and some of their advantages and disadvantages in the context of tissue engineering are presented. The final section highlights current use of multipotent adult mesenchymal stem cells, reviewing their origin, differentiation capacity, and potential applications to tissue engineering.
Collapse
Affiliation(s)
| | | | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA 15219, USA.
| |
Collapse
|
18
|
Calcium signaling in human pluripotent stem cells. Cell Calcium 2016; 59:117-23. [PMID: 26922096 DOI: 10.1016/j.ceca.2016.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 01/24/2023]
Abstract
Human pluripotent stem cells provide new tools for developmental and pharmacological studies as well as for regenerative medicine applications. Calcium homeostasis and ligand-dependent calcium signaling are key components of major cellular responses, including cell proliferation, differentiation or apoptosis. Interestingly, these phenomena have not been characterized in detail as yet in pluripotent human cell sates. Here we review the methods applicable for studying both short- and long-term calcium responses, focusing on the expression of fluorescent calcium indicator proteins and imaging methods as applied in pluripotent human stem cells. We discuss the potential regulatory pathways involving calcium responses in hPS cells and compare these to the implicated pathways in mouse PS cells. A recent development in the stem cell field is the recognition of so called "naïve" states, resembling the earliest potential forms of stem cells during development, as well as the "fuzzy" stem cells, which may be alternative forms of pluripotent cell types, therefore we also discuss the potential role of calcium homeostasis in these PS cell types.
Collapse
|
19
|
Liu F, Koval M, Ranganathan S, Fanayan S, Hancock WS, Lundberg EK, Beavis RC, Lane L, Duek P, McQuade L, Kelleher NL, Baker MS. Systems Proteomics View of the Endogenous Human Claudin Protein Family. J Proteome Res 2016; 15:339-59. [PMID: 26680015 DOI: 10.1021/acs.jproteome.5b00769] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Claudins are the major transmembrane protein components of tight junctions in human endothelia and epithelia. Tissue-specific expression of claudin members suggests that this protein family is not only essential for sustaining the role of tight junctions in cell permeability control but also vital in organizing cell contact signaling by protein-protein interactions. How this protein family is collectively processed and regulated is key to understanding the role of junctional proteins in preserving cell identity and tissue integrity. The focus of this review is to first provide a brief overview of the functional context, on the basis of the extensive body of claudin biology research that has been thoroughly reviewed, for endogenous human claudin members and then ascertain existing and future proteomics techniques that may be applicable to systematically characterizing the chemical forms and interacting protein partners of this protein family in human. The ability to elucidate claudin-based signaling networks may provide new insight into cell development and differentiation programs that are crucial to tissue stability and manipulation.
Collapse
Affiliation(s)
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, and Department of Cell Biology, Emory University School of Medicine , 205 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, Georgia 30322, United States
| | | | | | - William S Hancock
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Emma K Lundberg
- SciLifeLab, School of Biotechnology, Royal Institute of Technology (KTH) , SE-171 21 Solna, Stockholm, Sweden
| | - Ronald C Beavis
- Department of Biochemistry and Medical Genetics, University of Manitoba , 744 Bannatyne Avenue, Winnipeg, Manitoba R3E 0W3, Canada
| | - Lydie Lane
- SIB-Swiss Institute of Bioinformatics , CMU - Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Paula Duek
- SIB-Swiss Institute of Bioinformatics , CMU - Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | | | - Neil L Kelleher
- Department of Chemistry, Department of Molecular Biosciences, and Proteomics Center of Excellence, Northwestern University , 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | | |
Collapse
|
20
|
Pluripotent Stem Cells: Current Understanding and Future Directions. Stem Cells Int 2015; 2016:9451492. [PMID: 26798367 PMCID: PMC4699068 DOI: 10.1155/2016/9451492] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells have the ability to undergo self-renewal and to give rise to all cells of the tissues of the body. However, this definition has been recently complicated by the existence of distinct cellular states that display these features. Here, we provide a detailed overview of the family of pluripotent cell lines derived from early mouse and human embryos and compare them with induced pluripotent stem cells. Shared and distinct features of these cells are reported as additional hallmark of pluripotency, offering a comprehensive scenario of pluripotent stem cells.
Collapse
|
21
|
Ireland RG, Simmons CA. Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications. Stem Cells 2015; 33:3187-96. [DOI: 10.1002/stem.2105] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Ronald G. Ireland
- Institute of Biomaterials and Biomedical Engineering, University of Toronto; Toronto Ontario Canada
| | - Craig A. Simmons
- Institute of Biomaterials and Biomedical Engineering, University of Toronto; Toronto Ontario Canada
- Department of Mechanical and Industrial Engineering; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
22
|
Mithoe SC, Menke FLH. Phosphopeptide immuno-affinity enrichment to enhance detection of tyrosine phosphorylation in plants. Methods Mol Biol 2015; 1306:135-46. [PMID: 25930699 DOI: 10.1007/978-1-4939-2648-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Tyrosine (Tyr) phosphorylation plays an essential role in signaling in animal systems, but the relative contribution of Tyr phosphorylation to plant signal transduction has, until recently, remained an open question. One of the major issues hampering the analysis is the low abundance of Tyr phosphorylation and therefore underrepresentation in most mass spec-based proteomic studies. Here, we describe a working approach to selectively enrich Tyr-phosphorylated peptides from complex plant tissue samples. We describe a detailed protocol that is based on immuno-affinity enrichment step using an anti-phospho-tyrosine (pTyr)-specific antibody. This single enrichment strategy effectively enriches pTyr-containing peptides from complex total plant cell extracts, which can be measured by LC-MS/MS without further fractionation or enrichment.
Collapse
|
23
|
Bavelloni A, Piazzi M, Raffini M, Faenza I, Blalock WL. Prohibitin 2: At a communications crossroads. IUBMB Life 2015; 67:239-54. [PMID: 25904163 DOI: 10.1002/iub.1366] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/06/2015] [Indexed: 01/02/2023]
Abstract
Prohibitins (PHBs) are a highly conserved class of proteins first discovered as inhibitors of cellular proliferation. Since then PHBs have been found to have a significant role in transcription, nuclear signaling, mitochondrial structural integrity, cell division, and cellular membrane metabolism, placing these proteins among the key regulators of pathologies such as cancer, neuromuscular degeneration, and other metabolic diseases. The human genome encodes two PHB proteins, prohibitin 1 (PHB1) and prohibitin 2 (PHB2), which function not only as a heterodimeric complex, but also independently. While many previous reviews have focused on the better characterized prohibitin, PHB1, this review focuses on PHB2 and new data concerning its cellular functions both in complex with PHB1 and independent of PHB1.
Collapse
Affiliation(s)
- Alberto Bavelloni
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy.,Laboratory RAMSES, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Manuela Piazzi
- Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | - Mirco Raffini
- Laboratory RAMSES, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Irene Faenza
- Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | - William L Blalock
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy.,National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy
| |
Collapse
|
24
|
Franco C, Hess S. Recent proteomic advances in developmental, regeneration, and cancer governing signaling pathways. Proteomics 2014; 15:1014-25. [PMID: 25316175 DOI: 10.1002/pmic.201400368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/16/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022]
Abstract
Embryonic development, adult tissue repair, and cancer share a number of common regulating pathways. The basic processes that govern the events that induce mesenchymal properties in epithelial cells-a process known as epithelial-mesenchymal transition-are central for embryonic development, and can be resumed in adults either during wound healing or tissue regeneration. A misregulation of these pathways is involved in pathological situations, such as tissue fibrosis and cancer. Proteomic approaches have emerged as promising tools to better understand the signaling pathways that govern these complex biological processes. This review focuses on the recent proteomic-based contributions to better understand the modulation of transforming growth factor-beta (TGF-β), wingless-type MMTV integration site family (Wnt), Notch and Receptor tyrosine kinase (RTK) signaling pathways. New advances include the description of new protein interactions, the formation of new protein complexes or the description on how some PTMs are regulating these pathways. Understanding protein interactions and the tempo-spatial modulation of these pathways might lead us to interesting research quests in cancer, embryonic development or even on improving adult tissue regeneration capabilities.
Collapse
Affiliation(s)
- Catarina Franco
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | |
Collapse
|
25
|
Wang MC, Lee YH, Liao PC. Optimization of titanium dioxide and immunoaffinity-based enrichment procedures for tyrosine phosphopeptide using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Bioanal Chem 2014; 407:1343-56. [PMID: 25486920 DOI: 10.1007/s00216-014-8352-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 01/25/2023]
Abstract
Tyrosine phosphorylation is an important regulator of signaling in cellular pathways, and dysregulated tyrosine phosphorylation causes several diseases. Mass spectrometry has revealed the importance of global phosphoproteomic characterization. Analysis of tyrosine phosphorylation by studying the mass-spectrometry (MS)-determined phosphoproteome remains difficult because of the relatively low abundance of tyrosine phosphoproteins. To effectively evaluate tyrosine-phosphopeptide enrichment and reduce ion suppression from non-phosphorylated peptides in MS analysis, three trypsin-digested BSA peptides and 14 standard phosphopeptides, including six tyrosine phosphopeptides, four serine phosphopeptides, and four threonine phosphopeptides, were subjected to titanium dioxide immunoaffinity-based enrichment and also to combined enrichment using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography-mass spectrometry (LC-MS) analyses. The enrichment factors were evaluated to determine the efficiency of each enrichment procedure. Comparison of five optimized enrichment methods, including TiO2-based immunoaffinity purification in Tris and MOPS buffer systems, TiO2-immunoaffinity enrichment, and immunoaffinity-TiO2 enrichment for total tyrosine, serine and threonine phosphopeptides, revealed that the order of the enrichment factors for total tyrosine phosphopeptides is: (i) immunoaffinity-TiO2 (enrichment factor = 38,244), (ii) TiO2-immunoaffinity (enrichment factor = 24,987), (iii) TiO2 micro-column (enrichment factor = 10,305), (iv) immunoaffinity in Tris buffer system (enrichment factor = 1450), and (v) immunoaffinity in the MOPS buffer system (enrichment factor = 32). These results reveal that an alternative enrichment scheme before use of a TiO2 micro-column, using immunoaffinity 4G10 and PY99 antibody enrichment under optimized conditions, can provide greater selectivity for tyrosine-phosphopeptide enrichment.
Collapse
Affiliation(s)
- Ming-Chuan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan, Republic of China
| | | | | |
Collapse
|
26
|
Paardekooper Overman J, Preisinger C, Prummel K, Bonetti M, Giansanti P, Heck A, den Hertog J. Phosphoproteomics-mediated identification of Fer kinase as a target of mutant Shp2 in Noonan and LEOPARD syndrome. PLoS One 2014; 9:e106682. [PMID: 25184253 PMCID: PMC4153654 DOI: 10.1371/journal.pone.0106682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
Noonan syndrome (NS) and LEOPARD syndrome (LS) cause congenital afflictions such as short stature, hypertelorism and heart defects. More than 50% of NS and almost all of LS cases are caused by activating and inactivating mutations of the phosphatase Shp2, respectively. How these biochemically opposing mutations lead to similar clinical outcomes is not clear. Using zebrafish models of NS and LS and mass spectrometry-based phosphotyrosine proteomics, we identified a down-regulated peptide of Fer kinase in both NS and LS. Further investigation showed a role for Fer during development, where morpholino-based knockdown caused craniofacial defects, heart edema and short stature. During gastrulation, loss of Fer caused convergence and extension defects without affecting cell fate. Moreover, Fer knockdown cooperated with NS and LS, but not wild type Shp2 to induce developmental defects, suggesting a role for Fer in the pathogenesis of both NS and LS.
Collapse
Affiliation(s)
- Jeroen Paardekooper Overman
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christian Preisinger
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Research, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Proteomics Facility, Interdisciplinary Centre for Clinical Research Aachen, Aachen University, Aachen, Germany
| | - Karin Prummel
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monica Bonetti
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Piero Giansanti
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Research, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Albert Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Research, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Centre for Biomedical Genetics, Utrecht, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, Utrecht, The Netherlands
- Institute Biology Leiden, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Bordoli MR, Yum J, Breitkopf SB, Thon JN, Italiano JE, Xiao J, Worby C, Wong SK, Lin G, Edenius M, Keller TL, Asara JM, Dixon JE, Yeo CY, Whitman M. A secreted tyrosine kinase acts in the extracellular environment. Cell 2014; 158:1033-1044. [PMID: 25171405 PMCID: PMC4149754 DOI: 10.1016/j.cell.2014.06.048] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/06/2014] [Accepted: 06/20/2014] [Indexed: 11/17/2022]
Abstract
Although tyrosine phosphorylation of extracellular proteins has been reported to occur extensively in vivo, no secreted protein tyrosine kinase has been identified. As a result, investigation of the potential role of extracellular tyrosine phosphorylation in physiological and pathological tissue regulation has not been possible. Here, we show that VLK, a putative protein kinase previously shown to be essential in embryonic development, is a secreted protein kinase, with preference for tyrosine, that phosphorylates a broad range of secreted and ER-resident substrate proteins. We find that VLK is rapidly and quantitatively secreted from platelets in response to stimuli and can tyrosine phosphorylate coreleased proteins utilizing endogenous as well as exogenous ATP sources. We propose that discovery of VLK activity provides an explanation for the extensive and conserved pattern of extracellular tyrosine phosphophorylation seen in vivo, and extends the importance of regulated tyrosine phosphorylation into the extracellular environment.
Collapse
Affiliation(s)
- Mattia R Bordoli
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Jina Yum
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA; Department of Life Science and Global Top5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Susanne B Breitkopf
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan N Thon
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Joseph E Italiano
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Vascular Biology Program, Department of Surgery, Children's Hospital, Boston, MA 02115, USA
| | - Junyu Xiao
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92031, USA
| | - Carolyn Worby
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92031, USA
| | - Swee-Kee Wong
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Grace Lin
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Maja Edenius
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Tracy L Keller
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jack E Dixon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92031, USA
| | - Chang-Yeol Yeo
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA; Department of Life Science and Global Top5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea.
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Kinehara M, Kawamura S, Mimura S, Suga M, Hamada A, Wakabayashi M, Nikawa H, Furue MK. Protein kinase C-induced early growth response protein-1 binding to SNAIL promoter in epithelial-mesenchymal transition of human embryonic stem cells. Stem Cells Dev 2014; 23:2180-9. [PMID: 24410631 DOI: 10.1089/scd.2013.0424] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been thought to occur during early embryogenesis, and also the differentiation process of human embryonic stem (hES) cells. Spontaneous differentiation is sometimes observed at the peripheral of the hES cell colonies in conventional culture conditions, indicating that EMT occurs in hES cell culture. However, the triggering mechanism of EMT is not yet fully understood. The balance between self-renewal and differentiation of human pluripotent stem (hPS) cells is controlled by various signal pathways, including the fibroblast growth factor (FGF)-2. However, FGF-2 has a complex role for self-renewal of hES cells. FGF-2 activates phosphatidylinositol-3 kinase/AKT, mitogen-activated protein kinase/extracellular signal-regulated kinase-1/2 kinase, and also protein kinase C (PKC). Here, we showed that a PKC rapidly induced an early growth response protein-1 (EGR-1) in hES cells, which was followed by upregulation of EMT-related genes. Before the induction of EMT-related genes, EGR-1 was translocated into the nucleus, and then bound directly to the promoter region of SNAIL, which is a master regulator of EMT. SNAIL expression was attenuated by knockdown of EGR-1, but upregulated by ectopic expression of EGR-1. EGR-1 as the downstream signal of PKC might play a key role in EMT initiation during early differentiation of hES cells. This study would lead to a more robust understanding of the mechanisms underlying the balance between self-renewal and initiation of differentiation in hPS cells.
Collapse
Affiliation(s)
- Masaki Kinehara
- 1 Laboratory of Stem Cell Cultures, Department of Disease Bioresources Research, National Institute of Biomedical Innovation , Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Brown PT, Handorf AM, Jeon WB, Li WJ. Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr Pharm Des 2013; 19:3429-45. [PMID: 23432679 DOI: 10.2174/13816128113199990350] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/10/2013] [Indexed: 01/01/2023]
Abstract
The field of regenerative medicine and tissue engineering is an ever evolving field that holds promise in treating numerous musculoskeletal diseases and injuries. An important impetus in the development of the field was the discovery and implementation of stem cells. The utilization of mesenchymal stem cells, and later embryonic and induced pluripotent stem cells, opens new arenas for tissue engineering and presents the potential of developing stem cell-based therapies for disease treatment. Multipotent and pluripotent stem cells can produce various lineage tissues, and allow for derivation of a tissue that may be comprised of multiple cell types. As the field grows, the combination of biomaterial scaffolds and bioreactors provides methods to create an environment for stem cells that better represent their microenvironment for new tissue formation. As technologies for the fabrication of biomaterial scaffolds advance, the ability of scaffolds to modulate stem cell behavior advances as well. The composition of scaffolds could be of natural or synthetic materials and could be tailored to enhance cell self-renewal and/or direct cell fates. In addition to biomaterial scaffolds, studies of tissue development and cellular microenvironments have determined other factors, such as growth factors and oxygen tension, that are crucial to the regulation of stem cell activity. The overarching goal of stem cell-based tissue engineering research is to precisely control differentiation of stem cells in culture. In this article, we review current developments in tissue engineering, focusing on several stem cell sources, induction factors including growth factors, oxygen tension, biomaterials, and mechanical stimulation, and the internal and external regulatory mechanisms that govern proliferation and differentiation.
Collapse
Affiliation(s)
- Patrick T Brown
- Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
| | | | | | | |
Collapse
|
30
|
Son MY, Seol B, Han YM, Cho YS. Comparative receptor tyrosine kinase profiling identifies a novel role for AXL in human stem cell pluripotency. Hum Mol Genet 2013; 23:1802-16. [PMID: 24218367 DOI: 10.1093/hmg/ddt571] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The extensive molecular characterization of human pluripotent stem cells (hPSCs), human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) is required before they can be applied in the future for personalized medicine and drug discovery. Despite the efforts that have been made with kinome analyses, we still lack in-depth insights into the molecular signatures of receptor tyrosine kinases (RTKs) that are related to pluripotency. Here, we present the first detailed and distinct repertoire of RTK characteristic for hPSC pluripotency by determining both the expression and phosphorylation profiles of RTKs in hESCs and hiPSCs using reverse transcriptase-polymerase chain reaction with degenerate primers that target conserved tyrosine kinase domains and phospho-RTK array, respectively. Among the RTKs tested, the up-regulation of EPHA1, ERBB2, FGFR4 and VEGFR2 and the down-regulation of AXL, EPHA4, PDGFRB and TYRO3 in terms of both their expression and phosphorylation levels were predominantly related to the maintenance of hPSC pluripotency. Notably, the specific inhibition of AXL was significantly advantageous in maintaining undifferentiated hESCs and hiPSCs and for the overall efficiency and kinetics of hiPSC generation. Additionally, a global phosphoproteomic analysis showed that ∼30% of the proteins (293 of 970 phosphoproteins) showed differential phosphorylation upon AXL inhibition in undifferentiated hPSCs, revealing the potential contribution of AXL-mediated phosphorylation dynamics to pluripotency-related signaling networks. Our findings provide a novel molecular signature of AXL in pluripotency control that will complement existing pluripotency-kinome networks.
Collapse
Affiliation(s)
- Mi-Young Son
- Stem Cell Research Center, KRIBB, 125 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | | | |
Collapse
|
31
|
Tian R. Exploring intercellular signaling by proteomic approaches. Proteomics 2013; 14:498-512. [DOI: 10.1002/pmic.201300259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/15/2013] [Accepted: 08/28/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Ruijun Tian
- Lunenfeld-Tanenbaum Research Institute; Mount Sinai Hospital; Toronto ON Canada
| |
Collapse
|
32
|
Francavilla C, Rigbolt K, Emdal K, Carraro G, Vernet E, Bekker-Jensen D, Streicher W, Wikström M, Sundström M, Bellusci S, Cavallaro U, Blagoev B, Olsen J. Functional Proteomics Defines the Molecular Switch Underlying FGF Receptor Trafficking and Cellular Outputs. Mol Cell 2013; 51:707-22. [DOI: 10.1016/j.molcel.2013.08.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/26/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022]
|
33
|
Bleijerveld OB, van Holten TC, Preisinger C, van der Smagt JJ, Farndale RW, Kleefstra T, Willemsen MH, Urbanus RT, de Groot PG, Heck AJ, Roest M, Scholten A. Targeted Phosphotyrosine Profiling of Glycoprotein VI Signaling Implicates Oligophrenin-1 in Platelet Filopodia Formation. Arterioscler Thromb Vasc Biol 2013; 33:1538-43. [DOI: 10.1161/atvbaha.112.300916] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective—
Platelet adhesion to subendothelial collagen is dependent on the integrin α
2
β
1
and glycoprotein VI (GPVI) receptors. The major signaling routes in collagen-dependent platelet activation are outlined; however, crucial detailed knowledge of the actual phosphorylation events mediating them is still limited. Here, we explore phosphotyrosine signaling events downstream of GPVI with site-specific detail.
Approach and Results—
Immunoprecipitations of phosphotyrosine-modified peptides from protein digests of GPVI-activated and resting human platelets were compared by stable isotope-based quantitative mass spectrometry. We surveyed 214 unique phosphotyrosine sites over 2 time points, of which 28 showed a significant increase in phosphorylation on GPVI activation. Among these was Tyr370 of oligophrenin-1 (OPHN1), a Rho GTPase–activating protein. To elucidate the function of OPHN1 in platelets, we performed an array of functional platelet analyses within a small cohort of patients with rare oligophrenia. Because of germline mutations in the
OPHN1
gene locus, these patients lack OPHN1 expression entirely and are in essence a human knockout model. Our studies revealed that among other unaltered properties, patients with oligophrenia show normal P-selectin exposure and α
IIb
β
3
activation in response to GPVI, as well as normal aggregate formation on collagen under shear conditions. Finally, the major difference in OPHN1-deficient platelets turned out to be a significantly reduced collagen-induced filopodia formation.
Conclusions—
In-depth phosphotyrosine screening revealed many novel signaling recipients downstream of GPVI activation uncovering a new level of detail within this important pathway. To illustrate the strength of such data, functional follow-up of OPHN1 in human platelets deficient in this protein showed reduced filopodia formation on collagen, an important parameter of platelet hemostatic function.
Collapse
Affiliation(s)
- Onno B. Bleijerveld
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thijs C. van Holten
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christian Preisinger
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jasper J. van der Smagt
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Richard W. Farndale
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tjitske Kleefstra
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marjolein H. Willemsen
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rolf T. Urbanus
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip G. de Groot
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert J.R. Heck
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Roest
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arjen Scholten
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
34
|
Kweon HK, Andrews PC. Quantitative analysis of global phosphorylation changes with high-resolution tandem mass spectrometry and stable isotopic labeling. Methods 2013; 61:251-9. [PMID: 23611819 PMCID: PMC3700606 DOI: 10.1016/j.ymeth.2013.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 03/05/2013] [Accepted: 04/13/2013] [Indexed: 11/23/2022] Open
Abstract
Quantitative measurement of specific protein phosphorylation sites is a primary interest of biologists, as site-specific phosphorylation information provides insights into cell signaling networks and cellular dynamics at a system level. Over the last decade, selective phosphopeptide enrichment methods including IMAC and metal oxides (TiO₂ and ZrO₂) have been developed and greatly facilitate large scale phosphoproteome analysis of various cells, tissues and living organisms, in combination with modern mass spectrometers featuring high mass accuracy and high mass resolution. Various quantification strategies have been applied to detecting relative changes in expression of proteins, peptides, and specific modifications between samples. The combination of mass spectrometry-based phosphoproteome analysis with quantification strategies provides a straightforward and unbiased method to identify and quantify site-specific phosphorylation. We describe common strategies for mass spectrometric analysis of stable isotope labeled samples, as well as two widely applied phosphopeptide enrichment methods based on IMAC(NTA-Fe³⁺) and metal oxide (ZrO₂). Instrumental configurations for on-line LC-tandem mass spectrometric analysis and parameters of conventional bioinformatic analysis of large data sets are also considered for confident identification, localization, and reliable quantification of site-specific phosphorylation.
Collapse
Affiliation(s)
- Hye Kyong Kweon
- Department of Biological Chemistry, University of Michigan, USA.
| | | |
Collapse
|
35
|
Earls JK, Jin S, Ye K. Mechanobiology of human pluripotent stem cells. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:420-30. [PMID: 23472616 DOI: 10.1089/ten.teb.2012.0641] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human pluripotent stem cells (hPSCs) are self-renewing and have the potential to differentiate into any cell type in the body, making them attractive cell sources for applications in tissue engineering and regenerative medicine. However, in order for hPSCs to find use in the clinic, the mechanisms underlying their self-renewal and lineage commitment must be better understood. Many technologies that have been developed for the maintenance and directed differentiation of hPSCs involve the use of soluble growth factors, but recent studies suggest that other elements of the hPSC microenvironment also influence the growth and differentiation of hPSCs. This includes the influences of cell-cell interactions, substrate mechanics, cellular interactions with extracellular matrix, as well as the nanotopography of the substrate and physical forces such as shear stress, cyclic mechanical strain, and compression. In this review, we highlight the recent progress of this area of research and discuss ways in which the mechanical cues may be incorporated into hPSC culture regimes to improve methods for expanding and differentiating hPSCs.
Collapse
Affiliation(s)
- Jonathan K Earls
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | |
Collapse
|
36
|
Lian X, Selekman J, Bao X, Hsiao C, Zhu K, Palecek SP. A small molecule inhibitor of SRC family kinases promotes simple epithelial differentiation of human pluripotent stem cells. PLoS One 2013; 8:e60016. [PMID: 23527294 PMCID: PMC3603942 DOI: 10.1371/journal.pone.0060016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/20/2013] [Indexed: 12/31/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) provide unprecedented opportunities to study the earliest stages of human development in vitro and have the potential to provide unlimited new sources of cells for regenerative medicine. Although previous studies have reported cytokeratin 14+/p63+ keratinocyte generation from hPSCs, the multipotent progenitors of epithelial lineages have not been described and the developmental pathways regulating epithelial commitment remain largely unknown. Here we report membrane localization of β-catenin during retinoic acid (RA)--induced epithelial differentiation. In addition hPSC treatment with the Src family kinase inhibitor SU6656 modulated β-catenin localization and produced an enriched population of simple epithelial cells under defined culture conditions. SU6656 strongly upregulated expression of cytokeratins 18 and 8 (K18/K8), which are expressed in simple epithelial cells, while repressing expression of the pluripotency gene Oct4. This homogeneous population of K18+K8+Oct4- simple epithelial precursor cells can further differentiate into cells expressing keratinocyte or corneal-specific markers. These enriched hPSC-derived simple epithelial cells may provide a ready source for development and toxicology cell models and may serve as a progenitor for epithelial cell transplantation applications.
Collapse
Affiliation(s)
- Xiaojun Lian
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Joshua Selekman
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Xiaoping Bao
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Cheston Hsiao
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kexian Zhu
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sean P. Palecek
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
37
|
Protein kinase C regulates human pluripotent stem cell self-renewal. PLoS One 2013; 8:e54122. [PMID: 23349801 PMCID: PMC3549959 DOI: 10.1371/journal.pone.0054122] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 12/10/2012] [Indexed: 12/26/2022] Open
Abstract
Background The self-renewal of human pluripotent stem (hPS) cells including embryonic stem and induced pluripotent stem cells have been reported to be supported by various signal pathways. Among them, fibroblast growth factor-2 (FGF-2) appears indispensable to maintain self-renewal of hPS cells. However, downstream signaling of FGF-2 has not yet been clearly understood in hPS cells. Methodology/Principal Findings In this study, we screened a kinase inhibitor library using a high-throughput alkaline phosphatase (ALP) activity-based assay in a minimal growth factor-defined medium to understand FGF-2-related molecular mechanisms regulating self-renewal of hPS cells. We found that in the presence of FGF-2, an inhibitor of protein kinase C (PKC), GF109203X (GFX), increased ALP activity. GFX inhibited FGF-2-induced phosphorylation of glycogen synthase kinase-3β (GSK-3β), suggesting that FGF-2 induced PKC and then PKC inhibited the activity of GSK-3β. Addition of activin A increased phosphorylation of GSK-3β and extracellular signal-regulated kinase-1/2 (ERK-1/2) synergistically with FGF-2 whereas activin A alone did not. GFX negated differentiation of hPS cells induced by the PKC activator, phorbol 12-myristate 13-acetate whereas Gö6976, a selective inhibitor of PKCα, β, and γ isoforms could not counteract the effect of PMA. Intriguingly, functional gene analysis by RNA interference revealed that the phosphorylation of GSK-3β was reduced by siRNA of PKCδ, PKCε, and ζ, the phosphorylation of ERK-1/2 was reduced by siRNA of PKCε and ζ, and the phosphorylation of AKT was reduced by PKCε in hPS cells. Conclusions/Significance Our study suggested complicated cross-talk in hPS cells that FGF-2 induced the phosphorylation of phosphatidylinositol-3 kinase (PI3K)/AKT, mitogen-activated protein kinase/ERK-1/2 kinase (MEK), PKC/ERK-1/2 kinase, and PKC/GSK-3β. Addition of GFX with a MEK inhibitor, U0126, in the presence of FGF-2 and activin A provided a long-term stable undifferentiated state of hPS cells even though hPS cells were dissociated into single cells for passage. This study untangles the cross-talk between molecular mechanisms regulating self-renewal and differentiation of hPS cells.
Collapse
|
38
|
Abstract
Cells respond to external stimuli by transducing signals through a series of intracellular molecules and eliciting an appropriate response. The cascade of events through which the signals are transduced include post-translational modifications such as phosphorylation and ubiquitylation in addition to formation of multi-protein complexes. Improvements in biological mass spectrometry and protein/peptide microarray technology have tremendously improved our ability to probe proteins, protein complexes, and signaling pathways in a high-throughput fashion. Today, a single mass spectrometry-based investigation of a signaling pathway has the potential to uncover the large majority of known signaling intermediates painstakingly characterized over decades in addition to discovering a number of novel ones. Here, we discuss various proteomic strategies to characterize signaling pathways and provide protocols for phosphoproteomic analysis.
Collapse
Affiliation(s)
- H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | | |
Collapse
|
39
|
Abstract
The defining features of embryonic stem cells (ESCs) are their self-renewing and pluripotent capacities. Indeed, the ability to give rise into all cell types within the organism not only allows ESCs to function as an ideal in vitro tool to study embryonic development, but also offers great therapeutic potential within the field of regenerative medicine. However, it is also this same remarkable developmental plasticity that makes the efficient control of ESC differentiation into the desired cell type very difficult. Therefore, in order to harness ESCs for clinical applications, a detailed understanding of the molecular and cellular mechanisms controlling ESC pluripotency and lineage commitment is necessary. In this respect, through a variety of transcriptomic approaches, ESC pluripotency has been found to be regulated by a system of ESC-associated transcription factors; and the external signalling environment also acts as a key factor in modulating the ESC transcriptome. Here in this review, we summarize our current understanding of the transcriptional regulatory network in ESCs, discuss how the control of various signalling pathways could influence pluripotency, and provide a future outlook of ESC research.
Collapse
Affiliation(s)
- Jia-Chi Yeo
- Gene Regulation Laboratory, Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | | |
Collapse
|
40
|
Stelling MP, Lages YMV, Tovar AMF, Mourão PAS, Rehen SK. Matrix-bound heparan sulfate is essential for the growth and pluripotency of human embryonic stem cells. Glycobiology 2012; 23:337-45. [PMID: 23002246 DOI: 10.1093/glycob/cws133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human embryonic stem (hES) cell production of heparan sulfate influences cell fate and pluripotency. Human ES cells remain pluripotent in vitro through the action of growth factors signaling, and the activity of these factors depends on interaction with specific receptors and also with heparan sulfate. Here, we tested the hypothesis that matrix-associated heparan sulfate is enough to maintain hES cells under low fibroblast growth factor-2 concentration in the absence of live feeder cells. To pursue this goal, we compared hES cells cultured either on coated plates containing live murine embryonic fibroblasts (MEFs) or on a matrix derived from ethanol-fixed MEFs. hES cells were analyzed for the expression of pluripotency markers and the ability to form embryoid bodies. hES cells cultured either on live mouse fibroblasts or onto a matrix derived from fixed fibroblasts expressed similar levels of Oct-4, SOX-2, Nanog, TRA-1-60 and SSEA-4, and they were also able to form cavitated embryoid bodies. Heparan sulfate-depleted matrix lost the ability to support the adherence and growth of hES cells, confirming that this glycosaminoglycan, bound to the extracellular matrix, is enough for the growth and attachment of hES cells. Finally, we observed that the ethanol-fixed matrix decreases by 30% the levels of Neu5Gc in hES cells, indicating that this procedure reduces xeno-contamination. Our data suggest that matrix-bound heparan sulfate is required for the growth and pluripotency of hES cells and that ethanol-fixed MEFs may be used as a "live cell"-free substrate for stem cells.
Collapse
Affiliation(s)
- Mariana P Stelling
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | | | | | | |
Collapse
|
41
|
Ezashi T, Telugu BPVL, Roberts RM. Model systems for studying trophoblast differentiation from human pluripotent stem cells. Cell Tissue Res 2012; 349:809-24. [PMID: 22427062 PMCID: PMC3429771 DOI: 10.1007/s00441-012-1371-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/14/2012] [Indexed: 12/21/2022]
Abstract
This review focuses on a now well-established model for generating cells of the trophoblast (TB) lineage by treating human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) with the growth factor BMP4. We first discuss the opposing roles of FGF2 and BMP4 in directing TB formation and the need to exclude the former from the growth medium to minimize the co-induction of mesoderm and endoderm. Under these conditions, there is up-regulation of several transcription factors implicated in TB lineage emergence within 3 h of BMP4 exposure and, over a period of days and especially under a high O(2) gas atmosphere, gradual appearance of cell types carrying markers for more differentiated TB cell types, including extravillous TB and syncytioTB. We describe the potential value of including low molecular weight pharmaceutical agents that block activin A (INHBA) and FGF2 signaling to support BMP4-directed differentiation. We contend that the weight of available evidence supports the contention that BMP4 converts human ESC and iPSC of the so-called epiblast type unidirectionally to TB. We also consider the argument that BMP4 treatment of human ESC in the absence of exogenous FGF2 leads only to the emergence of mesoderm derivatives to be seriously flawed. Instead, we propose that, when signaling networks supporting pluripotency ESC or iPSC become unsustainable and when specification towards extra-embryonic mesoderm and endoderm are rendered inoperative, TB emerges as a major default state to pluripotency.
Collapse
Affiliation(s)
- Toshihiko Ezashi
- Division of Animal Sciences & Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Bhanu Prakash V. L. Telugu
- Department of Animal and Avian Sciences, College Park, MD 20742 & Animal Biosciences and Biotechnology Laboratory, ANRI, ARS, USDA, University of Maryland, Beltsville, MD 20705 USA
| | - R. Michael Roberts
- Division of Animal Sciences & Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211 USA
- 240b Bond Life Sciences Center, 1201 E. Rollins Street, Columbia, MO 65211-7310 USA
| |
Collapse
|
42
|
Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 2012; 404:939-65. [PMID: 22772140 DOI: 10.1007/s00216-012-6203-4] [Citation(s) in RCA: 539] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/06/2012] [Accepted: 06/15/2012] [Indexed: 02/08/2023]
Abstract
Mass-spectrometry-based proteomics is continuing to make major contributions to the discovery of fundamental biological processes and, more recently, has also developed into an assay platform capable of measuring hundreds to thousands of proteins in any biological system. The field has progressed at an amazing rate over the past five years in terms of technology as well as the breadth and depth of applications in all areas of the life sciences. Some of the technical approaches that were at an experimental stage back then are considered the gold standard today, and the community is learning to come to grips with the volume and complexity of the data generated. The revolution in DNA/RNA sequencing technology extends the reach of proteomic research to practically any species, and the notion that mass spectrometry has the potential to eventually retire the western blot is no longer in the realm of science fiction. In this review, we focus on the major technical and conceptual developments since 2007 and illustrate these by important recent applications.
Collapse
|
43
|
Rigbolt KTG, Blagoev B. Quantitative phosphoproteomics to characterize signaling networks. Semin Cell Dev Biol 2012; 23:863-71. [PMID: 22677334 DOI: 10.1016/j.semcdb.2012.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 05/29/2012] [Indexed: 11/20/2022]
Abstract
Reversible protein phosphorylation is involved in the regulation of most, if not all, major cellular processes via dynamic signal transduction pathways. During the last decade quantitative phosphoproteomics have evolved from a highly specialized area to a powerful and versatile platform for analyzing protein phosphorylation at a system-wide scale and has become the intuitive strategy for comprehensive characterization of signaling networks. Contemporary phosphoproteomics use highly optimized procedures for sample preparation, mass spectrometry and data analysis algorithms to identify and quantify thousands of phosphorylations, thus providing extensive overviews of the cellular signaling networks. As a result of these developments quantitative phosphoproteomics have been applied to study processes as diverse as immunology, stem cell biology and DNA damage. Here we review the developments in phosphoproteomics technology that have facilitated the application of phosphoproteomics to signaling networks and introduce examples of recent system-wide applications of quantitative phosphoproteomics. Despite the great advances in phosphoproteomics technology there are still several outstanding issues and we provide here our outlook on the current limitations and challenges in the field.
Collapse
Affiliation(s)
- Kristoffer T G Rigbolt
- Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | |
Collapse
|
44
|
Kovanich D, Cappadona S, Raijmakers R, Mohammed S, Scholten A, Heck AJR. Applications of stable isotope dimethyl labeling in quantitative proteomics. Anal Bioanal Chem 2012; 404:991-1009. [DOI: 10.1007/s00216-012-6070-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/13/2012] [Accepted: 04/23/2012] [Indexed: 01/03/2023]
|
45
|
van Hoof D, Krijgsveld J, Mummery C. Proteomic analysis of stem cell differentiation and early development. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008177. [PMID: 22317846 DOI: 10.1101/cshperspect.a008177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genomics methodologies have advanced to the extent that it is now possible to interrogate the gene expression in a single cell but proteomics has traditionally lagged behind and required much greater cellular input and was not quantitative. Coupling protein with gene expression data is essential for understanding how cell behavior is regulated. Advances primarily in mass spectrometry have, however, greatly improved the sensitivity of proteomics methods over the last decade and the outcome of proteomic analyses can now also be quantified. Nevertheless, it is still difficult to obtain sufficient tissue from staged mammalian embryos to combine proteomic and genomic analyses. Recent developments in pluripotent stem cell biology have in part addressed this issue by providing surrogate scalable cell systems in which early developmental events can be modeled. Here we present an overview of current proteomics methodologies and the kind of information this can provide on the biology of human and mouse pluripotent stem cells.
Collapse
Affiliation(s)
- Dennis van Hoof
- Department of Anatomy and Embryology, Leiden University Medical Center, ZC Leiden
| | | | | |
Collapse
|
46
|
Tobe BT, Hou J, Crain AM, Singec I, Snyder EY, Brill LM. Phosphoproteomic analysis: an emerging role in deciphering cellular signaling in human embryonic stem cells and their differentiated derivatives. Stem Cell Rev Rep 2012; 8:16-31. [PMID: 22009073 PMCID: PMC3839940 DOI: 10.1007/s12015-011-9317-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cellular signaling is largely controlled by protein phosphorylation. This post-translational modification (PTM) has been extensively analyzed when examining one or a few protein phosphorylation events that effect cell signaling. However, protein kinase-driven signaling networks, comprising total (phospho)proteomes, largely control cell fate. Therefore, large-scale analysis of differentially regulated protein phosphorylation is central to elucidating complex cellular events, including maintenance of pluripotency and differentiation of embryonic stem cells (ESCs). The current technology of choice for total phosphoproteome and combined total proteome plus total phosphoproteome (termed (phospho)proteome) analyses is multidimensional liquid chromatography-(MDLC) tandem mass spectrometry (MS/MS). Advances in the use of MDLC for separation of peptides comprising total (phospho)proteomes, phosphopeptide enrichment, separation of enriched fractions, and quantitative peptide identification by MS/MS have been rapid in recent years, as have improvements in the sensitivity, speed, and accuracy of mass spectrometers. Increasingly deep coverage of (phospho)proteomes is allowing an improved understanding of changes in protein phosphorylation networks as cells respond to stimuli and progress from one undifferentiated or differentiated state to another. Although MDLC-MS/MS studies are powerful, understanding the interpretation of the data is important, and targeted experimental pursuit of biological predictions provided by total (phospho)proteome analyses is needed. (Phospho)proteomic analyses of pluripotent stem cells are in their infancy at this time. However, such studies have already begun to contribute to an improved and accelerated understanding of basic pluripotent stem cell signaling and fate control, especially at the systems-biology level.
Collapse
Affiliation(s)
- Brian T.D. Tobe
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Junjie Hou
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Andrew M. Crain
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Ilyas Singec
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Evan Y. Snyder
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Laurence M. Brill
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| |
Collapse
|
47
|
Luckey CJ, Lu Y, Marto JA. Understanding the first steps in embryonic stem cell exit from the pluripotent state. Transfusion 2011; 51 Suppl 4:118S-124S. [PMID: 22074622 DOI: 10.1111/j.1537-2995.2011.03374.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND We are interested in understanding how a given cell type, in response to external cues from its environment, makes the decision to differentiate. In the case of mouse embryonic stem cells (mESCs), the key external factor that maintains their undifferentiated state is the cytokine leukemia inhibitory factor (LIF). LIF removal causes mESCs to exit their pluripotent state and differentiate into more restricted precursors. Although LIF is known to activate multiple different phosphorylation cascades, the mechanisms by which its removal leads to mESC differentiation are not well understood. STUDY DESIGN AND METHODS In order to identify the molecular events that occur upon LIF removal, we developed a set of novel experimental approaches that allowed identification and quantification of global phosphorylation changes that occur when mESCs are deprived of LIF. These included growth of mESCs on permeable membranes and development of a robust and sensitive phospho-proteomics platform to quantify early signaling events. RESULTS In addition to the well-characterized tyrosine 705 phosphorylation of STAT3, LIF removal results in the rapid phosphorylation of multiple other proteins known to regulate the mESC self-renewal on both tyrosine, serine, and threonine residues. We hypothesize that these unique posttranslational modifications help drive the exit of mESCs from the pluripotent state. CONCLUSIONS Our data set the stage for future studies investigating the functional role of these phosphorylation events in mESCs. These studies were greatly facilitated by the National Blood Foundation, whose support in the crucial initiation phase of these studies was invaluable.
Collapse
Affiliation(s)
- C John Luckey
- Department of Pathology, Brigham and Women's Hospital, Joint Program in Transfusion Medicine, Department of Cancer Biology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
48
|
Mithoe SC, Boersema PJ, Berke L, Snel B, Heck AJR, Menke FLH. Targeted quantitative phosphoproteomics approach for the detection of phospho-tyrosine signaling in plants. J Proteome Res 2011; 11:438-48. [PMID: 22074104 DOI: 10.1021/pr200893k] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tyrosine (Tyr) phosphorylation plays an essential role in signaling in animal systems. However, a few studies have also reported Tyr phosphorylation in plants, but the relative contribution of tyrosine phosphorylation to plant signal transduction has remained an open question. We present an approach to selectively measure and quantify Tyr phosphorylation in plant cells, which can also be applied to whole plants. We combined a (15)N stable isotope metabolic labeling strategy with an immuno-affinity purification using phospho-tyrosine (pY) specific antibodies. This single enrichment strategy was sufficient to reproducibly identify and quantify pY containing peptides from total plant cell extract in a single LC-MS/MS run. We succeeded in identifying 149 unique pY peptides originating from 135 proteins, including a large set of different protein kinases and several receptor-like kinases. We used flagellin perception by Arabidopsis cells, a model system for pathogen triggered immune (PTI) signaling, to test our approach. We reproducibly quantified 23 pY peptides in 2 inversely labeled biological replicates identifying 11 differentially phosphorylated proteins. These include a set of 3 well-characterized flagellin responsive MAP kinases and 4 novel MAP kinases. With this targeted approach, we elucidate a new level of complexity in flagellin-induced MAP kinase activation.
Collapse
Affiliation(s)
- Sharon C Mithoe
- Molecular Genetics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Carol L Nilsson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-0617, United States.
| |
Collapse
|
50
|
Zoumaro-Djayoon AD, Heck AJR, Muñoz J. Targeted analysis of tyrosine phosphorylation by immuno-affinity enrichment of tyrosine phosphorylated peptides prior to mass spectrometric analysis. Methods 2011; 56:268-74. [PMID: 21945579 DOI: 10.1016/j.ymeth.2011.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 01/18/2023] Open
Abstract
Tyrosine phosphorylation is a key process that regulates seminal biological functions, hence, deregulation of this mechanism is an underlying cause of several diseases including cancer and immunological disorders. Due to its low abundance, tyrosine phosphorylation is typically under-represented in most of the global MS-based phosphoproteomic studies. Here, we describe a selective approach based on immuno-affinity purification using specific antibodies to enrich tyrosine phosphorylated peptides from a complex proteolytic digest. LC-MS/MS analysis is subsequently used for peptide identification allowing the exact localization of the phosphorylated residue within the sequence. Using this approach more than 1000 non-redundant phosphotyrosine peptides can be identified in less than 6h of MS analysis, reflecting the high sensitivity and specificity of the technique. The identified tyrosine phosphorylated peptides can be used to study different biological aspects of tyrosine signaling and disease.
Collapse
Affiliation(s)
- Adja D Zoumaro-Djayoon
- Biomolecular Mass and Spectrometry and Proteomics Group, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|