1
|
Brar NK, Dhariwal A, Shekhar S, Junges R, Hakansson AP, Petersen FC. HAMLET, a human milk protein-lipid complex, modulates amoxicillin induced changes in an ex vivo biofilm model of the oral microbiome. Front Microbiol 2024; 15:1406190. [PMID: 39101559 PMCID: PMC11254628 DOI: 10.3389/fmicb.2024.1406190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024] Open
Abstract
Challenges from infections caused by biofilms and antimicrobial resistance highlight the need for novel antimicrobials that work in conjunction with antibiotics and minimize resistance risk. In this study we investigated the composite effect of HAMLET (human alpha-lactalbumin made lethal to tumor cells), a human milk protein-lipid complex and amoxicillin on microbial ecology using an ex vivo oral biofilm model with pooled saliva samples. HAMLET was chosen due to its multi-targeted antimicrobial mechanism, together with its synergistic effect with antibiotics on single species pathogens, and low risk of resistance development. The combination of HAMLET and low concentrations of amoxicillin significantly reduced biofilm viability, while each of them alone had little or no impact. Using a whole metagenomics approach, we found that the combination promoted a remarkable shift in overall microbial composition compared to the untreated samples. A large proportion of the bacterial species in the combined treatment were Lactobacillus crispatus, a species with probiotic effects, whereas it was only detected in a minor fraction in untreated samples. Although resistome analysis indicated no major shifts in alpha-diversity, the results showed the presence of TEM beta-lactamase genes in low proportions in all treated samples but absence in untreated samples. Our study illustrates HAMLET's capability to alter the effects of amoxicillin on the oral microbiome and potentially favor the growth of selected probiotic bacteria when in combination. The findings extend previous knowledge on the combined effects of HAMLET and antibiotics against target pathogens to include potential modulatory effects on polymicrobial biofilms of human origin.
Collapse
Affiliation(s)
- Navdeep Kaur Brar
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Achal Dhariwal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sudhanshu Shekhar
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Roger Junges
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Anders P. Hakansson
- Institute of Experimental Infection Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | | |
Collapse
|
2
|
Zhou WT, Dai YY, Liao LJ, Yang SX, Chen H, Huang L, Zhao JL, Huang YQ. Linolenic acid-metronidazole inhibits the growth of Helicobacter pylori through oxidation. World J Gastroenterol 2023; 29:4860-4872. [PMID: 37701137 PMCID: PMC10494766 DOI: 10.3748/wjg.v29.i32.4860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/15/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Resistance to antibiotics is one the main factors constraining the treatment and control of Helicobacter pylori (H. pylori) infections. Therefore, there is an urgent need to develop new antimicrobial agents to replace antibiotics. Our previous study found that linolenic acid-metronidazole (Lla-Met) has a good antibacterial effect against H. pylori, both antibiotic-resistant and sensitive H. pylori. Also, H. pylori does not develop resistance to Lla-Met. Therefore, it could be used for preparing broad-spectrum antibacterial agents. However, since the antibacterial mechanism of Lla-Met is not well understood, we explored this phenomenon in the present study. AIM To understand the antimicrobial effect of Lla-Met and how this could be applied in treating corresponding infections. METHODS H. pylori cells were treated with the Lla-Met compound, and the effect of the compound on the cell morphology, cell membrane permeability, and oxidation of the bacteria cell was assessed. Meanwhile, the differently expressed genes in H. pylori in response to Lla-Met treatment were identified. RESULTS Lla-Met treatment induced several changes in H. pylori cells, including roughening and swelling. In vivo experiments revealed that Lla-Met induced oxidation, DNA fragmentation, and phosphatidylserine ectropionation in H. pylori cells. Inhibiting Lla-Met with L-cysteine abrogated the above phenomena. Transcriptome analysis revealed that Lla-Met treatment up-regulated the expression of superoxide dismutase SodB and MdaB genes, both anti-oxidation-related genes. CONCLUSION Lla-Met kills H. pylori mainly by inducing oxidative stress, DNA damage, phosphatidylserine ectropionation, and changes on cell morphology.
Collapse
Affiliation(s)
- Wen-Ting Zhou
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Yuan-Yuan Dai
- School of Basic Medicine, Youjiang Medical University for Nationalities, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Li-Juan Liao
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Shi-Xian Yang
- Department of Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Hao Chen
- School of Basic Medicine, Department of Pathology, Wannan Medical College, Wuhu 533000, Anhui Province, China
| | - Liang Huang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Juan-Li Zhao
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Yan-Qiang Huang
- School of Basic Sciences, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
3
|
Nunn AVW, Guy GW, Bell JD. Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review. Int J Mol Sci 2023; 24:13070. [PMID: 37685877 PMCID: PMC10488084 DOI: 10.3390/ijms241713070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Geoffrey W. Guy
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
| |
Collapse
|
4
|
Saeed A, Ali H, Yasmin A, Baig M, Ullah A, Kazmi A, Ahmed MA, Albadrani GM, El-Demerdash FM, Bibi M, Abdel-Daim MM, Ali I, Hussain S. Unveiling the Antibiotic Susceptibility and Antimicrobial Potential of Bacteria from Human Breast Milk of Pakistani Women: An Exploratory Study. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6399699. [PMID: 37377461 PMCID: PMC10292949 DOI: 10.1155/2023/6399699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/29/2023]
Abstract
Background Human life quality and expectancy have increased dramatically over the past 5 decades because of improvements in nutrition and antibiotic's usage fighting against infectious diseases. Yet, it was soon revealed that the microbes adapted to develop resistance to any of the drugs that were used. Recently, there is great concern that commensal bacteria from food and the gastrointestinal tract of humans and animals could act as a reservoir for antibiotic resistance genes. Methodology. This study was intended for evaluating the phenotypic antibiotic resistance/sensitivity profiles of probiotic bacteria from human breast milk and evaluating the inhibitory effect of the probiotic bacteria against both Gram-negative and Gram-positive bacteria. Results The results point out that some of the isolated bacteria were resistant to diverse antibiotics including gentamycin, imipenem, trimethoprim sulfamethoxazole, and nalidixic acid. Susceptibility profile to certain antibiotics like vancomycin, tetracycline, ofloxacin, chloramphenicol, streptomycin, rifampicin, and bacitracin was also observed. The antimicrobial qualities of cell-free supernatants of some probiotic bacteria inhibited the growth of indicator bacteria. Also, antimicrobial properties of the probiotic bacteria from the present study attributed to the production of organic acid, bacterial adhesion to hydrocarbons (BATH), salt aggregation, coaggregation with pathogens, and bacteriocin production. Some isolated bacteria from human milk displayed higher hydrophobicity in addition to intrinsic probiotic properties like Gram-positive classification, catalase-negative activity, resistance to gastric juice (pH 2), and bile salt (0.3%) concentration. Conclusion This study has added to the data of the antibiotic and antimicrobial activity of some probiotic bacteria from some samples of Pakistani women breast milk. Probiotic bacteria are usually considered to decrease gastrointestinal tract diseases by adhering to the gut epithelial and reducing population of pathogens and in the case of Streptococcus lactarius MB622 and Streptococcus salivarius MB620 in terms of hydrophobicity and exclusion of indicator pathogenic strains.
Collapse
Affiliation(s)
- Ayesha Saeed
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Hina Ali
- Quaid-e-Azam Medical College, Bahawalpur, Punjab, Pakistan
| | - Azra Yasmin
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Mehreen Baig
- Surgical Unit II, Foundation University, Islamabad, Pakistan
| | - Abd Ullah
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | - Abeer Kazmi
- Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (UCAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
| | - Fatma M. El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Monaza Bibi
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Iftikhar Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh 19120, Pakistan
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sadam Hussain
- University of Health Sciences, Lahore, Punjab, Pakistan
| |
Collapse
|
5
|
Jiao C, Gong S, Shi M, Guo L, Jiang Y, Man C. Depletion of reactive oxygen species induced by beetroot (Beta vulgaris) extract leads to apoptosis-like death in Cronobacter sakazakii. J Dairy Sci 2023; 106:3827-3837. [PMID: 37105876 DOI: 10.3168/jds.2022-22425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/22/2022] [Indexed: 04/29/2023]
Abstract
This research aimed to disclose the antibacterial activity of beetroot extract (Beta vulgaris) against Cronobacter sakazakii and its possible mechanisms. We evaluated its antibacterial activity by measuring the minimum inhibitory concentration (MIC) and time-kill kinetics. We also evaluated the intracellular ATP levels, bacterial apoptosis-like death (ALD), and reactive oxygen species (ROS) levels to reveal the possible antibacterial mechanisms. Our results showed that the MIC of beetroot extract against C. sakazakii was 25 mg/mL and C. sakazakii (approximately 8 log cfu/mL) was completely inhibited after treatment with 2 MIC of beetroot extract for 3 h. Beetroot extract reduced intracellular ATP levels and facilitated characteristics of ALD in C. sakazakii, such as membrane depolarization, increased intracellular Ca2+ levels, phosphatidylserine externalization, caspase-like protein activation, and DNA fragmentation. Additionally, and different from most bacterial ALD caused by the accumulation of ROS, beetroot extract reduced the intracellular ROS levels in C. sakazakii. Our experimental data provide a rationale for further research of bacterial ALD and demonstrate that beetroot extract can inhibit C. sakazakii in food processing environments.
Collapse
Affiliation(s)
- Chaoqin Jiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shaoying Gong
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Mingwei Shi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
6
|
Xiang S, Lan Y, Mai Z, Tian F, Mao H. Dynamic monitoring of bacteriostatic process by SERS analysis based on a simple but effective detection strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121611. [PMID: 35988511 DOI: 10.1016/j.saa.2022.121611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Investigating antibacterial process at a molecular level is helpful to fully understand the mechanism of bacteriostasis and develop new antimicrobial agents. Herein, a simple but effective sensor strategy of antibacterial nanocomposite combined with surface-enhanced Raman scattering (SERS) substrate was applied for the robust detection of bacteriostatic process. The synergistic SERS effect of nanocomposite and Ag nanoparticles (NPs) substrate was confirmed by finite difference time domain (FDTD) solutions. A curcumin liposome@Au NPs nanocomposite was designed and prepared as a kind of bacteriostatic agent and SERS material as well. By means of electrostatic attraction between the nanocomposite and bacteria (methicillin resistant staphylococcus aureus, MRSA), specific detection of MRSA and monitoring of the molecular structure changes after bacteriostaticeffect were realized by SERS. Important intermediates produced in the bacteriostatic process were also measured at the same time. The relationship between the relative peak intensities and the structure of MRSA were thus established. The results were verified by high performance liquid chromatography-mass spectrometry (HPLC-MS), reactive oxygen species (ROS) kit, and flow cytometry. The detection strategy we proposed could not only be used for real-time detection of bacteriostatic processes with a high efficiency, but also a powerful tool for analyzing the mechanism in biochemical processes.
Collapse
Affiliation(s)
- Songtao Xiang
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuxiang Lan
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhiliang Mai
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Feng Tian
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hua Mao
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
7
|
Antibacterial mechanism of beetroot (Beta vulgaris) extract against Listeria monocytogenes through apoptosis-like death and its application in cooked pork. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Chetta KE, Newton DA, Wagner CL, Baatz JE. Free Fatty Acid and α-Lactalbumin-Oleic Acid Complexes in Preterm Human Milk Are Cytotoxic to Fetal Intestinal Cells in vitro. Front Nutr 2022; 9:918872. [PMID: 35866080 PMCID: PMC9294382 DOI: 10.3389/fnut.2022.918872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Human milk, the best enteral selection for a preterm infant, becomes altered during freezing and soluble free fatty acid is generated over time. Free fatty acids may form complexes, such as the oleic acid-bound protein called HAMLET (human α-lactalbumin made lethal to tumor cells). We determined the in vitro biological activity of preterm human milk protein-oleic complexes (HAMLET-like complexes) and tested the hypothesis that laboratory-synthesized HAMLET exhibits cytotoxicity in human immature epithelial intestinal cell culture. Thirty-four milk samples from 15 mothers of hospitalized preterm infants were donated over time. Milk fractions were tested repeatedly for FHs 74 Int and HIEC-6 fetal cell cytotoxicity, using a sensitive viability assay. Protein and fatty acid identities were confirmed by Western blot, high performance liquid chromatography, and mass spectrometry. Cytotoxicity of intestinal cells exposed to milk increased respective to milk storage time (p < 0.001) and was associated with free oleic acid (p = 0.009). Synthesized HAMLET was cytotoxic in cultures of both lines. Preterm milk samples killed most cells in culture after an average 54 days in frozen storage (95% C.I. 34–72 days). After prolonged storage time, preterm milk and HAMLET showed a degree of cytotoxicity to immature intestinal cells in culture.
Collapse
|
9
|
Ghose R, Asaduzzaman AKM, Hasan I, Kabir SR. Hypnea musciformis-mediated Ag/AgCl-NPs inhibit pathogenic bacteria, HCT-116 and MCF-7 cells' growth in vitro and Ehrlich ascites carcinoma cells in vivo in mice. IET Nanobiotechnol 2022; 16:49-60. [PMID: 35015917 PMCID: PMC8918923 DOI: 10.1049/nbt2.12075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/31/2022] Open
Abstract
In the present study, Ag/AgCl‐NPs were biosynthesised using Hypnea musciformis seaweed extract; NPs synthesis was confirmed by a change of colour and observation of a razor‐sharp peak at 424 nm by UV–visible spectroscopy. Synthesised nanoparticles were characterised by transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray powder diffraction and Fourier transform infrared spectroscopy. Bacterial cell growth inhibition proves that the Ag/AgCl‐NPs have strong antibacterial activity and cell morphological alteration was observed in treated bacterial cells using propidium iodide (PI). Ag/AgCl‐NPs inhibited Ehrlich ascites carcinoma (EAC) cells, colorectal cancer (HCT‐116) and breast cancer (MCF‐7) cell line in vitro with the IC50 values of 40.45, 24.08 and 36.95 μg/ml, respectively. Initiation of apoptosis in HCT‐116 and MCF‐7 cells was confirmed using PI, FITC‐annexin V and Hoechst 33342 dye. No reaction oxygen species generation was observed in both treated and untreated cell lines. A significant increase of ATG‐5 gene expression indicates the possibility of autophagy cell death besides apoptosis in MCF‐7 cells. The initiation of apoptosis in EAC cells was confirmed by observing caspase‐3 protein expression. Ag/AgCl‐NPs inhibited 22.83% and 51% of the EAC cell growth in vivo in mice when administered 1.5 and 3.0 mg/kg/day (i.p.), respectively, for 5 consequent days.
Collapse
Affiliation(s)
- Rita Ghose
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| | - A K M Asaduzzaman
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| | - Imtiaj Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
10
|
Fang Y, Zhu Y, Li L, Lai Z, Dong N, Shan A. Biomaterial-Interrelated Bacterial Sweeper: Simplified Self-Assembled Octapeptides with Double-Layered Trp Zipper Induces Membrane Destabilization and Bacterial Apoptosis-Like Death. SMALL METHODS 2021; 5:e2101304. [PMID: 34928043 DOI: 10.1002/smtd.202101304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Treatment of microbial-associated infections continues to be hampered by impaired antibacterial efficiency and the variability in nanomedicines. Herein, an octapeptide library with a double-layered zipper, constructed via a systematic arrangement, simplifying the sequence and optimizing the structure (diverse motifs including surfactant-like, central-bola, and end-bola), is assessed in terms of biological efficiency and self-assembly properties. The results indicate that peptides with double-layered Trp zipper exhibit significant antimicrobial activity. Extracellularly, affinity interactions between micelles and bacteria induce the lateral flow of the membrane and electric potential perturbation. Intracellularly, lead molecules cause apoptosis-like death, as indicated by excessive accumulation of reactive oxygen species, generation of a DNA ladder, and upregulation of mazEF expression. Among them, RW-1 performs the best in vivo and in vitro. The intersecting combination of Trp zipper and surfactants possesses overwhelming superiority with respect to bacterial sweepers (therapeutic index [TI] = 52.89), nanostructures (micelles), and bacterial damage compared to RW-2 (central-bola) and RW-3 (end-bola). These findings confirm that the combination of double-layered Trp zipper and surfactants has potential for application as a combined motif for combating microbial infection and connects the vast gap between antimicrobial peptides and self-assembly, such as Jacob's ladder.
Collapse
Affiliation(s)
- Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Yunhui Zhu
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Ling Li
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Zhenheng Lai
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
11
|
Kim H, Lee DG. Contribution of SOS genes to H 2O 2-induced apoptosis-like death in Escherichia coli. Curr Genet 2021; 67:969-980. [PMID: 34435216 DOI: 10.1007/s00294-021-01204-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/07/2023]
Abstract
Hydrogen peroxide (H2O2) is a debriding agent that damages the microbial structure and function by generating various reactive oxygen species (ROS). H2O2-produced hydroxyl radical (OH∙) also exerts oxidative stress on microorganisms. The spread of antibiotic-resistance in bacteria is a serious issue worldwide, and greater efforts are needed to identify and characterize novel antibacterial mechanisms to develop new treatment strategies. Therefore, this study aimed to clarify the relationship between H2O2 and Escherichia coli and to elucidate a novel antibacterial mechanism(s) of H2O2. Following H2O2 exposure, increased levels of 8-hydroxydeoxyguanosine and malondialdehyde indicated that H2O2 accelerates oxidation of bacterial DNA and lipids in E. coli. As oxidative damage worsened, the SOS response was triggered. Cell division arrest and resulting filamentous cells were identified in cells, indicating that LexA was involved in DNA replication. It was also verified that RecA, a representative SOS gene, helps self-cleavage of LexA and acts as a bacterial caspase-like protein. Our findings also showed that dinF is essential to preserve E. coli from H2O2-induced ROS, and furthermore, demonstrated that H2O2-induced SOS response and SOS genes participate differently in guarding E. coli from oxidative stress. As an extreme SOS response is considered apoptosis-like death (ALD) in bacteria, additional experiments were performed to examine the characteristics of ALD. DNA fragmentation and membrane depolarization appeared in H2O2-treated cells, suggesting that H2O2 causes ALD in E. coli. In conclusion, our investigations revealed that ALD is a novel antibacterial mode of action(s) of H2O2 with important contributions from SOS genes.
Collapse
Affiliation(s)
- Heesu Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
12
|
Wang T, Flint S, Palmer J. Heterogeneous response of Geobacillus stearothermophilus biofilms to calcium. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Vansarla G, Håkansson AP, Bergenfelz C. HAMLET a human milk protein-lipid complex induces a pro-inflammatory phenotype of myeloid cells. Eur J Immunol 2021; 51:965-977. [PMID: 33348422 PMCID: PMC8248127 DOI: 10.1002/eji.202048813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
HAMLET is a protein‐lipid complex with a specific and broad bactericidal and tumoricidal activity, that lacks cytotoxic activity against healthy cells. In this study, we show that HAMLET also has general immune‐stimulatory effects on primary human monocyte‐derived dendritic cells and macrophages (Mo‐DC and Mo‐M) and murine RAW264.7 macrophages. HAMLET, but not its components alpha‐lactalbumin or oleic acid, induces mature CD14low/–CD83+ Mo‐DC and M1‐like CD14+CD86++ Mo‐M surface phenotypes. Concomitantly, inflammatory mediators, including IL‐2, IL‐6, IL‐10, IL‐12 and MIP‐1α, were released in the supernatant of HAMLET‐stimulated cells, indicating a mainly pro‐inflammatory phenotype. The HAMLET‐induced phenotype was mediated by calcium, NFκB and p38 MAPK signaling in Mo‐DCs and calcium, NFκB and ERK signaling in Mo‐M as inhibitors of these pathways almost completely blocked the induction of mature Mo‐DCs and M1‐like Mo‐M. Compared to unstimulated Mo‐DCs, HAMLET‐stimulated Mo‐DCs were more potent in inducing T cell proliferation and HAMLET‐stimulated macrophages were more efficient in phagocytosis of Streptococcus pneumoniae in vitro. This indicates a functionally activated phenotype of HAMLET‐stimulated DCs and macrophages. Combined, we propose that HAMLET has a two‐fold anti‐bacterial activity; one inducing direct cytotoxic activity, the other indirectly mediating elimination of bacteria by activation of immune cells of the myeloid lineage.
Collapse
Affiliation(s)
- Goutham Vansarla
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, SE-214 28, Sweden
| | - Anders P Håkansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, SE-214 28, Sweden
| | - Caroline Bergenfelz
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, SE-214 28, Sweden
| |
Collapse
|
14
|
Kendall E, Millard A, Beaumont J. The "weanling's dilemma" revisited: Evolving bodies of evidence and the problem of infant paleodietary interpretation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175 Suppl 72:57-78. [PMID: 33460467 DOI: 10.1002/ajpa.24207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/23/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023]
Abstract
Breastfeeding is known to be a powerful mediator of maternal and childhood health, with impacts throughout the life course. Paleodietary studies of the past 30 years have accordingly taken an enduring interest in the health and diet of young children as a potential indicator of population fertility, subsistence, and mortality patterns. While progress has been made in recent decades toward acknowledging the agency of children, many paleodietary reconstructions have failed to incorporate developments in cognate disciplines revealing synergistic dynamics between maternal and offspring biology. Paleodietary interpretation has relied heavily on the "weanling's dilemma," in which infants are thought to face a bleak choice between loss of immunity or malnutrition. Using a review of immunological and epidemiological evidence for the dynamic and supportive role that breastfeeding plays throughout the complementary feeding period, this article offers context and nuance for understanding past feeding transitions. We suggest that future interpretative frameworks for infant paleodietary and bioarchaeological research should include a broad knowledge base that keeps pace with relevant developments outside of those disciplines.
Collapse
Affiliation(s)
- Ellen Kendall
- Department of Archaeology, Durham University, Durham, UK
| | - Andrew Millard
- Department of Archaeology, Durham University, Durham, UK
| | - Julia Beaumont
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
15
|
α-Lactalbumin, Amazing Calcium-Binding Protein. Biomolecules 2020; 10:biom10091210. [PMID: 32825311 PMCID: PMC7565966 DOI: 10.3390/biom10091210] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
α-Lactalbumin (α-LA) is a small (Mr 14,200), acidic (pI 4–5), Ca2+-binding protein. α-LA is a regulatory component of lactose synthase enzyme system functioning in the lactating mammary gland. The protein possesses a single strong Ca2+-binding site, which can also bind Mg2+, Mn2+, Na+, K+, and some other metal cations. It contains several distinct Zn2+-binding sites. Physical properties of α-LA strongly depend on the occupation of its metal binding sites by metal ions. In the absence of bound metal ions, α-LA is in the molten globule-like state. The binding of metal ions, and especially of Ca2+, increases stability of α-LA against the action of heat, various denaturing agents and proteases, while the binding of Zn2+ to the Ca2+-loaded protein decreases its stability and causes its aggregation. At pH 2, the protein is in the classical molten globule state. α-LA can associate with membranes at neutral or slightly acidic pH at physiological temperatures. Depending on external conditions, α-LA can form amyloid fibrils, amorphous aggregates, nanoparticles, and nanotubes. Some of these aggregated states of α-LA can be used in practical applications such as drug delivery to tissues and organs. α-LA and some of its fragments possess bactericidal and antiviral activities. Complexes of partially unfolded α-LA with oleic acid are cytotoxic to various tumor and bacterial cells. α-LA in the cytotoxic complexes plays a role of a delivery carrier of cytotoxic fatty acid molecules into tumor and bacterial cells across the cell membrane. Perhaps in the future the complexes of α-LA with oleic acid will be used for development of new anti-cancer drugs.
Collapse
|
16
|
Pedersen JN, Frislev HKS, Pedersen JS, Otzen D. Structures and mechanisms of formation of liprotides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140505. [PMID: 32721568 DOI: 10.1016/j.bbapap.2020.140505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Many proteins form complexes called liprotides with oleic acid and other cis-fatty acids under conditions where the protein is partially unfolded. The complexes vary in structure depending on the ratio of protein and lipid, but the most common structural organization is the core-shell structure, in which a layer of dynamic, partially unfolded and extended proteins surrounds a micelle-like fatty acid core. This structure, first reported for α-lactalbumin together with OA, resembles complexes formed between proteins and anionic surfactants like SDS. Liprotides first rose to fame through their anti-carcinogenic properties which still remains promising for topical applications though not yet implemented in the clinic. In addition, liprotides show potential in drug delivery thanks to the ability of the micelle core to solubilize and stabilize hydrophobic compounds, though applications are challenged by their sensitivity to acidic pH and dynamic exchange of lipids which makes them easy prey for serum "hoovers" such as albumin. However, liprotides are also of fundamental interest as a generic "protein complex structure", demonstrating the many and varied structural consequences of protein-lipid interactions. Here we provide an overview of the different types of liprotide complexes, ranging from quasi-native complexes via core-shell structures to multi-layer structures, and discuss the many conditions under which they form. Given the many variable types of complexes that can form, rigorous biophysical analysis (stoichiometry, shape and structure of the complexes) remains crucial for a complete understanding of the mechanisms of action of this fascinating group of protein-lipid complexes both in vitro and in vivo.
Collapse
Affiliation(s)
- Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Henriette Kristina Søster Frislev
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Novo Nordisk, Hallas Alle 1, DK-4400 Kalundborg, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark.
| |
Collapse
|
17
|
Immobilization of Phosphatidylserine by Ethanol and Lysozyme on the Cell Surface for Evaluation of Apoptosis-Like Decay in Activated-Sludge Bacteria. Appl Environ Microbiol 2020; 86:AEM.00345-20. [PMID: 32414801 DOI: 10.1128/aem.00345-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/30/2020] [Indexed: 01/18/2023] Open
Abstract
Accurate determination of microbial viability can be crucial in microbe-dominated biosystems. However, the identification of metabolic decay in bacterial cells can be elaborate and difficult. We sought to identify apoptosis-like bacterial processes by using annexin V-fluorescein isothiocyanate (FITC) (AVF), a probe typically used to stain phosphatidylserine (PS) on exposed cell membranes. The bacterial cell wall provides a barrier that is responsible for low efficiency of direct PS staining of decayed bacterial cells. This can be overcome by pretreatment of the bacteria with 70% ethanol, which fixates the bacteria and preserves the PS status, combined with lysozyme treatment to hydrolyze the cell wall. That treatment improved the efficiency of AVF staining considerably, as shown for pure strains of an Ochrobactrum sp. and a Micrococcus sp. Using this method, decayed bacterial cells (induced by starvation) were more strongly stained, indicating externalization of PS to a greater extent than seen for cells harvested at logarithmic growth. A multispecies microbial sludge was artificially decayed by heat treatment or alternating anoxic-oxic treatment, which also induced increased AVF staining, again presumably via decay-related PS externalization. The method developed proved to be efficient for identification of bacterial decay and has potential for the evaluation of multispecies bacterial samples from sources like soil matrix, bioaerosol, and activated sludge.IMPORTANCE Since the externalization of phosphatidylserine (PS) is considered a crucial characteristic of apoptosis, we sought to identify apoptosis-like decay in bacterial cells by PS staining using AVF. We show that this is possible, provided the bacteria are pretreated with ethanol plus lysozyme to remove a physical staining barrier and preserve the original, decay-related externalization of PS. Our work suggests that PS externalization occurs in starved bacteria and this can be quantified with AVF staining, providing a measure of bacterial decay. Since PS is the common component of the lipid bilayer in bacterial cell membranes, this approach also has potential for evaluation of cell decay of other bacterial species.
Collapse
|
18
|
El-Fakharany EM, Redwan EM. Protein-lipid complexes: molecular structure, current scenarios and mechanisms of cytotoxicity. RSC Adv 2019; 9:36890-36906. [PMID: 35539089 PMCID: PMC9075609 DOI: 10.1039/c9ra07127j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 02/04/2023] Open
Abstract
Some natural proteins can be complexed with oleic acid (OA) to form an active protein-lipid formulation that can induce tumor-selective apoptosis. The first explored protein was human milk α-lactalbumin (α-LA), called HAMLET when composed with OA in antitumor form. Several groups have prepared active protein-lipid complexes using a variety of approaches, all of which depend on target protein destabilization or direct OA-protein incubation to alter pH to acid or alkaline condition. In addition to performing vital roles in inflammatory processes and immune responses, fatty acids can disturb different metabolic pathways and cellular signals. Therefore, the tumoricidal action of these complexes is related to OA rather than the protein that keeps OA in solution and acts as a vehicle for transferring OA molecules to tumor cells. However, other studies have suggested that the antitumor efficacy of these complexes was exerted by both protein and OA together. The potential is not limited to the anti-tumor activity of protein-lipid complexes but extends to other functions such as bactericidal activity. The protein shell enhances the solubility and stability of the bound fatty acid. These protein-lipid complexes are promising candidates for fighting various cancer types and managing bacterial and viral infections.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City) New Borg EL-Arab 21934 Alexandria Egypt
| | - Elrashdy M Redwan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City) New Borg EL-Arab 21934 Alexandria Egypt
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University P. O. Box 80203 Jeddah Saudi Arabia
| |
Collapse
|
19
|
Roche-Hakansson H, Vansarla G, Marks LR, Hakansson AP. The human milk protein-lipid complex HAMLET disrupts glycolysis and induces death in Streptococcus pneumoniae. J Biol Chem 2019; 294:19511-19522. [PMID: 31694917 DOI: 10.1074/jbc.ra119.009930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/29/2019] [Indexed: 12/25/2022] Open
Abstract
HAMLET is a complex of human α-lactalbumin (ALA) and oleic acid and kills several Gram-positive bacteria by a mechanism that bears resemblance to apoptosis in eukaryotic cells. To identify HAMLET's bacterial targets, here we used Streptococcus pneumoniae as a model organism and employed a proteomic approach that identified several potential candidates. Two of these targets were the glycolytic enzymes fructose bisphosphate aldolase (FBPA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Treatment of pneumococci with HAMLET immediately inhibited their ATP and lactate production, suggesting that HAMLET inhibits glycolysis. This observation was supported by experiments with recombinant bacterial enzymes, along with biochemical and bacterial viability assays, indicating that HAMLET's activity is partially inhibited by high glucose-mediated stimulation of glycolysis but enhanced in the presence of the glycolysis inhibitor 2-deoxyglucose. Both HAMLET and ALA bound directly to each glycolytic enzyme in solution and solid-phase assays and effectively inhibited their enzymatic activities. In contrast, oleic acid alone had little to no inhibitory activity. However, ALA alone also exhibited no bactericidal activity and did not block glycolysis in whole cells, suggesting a role for the lipid moiety in the internalization of HAMLET into the bacterial cells to reach its target(s). This was verified by inhibition of enzyme activity in whole cells after HAMLET but not ALA exposure. The results of this study suggest that part of HAMLET's antibacterial activity relates to its ability to target and inhibit glycolytic enzymes, providing an example of a natural antimicrobial agent that specifically targets glycolysis.
Collapse
Affiliation(s)
- Hazeline Roche-Hakansson
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York 14203
| | - Goutham Vansarla
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, SE-21428 Malmö, Sweden
| | - Laura R Marks
- Department of Medicine, Barnes-Jewish Hospital, Washington University, St. Louis, Missouri 63110
| | - Anders P Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, SE-21428 Malmö, Sweden
| |
Collapse
|
20
|
HAMLET, a protein complex from human milk has bactericidal activity and enhances the activity of antibiotics against pathogenic Streptococci. Antimicrob Agents Chemother 2019:AAC.01193-19. [PMID: 31591115 DOI: 10.1128/aac.01193-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
HAMLET is a protein-lipid complex derived from human milk that was first described for its tumoricidal activity. Later studies showed that HAMLET also has direct bactericidal activity against select species of bacteria, with highest activity against Streptococcus pneumoniae Additionally, HAMLET in combination with various antimicrobial agents can make a broader range of antibiotic-resistant bacterial species sensitive to antibiotics. Here, we show that HAMLET has direct antibacterial activity not only against pneumococci, but also against Streptococcus pyogenes (GAS) and Streptococcus agalactiae (GBS). Analogous to pneumococci, HAMLET-treatment of GAS and GBS resulted in depolarization of the bacterial membrane followed by membrane permeabilization and death that could be inhibited by calcium and sodium transport inhibitors. Treatment of clinical antibiotic-resistant isolates of S. pneumoniae, GAS, and GBS with sublethal concentrations of HAMLET in combination with antibiotics decreased the minimal inhibitory concentrations of the respective antibiotic into the sensitive range. This effect could also be blocked by ion transport inhibitors, suggesting that HAMLET's bactericidal and combination treatment effects used similar mechanisms. Finally, we show that HAMLET potentiated the effects of erythromycin against erythromycin-resistant bacteria more effectively than it potentiated killing by penicillin G of bacteria resistant to penicillin G. These results show for the first time that HAMLET effectively kills three different species of pathogenic Streptococci using similar mechanisms and also potentiate the activity of macrolides and lincosamides more effectively than combination treatment with beta-lactams. These findings suggest a potential therapeutic role for HAMLET in repurposing antibiotics currently causing treatment failures in patients.
Collapse
|
21
|
Zhang L, Wu L, Mi Y, Si Y. Silver Nanoparticles Induced Cell Apoptosis, Membrane Damage of Azotobacter vinelandii and Nitrosomonas europaea via Generation of Reactive Oxygen Species. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:181-186. [PMID: 31049596 DOI: 10.1007/s00128-019-02622-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Silver nanoparticles (AgNPs) is widely used as an antibacterial agent, but the specific antibacterial mechanism is still conflicting. This study aimed to investigate the size dependent inhibition of AgNPs and the relationship between inhibition and reactive oxygen species (ROS). Azotobactervinelandii and Nitrosomonaseuropaea were exposed to AgNPs with different particles size (10 nm and 50 nm). The ROS production was measured and the results showed that the generation of ROS related to the particle size and concentrations of AgNPs. At 10 mg/L of 10 nm Ag particles, the apoptosis rate of A. vinelandii and N. europaea were 20.23% and 1.87% respectively. Additionally, the necrosis rate of A. vinelandii and N. europaea reached to 15.20% and 42.20% respectively. Furthermore, transmission electron microscopy images also indicated that AgNPs caused severely bacterial cell membrane damage. Together these data suggested that the toxicity of AgNPs depends on its particle size and overproduction of ROS.
Collapse
Affiliation(s)
- Li Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Lingli Wu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yazhu Mi
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
22
|
Abstract
Oleic acid (OA) is a monounsaturated fatty acid that upon binding to milk proteins, such as α-lactalbumin and lactoferrin, forms potent complexes, which exert selective anti-tumor activity against malignant cells but are nontoxic for healthy normal cells. We showed that the interaction of OA with albumins isolated from human, bovine, and camel milk results in the formation of complexes with high antitumor activity against Caco-2, HepG-2, PC-3, and MCF-7 tumor cells. The antitumor effect of the complexes is mostly due to the action of oleic acid, similar to the case of OA complexes with other proteins. Viability of tumor cells is inhibited by the albumin-OA complexes in a dose dependent manner, as evaluated by the MTT assay. Strong induction of apoptosis in tumor cells after their treatment with the complexes was monitored by flow cytometry, cell cycle analysis, nuclear staining, and DNA fragmentation methods. The complex of camel albumin with OA displayed the most pronounced anti-tumor effects in comparison with the complexes of OA with human and bovine albumins. Therefore, these results suggest that albumins have the potential to be used as efficient and low cost means of tumor treatment.
Collapse
|
23
|
Milk Therapy: Unexpected Uses for Human Breast Milk. Nutrients 2019; 11:nu11050944. [PMID: 31027386 PMCID: PMC6567207 DOI: 10.3390/nu11050944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Human breast milk provides a child with complete nutrition but is also a popular therapeutic remedy that has been used in traditional, natural pharmacopeia, and ethnomedicine for many years. The aim of this current review is to summarize studies of non-nutritional uses of mothers' milk. METHODS Two databases (PubMed and Google Scholar) were searched with a combination of twelve search terms. We selected articles that were published between 1 January 2010, and 1 January 2019. The language of publication was limited to English. RESULTS Fifteen studies were included in the systematic review. Ten of these were randomized controlled trials, one was a quasi-experimental study, two were in vitro studies, and four employed an animal research model. CONCLUSIONS Many human milk components have shown promise in preclinical studies and are undergoing active clinical evaluation. The protective and treatment role of fresh breast milk is particularly important in areas where mothers and infants do not have ready access to medicine.
Collapse
|
24
|
Whey protein in cancer therapy: A narrative review. Pharmacol Res 2019; 144:245-256. [PMID: 31005617 DOI: 10.1016/j.phrs.2019.04.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
Cancer remains a public health challenge in the identification and development of ideal pharmacological therapies and dietary strategies. The use of whey protein as a dietary strategy is widespread in the field of oncology. The two types of whey protein, sweet or acid, result from several processing techniques and possess distinct protein subfraction compositions. Mechanistically, whey protein subfractions have specific anti-cancer effects. Alpha-lactalbumin, human α-lactalbumin made lethal to tumor cell, bovine α-lactalbumin made lethal to tumor cell, bovine serum albumin, and lactoferrin are whey protein subfractions with potential to hinder tumor pathways. Such effects, however, are principally supported by studies performed in vitro and/or in vivo. In clinical practice, whey protein intake-induced anti-cancer effects are indiscernible. However, whey protein supplementation represents a practical, feasible, and cost-effective approach to mitigate cancer cachexia syndrome. The usefulness of whey protein is evidenced by a greater leucine content and the potential to modulate IGF-1 concentrations, representing important factors towards musculoskeletal hypertrophy. Further clinical trials are warranted and needed to establish the effects of whey protein supplementation as an adjuvant to cancer therapy.
Collapse
|
25
|
Liao S, Zhang Y, Pan X, Zhu F, Jiang C, Liu Q, Cheng Z, Dai G, Wu G, Wang L, Chen L. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomedicine 2019; 14:1469-1487. [PMID: 30880959 PMCID: PMC6396885 DOI: 10.2147/ijn.s191340] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The threat of drug-resistant Pseudomonas aeruginosa requires great efforts to develop highly effective and safe bactericide. OBJECTIVE This study aimed to investigate the antibacterial activity and mechanism of silver nanoparticles (AgNPs) against multidrug-resistant P. aeruginosa. METHODS The antimicrobial effect of AgNPs on clinical isolates of resistant P. aeruginosa was assessed by minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). In multidrug-resistant P. aeruginosa, the alterations of morphology and structure were observed by the transmission electron microscopy (TEM); the differentially expressed proteins were analyzed by quantitative proteomics; the production of reactive oxygen species (ROS) was assayed by H2DCF-DA staining; the activity of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was chemically measured and the apoptosis-like effect was determined by flow cytometry. RESULTS Antimicrobial tests revealed that AgNPs had highly bactericidal effect on the drug-resistant or multidrug-resistant P. aeruginosa with the MIC range of 1.406-5.625 µg/mL and the MBC range of 2.813-5.625 µg/mL. TEM showed that AgNPs could enter the multidrug-resistant bacteria and impair their morphology and structure. The proteomics quantified that, in the AgNP-treated bacteria, the levels of SOD, CAT, and POD, such as alkyl hydroperoxide reductase and organic hydroperoxide resistance protein, were obviously high, as well as the significant upregulation of low oxygen regulatory oxidases, including cbb3-type cytochrome c oxidase subunit P2, N2, and O2. Further results confirmed the excessive production of ROS. The antioxidants, reduced glutathione and ascorbic acid, partially antagonized the antibacterial action of AgNPs. The apoptosis-like rate of AgNP-treated bacteria was remarkably higher than that of the untreated bacteria (P<0.01). CONCLUSION This study proved that AgNPs could play antimicrobial roles on the multidrug-resistant P. aeruginosa in a concentration- and time-dependent manner. The main mechanism involves the disequilibrium of oxidation and antioxidation processes and the failure to eliminate the excessive ROS.
Collapse
Affiliation(s)
- Shijing Liao
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China,
| | - Yapeng Zhang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China,
| | - Xuanhe Pan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China,
| | - Feizhou Zhu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Congyuan Jiang
- Hunan Anson Biotechnology Co., Ltd., Changsha 410008, China
| | - Qianqian Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab Co., Ltd., Hangzhou Economic and Technological Development Area, Hangzhou 310018, China
| | - Gan Dai
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China,
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China,
| | - Linqian Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China,
| | - Liyu Chen
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China,
| |
Collapse
|
26
|
Cytotoxicity of apo bovine α-lactalbumin complexed with La 3+ on cancer cells supported by its high resolution crystal structure. Sci Rep 2019; 9:1780. [PMID: 30741951 PMCID: PMC6370903 DOI: 10.1038/s41598-018-38024-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/11/2018] [Indexed: 11/08/2022] Open
Abstract
Cancer remains one of the biggest threats to human society. There are massive demands for compounds to selectively kill cancerous cells. Earlier studies have shown that bovine α -lactalbumin made lethal to tumor cells (BAMLET) becomes cytotoxic against cancer cells in complex with oleic acid {Hoque, M. et. al., PLoSOne8, e68390 (2013)}. In our study, we obtained bovine α-lactalbumin complexed with lanthanum ion (La3+-B-α-LA) and determined its high resolution crystal structure. The natural calcium binding site of bovine α-lactalbumin is replaced by lanthanum. The La3+ complex formation by B-α-apo-LA was also supported by various biophysical methods. Interestingly, our complex, La3+-B-α-LA exhibits much greater anticancer activity against breast cancer cells as compared to the reported BAMLET-oleic acid complex. This study shows that La3+-B-α-LA complex is preferentially more toxic to MCF-7 cells as compared to KB (oral cancer) and HeLa (cervical) cells, while almost non-toxic to the healthy cells that we studied. Our data indicates that the cytotoxicity of La3+-B-α-LA against cancer cells is through apoptotic path way. The higher anticancer activity of La3+-B-α-LA is attributable to the requisite structural changes induced in the protein by La3+ binding as supported by the crystal structure of the complex.
Collapse
|
27
|
A Protein Complex from Human Milk Enhances the Activity of Antibiotics and Drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.01846-18. [PMID: 30420480 DOI: 10.1128/aac.01846-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), has surpassed HIV/AIDS as the leading cause of death from a single infectious agent. The increasing occurrence of drug-resistant strains has become a major challenge for health care systems and, in some cases, has rendered TB untreatable. However, the development of new TB drugs has been plagued with high failure rates and costs. Alternative strategies to increase the efficacy of current TB treatment regimens include host-directed therapies or agents that make M. tuberculosis more susceptible to existing TB drugs. In this study, we show that HAMLET, an α-lactalbumin-oleic acid complex derived from human milk, has bactericidal activity against M. tuberculosis HAMLET consists of a micellar oleic acid core surrounded by a shell of partially denatured α-lactalbumin molecules and unloads oleic acid into cells upon contact with lipid membranes. At sublethal concentrations, HAMLET potentiated a remarkably broad array of TB drugs and antibiotics against M. tuberculosis For example, the minimal inhibitory concentrations of rifampin, bedaquiline, delamanid, and clarithromycin were decreased by 8- to 16-fold. HAMLET also killed M. tuberculosis and enhanced the efficacy of TB drugs inside macrophages, a natural habitat of M. tuberculosis Previous studies showed that HAMLET is stable after oral delivery in mice and nontoxic in humans and that it is possible to package hydrophobic compounds in the oleic acid core of HAMLET to increase their solubility and metabolic stability. The potential of HAMLET and other liprotides as drug delivery and sensitization agents in TB chemotherapy is discussed here.
Collapse
|
28
|
Ning HQ, Li YQ, Tian QW, Wang ZS, Mo HZ. The apoptosis of Staphylococcus aureus induced by glycinin basic peptide through ROS oxidative stress response. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Zhang L, Wu L, Si Y, Shu K. Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: Growth inhibition, cell injury, oxidative stress and internalization. PLoS One 2018; 13:e0209020. [PMID: 30566461 PMCID: PMC6300289 DOI: 10.1371/journal.pone.0209020] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023] Open
Abstract
The influence of nanomaterials on the ecological environment is becoming an increasingly hot research field, and many researchers are exploring the mechanisms of nanomaterial toxicity on microorganisms. Herein, we studied the effect of two different sizes of nanosilver (10 nm and 50 nm) on the soil nitrogen fixation by the model bacteria Azotobacter vinelandii. Smaller size AgNPs correlated with higher toxicity, which was evident from reduced cell numbers. Flow cytometry analysis further confirmed this finding, which was carried out with the same concentration of 10 mg/L for 12 h, the apoptotic rates were20.23% and 3.14% for 10 nm and 50 nm AgNPs, respectively. Structural damage to cells were obvious under scanning electron microscopy. Nitrogenase activity and gene expression assays revealed that AgNPs could inhibit the nitrogen fixation of A. vinelandii. The presence of AgNPs caused intracellular reactive oxygen species (ROS) production and electron spin resonance further demonstrated that AgNPs generated hydroxyl radicals, and that AgNPs could cause oxidative damage to bacteria. A combination of Ag content distribution assays and transmission electron microscopy indicated that AgNPs were internalized in A. vinelandii cells. Overall, this study suggested that the toxicity of AgNPs was size and concentration dependent, and the mechanism of antibacterial effects was determined to involve damage to cell membranes and production of reactive oxygen species leading to enzyme inactivation, gene down-regulation and death by apoptosis.
Collapse
Affiliation(s)
- Li Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Lingli Wu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
- * E-mail:
| | - Kunhui Shu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
30
|
Sheet S, Vinothkannan M, Balasubramaniam S, Subramaniyan SA, Acharya S, Lee YS. Highly Flexible Electrospun Hybrid (Polyurethane/Dextran/Pyocyanin) Membrane for Antibacterial Activity via Generation of Oxidative Stress. ACS OMEGA 2018; 3:14551-14561. [PMID: 30555979 PMCID: PMC6289494 DOI: 10.1021/acsomega.8b01607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/01/2018] [Indexed: 05/31/2023]
Abstract
A hybrid nanofibrous mat consisting of polyurethane, dextran, and 10 wt % of biopigment (i.e., pyocyanin) was facilely fabricated using a direct-conventional electrospinning method. The field emission scanning electron microscopy showed the bead-free fibers with a twisted morphology for the pyocyanin-loaded mat. The addition of pyocyanin enables the unprecedented approach to tailor the hydrophilicity of hybrid mat, as verified from the water contact measurement. Thermomechanical stabilities of electrospun mats were investigated in terms of thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. The bacterial inhibition test revealed that the antibacterial activity of electrospun mat containing pyocyanin was 98.54 and 90.2% toward Escherichia coli and Staphylococcus aureus, respectively. By the combined efforts of rapid release of pyocyanin and oxidative stress, the PU-dextran-pyocyanin (PUDP) electrospun mat significantly declined the viable cell number that disrupts the cell morphology. Hence, the proposed PUDP electrospun mat must meet the requirements of efficient antimicrobial material in various applications such as disinfectant wiping, food packaging, and textile industries.
Collapse
Affiliation(s)
- Sunirmal Sheet
- Department
of Forest Science and Technology, College of Agriculture
and Life Sciences, and Department of Animal Biotechnology, College of Agriculture
and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 561-756, Jeollabuk-do, Republic of Korea
| | - Mohanraj Vinothkannan
- Graduate
School, Department of Energy Storage/Conversion Engineering, Hydrogen
and Fuel Cell Research Center, Chonbuk National
University, Jeollabuk-do 54896, Republic of Korea
| | - Saravanakumar Balasubramaniam
- Department
of Organic Materials and Fiber Engineering, Division of BIN Convergence
Technology, Chonbuk National University, Jeonju 561-756, Korea
| | - Sivakumar Allur Subramaniyan
- Department
of Forest Science and Technology, College of Agriculture
and Life Sciences, and Department of Animal Biotechnology, College of Agriculture
and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 561-756, Jeollabuk-do, Republic of Korea
| | - Satabdi Acharya
- Department
of Microbiology, Panskura Banamali College, Panskura, West Bengal 721152, India
| | - Yang Soo Lee
- Department
of Forest Science and Technology, College of Agriculture
and Life Sciences, and Department of Animal Biotechnology, College of Agriculture
and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 561-756, Jeollabuk-do, Republic of Korea
| |
Collapse
|
31
|
Lee H, Lee DG. Arenicin-1-induced apoptosis-like response requires RecA activation and hydrogen peroxide against Escherichia coli. Curr Genet 2018; 65:167-177. [DOI: 10.1007/s00294-018-0855-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/25/2022]
|
32
|
Lee B, Lee DG. Depletion of reactive oxygen species induced by chlorogenic acid triggers apoptosis-like death in Escherichia coli. Free Radic Res 2018; 52:605-615. [DOI: 10.1080/10715762.2018.1456658] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bin Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| |
Collapse
|
33
|
Miklossy J. Bacterial Amyloid and DNA are Important Constituents of Senile Plaques: Further Evidence of the Spirochetal and Biofilm Nature of Senile Plaques. J Alzheimers Dis 2018; 53:1459-73. [PMID: 27314530 PMCID: PMC4981904 DOI: 10.3233/jad-160451] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It has long been known that spirochetes form clumps or micro colonies in vitro and in vivo. Cortical spirochetal colonies in syphilitic dementia were considered as reproductive centers for spirochetes. Historic and recent data demonstrate that senile plaques in Alzheimer’s disease (AD) are made up by spirochetes. Spirochetes, are able to form biofilm in vitro. Senile plaques are also reported to contain elements of biofilm constituents. We expected that AβPP and Aβ (the main components of senile plaques) also occur in pure spirochetal biofilms, and bacterial DNA (an important component of biofilm) is also present in senile plaques. Histochemical, immunohistochemical, and in situ hybridization techniques and the TUNEL assay were used to answer these questions. The results obtained demonstrate that Aβ and DNA, including spirochete-specific DNA, are key components of both pure spirochetal biofilms and senile plaques in AD and confirm the biofilm nature of senile plaques. These results validate validate previous observations that AβPP and/or an AβPP-like amyloidogenic protein are an integral part of spirochetes, and indicate that bacterial and host derived Aβ are both constituents of senile plaques. DNA fragmentation in senile plaques further confirms their bacterial nature and provides biochemical evidence for spirochetal cell death. Spirochetes evade host defenses, locate intracellularly, form more resistant atypical forms and notably biofilms, which contribute to sustain chronic infection and inflammation and explain the slowly progressive course of dementia in AD. To consider co-infecting microorganisms is equally important, as multi-species biofilms result in a higher resistance to treatments and a more severe dementia.
Collapse
Affiliation(s)
- Judith Miklossy
- Correspondence to: Judith Miklossy, Prevention Alzheimer International Foundation, International Alzheimer Research Centre, Martigny-Croix, CP 16, 1921, Switzerland. Tel.: +41 79 207 4442/27 722 0652; E-mail:
| |
Collapse
|
34
|
Nedergaard Pedersen J, Skov Pedersen J, Otzen DE. Liprotides assist in folding of outer membrane proteins. Protein Sci 2017; 27:451-462. [PMID: 29094406 DOI: 10.1002/pro.3337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/12/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023]
Abstract
Proteins and lipids can form complexes called liprotides, in which the partially denatured protein forms a shell encasing a lipid core. This effectively stabilizes a lipid micelle in an aqueous solvent and suggests that liprotides may provide a suitable vessel for membrane proteins. Accordingly we have investigated if liprotides consisting of α-lactalbumin and oleate could aid folding of four different outer membrane proteins (OMPs) tOmpA, PagP, BamA, and OmpF. tOmpA was able to fold in the presence of the liprotide, and folding did not occur if only oleate or α-lactalbumin were added. Although the liprotides did not fold the other three OMPs on its own, it was able to assist their folding in the presence of vesicles. Incubation with liprotides before folding into vesicles increased the folding yield of the outer membrane proteins to a level higher than using micelles of the non-ionic surfactant DDM. Even though the liprotide was stable at both high urea concentrations and high pH, it failed to efficiently fold OmpA at high pH. Instead, optimal folding was seen at pH 8-9, suggesting that important changes in the liprotide occurred when increasing the pH. We conclude that an otherwise folding-inactive fatty acid can be activated when presented by a liprotide and thereby work as an in vitro chaperone for outer membrane proteins.
Collapse
Affiliation(s)
- Jannik Nedergaard Pedersen
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, DK, 8000, Denmark
| | - Jan Skov Pedersen
- Department of Chemistry, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Daniel E Otzen
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, DK, 8000, Denmark
| |
Collapse
|
35
|
Uversky VN, El-Fakharany EM, Abu-Serie MM, Almehdar HA, Redwan EM. Divergent Anticancer Activity of Free and Formulated Camel Milk α-Lactalbumin. Cancer Invest 2017; 35:610-623. [PMID: 28949782 DOI: 10.1080/07357907.2017.1373783] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alpha-lactalbumin (α-LA), a small milk calcium-binding globular protein, is known to possess noticeable anticancer activity, which is determined by the ability of this protein to form complexes with oleic acid (OA). To date, in addition to human and bovine α-LA, the ability to form such anti-tumor complexes with OA was described for goat and camel α-LA. Although the mechanisms of the anticancer activity of human and bovine α-LA are already well-studied, little is currently known about the anticancer action of this camel protein. The goal of this study was to fill this gap and to analyze the anticancer and pro-apoptotic activities of camel α-LA in its free form (α-cLA) and as an OA-containing complex (OA-α-cLA) using four human cancer cell lines, including Caco-2 colon cancer cells, PC-3 prostate cancer cells, HepG-2 hepatoma cells, and MCF-7 breast cancer cells as targets. The anti-tumor activities of OA-α-cLA and α-cLA were analyzed using MTT test, annexin/PI staining, cell cycle analysis, nuclear staining, and tyrosine kinase (TK) inhibition methods. We show here that the OA-α-cLA complex does not affect normal cells but has noticeable anti-cancer activity, especially against MCF-7 cells, thus boosting the anticancer activity of α-cLA and improving the selectivity of OA. The OA-α-cLA complex mediated cancer cell death via selective induction of apoptosis and cell-cycle arrest at lower IC50 than that of free α-cLA by more than two folds. However, OA induced apoptosis at higher extent than OA-α-cLA and α-cLA. OA also caused unselective apoptosis-dependent cell death in both normal and cancer cells to a similar degree. The apoptosis and cell-cycle arresting effect of OA-α-cLA may be attributed to the TK inhibition activity of OA. Therefore, OA-α-cLA serves as efficient anticancer complex with two functional components, α-cLA and OA, possessing different activities. This study declared the effectiveness of OA-α-cLA complex as a promising entity with anticancer activity, and these formulated OA-camel protein complexes constitute an auspicious approach for cancer remedy, particularly for breast cancer.
Collapse
Affiliation(s)
- Vladimir N Uversky
- a Department of Biological Sciences, Faculty of Sciences , King Abdulaziz University , Jeddah , Saudi Arabia.,b Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino , Moscow region , Russia.,c Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine, University of South Florida , Tampa , FL , USA
| | - Esmail M El-Fakharany
- d Therapeutic and Protective Proteins Laboratory, Protein Research Department, Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute , City for Scientific Research and Technology Applications (SRTA-City) , Alexandria , Egypt
| | - Marwa M Abu-Serie
- e Medical Biotechnology Department , Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City) , Alexandria , Egypt
| | - Hussein A Almehdar
- a Department of Biological Sciences, Faculty of Sciences , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Elrashdy M Redwan
- a Department of Biological Sciences, Faculty of Sciences , King Abdulaziz University , Jeddah , Saudi Arabia.,d Therapeutic and Protective Proteins Laboratory, Protein Research Department, Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute , City for Scientific Research and Technology Applications (SRTA-City) , Alexandria , Egypt
| |
Collapse
|
36
|
Abstract
In 1882, Elie Metchnikoff identified myeloid-like cells from starfish larvae responding to the invasion by a foreign body (rose thorn). This marked the origins for the study of innate immunity, and an appreciation that cellular immunity was well established even in these "primitive" organisms. This chapter focuses on these myeloid cells as well as the newest members of this family, the dendritic cells, and explores their evolutionary origins. Our goal is to provide evolutionary context for the development of the multilayered immune system of mammals, where myeloid cells now serve as central effectors of innate immunity and regulators of adaptive immunity. Overall, we find that core contributions of myeloid cells to the regulation of inflammation are based on mechanisms that have been honed over hundreds of millions of years of evolution. Using phagocytosis as a platform, we show how fairly simple beginnings have offered a robust foundation onto which additional control features have been integrated, resulting in central regulatory nodes that now manage multifactorial aspects of homeostasis and immunity.
Collapse
|
37
|
Yang N, Liu X, Teng D, Li Z, Wang X, Mao R, Wang X, Hao Y, Wang J. Antibacterial and detoxifying activity of NZ17074 analogues with multi-layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis. Sci Rep 2017; 7:3392. [PMID: 28611436 PMCID: PMC5469750 DOI: 10.1038/s41598-017-03664-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/25/2017] [Indexed: 01/09/2023] Open
Abstract
NZ17074 (N1), an arenicin-3 derivative isolated from the lugworm, has potent antibacterial activity and is cytotoxic. To reduce its cytotoxicity, seven N1 analogues with different structures were designed by changing their disulfide bonds, hydrophobicity, or charge. The “rocket” analogue-N2 and the “kite” analogue-N6 have potent activity and showed lower cytotoxicity in RAW264.7 cells than N1. The NMR spectra revealed that N1, N2, and N6 adopt β-sheet structures stabilized by one or two disulfide bonds. N2 and N6 permeabilized the outer/inner membranes of E. coli, but did not permeabilize the inner membranes of S. enteritidis. N2 and N6 induced E. coli and S. enteritidis cell cycle arrest in the I-phase and R-phase, respectively. In E. coli and in S. enteritidis, 18.7–43.8% of DNA/RNA/cell wall synthesis and 5.7–61.8% of DNA/RNA/protein synthesis were inhibited by the two peptides, respectively. Collapsed and filamentous E. coli cells and intact morphologies of S. enteritidis cells were observed after treatment with the two peptides. Body weight doses from 2.5–7.5 mg/kg of N2 and N6 enhanced the survival rate of peritonitis- and endotoxemia-induced mice; reduced the serum IL-6, IL-1β and TNF-α levels; and protected mice from lipopolysaccharide-induced lung injury. These data indicate that N2 and N6, through multiple selective actions, may be promising dual-function candidates as novel antimicrobial and anti-endotoxin peptides.
Collapse
Affiliation(s)
- Na Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuehui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhanzhan Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China. .,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Ruoyu Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China. .,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
38
|
Augmenting the cytotoxicity of oleic acid-protein complexes: Potential of target-specific antibodies. Biochimie 2017; 137:139-146. [PMID: 28341551 DOI: 10.1016/j.biochi.2017.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/18/2017] [Indexed: 01/16/2023]
Abstract
HAMLET (Human Alpha-Lactalbumin Made LEthal to Tumor cells), a complex of oleic acid (OA) with partially unfolded human α-lactalbumin, shows remarkable toxicity towards a spectrum of tumor cells as well as few differentiated cells including mammalian erythrocytes. Human erythrocytes, for this reason, have been used as convenient model cells to study toxic properties of the OA complexes. The toxicity of HAMLET-like complexes, prepared using immunoglobulin gamma (IgG) isolated from the sera of rabbits immunized with human erythrocytes as well as those unimmunized, towards the red cells was investigated. The OA complex of the IgG prepared by the heat-treatment procedure comprised of protein monomers and oligomers with bound OA. The IgG in the complexes retained most secondary but only partial tertiary structure and complex formation with OA did not abolish the ability of anti-erythrocyte IgG to bind to the erythrocytes. Anti-erythrocyte IgG-OA complexes were remarkably more hemolytic than those prepared using non-specific IgG, while complexes prepared using affinity purified anti-erythrocyte IgG were most effective in hemolyzing the cells. The work suggests that antibodies that exhibit affinity towards target cells may be useful in the preparation of selective and highly toxic OA complexes for the cells.
Collapse
|
39
|
Ho JC, Nadeem A, Svanborg C. HAMLET – A protein-lipid complex with broad tumoricidal activity. Biochem Biophys Res Commun 2017; 482:454-458. [DOI: 10.1016/j.bbrc.2016.10.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
|
40
|
Combined Systems Approaches Reveal a Multistage Mode of Action of a Marine Antimicrobial Peptide against Pathogenic Escherichia coli and Its Protective Effect against Bacterial Peritonitis and Endotoxemia. Antimicrob Agents Chemother 2016; 61:AAC.01056-16. [PMID: 27795369 PMCID: PMC5192121 DOI: 10.1128/aac.01056-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/29/2016] [Indexed: 01/09/2023] Open
Abstract
A marine arenicin-3 derivative, N4, displayed potent antibacterial activity against Gram-negative bacteria, but its antibacterial mode of action remains elusive. The mechanism of action of N4 against pathogenic Escherichia coli was first researched by combined cytological and transcriptomic techniques in this study. The N4 peptide permeabilized the outer membrane within 1 min, disrupted the plasma membrane after 0.5 h, and localized in the cytoplasm within 5 min. Gel retardation and circular dichroism (CD) spectrum analyses demonstrated that N4 bound specifically to DNA and disrupted the DNA conformation from the B type to the C type. N4 inhibited 21.1% of the DNA and 20.6% of the RNA synthesis within 15 min. Several hallmarks of apoptosis-like cell death were exhibited by N4-induced E. coli, such as cell cycle arrest in the replication (R) and division(D) phases, reactive oxygen species production, depolarization of the plasma membrane potential, and chromatin condensation within 0.5 h. Deformed cell morphology, disappearance of the plasma membrane, leakage of the contents, and ghost cell formation were demonstrated by transmission electron microscopy, and nearly 100% of the bacteria were killed by N4. A total of 428 to 663 differentially expressed genes are involved in the response to N4, which are associated mainly with membrane biogenesis (53.9% to 56.7%) and DNA binding (13.3% to 14.9%). N4-protected mice that were lethally challenged with lipopolysaccharide (LPS) exhibited reduced levels of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α) in serum and protected the lungs from LPS-induced injury. These data facilitate an enhanced understanding of the mechanisms of marine antimicrobial peptides (AMPs) against Gram-negative bacteria and provide guidelines in developing and applying novel multitarget AMPs in the field of unlimited marine resources as therapeutics.
Collapse
|
41
|
A Characeae Cells Plasma Membrane as a Model for Selection of Bioactive Compounds and Drugs: Interaction of HAMLET-Like Complexes with Ion Channels of Chara corallina Cells Plasmalemma. J Membr Biol 2016; 249:801-811. [DOI: 10.1007/s00232-016-9930-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/07/2016] [Indexed: 01/10/2023]
|
42
|
Bing W, Sun H, Yan Z, Ren J, Qu X. Programmed Bacteria Death Induced by Carbon Dots with Different Surface Charge. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4713-8. [PMID: 27027246 DOI: 10.1002/smll.201600294] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/11/2016] [Indexed: 05/22/2023]
Abstract
Based on a series of biochemical experiments for analysis and characterization, it is found that the uncharged C-dots have no effect on bacterial growth while the negatively charged and positively charged C-dots can induce bacteria apoptosis. For the positively charged C-dots, they can induce both bacteria apoptosis and bacteria death. These observations will provide new insights into bioapplications of carbon dots.
Collapse
Affiliation(s)
- Wei Bing
- College of Life Science, Jilin University, Changchun, Jilin, 130012, P. R. China
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Hanjun Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Zhengqing Yan
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| |
Collapse
|
43
|
Temporal Changes of Protein Composition in Breast Milk of Chinese Urban Mothers and Impact of Caesarean Section Delivery. Nutrients 2016; 8:nu8080504. [PMID: 27548208 PMCID: PMC4997417 DOI: 10.3390/nu8080504] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 11/24/2022] Open
Abstract
Human breast milk (BM) protein composition may be impacted by lactation stage or factors related to geographical location. The present study aimed at assessing the temporal changes of BM major proteins over lactation stages and the impact of mode of delivery on immune factors, in a large cohort of urban mothers in China. 450 BM samples, collected in three Chinese cities, covering 8 months of lactation were analyzed for α-lactalbumin, lactoferrin, serum albumin, total caseins, immunoglobulins (IgA, IgM and IgG) and transforming growth factor (TGF) β1 and β2 content by microfluidic chip- or ELISA-based quantitative methods. Concentrations and changes over lactation were aligned with previous reports. α-lactalbumin, lactoferrin, IgA, IgM and TGF-β1 contents followed similar variations characterized by highest concentrations in early lactation that rapidly decreased before remaining stable up to end of lactation. TGF-β2 content displayed same early dynamics before increasing again. Total caseins followed a different pattern, showing initial increase before decreasing back to starting values. Serum albumin and IgG levels appeared stable throughout lactation. In conclusion, BM content in major proteins of urban mothers in China was comparable with previous studies carried out in other parts of the world and C-section delivery had only very limited impact on BM immune factors.
Collapse
|
44
|
Zhu H, Liu J, Cui C, Song Y, Ge H, Hu L, Li Q, Jin Y, Zhang Y. Targeting Human α-Lactalbumin Gene Insertion into the Goat β-Lactoglobulin Locus by TALEN-Mediated Homologous Recombination. PLoS One 2016; 11:e0156636. [PMID: 27258157 PMCID: PMC4892491 DOI: 10.1371/journal.pone.0156636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022] Open
Abstract
Special value of goat milk in human nutrition and well being is associated with medical problems of food allergies which are caused by milk proteins such as β-lactoglobulin (BLG). Here, we employed transcription activator-like effector nuclease (TALEN)-assisted homologous recombination in goat fibroblasts to introduce human α-lactalbumin (hLA) genes into goat BLG locus. TALEN-mediated targeting enabled isolation of colonies with mono- and bi-allelic transgene integration in up to 10.1% and 1.1%, respectively, after selection. Specifically, BLG mRNA levels were gradually decreasing in both mo- and bi-allelic goat mammary epithelial cells (GMECs) while hLA demonstrated expression in GMECs in vitro. Gene-targeted fibroblast cells were efficiently used in somatic cell nuclear transfer, resulting in production of hLA knock-in goats directing down-regulated BLG expression and abundant hLA secretion in animal milk. Our findings provide valuable background for animal milk optimization and expedited development for agriculture and biomedicine.
Collapse
Affiliation(s)
- Hongmei Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenchen Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yujie Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hengtao Ge
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Linyong Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
45
|
A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli. mBio 2015; 6:e01935-15. [PMID: 26695632 PMCID: PMC4701833 DOI: 10.1128/mbio.01935-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Programmed cell death (PCD) is an important hallmark of multicellular organisms. Cells self-destruct through a regulated series of events for the benefit of the organism as a whole. The existence of PCD in bacteria has long been controversial due to the widely held belief that only multicellular organisms would profit from this kind of altruistic behavior at the cellular level. However, over the past decade, compelling experimental evidence has established the existence of such pathways in bacteria. Here, we report that expression of a mutant isoform of the essential GTPase ObgE causes rapid loss of viability in Escherichia coli. The physiological changes that occur upon expression of this mutant protein—including loss of membrane potential, chromosome condensation and fragmentation, exposure of phosphatidylserine on the cell surface, and membrane blebbing—point to a PCD mechanism. Importantly, key regulators and executioners of known bacterial PCD pathways were shown not to influence this cell death program. Collectively, our results suggest that the cell death pathway described in this work constitutes a new mode of bacterial PCD. Programmed cell death (PCD) is a well-known phenomenon in higher eukaryotes. In these organisms, PCD is essential for embryonic development—for example, the disappearance of the interdigital web—and also functions in tissue homeostasis and elimination of pathogen-invaded cells. The existence of PCD mechanisms in unicellular organisms like bacteria, on the other hand, has only recently begun to be recognized. We here demonstrate the existence of a bacterial PCD pathway that induces characteristics that are strikingly reminiscent of eukaryotic apoptosis, such as fragmentation of DNA, exposure of phosphatidylserine on the cell surface, and membrane blebbing. Our results can provide more insight into the mechanism and evolution of PCD pathways in higher eukaryotes. More importantly, especially in the light of the looming antibiotic crisis, they may point to a bacterial Achilles’ heel and can inspire innovative ways of combating bacterial infections, directed at the targeted activation of PCD pathways.
Collapse
|
46
|
Choi H, Hwang JS, Lee DG. Coprisin exerts antibacterial effects by inducing apoptosis-like death inEscherichia coli. IUBMB Life 2015; 68:72-8. [DOI: 10.1002/iub.1463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/23/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Hyemin Choi
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences; Kyungpook National University; Buk-Gu Daegu Republic of Korea
| | - Jae-Sam Hwang
- National Academy of Agricultural Science, RDA; Suwon Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences; Kyungpook National University; Buk-Gu Daegu Republic of Korea
| |
Collapse
|
47
|
Characterization of cell death in Escherichia coli mediated by XseA, a large subunit of exonuclease VII. J Microbiol 2015; 53:820-8. [PMID: 26626352 DOI: 10.1007/s12275-015-5304-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/06/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Exonuclease VII (ExoVII) of Escherichia coli is a single strandspecific DNA nuclease composed of two different subunits: the large subunit, XseA, and the small subunit, XseB. In this study, we found that multicopy single-stranded DNAs (msDNAs), Ec83 and Ec78, are the in vivo substrates of ExoVII; the enzyme cuts the phosphodiester bond between the fourth and fifth nucleotides from the 5'end. We used this msDNA cleavage to assess ExoVII activity in vivo. Both subunits were required for enzyme activity. Expression of XseA without XseB caused cell death, even though no ExoVII activity was detected. The lethality caused by XseA was rescued by surplus XseB. In XseA-induced death, cells were elongated and multinucleated, and their chromosomes were fragmented and condensed; these are the morphological hallmarks of apoptotic cell death in bacteria. A putative caspase recognition sequence (FVAD) was found in XseA, and its hypothetical caspase product with 257 amino acids was as active as the intact protein in inducing cell death. We propose that under ordinary conditions, XseA protects chromosome as a component of the ExoVII enzyme, but in some conditions, the protein causes cell death; the destruction of cell is probably carried out by the amino terminal fragment derived from the cleavage of XseA by caspase-like enzyme.
Collapse
|
48
|
Hoque M, Nanduri R, Gupta J, Mahajan S, Gupta P, Saleemuddin M. Oleic acid complex of bovine α-lactalbumin induces eryptosis in human and other erythrocytes by a Ca(2+)-independent mechanism. Biochim Biophys Acta Gen Subj 2015; 1850:1729-39. [PMID: 25913522 DOI: 10.1016/j.bbagen.2015.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/08/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Complexes of oleic acid (OA) with milk α-lactalbumin, received remarkable attention in view of their selective toxicity towards a spectrum of tumors during the last two decades. OA complexes of some structurally related/unrelated proteins are also tumoricidal. Erythrocytes are among the few differentiated cells that are sensitive and undergo hemolysis when exposed to the complexes. METHODS The effects of OA complex of bovine α-lactalbumin (Bovine Alpha-lactalbumin Made LEthal to Tumor cells, BAMLET) on human, goat and chicken erythrocytes on calcein leakage, phosphatidylserine exposure, morphological changes and hemolysis were studied by confocal microscopy, FACS analysis, scanning electron microscopy and measuring hemoglobin release. RESULTS Erythrocytes exposed to BAMLET undergo eryptosis-like alterations as revealed by calcein leakage, surface phosphatidylserine exposure and transformation to echinocytes at low concentrations and hemolysis when the concentration of the complex was raised. Ca(2+) was not essential and restricted the alterations when included in the medium. The BAMLET-induced alterations in human erythrocytes were prevented by the cation channel inhibitors, amiloride and BaCl2 but not by inhibitors of thiol proteases, sphingomyelinase and by the antioxidant N-acetyl cysteine. CONCLUSIONS The work shows for the first time that low concentrations of BAMLET induces eryptosis in erythrocytes by a novel mechanism not requiring Ca(2+) and hemolysis by detergent-like action by the released OA at higher concentrations. GENERAL SIGNIFICANCE The study points out to the need for a comprehensive evaluation of the toxicity of OA complexes of α-lactalbumin and other proteins towards erythrocytes and other differentiated cells before being considered for therapy.
Collapse
Affiliation(s)
- Mehboob Hoque
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | - Jyoti Gupta
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Sahil Mahajan
- CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Pawan Gupta
- CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - M Saleemuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
49
|
Bao H, Yu X, Xu C, Li X, Li Z, Wei D, Liu Y. New toxicity mechanism of silver nanoparticles: promoting apoptosis and inhibiting proliferation. PLoS One 2015; 10:e0122535. [PMID: 25822182 PMCID: PMC4378976 DOI: 10.1371/journal.pone.0122535] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/13/2015] [Indexed: 11/18/2022] Open
Abstract
Silver nanoparticles are increasingly recognized for their utility in biological applications, especially antibacterial effects. Herein, we confirmed the antibacterial effect of silver nanoparticles on Escherichia coli using the conventional optical density (OD) and colony-forming units (CFU) method and used flow cytometry (FC), TEM and BrdU ELISA to investigate the mechanisms of this effect. From the results, we conclude that AgNPs can simultaneously induce apoptosis and inhibit new DNA synthesis in the cells in a positive concentration-dependent manner. This study presents the first induction of apoptosis in these bacteria by AgNPs in this field. Our findings may provide a new strategy for the use of silver nanoparticles in antibacterial applications.
Collapse
Affiliation(s)
- Huijing Bao
- School of Laboratory Science, Tianjin Medical University, Tianjin, China
| | - Xiaoxu Yu
- School of Laboratory Science, Tianjin Medical University, Tianjin, China
| | - Chen Xu
- The 4 Central Hospital, Tianjin, China, China
| | - Xue Li
- School of Laboratory Science, Tianjin Medical University, Tianjin, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Dianjun Wei
- The Department of Laboratory Science, The Second Hospital of Tianjin Medical University, Tianjin, China
- * E-mail: (YL); (DW)
| | - Yunde Liu
- School of Laboratory Science, Tianjin Medical University, Tianjin, China
- * E-mail: (YL); (DW)
| |
Collapse
|
50
|
|