1
|
Wueppenhorst K, Alkassab AT, Beims H, Ernst U, Friedrich E, Illies I, Janke M, Kirchner WH, Seidel K, Steinert M, Yurkov A, Erler S, Odemer R. Honey bee colonies can buffer short-term stressor effects of pollen restriction and fungicide exposure on colony development and the microbiome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116723. [PMID: 39024947 DOI: 10.1016/j.ecoenv.2024.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Honey bees (Apis mellifera) have to withstand various environmental stressors alone or in combination in agriculture settings. Plant protection products are applied to achieve high crop yield, but residues of their active substances are frequently detected in bee matrices and could affect honey bee colonies. In addition, intensified agriculture could lead to resource limitation for honey bees. This study aimed to compare the response of full-sized and nucleus colonies to the combined stressors of fungicide exposure and resource limitation. A large-scale field study was conducted simultaneously at five different locations across Germany, starting in spring 2022 and continuing through spring 2023. The fungicide formulation Pictor® Active (active ingredients boscalid and pyraclostrobin) was applied according to label instructions at the maximum recommended rate on oil seed rape crops. Resource limitation was ensured by pollen restriction using a pollen trap and stressor responses were evaluated by assessing colony development, brood development, and core gut microbiome alterations. Furthermore, effects on the plant nectar microbiome were assessed since nectar inhabiting yeast are beneficial for pollination. We showed, that honey bee colonies were able to compensate for the combined stressor effects within six weeks. Nucleus colonies exposed to the combined stressors showed a short-term response with a less favorable brood to bee ratio and reduced colony development in May. No further impacts were observed in either the nucleus colonies or the full-sized colonies from July until the following spring. In addition, no fungicide-dependent differences were found in core gut and nectar microbiomes, and these differences were not distinguishable from local or environmental effects. Therefore, the provision of sufficient resources is important to increase the resilience of honey bees to a combination of stressors.
Collapse
Affiliation(s)
- Karoline Wueppenhorst
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany; Zoological Institute, Technische Universität Braunschweig, Mendelsohnstraße 4, Braunschweig 38106, Germany.
| | - Abdulrahim T Alkassab
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany
| | - Hannes Beims
- Fachberatung für Imkerei, Bezirk Oberbayern, Prinzregentenstraße 14, München 80538, Germany; Institute for Apicuture, Lower Saxony State Office for Consumer Protection and Food Safety, Herzogin-Eleonore-Allee 5, Celle 29221, Germany
| | - Ulrich Ernst
- State Institute of Bee Research, University of Hohenheim, Erna-Hruschka-Weg 6, Stuttgart 70599, Germany; KomBioTa - Center for Biodiversity and Integrative Taxonomy, University of Hohenheim, Stuttgart, Germany
| | - Elsa Friedrich
- State Institute of Bee Research, University of Hohenheim, Erna-Hruschka-Weg 6, Stuttgart 70599, Germany
| | - Ingrid Illies
- Institute for Bee Research and Beekeeping, Bavarian State Institute for Viticulture and Horticulture, An der Steige 15, Veitshöchheim 97209, Germany
| | - Martina Janke
- Institute for Apicuture, Lower Saxony State Office for Consumer Protection and Food Safety, Herzogin-Eleonore-Allee 5, Celle 29221, Germany
| | - Wolfgang H Kirchner
- Behavioral Biology and Biology Education, Ruhr-University-Bochum, Universitätsstraße 150, Bochum 44780, Germany
| | - Kim Seidel
- Institute for Apicuture, Lower Saxony State Office for Consumer Protection and Food Safety, Herzogin-Eleonore-Allee 5, Celle 29221, Germany
| | - Michael Steinert
- Institute for Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, Braunschweig 38106, Germany
| | - Andrey Yurkov
- DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Leibnitz Institute, Inhoffenstraße 7b, Braunschweig 38124, Germany
| | - Silvio Erler
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany; Zoological Institute, Technische Universität Braunschweig, Mendelsohnstraße 4, Braunschweig 38106, Germany
| | - Richard Odemer
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany
| |
Collapse
|
2
|
Chau KD, Shamekh M, Huisken J, Rehan SM. The effects of maternal care on the developmental transcriptome and metatranscriptome of a wild bee. Commun Biol 2023; 6:904. [PMID: 37709905 PMCID: PMC10502028 DOI: 10.1038/s42003-023-05275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Abstract
Maternal care acts as a strong environmental stimulus that can induce phenotypic plasticity in animals and may also alter their microbial communities through development. Here, we characterize the developmental metatranscriptome of the small carpenter bee, Ceratina calcarata, across developmental stages and in the presence or absence of mothers. Maternal care had the most influence during early development, with the greatest number and magnitude of differentially expressed genes between maternal care treatments, and enrichment for transcription factors regulating immune response in motherless early larvae. Metatranscriptomic data revealed fungi to be the most abundant group in the microbiome, with Aspergillus the most abundant in early larvae raised without mothers. Finally, integrative analysis between host transcriptome and metatranscriptome highlights several fungi correlating with developmental and immunity genes. Our results provide characterizations of the influence of maternal care on gene expression and the microbiome through development in a wild bee.
Collapse
Affiliation(s)
| | | | - Jesse Huisken
- Department of Biology, York University, Toronto, Canada
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
3
|
Steinigeweg C, Alkassab AT, Erler S, Beims H, Wirtz IP, Richter D, Pistorius J. Impact of a Microbial Pest Control Product Containing Bacillus thuringiensis on Brood Development and Gut Microbiota of Apis mellifera Worker Honey Bees. MICROBIAL ECOLOGY 2023; 85:1300-1307. [PMID: 35389085 PMCID: PMC10167108 DOI: 10.1007/s00248-022-02004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/28/2022] [Indexed: 05/10/2023]
Abstract
To avoid potential adverse side effects of chemical plant protection products, microbial pest control products (MPCP) are commonly applied as biological alternatives. This study aimed to evaluate the biosafety of a MPCP with the active organism Bacillus thuringiensis ssp. aizawai (strain: ABTS-1857). An in-hive feeding experiment was performed under field-realistic conditions to examine the effect of B. thuringiensis (B. t.) on brood development and the bacterial abundance of the core gut microbiome (Bifidobacterium asteroids, Gilliamella apicola, the group of Lactobacillus and Snodgrasella alvi) in Apis mellifera worker bees. We detected a higher brood termination rate and a non-successful development into worker bees of treated colonies compared to those of the controls. For the gut microbiome, all tested core members showed a significantly lower normalized abundance in bees of the treated colonies than in those of the controls; thus, a general response of the gut microbiome may be assumed. Consequently, colony exposure to B. t. strain ABTS-1857 had a negative effect on brood development under field-realistic conditions and caused dysbiosis of the gut microbiome. Further studies with B. t.-based products, after field-realistic application in bee attractive crops, are needed to evaluate the potential risk of these MPCPs on honey bees.
Collapse
Affiliation(s)
| | - Abdulrahim T Alkassab
- Institute for Bee Protection, Julius Kühn-Institut (JKI) - FederalResearch Centre for Cultivated Plants, Braunschweig, Germany.
| | - Silvio Erler
- Institute for Bee Protection, Julius Kühn-Institut (JKI) - FederalResearch Centre for Cultivated Plants, Braunschweig, Germany
| | - Hannes Beims
- Institute for Apiculture, Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Celle, Germany
| | - Ina P Wirtz
- Institute for Bee Protection, Julius Kühn-Institut (JKI) - FederalResearch Centre for Cultivated Plants, Braunschweig, Germany
| | - Dania Richter
- Institute of Geoecology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jens Pistorius
- Institute for Bee Protection, Julius Kühn-Institut (JKI) - FederalResearch Centre for Cultivated Plants, Braunschweig, Germany
| |
Collapse
|
4
|
Lattorff HMG. Group Size Buffers against Energetic Stress in Honeybee Workers (Apis mellifera). STRESSES 2023. [DOI: 10.3390/stresses3020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Individuals of the Western honeybee species, Apis mellifera, live in large groups of thousands of worker bees, a queen, and a few drones. Workers interact frequently with related individuals while performing various tasks. Although it is well understood why and under which conditions sociality can evolve, the consequences for individuals living in permanent groups are less well understood. As individuals of solitary species become stressed when kept at high density, it might be the opposite in obligate social species. Here, I use an experimental laboratory set-up to study the effect of varying group sizes on the magnitude and within-group variance of stress responses towards energetic and heat stress. While only a weak difference was found in the magnitude of an energetic stress response as a function of group size, the within-group variance showed a statistically significant positive relationship with group size for the glucose/trehalose ratio, a marker for energetic stress. The heat stress marker, hsp70AB gene expression, did not show any relationship to group size. Individuals of obligate social species seem to benefit from adaptations to permanent group living, e.g., buffering against stress, especially at a higher density of individuals. The consequences of infections and immune system activation in isolated individuals are discussed.
Collapse
Affiliation(s)
- H. Michael G. Lattorff
- Naturwissenschaftliche Fakultät I, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
5
|
Novelo M, Dutra HLC, Metz HC, Jones MJ, Sigle LT, Frentiu FD, Allen SL, Chenoweth SF, McGraw EA. Dengue and chikungunya virus loads in the mosquito Aedes aegypti are determined by distinct genetic architectures. PLoS Pathog 2023; 19:e1011307. [PMID: 37043515 PMCID: PMC10124881 DOI: 10.1371/journal.ppat.1011307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/24/2023] [Accepted: 03/19/2023] [Indexed: 04/13/2023] Open
Abstract
Aedes aegypti is the primary vector of the arboviruses dengue (DENV) and chikungunya (CHIKV). These viruses exhibit key differences in their vector interactions, the latter moving more quicky through the mosquito and triggering fewer standard antiviral pathways. As the global footprint of CHIKV continues to expand, we seek to better understand the mosquito's natural response to CHIKV-both to compare it to DENV:vector coevolutionary history and to identify potential targets in the mosquito for genetic modification. We used a modified full-sibling design to estimate the contribution of mosquito genetic variation to viral loads of both DENV and CHIKV. Heritabilities were significant, but higher for DENV (40%) than CHIKV (18%). Interestingly, there was no genetic correlation between DENV and CHIKV loads between siblings. These data suggest Ae. aegypti mosquitoes respond to the two viruses using distinct genetic mechanisms. We also examined genome-wide patterns of gene expression between High and Low CHIKV families representing the phenotypic extremes of viral load. Using RNAseq, we identified only two loci that consistently differentiated High and Low families: a long non-coding RNA that has been identified in mosquito screens post-infection and a distant member of a family of Salivary Gland Specific (SGS) genes. Interestingly, the latter gene is also associated with horizontal gene transfer between mosquitoes and the endosymbiotic bacterium Wolbachia. This work is the first to link the SGS gene to a mosquito phenotype. Understanding the molecular details of how this gene contributes to viral control in mosquitoes may, therefore, also shed light on its role in Wolbachia.
Collapse
Affiliation(s)
- Mario Novelo
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Heverton LC Dutra
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hillery C. Metz
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew J. Jones
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Leah T. Sigle
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Francesca D. Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Herston, Queensland, Australia
| | - Scott L. Allen
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stephen F. Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Elizabeth A. McGraw
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
6
|
Wang Z, Wang S, Fan X, Zhang K, Zhang J, Zhao H, Gao X, Zhang Y, Guo S, Zhou D, Li Q, Na Z, Chen D, Guo R. Systematic Characterization and Regulatory Role of lncRNAs in Asian Honey Bees Responding to Microsporidian Infestation. Int J Mol Sci 2023; 24:ijms24065886. [PMID: 36982959 PMCID: PMC10058195 DOI: 10.3390/ijms24065886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are pivotal regulators in gene expression and diverse biological processes, such as immune defense and host-pathogen interactions. However, little is known about the roles of lncRNAs in the response of the Asian honey bee (Apis cerana) to microsporidian infestation. Based on our previously obtained high-quality transcriptome datasets from the midgut tissues of Apis cerana cerana workers at 7 days post inoculation (dpi) and 10 dpi with Nosema ceranae (AcT7 and AcT10 groups) and the corresponding un-inoculated midgut tissues (AcCK7 and AcCK10 groups), the transcriptome-wide identification and structural characterization of lncRNAs were conducted, and the differential expression pattern of lncRNAs was then analyzed, followed by investigation of the regulatory roles of differentially expressed lncRNAs (DElncRNAs) in host response. Here, 2365, 2322, 2487, and 1986 lncRNAs were, respectively, identified in the AcCK7, AcT7, AcCK7, and AcT10 groups. After removing redundant ones, a total of 3496 A. c. cerana lncRNAs were identified, which shared similar structural characteristics with those discovered in other animals and plants, such as shorter exons and introns than mRNAs. Additionally, 79 and 73 DElncRNAs were screened from the workers' midguts at 7 dpi and 10 dpi, respectively, indicating the alteration of the overall expression pattern of lncRNAs in host midguts after N. ceranae infestation. These DElncRNAs could, respectively, regulate 87 and 73 upstream and downstream genes, involving a suite of functional terms and pathways, such as metabolic process and Hippo signaling pathway. Additionally, 235 and 209 genes co-expressed with DElncRNAs were found to enrich in 29 and 27 terms, as well as 112 and 123 pathways, such as ABC transporters and the cAMP signaling pathway. Further, it was detected that 79 (73) DElncRNAs in the host midguts at 7 (10) dpi could target 321 (313) DEmiRNAs and further target 3631 (3130) DEmRNAs. TCONS_00024312 and XR_001765805.1 were potential precursors for ame-miR-315 and ame-miR-927, while TCONS_00006120 was the putative precursor for both ame-miR-87-1 and ame-miR-87-2. These results together suggested that DElncRNAs are likely to play regulatory roles in the host response to N. ceranae infestation through the regulation of neighboring genes via a cis-acting effect, modulation of co-expressed mRNAs via trans-acting effect, and control of downstream target genes' expression via competing endogenous RNA networks. Our findings provide a basis for disclosing the mechanism underlying DElncRNA-mediated host N. ceranae response and a new perspective into the interaction between A. c. cerana and N. ceranae.
Collapse
Affiliation(s)
- Zixin Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyi Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaiyao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxin Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haodong Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuze Gao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiqiong Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sijia Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingding Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiming Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihao Na
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
7
|
Bournonville L, Askri D, Arafah K, Voisin SN, Bocquet M, Bulet P. Unraveling the Bombus terrestris Hemolymph, an Indicator of the Immune Response to Microbial Infections, through Complementary Mass Spectrometry Approaches. Int J Mol Sci 2023; 24:ijms24054658. [PMID: 36902086 PMCID: PMC10003634 DOI: 10.3390/ijms24054658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Pollinators, including Bombus terrestris, are crucial for maintaining biodiversity in ecosystems and for agriculture. Deciphering their immune response under stress conditions is a key issue for protecting these populations. To assess this metric, we analyzed the B. terrestris hemolymph as an indicator of their immune status. Hemolymph analysis was carried out using mass spectrometry, MALDI molecular mass fingerprinting was used for its effectiveness in assessing the immune status, and high-resolution mass spectrometry was used to measure the impact of experimental bacterial infections on the "hemoproteome". By infecting with three different types of bacteria, we observed that B. terrestris reacts in a specific way to bacterial attacks. Indeed, bacteria impact survival and stimulate an immune response in infected individuals, visible through changes in the molecular composition of their hemolymph. The characterization and label-free quantification of proteins involved in specific signaling pathways in bumble bees by bottom-up proteomics revealed differences in protein expression between the non-experimentally infected and the infected bees. Our results highlight the alteration of pathways involved in immune and defense reactions, stress, and energetic metabolism. Lastly, we developed molecular signatures reflecting the health status of B. terrestris to pave the way for diagnosis/prognosis tools in response to environmental stress.
Collapse
Affiliation(s)
- Lorène Bournonville
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
- Department of Molecular and Cellular Biology, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Dalel Askri
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
| | - Karim Arafah
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
| | - Sébastien N. Voisin
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
- Phylogene S.A. 62 RN113, 30620 Bernis, France
| | - Michel Bocquet
- Michel Bocquet, Apimedia, 82 Route de Proméry, Pringy, 74370 Annecy, France
| | - Philippe Bulet
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, University Grenoble Alpes, 38000 Grenoble, France
- Correspondence: ; Tel.: +33-4-50-43-25-21
| |
Collapse
|
8
|
Rennolds CW, Bely AE. Integrative biology of injury in animals. Biol Rev Camb Philos Soc 2023; 98:34-62. [PMID: 36176189 PMCID: PMC10087827 DOI: 10.1111/brv.12894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 01/12/2023]
Abstract
Mechanical injury is a prevalent challenge in the lives of animals with myriad potential consequences for organisms, including reduced fitness and death. Research on animal injury has focused on many aspects, including the frequency and severity of wounding in wild populations, the short- and long-term consequences of injury at different biological scales, and the variation in the response to injury within or among individuals, species, ontogenies, and environmental contexts. However, relevant research is scattered across diverse biological subdisciplines, and the study of the effects of injury has lacked synthesis and coherence. Furthermore, the depth of knowledge across injury biology is highly uneven in terms of scope and taxonomic coverage: much injury research is biomedical in focus, using mammalian model systems and investigating cellular and molecular processes, while research at organismal and higher scales, research that is explicitly comparative, and research on invertebrate and non-mammalian vertebrate species is less common and often less well integrated into the core body of knowledge about injury. The current state of injury research presents an opportunity to unify conceptually work focusing on a range of relevant questions, to synthesize progress to date, and to identify fruitful avenues for future research. The central aim of this review is to synthesize research concerning the broad range of effects of mechanical injury in animals. We organize reviewed work by four broad and loosely defined levels of biological organization: molecular and cellular effects, physiological and organismal effects, behavioural effects, and ecological and evolutionary effects of injury. Throughout, we highlight the diversity of injury consequences within and among taxonomic groups while emphasizing the gaps in taxonomic coverage, causal understanding, and biological endpoints considered. We additionally discuss the importance of integrating knowledge within and across biological levels, including how initial, localized responses to injury can lead to long-term consequences at the scale of the individual animal and beyond. We also suggest important avenues for future injury biology research, including distinguishing better between related yet distinct injury phenomena, expanding the subjects of injury research to include a greater variety of species, and testing how intrinsic and extrinsic conditions affect the scope and sensitivity of injury responses. It is our hope that this review will not only strengthen understanding of animal injury but will contribute to building a foundation for a more cohesive field of 'injury biology'.
Collapse
|
9
|
Holmes VR, Johnston JS. Differential Gene Expression of Innate Immune Response Genes Consequent to Solenopsis invicta Virus-3 Infection. Genes (Basel) 2023; 14:188. [PMID: 36672929 PMCID: PMC9859397 DOI: 10.3390/genes14010188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The red imported fire ant Solenopsis invicta Buren (fire ant hereafter) is a global pest that inflicts billions of dollars in damages to the United States economy and poses a major threat on a global scale. Concerns with the broad-spectrum application of insecticides have facilitated the hunt for natural enemy-mediated controls. One of these, the virus Solenopsis invicta virus-3 (SINV-3 hereafter) is exceptionally virulent in laboratory settings. However, despite high mortality rates in the laboratory and documented widespread SINV-3 prevalence in the southern United States, the fire ant remains a major pest. To explore this paradox, we document the immune response elicited by the fire ant when infected with SINV-3. We sequence the fire ant transcriptome prior to and following infection with SINV-3, and identify and discuss in detail genes in immune response pathways differentially expressed following infection with SINV-3. This information provides insights into genes and pathways involved in the SINV-3 infection response in the fire ant and offers avenues to pursue, to suppress key immune response genes and force the fire ant to succumb to SINV-3 infection in the field.
Collapse
Affiliation(s)
- V. Renee Holmes
- Department of Entomology, Minnie Bell Heep Center, Texas A&M University, Suite 412 2475 TAMU, 370 Olsen Blvd, College Station, TX 77843, USA
| | | |
Collapse
|
10
|
Barribeau SM, Schmid-Hempel P, Walser JC, Zoller S, Berchtold M, Schmid-Hempel R, Zemp N. Genetic variation and microbiota in bumble bees cross-infected by different strains of C. bombi. PLoS One 2022; 17:e0277041. [PMID: 36441679 PMCID: PMC9704641 DOI: 10.1371/journal.pone.0277041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
The bumblebee Bombus terrestris is commonly infected by a trypanosomatid gut parasite Crithidia bombi. This system shows a striking degree of genetic specificity where host genotypes are susceptible to different genotypes of parasite. To a degree, variation in host gene expression underlies these differences, however, the effects of standing genetic variation has not yet been explored. Here we report on an extensive experiment where workers of twenty colonies of B. terrestris were each infected by one of twenty strains of C. bombi. To elucidate the host's genetic bases of susceptibility to infection (measured as infection intensity), we used a low-coverage (~2 x) genome-wide association study (GWAS), based on angsd, and a standard high-coverage (~15x) GWAS (with a reduced set from a 8 x 8 interaction matrix, selected from the full set of twenty). The results from the low-coverage approach remained ambiguous. The high-coverage approach suggested potentially relevant genetic variation in cell surface and adhesion processes. In particular, mucin, a surface mucoglycoprotein, potentially affecting parasite binding to the host gut epithelia, emerged as a candidate. Sequencing the gut microbial community of the same bees showed that the abundance of bacterial taxa, such as Gilliamella, Snodgrassella, or Lactobacillus, differed between 'susceptible' and 'resistant' microbiota, in line with earlier studies. Our study suggests that the constitutive microbiota and binding processes at the cell surface are candidates to affect infection intensity after the first response (captured by gene expression) has run its course. We also note that a low-coverage approach may not be powerful enough to analyse such complex traits. Furthermore, testing large interactions matrices (as with the full 20 x 20 combinations) for the effect of interaction terms on infection intensity seems to blur the specific host x parasite interaction effects, likely because the outcome of an infection is a highly non-linear process dominated by variation in individually different pathways of host defence (immune) responses.
Collapse
Affiliation(s)
- Seth M. Barribeau
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
| | - Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
- * E-mail: (NZ); (PSH)
| | | | - Stefan Zoller
- Genetic Diversity Centre, ETH Zürich, Zürich, Switzerland
| | - Martina Berchtold
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
| | | | - Niklaus Zemp
- Genetic Diversity Centre, ETH Zürich, Zürich, Switzerland
- * E-mail: (NZ); (PSH)
| |
Collapse
|
11
|
Increased Stress Levels in Caged Honeybee (Apis mellifera) (Hymenoptera: Apidae) Workers. STRESSES 2022. [DOI: 10.3390/stresses2040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Honeybees, Apis mellifera, usually live in large colonies consisting of thousands of individuals. Within the colony, workers interact with their social environment frequently. The large workforce, division of labour, and other features may promote the ecological success of honeybees. For decades, artificial mini colonies in cages within the laboratory have become the gold standard, especially in experiments related to toxicology, effects of pesticides and pathogens. Experiments using caged bees and full-sized colonies yielded contradictory results. Here, the effect of cage experiments on the stress level of individual bees is analysed. Two different stress response were targeted, the heat shock response and the mobilization of energetic resources. While no differences were found for varying group sizes of bees, very strong effects emerged by comparing caged workers with bees from natural colonies. Caged workers showed increased levels of hsp expression and reduced haemolymph titres for trehalose, the energy storage sugar. These results reveal that the lack of the social environment (e.g., lack of queen, lack of sufficient group size) induce stress in caged bees, which might act synergistically when bees are challenged by additional stressors (e.g., pesticides, pathogens) resulting in higher mortality than observed under field conditions.
Collapse
|
12
|
Abd-Elgawad MMM. Xenorhabdus spp.: An Overview of the Useful Facets of Mutualistic Bacteria of Entomopathogenic Nematodes. Life (Basel) 2022; 12:1360. [PMID: 36143397 PMCID: PMC9503066 DOI: 10.3390/life12091360] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/17/2022] Open
Abstract
Mounting concern over the misuse of chemical pesticides has sparked broad interest for safe and effective alternatives to control plant pests and pathogens. Xenorhabdus bacteria, as pesticidal symbionts of the entomopathogenic nematodes Steinernema species, can contribute to this solution with a treasure trove of insecticidal compounds and an ability to suppress a variety of plant pathogens. As many challenges face sound exploitation of plant-phytonematode interactions, a full useful spectrum of such interactions should address nematicidal activity of Xenorhabdus. Steinernema-Xenorhabdus complex or Xenorhabdus individually should be involved in mechanisms underlying the favorable side of plant-nematode interactions in emerging cropping systems. Using Xenorhabdus bacteria should earnestly be harnessed to control not only phytonematodes, but also other plant pests and pathogens within integrated pest management plans. This review highlights the significance of fitting Xenorhabdus-obtained insecticidal, nematicidal, fungicidal, acaricidal, pharmaceutical, antimicrobial, and toxic compounds into existing, or arising, holistic strategies, for controlling many pests/pathogens. The widespread utilization of Xenorhabdus bacteria, however, has been slow-going, due to costs and some issues with their commercial processing. Yet, advances have been ongoing via further mastering of genome sequencing, discovering more of the beneficial Xenorhabdus species/strains, and their successful experimentations for pest control. Their documented pathogenicity to a broad range of arthropods and pathogens and versatility bode well for useful industrial products. The numerous beneficial traits of Xenorhabdus bacteria can facilitate their integration with other tactics for better pest/disease management programs.
Collapse
Affiliation(s)
- Mahfouz M M Abd-Elgawad
- Plant Pathology Department, Agricultural and Biological Research Division, National Research Centre, El-Behooth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
13
|
Kim YH, Kim BY, Kim JM, Choi YS, Lee MY, Lee KS, Jin BR. Differential Expression of Major Royal Jelly Proteins in the Hypopharyngeal Glands of the Honeybee Apis mellifera upon Bacterial Ingestion. INSECTS 2022; 13:insects13040334. [PMID: 35447776 PMCID: PMC9025693 DOI: 10.3390/insects13040334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Transgenerational immune priming (TGIP) to elicit social immunity in the honeybee Apis mellifera has two axes: the first is the ingested pathogen fragments–vitellogenin (Vg)–queen’s ovary axis for the developing embryo, and the second is the ingested pathogen fragments–Vg–nurse’s hypopharyngeal gland axis for the queen and young larvae through royal jelly. However, the dynamics of the expression of the major royal jelly proteins (MRJPs) in the hypopharyngeal glands of A. mellifera nurse bees after bacterial ingestion must be determined to improve our understanding of the second axis of TGIP. In this study, we investigated the expression patterns of MRJPs 1–7 and defensin-1 in the hypopharyngeal glands and Vg in the fat body of nurse bees fed with live or heat-killed Paenibacillus larvae over 12 h or 24 h by using northern blot analysis. We found that the expression of MRJPs and defensin-1 in the hypopharyngeal glands and Vg in the fat body was significantly induced in nurse bees upon bacterial ingestion, indicating that the differential expression patterns of MRJPs, defensin-1, and Vg were dependent on the bacterial status and timing of bacterial ingestion. We also found that antimicrobial peptide (AMP) genes showed induced expression in young larvae upon bacterial ingestion. In summary, our findings indicate that MRJPs in the hypopharyngeal glands are upregulated along with Vg in the fat body of nurse bees upon bacterial ingestion, providing novel insights into the ingested pathogen fragments–Vg–nurse’s hypopharyngeal gland axis for TGIP. Abstract Honeybee vitellogenin (Vg) transports pathogen fragments from the gut to the hypopharyngeal glands and is also used by nurse bees to synthesize royal jelly (RJ), which serves as a vehicle for transferring pathogen fragments to the queen and young larvae. The proteomic profile of RJ from bacterial-challenged and control colonies was compared using mass spectrometry; however, the expression changes of major royal jelly proteins (MRJPs) in hypopharyngeal glands of the honeybee Apis mellifera in response to bacterial ingestion is not well-characterized. In this study, we investigated the expression patterns of Vg in the fat body and MRJPs 1–7 in the hypopharyngeal glands of nurse bees after feeding them live or heat-killed Paenibacillus larvae. The expression levels of MRJPs and defensin-1 in the hypopharyngeal glands were upregulated along with Vg in the fat body of nurse bees fed with live or heat-killed P. larvae over 12 h or 24 h. We observed that the expression patterns of MRJPs and defensin-1 in the hypopharyngeal glands and Vg in the fat body of nurse bees upon bacterial ingestion were differentially expressed depending on the bacterial status and the time since bacterial ingestion. In addition, the AMP genes had increased expression in young larvae fed heat-killed P. larvae. Thus, our findings indicate that bacterial ingestion upregulates the transcriptional expression of MRJPs in the hypopharyngeal glands as well as Vg in the fat body of A. mellifera nurse bees.
Collapse
Affiliation(s)
- Yun-Hui Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea; (Y.-H.K.); (B.-Y.K.); (J.-M.K.)
| | - Bo-Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea; (Y.-H.K.); (B.-Y.K.); (J.-M.K.)
| | - Jin-Myung Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea; (Y.-H.K.); (B.-Y.K.); (J.-M.K.)
| | - Yong-Soo Choi
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea; (Y.-S.C.); (M.-Y.L.)
| | - Man-Young Lee
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea; (Y.-S.C.); (M.-Y.L.)
| | - Kwang-Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea; (Y.-H.K.); (B.-Y.K.); (J.-M.K.)
- Correspondence: (K.-S.L.); (B.-R.J.)
| | - Byung-Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea; (Y.-H.K.); (B.-Y.K.); (J.-M.K.)
- Correspondence: (K.-S.L.); (B.-R.J.)
| |
Collapse
|
14
|
Bruno D, Montali A, Mastore M, Brivio MF, Mohamed A, Tian L, Grimaldi A, Casartelli M, Tettamanti G. Insights Into the Immune Response of the Black Soldier Fly Larvae to Bacteria. Front Immunol 2021; 12:745160. [PMID: 34867970 PMCID: PMC8636706 DOI: 10.3389/fimmu.2021.745160] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023] Open
Abstract
In insects, a complex and effective immune system that can be rapidly activated by a plethora of stimuli has evolved. Although the main cellular and humoral mechanisms and their activation pathways are highly conserved across insects, the timing and the efficacy of triggered immune responses can differ among different species. In this scenario, an insect deserving particular attention is the black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae). Indeed, BSF larvae can be reared on a wide range of decaying organic substrates and, thanks to their high protein and lipid content, they represent a valuable source of macromolecules useful for different applications (e.g., production of feedstuff, bioplastics, and biodiesel), thus contributing to the development of circular economy supply chains for waste valorization. However, decaying substrates bring the larvae into contact with different potential pathogens that can challenge their health status and growth. Although these life strategies have presumably contributed to shape the evolution of a sophisticated and efficient immune system in this dipteran, knowledge about its functional features is still fragmentary. In the present study, we investigated the processes underpinning the immune response to bacteria in H. illucens larvae and characterized their reaction times. Our data demonstrate that the cellular and humoral responses in this insect show different kinetics: phagocytosis and encapsulation are rapidly triggered after the immune challenge, while the humoral components intervene later. Moreover, although both Gram-positive and Gram-negative bacteria are completely removed from the insect body within a few hours after injection, Gram-positive bacteria persist in the hemolymph longer than do Gram-negative bacteria. Finally, the activity of two key actors of the humoral response, i.e., lysozyme and phenoloxidase, show unusual dynamics as compared to other insects. This study represents the first detailed characterization of the immune response to bacteria of H. illucens larvae, expanding knowledge on the defense mechanisms of this insect among Diptera. This information is a prerequisite to manipulating the larval immune response by nutritional and environmental factors to increase resistance to pathogens and optimize health status during mass rearing.
Collapse
Affiliation(s)
- Daniele Bruno
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Aurora Montali
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Maristella Mastore
- Laboratory of Comparative Immunology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Maurizio Francesco Brivio
- Laboratory of Comparative Immunology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Amr Mohamed
- Laboratory of Insect Biochemistry and Molecular Sciences, Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Annalisa Grimaldi
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Morena Casartelli
- Laboratory of Insect Physiology and Biotechnology, Department of Biosciences, University of Milano, Milan, Italy.,Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Naples, Italy
| | - Gianluca Tettamanti
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Naples, Italy
| |
Collapse
|
15
|
Effect of feeding chitosan or peptidoglycan on Nosema ceranae infection and gene expression related to stress and the innate immune response of honey bees (Apis mellifera). J Invertebr Pathol 2021; 185:107671. [PMID: 34563551 DOI: 10.1016/j.jip.2021.107671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
Nosema ceranae is a microsporidian parasite that causes nosema disease, an infection of the honey bee (Apis mellifera) midgut. Two pathogen-associated molecular patterns (PAMPs), chitosan and peptidoglycan, and N. ceranae spores were fed to worker bees in sucrose syrup and compared to non-inoculated and N. ceranae-inoculated bees without PAMPs. Both chitosan and peptidoglycan significantly increased bee survivorship and reduced spore numbers due to N. ceranae infection. To determine if these results were related to changes in health status, expression of the immune-related genes, hymenoptaecin and defensin2, and the stress tolerance-related gene, blue cheese, was compared to that of control bees. Compared to the inoculated control, bees with the dose of chitosan that significantly reduced N. ceranae spore numbers showed lower expression of hymenoptaecin and defensin2 early after infection, higher expression mid-infection of defensin2 and lower expression of all three genes late in infection. In contrast, higher expression of defensin2 early in the infection and all three genes late in the infection was observed with peptidoglycan treatment. Changes late in the parasite multiplication stage when mature spores would be released from ruptured host cells are less likely to have contributed to reduced spore production. Based on these results, it is concluded that feeding bees chitosan or peptidoglycan can reduce N. ceranae infection, which is at least partially related to altering the health of the bee by inducing immune and stress-related gene expression.
Collapse
|
16
|
Photorhabdus spp.: An Overview of the Beneficial Aspects of Mutualistic Bacteria of Insecticidal Nematodes. PLANTS 2021; 10:plants10081660. [PMID: 34451705 PMCID: PMC8401807 DOI: 10.3390/plants10081660] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022]
Abstract
The current approaches to sustainable agricultural development aspire to use safer means to control pests and pathogens. Photorhabdus bacteria that are insecticidal symbionts of entomopathogenic nematodes in the genus Heterorhabditis can provide such a service with a treasure trove of insecticidal compounds and an ability to cope with the insect immune system. This review highlights the need of Photorhabdus-derived insecticidal, fungicidal, pharmaceutical, parasiticidal, antimicrobial, and toxic materials to fit into current, or emerging, holistic strategies, mainly for managing plant pests and pathogens. The widespread use of these bacteria, however, has been slow, due to cost, natural presence within the uneven distribution of their nematode partners, and problems with trait stability during in vitro culture. Yet, progress has been made, showing an ability to overcome these obstacles via offering affordable mass production and mastered genome sequencing, while detecting more of their beneficial bacterial species/strains. Their high pathogenicity to a wide range of arthropods, efficiency against diseases, and versatility, suggest future promising industrial products. The many useful properties of these bacteria can facilitate their integration with other pest/disease management tactics for crop protection.
Collapse
|
17
|
Effect of Application of Probiotic Pollen Suspension on Immune Response and Gut Microbiota of Honey Bees (Apis mellifera). Probiotics Antimicrob Proteins 2021; 12:929-936. [PMID: 31912341 DOI: 10.1007/s12602-019-09626-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although the use of probiotic bacteria in invertebrates is still rare, scientists have begun to look into their usage in honey bees. The probiotic preparation, based on the autochthonous strain Lactobacillus brevis B50 Biocenol™ (CCM 8618), which was isolated from the digestive tracts of healthy bees, was applied to the bee colonies in the form of a pollen suspension. Its influence on the immune response was determined by monitoring the expression of genes encoding immunologically important molecules in the honey bee intestines. Changes in the intestinal microbiota composition were also studied. The results showed that the probiotic Lact. brevis B50, on a pollen carrier, significantly increased the expression of genes encoding antimicrobial peptides (abaecin, defensin-1) as well as pattern recognition receptors (toll-like receptor, peptidoglycan recognition proteins). Gene expression for the other tested molecules included in Toll and Imd signaling pathways (dorsal, cactus, kenny, relish) significantly changed during the experiment. The positive effect on intestinal microbiota was manifested mainly by a significant increase in the ratio of lactic acid bacteria to enterobacteria. These findings confirm the potential of the tested probiotic preparation to enhance immunity in bee colonies and thus increase their resistance to infectious diseases and stress conditions.
Collapse
|
18
|
Leponiemi M, Amdam GV, Freitak D. Exposure to Inactivated Deformed Wing Virus Leads to Trans-Generational Costs but Not Immune Priming in Honeybees (Apis mellifera). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pathogens are identified as one of the major drivers behind the honeybee colony losses, as well as one of the reasons for the reported declines in terrestrial insect abundances in recent decades. To fight infections, animals rely on their immune system. The immune system of many invertebrates can be primed by exposure to a pathogen, so that upon further exposure the animal is better protected. The protective priming effect can even extend to the next generation, but the species capable of priming the immune system of their offspring are still being investigated. Here we studied whether honeybees could prime their offspring against a viral pathogen, by challenging honeybee queens orally with an inactivated deformed wing virus (DWV), one of the most devastating honeybee viruses. The offspring were then infected by viral injection. The effects of immune priming were assayed by measuring viral loads and two typical symptoms of the virus, pupal mortality, and abnormal wing phenotype. We saw a low amount of wing deformities and low pupal mortality. While no clear priming effect against the virus was seen, we found that the maternal immune challenge, when combined with the stress caused by an injection during development, manifested in costs in the offspring, leading to an increased number of deformed wings.
Collapse
|
19
|
Dostálková S, Dobeš P, Kunc M, Hurychová J, Škrabišová M, Petřivalský M, Titěra D, Havlík J, Hyršl P, Danihlík J. Winter honeybee ( Apis mellifera) populations show greater potential to induce immune responses than summer populations after immune stimuli. J Exp Biol 2021; 224:jeb232595. [PMID: 33288532 DOI: 10.1242/jeb.232595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/02/2020] [Indexed: 01/17/2023]
Abstract
In the temperate climates of central Europe and North America, two distinct honeybee (Apis mellifera) populations are found in colonies: short-living summer bees emerge in spring and survive until summer, whereas long-living winter bees emerge in late August and overwinter. Besides the difference in their life spans, each of these populations fulfils a different role in the colonies and individual bees have distinct physiological and immunological adaptations depending on their roles. For instance, winter worker bees have higher vitellogenin levels and larger reserves of nutrients in the fat body than summer bees. The differences between the immune systems of both populations are well described at the constitutive level; however, our knowledge of its inducibility is still very limited. In this study, we focus on the response of 10-day-old honeybee workers to immune challenges triggered in vivo by injecting heat-killed bacteria, with particular focus on honeybees that emerge and live under hive conditions. Responses to bacterial injections differed between summer and winter bees. Winter bees exhibited a more intense response, including higher expression of antimicrobial genes and antimicrobial activity, as well as a significant decrease in vitellogenin gene expression and its concentration in the hemolymph. The intense immune response observed in winter honeybees may contribute to our understanding of the relationships between colony fitness and infection with pathogens, as well as its association with successful overwintering.
Collapse
Affiliation(s)
- Silvie Dostálková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Mária Škrabišová
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Dalibor Titěra
- Bee Research Institute, Libčice nad Vltavou 252 66, Czech Republic
| | - Jaroslav Havlík
- Department of Food Quality and Safety, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, Prague 252 63, Czech Republic
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Jiří Danihlík
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
20
|
Salcedo-Porras N, Noor S, Cai C, Oliveira PL, Lowenberger C. Rhodnius prolixus uses the peptidoglycan recognition receptor rpPGRP-LC/LA to detect Gram-negative bacteria and activate the IMD pathway. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100006. [PMID: 36003603 PMCID: PMC9387487 DOI: 10.1016/j.cris.2020.100006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 05/05/2023]
Abstract
Insects rely on an innate immune system to recognize and eliminate pathogens. Key components of this system are highly conserved across all invertebrates. To detect pathogens, insects use Pattern recognition receptors (PRRs) that bind to signature motifs on the surface of pathogens called Pathogen Associated Molecular Patterns (PAMPs). In general, insects use peptidoglycan recognition proteins (PGRPs) in the Immune Deficiency (IMD) pathway to detect Gram-negative bacteria, and other PGRPs and Gram-negative binding proteins (GNBPs) in the Toll pathway to detect Gram-positive bacteria and fungi, although there is crosstalk and cooperation between these and other pathways. Once pathogens are recognized, these pathways activate the production of potent antimicrobial peptides (AMPs). Most PRRs in insects have been reported from genome sequencing initiatives but few have been characterized functionally. The initial studies on insect PRRs were done using established dipteran model organisms such as Drosophila melanogaster, but there are differences in the numbers and functional role of PRRs in different insects. Here we describe the genomic repertoire of PGRPs in Rhodnius prolixus, a hemimetabolous hemipteran vector of the parasite Trypanosoma cruzi that causes Chagas disease in humans. Using a de novo transcriptome from the fat body of immune activated insects, we found 5 genes encoding PGRPs. Phylogenetic analysis groups R. prolixus PGRPs with D. melanogaster PGRP-LA, which is involved in the IMD pathway in the respiratory tract. A single R. prolixus PGRP gene encodes isoforms that contain an intracellular region or motif (cryptic RIP Homotypic Interaction Motif-cRHIM) that is involved in the IMD signaling pathway in D. melanogaster. We characterized and silenced this gene using RNAi and show that the PGRPs that contain cRHIMs are involved in the recognition of Gram-negative bacteria, and activation of the IMD pathway in the fat body of R. prolixus, similar to the PGRP-LC of D. melanogaster. This is the first functional characterization of a PGRP containing a cRHIM motif that serves to activate the IMD pathway in a hemimetabolous insect.
Collapse
Key Words
- AMP, Antimicrobial Peptide
- Antimicrobial peptides
- GNBP, Gram-negative Binding Protein
- Gr+, Gram-positive
- Gr-, Gram-negative
- IMD pathway
- IMD, Immune Deficiency
- Innate immunity
- ML, Maximum Likelihood
- PAMP, Pathogen-Associated Molecular Pattern
- PGN, Peptidoglycan
- PGRP
- PGRP, Peptidoglycan Recognition Protein
- PRR, Pattern Recognition Receptor
- RHIM
- RNAi, RNA interference
- SMOC, Supramolecular Organizing Centres
- TPM, Transcripts Per Million
- Triatomines
- cRHIM, cryptic RIP Homotypic Interaction Motif
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Corresponding author.
| | - Shireen Noor
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Charley Cai
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
21
|
Tian R, Zou H, Wang L, Liu L, Song M, Zhang H. Analysis of differentially expressed genes in bacterial and fungal keratitis. Indian J Ophthalmol 2020; 68:39-46. [PMID: 31856463 PMCID: PMC6951210 DOI: 10.4103/ijo.ijo_65_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose: This study was aimed at identifying differentially expressed genes (DEGs) in bacterial and fungal keratitis. The candidate genes can be selected and quantified to distinguish between causative agents of infectious keratitis to improve therapeutic outcomes. Methods: The expression profile of bacterial or fungal infection, and normal corneal tissues were downloaded from the Gene Expression Omnibus. The limma package in R was used to screen DEGs in bacterial and fungal keratitis. The Co-Express tool was used to calculate correlation coefficients of co-expressed genes. The “Advanced network merge” function of Cytoscape tool was applied to obtain a fusional co-expression network based on bacterial and fungal keratitis DEGs. Finally, functional enrichment analysis by DAVID software and KEGG analysis by KOBAS of DEGs in fusion network were performed. Results: In total, 451 DEGs in bacterial keratitis and 353 DEGs in fungal keratitis were screened, among which 148 DEGs were found only in bacterial keratitis and 50 DEGs only in fungal keratitis. Besides, 117 co-expressed gene pairs were identified among bacterial keratitis DEGs and 87 pairs among fungal keratitis DEGs. In total, nine biological pathways and seven KEGG pathways were screened by analyzing DEGs in the fusional co-expression network. Conclusion: TLR4 is the representative DEG specific to bacterial keratitis, and SOD2 is the representative DEG specific to fungal keratitis, both of which are promising candidate genes to distinguish between bacterial and fungal keratitis.
Collapse
Affiliation(s)
- Rui Tian
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - He Zou
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lufei Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lu Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Meijiao Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hui Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
22
|
Huot L, Bigourdan A, Pagès S, Ogier JC, Girard PA, Nègre N, Duvic B. Partner-specific induction of Spodoptera frugiperda immune genes in response to the entomopathogenic nematobacterial complex Steinernema carpocapsae-Xenorhabdus nematophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103676. [PMID: 32184079 DOI: 10.1016/j.dci.2020.103676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
The Steinernema carpocapsae-Xenorhabdus nematophila association is a nematobacterial complex used in biological control of insect crop pests. The infection success of this dual pathogen strongly depends on its interactions with the host's immune system. Here, we used the lepidopteran pest Spodoptera frugiperda to analyze the respective impact of each partner in the induction of its immune responses. First, we used previously obtained RNAseq data to construct the immunome of S. frugiperda and analyze its induction. We then selected representative genes to study by RT-qPCR their induction kinetics and specificity after independent injections of each partner. We showed that both X. nematophila and S. carpocapsae participate in the induction of stable immune responses to the complex. While X. nematophila mainly induces genes classically involved in antibacterial responses, S. carpocapsae induces lectins and genes involved in melanization and encapsulation. We discuss putative relationships between these differential inductions and the pathogen immunosuppressive strategies.
Collapse
Affiliation(s)
- Louise Huot
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | | - Sylvie Pagès
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | | | | - Nicolas Nègre
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| | - Bernard Duvic
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| |
Collapse
|
23
|
Tellkamp F, Lang F, Ibáñez A, Abraham L, Quezada G, Günther S, Looso M, Tann FJ, Müller D, Cemic F, Hemberger J, Steinfartz S, Krüger M. Proteomics of Galápagos Marine Iguanas Links Function of Femoral Gland Proteins to the Immune System. Mol Cell Proteomics 2020; 19:1523-1532. [PMID: 32581039 PMCID: PMC8143647 DOI: 10.1074/mcp.ra120.001947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/11/2020] [Indexed: 11/14/2022] Open
Abstract
Communication between individuals via molecules, termed chemosignaling, is widespread among animal and plant species. However, we lack knowledge on the specific functions of the substances involved for most systems. The femoral gland is an organ that secretes a waxy substance involved in chemical communication in lizards. Although the lipids and volatile substances secreted by the femoral glands have been investigated in several biochemical studies, the protein composition and functions of secretions remain completely unknown. Applying a proteomic approach, we provide the first attempt to comprehensively characterize the protein composition of femoral gland secretions from the Galápagos marine iguana. Using samples from several organs, the marine iguana proteome was assembled by next-generation sequencing and MS, resulting in 7513 proteins. Of these, 4305 proteins were present in the femoral gland, including keratins, small serum proteins, and fatty acid-binding proteins. Surprisingly, no proteins with discernible roles in partner recognition or inter-species communication could be identified. However, we did find several proteins with direct associations to the innate immune system, including lysozyme C, antileukoproteinase (ALP), pulmonary surfactant protein (SFTPD), and galectin (LGALS1) suggesting that the femoral glands function as an important barrier to infection. Furthermore, we report several novel anti-microbial peptides from the femoral glands that show similar action against Escherichia coli and Bacillus subtilis such as oncocin, a peptide known for its effectiveness against Gram-negative pathogens. This proteomics data set is a valuable resource for future functional protein analysis and demonstrates that femoral gland secretions also perform functions of the innate immune system.
Collapse
Affiliation(s)
- Frederik Tellkamp
- CECAD Research Center Institute for Genetics, University of Cologne, Cologne, Germany
| | - Franziska Lang
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alejandro Ibáñez
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Lena Abraham
- CECAD Research Center Institute for Genetics, University of Cologne, Cologne, Germany
| | - Galo Quezada
- Dirección Parque Nacional Galápagos, Puerto Ayora, Santa Cruz, Galápagos, Ecuador
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Fabian Jannik Tann
- Institute for Biochemical Engineering and Analytics (IBVA), Giessen, Germany
| | - Daniela Müller
- Institute for Biochemical Engineering and Analytics (IBVA), Giessen, Germany
| | - Franz Cemic
- Institute for Biochemical Engineering and Analytics (IBVA), Giessen, Germany
| | - Jürgen Hemberger
- Institute for Biochemical Engineering and Analytics (IBVA), Giessen, Germany
| | - Sebastian Steinfartz
- Molecular Evolution and Systematics of Animals, University of Leipzig, Leipzig, Germany.
| | - Marcus Krüger
- CECAD Research Center Institute for Genetics, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
24
|
Gálvez D, Añino Y, Vega C, Bonilla E. Immune priming against bacteria in spiders and scorpions? PeerJ 2020; 8:e9285. [PMID: 32547885 PMCID: PMC7278890 DOI: 10.7717/peerj.9285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/12/2020] [Indexed: 11/20/2022] Open
Abstract
Empirical evidence of immune priming in arthropods keeps growing, both at the within- and trans-generational level. The evidence comes mostly from work on insects and it remains unclear for some other arthropods whether exposure to a non-lethal dose of a pathogen provides protection during a second exposure with a lethal dose. A poorly investigated group are arachnids, with regard to the benefits of immune priming measured as improved survival. Here, we investigated immune priming in two arachnids: the wolf spider Lycosa cerrofloresiana and the scorpion Centruroides granosus. We injected a third of the individuals with lipopolysaccharides of Escherichia coli (LPS, an immune elicitor), another third were injected with the control solution (PBS) and the other third were kept naive. Four days after the first inoculations, we challenged half of the individuals of each group with an injection of a high dose of E. coli and the other half was treated with the control solution. For scorpions, individuals that were initially injected with PBS or LPS did not differ in their survival rates against the bacterial challenge. Individuals injected with LPS showed higher survival than that of naive individuals as evidence of immune priming. Individuals injected with PBS tended to show higher survival rates than naive individuals, but the difference was not significant—perhaps suggesting a general immune upregulation caused by the wounding done by the needle. For spiders, we did not observe evidence of priming, the bacterial challenge reduced the survival of naive, PBS and LPS individuals at similar rates. Moreover; for scorpions, we performed antibacterial assays of hemolymph samples from the three priming treatments (LPS, PBS and naive) and found that the three treatments reduced bacterial growth but without differences among treatments. As non-model organisms, with some unique differences in their immunological mechanisms as compared to the most studied arthropods (insects), arachnids provide an unexplored field to elucidate the evolution of immune systems.
Collapse
Affiliation(s)
- Dumas Gálvez
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Panama, Panama.,COIBA AIP, Panama, Panama
| | - Yostin Añino
- Museo de Invertebrados G.B. Fairchild, Universidad de Panamá, Panama, Panama
| | - Carlos Vega
- Escuela de Biología, Universidad de Panamá, Panama, Panama
| | | |
Collapse
|
25
|
The Effect of Foraging on Bumble Bees, Bombus terrestris, Reared under Laboratory Conditions. INSECTS 2020; 11:insects11050321. [PMID: 32456127 PMCID: PMC7290516 DOI: 10.3390/insects11050321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/06/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022]
Abstract
Bumble bees are important pollinators broadly used by farmers in greenhouses and under conditions in which honeybee pollination is limited. As such, bumble bees are increasingly being reared for commercial purposes, which brings into question whether individuals reared under laboratory conditions are fully capable of physiological adaptation to field conditions. To understand the changes in bumble bee organism caused by foraging, we compared the fundamental physiological and immunological parameters of Bombus terrestris workers reared under constant optimal laboratory conditions with workers from sister colonies that were allowed to forage for two weeks in the field. Nutritional status and immune response were further determined in wild foragers of B.terrestris that lived under the constant influence of natural stressors. Both wild and laboratory-reared workers subjected to the field conditions had a lower protein concentration in the hemolymph and increased antimicrobial activity, the detection of which was limited in the non-foragers. However, in most of the tested parameters, specifically the level of carbohydrates, antioxidants, total hemocyte concentration in the hemolymph and melanization response, we did not observe any significant differences between bumble bee workers produced in the laboratory and wild animals, nor between foragers and non-foragers. Our results show that bumble bees reared under laboratory conditions can mount a sufficient immune response to potential pathogens and cope with differential food availability in the field, similarly to the wild bumble bee workers.
Collapse
|
26
|
Tissue Specificity in Social Context-Dependent lysozyme Expression in Bumblebees. Antibiotics (Basel) 2020; 9:antibiotics9030130. [PMID: 32245075 PMCID: PMC7148472 DOI: 10.3390/antibiotics9030130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 11/27/2022] Open
Abstract
Group living at high densities may result in the enhanced transmission of pathogens. Social insects are obligate group-living species, which often also exhibit high relatedness and frequent social interactions amongst individuals, resulting in a high risk of disease spread. Social species seem to exhibit immune systems that provide colonies of social insects with a certain level of flexibility for adjustment of immune activity according to the risk of disease spread. In bumblebees, Bombus terrestris, it was demonstrated that in group-kept individuals, immune component activity and immune gene expression is increased, potentially as a prophylactic adaptation. Here, I tested whether social environment influences the gene expression pattern of two lysozyme genes, which are components of the antimicrobial response of the bumblebee. In addition, I tested gene expression activation in different tissues (gut, fat body). The analysis revealed that the gene, the density of individuals, the tissue, and the interaction of the latter are the main factors that influence the expression of lysozyme genes. This is the first report of a tissue-specific response towards the social environment. This has implications for gene regulation, which must be responsive to social context-dependent information.
Collapse
|
27
|
Freitas FCP, Depintor TS, Agostini LT, Luna-Lucena D, Nunes FMF, Bitondi MMG, Simões ZLP, Lourenço AP. Evaluation of reference genes for gene expression analysis by real-time quantitative PCR (qPCR) in three stingless bee species (Hymenoptera: Apidae: Meliponini). Sci Rep 2019; 9:17692. [PMID: 31776359 PMCID: PMC6881334 DOI: 10.1038/s41598-019-53544-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Stingless bees are generalist pollinators distributed through the pantropical region. There is growing evidence that their wild populations are experiencing substantial decline in response to habitat degradation and pesticides. Policies for conservation of endangered species will benefit from studies focusing on genetic and molecular aspects of their development and behavior. The most common method for looking at gene expression is real-time quantitative polymerase chain reaction preceded by reverse transcription (RT-qPCR) of the mRNA of interest. This method requires the identification of reliable reference genes to correctly estimate fluctuations in transcript levels. To contribute to molecular studies on stingless bees, we used Frieseomelitta varia, Melipona quadrifasciata, and Scaptotrigona bipunctata species to test the expression stability of eight reference genes (act, ef1-α, gapdh, rpl32, rps5, rps18, tbp, and tbp-af) in RT-qPCR procedures in five physiological and experimental conditions (development, sex, tissues, bacteria injection, and pesticide exposure). In general, the rpl32, rps5 and rps18 ribosomal protein genes and tpb-af gene showed the highest stability, thus being identified as suitable reference genes for the three stingless bee species and defined conditions. Our results also emphasized the need to evaluate the stability of candidate genes for any designed experimental condition and stingless bee species.
Collapse
Affiliation(s)
- Flávia C P Freitas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Thiago S Depintor
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas T Agostini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Francis M F Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Márcia M G Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Zilá L P Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Anete P Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil. .,Departamento de Ciências Biológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil.
| |
Collapse
|
28
|
Chambers MC, Jacobson E, Khalil S, Lazzaro BP. Consequences of chronic bacterial infection in Drosophila melanogaster. PLoS One 2019; 14:e0224440. [PMID: 31648237 PMCID: PMC6812774 DOI: 10.1371/journal.pone.0224440] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/14/2019] [Indexed: 11/25/2022] Open
Abstract
Even when successfully surviving an infection, a host often fails to eliminate a pathogen completely and may sustain substantial pathogen burden for the remainder of its life. Using systemic bacterial infection in Drosophila melanogaster, we characterize chronic infection by three bacterial species from different genera - Providencia rettgeri, Serratia marcescens, and Enterococcus faecalis–following inoculation with a range of doses. To assess the consequences of these chronic infections, we determined the expression of antimicrobial peptide genes, survival of secondary infection, and starvation resistance after one week of infection. While higher infectious doses unsurprisingly lead to higher risk of death, they also result in higher chronic bacterial loads among the survivors for all three infections. All three chronic infections caused significantly elevated expression of antimicrobial peptide genes at one week post-infection and provided generalized protection again secondary bacterial infection. Only P. rettgeri infection significantly influenced resistance to starvation, with persistently infected flies dying more quickly under starvation conditions relative to controls. These results suggest that there is potentially a generalized mechanism of protection against secondary infection, but that other impacts on host physiology may depend on the specific pathogen. We propose that chronic infections in D. melanogaster could be a valuable tool for studying tolerance of infection, including impacts on host physiology and behavior.
Collapse
Affiliation(s)
- Moria Cairns Chambers
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Department of Biology, Bucknell University, Lewisburg, PA, United States of America
- * E-mail:
| | - Eliana Jacobson
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Sarah Khalil
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
29
|
Woestmann L, Stucki D, Saastamoinen M. Life history alterations upon oral and hemocoelic bacterial exposure in the butterfly Melitaea cinxia. Ecol Evol 2019; 9:10665-10680. [PMID: 31624574 PMCID: PMC6787844 DOI: 10.1002/ece3.5586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/11/2022] Open
Abstract
Life history strategies often shape biological interactions by specifying the parameters for possible encounters, such as the timing, frequency, or way of exposure to parasites. Consequentially, alterations in life-history strategies are closely intertwined with such interaction processes. Understanding the connection between life-history alterations and host-parasite interactions can therefore be important to unveil potential links between adaptation to environmental change and changes in interaction processes. Here, we studied how two different host-parasite interaction processes, oral and hemocoelic exposure to bacteria, affect various life histories of the Glanville fritillary butterfly Melitaea cinxia. We either fed or injected adult butterflies with the bacterium Micrococcus luteus and observed for differences in immune defenses, reproductive life histories, and longevity, compared to control exposures. Our results indicate differences in how female butterflies adapt to the two exposure types. Orally infected females showed a reduction in clutch size and an earlier onset of reproduction, whereas a reduction in egg weight was observed for hemocoelically exposed females. Both exposure types also led to shorter intervals between clutches and a reduced life span. These results indicate a relationship between host-parasite interactions and changes in life-history strategies. This relationship could cast restrictions on the ability to adapt to new environments and consequentially influence the population dynamics of a species in changing environmental conditions.
Collapse
Affiliation(s)
- Luisa Woestmann
- Organismal and Evolutionary Biology Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Dimitri Stucki
- Organismal and Evolutionary Biology Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
30
|
Fouks B, Robb EG, Lattorff HMG. Role of conspecifics and personal experience on behavioral avoidance of contaminated flowers by bumblebees. Curr Zool 2019; 65:447-455. [PMID: 31413717 PMCID: PMC6688574 DOI: 10.1093/cz/zoy099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/11/2018] [Indexed: 11/14/2022] Open
Abstract
Pollinators use multiple cues whilst foraging including direct cues from flowers and indirect cues from other pollinators. The use of indirect social cues is common in social insects, such as honeybees and bumblebees, where a social environment facilitates the ability to use such cues. Bumblebees use cues to forage on flowers according to previous foraging experiences. Flowers are an essential food source for pollinators but also pose a high risk of parasite infection through the shared use of flowers leading to parasite spillover. Nevertheless, bumblebees have evolved behavioral defense mechanisms to limit parasite infection by avoiding contaminated flowers. Mechanisms underlying the avoidance of contaminated flowers by bumblebees are poorly understood. Bumblebees were recorded having the choice to forage on non-contaminated flowers and flowers contaminated by a trypan osome gut parasite, Crithidia bombi. The use of different treatments with presence or absence of conspecifics on both contaminated and non-contaminated flowers allowed to investigate the role of social visual cues on their pathogen avoidance behavior. Bumblebees are expected to use social visual cues to avoid contaminated flowers. Our study reveals that the presence of a conspecific on flowers either contaminated or not does not help bumblebee foragers avoiding contaminated flowers. Nevertheless, bumblebees whereas gaining experience tend to avoid their conspecific when placed on contaminated flower and copy it when on the non-contaminated flower. Our experiment suggests a detrimental impact of floral scent on disease avoidance behavior.
Collapse
Affiliation(s)
- Bertrand Fouks
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg Hoher Weg, Halle (Saale), Germany.,Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Emily G Robb
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg Hoher Weg, Halle (Saale), Germany.,Microbes and Pathogens Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - H Michael G Lattorff
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg Hoher Weg, Halle (Saale), Germany.,International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz, Leipzig, Germany
| |
Collapse
|
31
|
Using genetic variation in Aedes aegypti to identify candidate anti-dengue virus genes. BMC Infect Dis 2019; 19:580. [PMID: 31272403 PMCID: PMC6611004 DOI: 10.1186/s12879-019-4212-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcriptomic profiling has generated extensive lists of genes that respond to viral infection in mosquitoes. These gene lists contain two types of genes; (1) those that are responsible for the insect's natural antiviral defense mechanisms, including some known innate immunity genes, and (2) genes whose change in expression may occur simply as a result of infection. As genetic modification tools for mosquitoes continue to improve, the opportunities to make refractory insects via allelic replacement or delivery of small RNAs that alter gene expression are expanding. Therefore, the ability to identify which genes in transcriptional profiles may have immune function has increasing value. Arboviruses encounter a range of mosquito tissues and physiologies as they traverse from the midgut to the salivary glands. While the midgut is well-studied as the primary tissue barrier, antiviral genes expressed in the subsequent tissues of the carcass offer additional candidates for second stage intervention in the mosquito body. METHODS Mosquito lines collected recently from field populations exhibit natural genetic variation for dengue virus susceptibility. We sought to use a modified full-sib breeding design to identify mosquito families that varied in their dengue viral load in their bodies post infection. RESULTS By delivering virus intrathoracically, we bypassed the midgut and focused on whole body responses in order to evaluate carcass-associated refractoriness. We tested 25 candidate genes selected for their appearance in multiple published transcriptional profiles and were able to identify 12 whose expression varied with susceptibility in the genetic families. CONCLUSIONS This method, using natural genetic variation, offers a simple means to screen and reduce candidate gene lists prior to carrying out more labor-intensive functional studies. The extracted RNA from the females across the families represents a storable resource that can be used to screen subsequent candidate genes in the future. The aspect of vector competence being assessed could be varied by focusing on different tissues or time points post infection.
Collapse
|
32
|
Ehrenberg S, Lewkowski O, Erler S. Dyeing but not dying: Colourful dyes as a non-lethal method of food labelling for in vitro-reared honey bee (Apis mellifera) larvae. JOURNAL OF INSECT PHYSIOLOGY 2019; 113:1-8. [PMID: 30582906 DOI: 10.1016/j.jinsphys.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/27/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Several environmental factors (e.g. food source, pesticides, toxins, parasites and pathogens) influence development and maturation of honey bees (Apis mellifera). Therefore, controlled experimental conditions are mandatory when studying the impact of environmental factors: particularly food quality and nutrient consumption. In vitro larval rearing is a standard approach for monitoring food intake of larvae and the labelling of food is necessary to quantify intake in controlled feeding experiments. Here, we tested the suitability of two food dyes, Allura Red and Brilliant Blue, in an experimental set up using in vitro reared honey bee larvae and freshly hatched adult workers. Absorbance of both dyes was measured, in food and dye-fed larvae, to determine the optimal dye concentrations for accurate detection and quantification. By quantifying relative dye concentrations in dye mixtures, relative concentrations of mixed dyes can be estimated independent of the total food consumed by the larvae. Survival assays were conducted to test the impact of both dyes on larval and worker bee survival. Worker bees showed no increase in adult mortality, when fed with dyed honey. Larval survival was not significantly different until the late pupal stage. The physiological impact of dye feeding was tested by measuring larval immune response. No changes in innate immune gene expression were detectable for larvae fed with dyed and non-dyed food. In conclusion, we established a non-invasive food labelling protocol for food intake quantification in in vitro reared honey bee larvae, using non-toxic, inexpensive, and easy to apply food dyes.
Collapse
Affiliation(s)
- Sandra Ehrenberg
- Institute of Biology, Molecular Ecology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, 06120 Halle (Saale), Germany.
| | - Oleg Lewkowski
- Institute of Biology, Molecular Ecology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, 06120 Halle (Saale), Germany
| | - Silvio Erler
- Institute of Biology, Molecular Ecology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
33
|
Viljakainen L, Jurvansuu J, Holmberg I, Pamminger T, Erler S, Cremer S. Social environment affects the transcriptomic response to bacteria in ant queens. Ecol Evol 2018; 8:11031-11070. [PMID: 30519425 PMCID: PMC6262927 DOI: 10.1002/ece3.4573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/05/2023] Open
Abstract
Social insects have evolved enormous capacities to collectively build nests and defend their colonies against both predators and pathogens. The latter is achieved by a combination of individual immune responses and sophisticated collective behavioral and organizational disease defenses, that is, social immunity. We investigated how the presence or absence of these social defense lines affects individual-level immunity in ant queens after bacterial infection. To this end, we injected queens of the ant Linepithema humile with a mix of gram+ and gram- bacteria or a control solution, reared them either with workers or alone and analyzed their gene expression patterns at 2, 4, 8, and 12 hr post-injection, using RNA-seq. This allowed us to test for the effect of bacterial infection, social context, as well as the interaction between the two over the course of infection and raising of an immune response. We found that social isolation per se affected queen gene expression for metabolism genes, but not for immune genes. When infected, queens reared with and without workers up-regulated similar numbers of innate immune genes revealing activation of Toll and Imd signaling pathways and melanization. Interestingly, however, they mostly regulated different genes along the pathways and showed a different pattern of overall gene up-regulation or down-regulation. Hence, we can conclude that the absence of workers does not compromise the onset of an individual immune response by the queens, but that the social environment impacts the route of the individual innate immune responses.
Collapse
Affiliation(s)
| | - Jaana Jurvansuu
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | - Ida Holmberg
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | | | - Silvio Erler
- Institute of Biology, Molecular EcologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Sylvia Cremer
- Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
| |
Collapse
|
34
|
Matetovici I, Van Den Abbeele J. Thioester-containing proteins in the tsetse fly (Glossina) and their response to trypanosome infection. INSECT MOLECULAR BIOLOGY 2018; 27. [PMID: 29528164 PMCID: PMC5969219 DOI: 10.1111/imb.12382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Thioester-containing proteins (TEPs) are conserved proteins with a role in innate immune immunity. In the current study, we characterized the TEP family in the genome of six tsetse fly species (Glossina spp.). Tsetse flies are the biological vectors of several African trypanosomes, which cause sleeping sickness in humans or nagana in livestock. The analysis of the tsetse TEP sequences revealed information about their structure, evolutionary relationships and expression profiles under both normal and trypanosome infection conditions. Phylogenetic analysis of the family showed that tsetse flies harbour a genomic expansion of specific TEPs that are not found in other dipterans. We found a general expression of all TEP genes in the alimentary tract, mouthparts and salivary glands. Glossina morsitans and Glossina palpalis TEP genes display a tissue-specific expression pattern with some that are markedly up-regulated when the fly is infected with the trypanosome parasite. A different TEP response was observed to infection with Trypanosoma brucei compared to Trypanosoma congolense, indicating that the tsetse TEP response is trypanosome-specific. These findings are suggestive for the involvement of the TEP family in tsetse innate immunity, with a possible role in the control of the trypanosome parasite.
Collapse
Affiliation(s)
- I. Matetovici
- Unit of Veterinary Protozoology, Department of Biomedical SciencesInstitute of Tropical Medicine Antwerp (ITM)AntwerpBelgium
| | - J. Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical SciencesInstitute of Tropical Medicine Antwerp (ITM)AntwerpBelgium
| |
Collapse
|
35
|
Gao S, Xiong W, Wei L, Liu J, Liu X, Xie J, Song X, Bi J, Li B. Transcriptome profiling analysis reveals the role of latrophilin in controlling development, reproduction and insecticide susceptibility in Tribolium castaneum. Genetica 2018; 146:287-302. [DOI: 10.1007/s10709-018-0020-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/30/2018] [Indexed: 12/23/2022]
|
36
|
Tate AT, Graham AL. Dissecting the contributions of time and microbe density to variation in immune gene expression. Proc Biol Sci 2018; 284:rspb.2017.0727. [PMID: 28747473 DOI: 10.1098/rspb.2017.0727] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Widespread differential expression of immunological genes is a hallmark of the response to infection in almost all surveyed taxa. However, several challenges remain in the attempt to connect differences in gene expression with functional outcomes like parasite killing and host survival. For example, temporal gene expression patterns are not always monotonic (unidirectional slope), yielding results that qualitatively depend on the time point selected for analysis. They may also be correlated to microbe density, confounding the strength of an immune response and resistance to parasites. In this study, we analyse these relationships in an mRNA-seq time series of Tribolium castaneum infected with Bacillus thuringiensis Our results suggest that many extracellular immunological components with known roles in immunity, like antimicrobial peptides and recognition proteins, are highly correlated to microbe load. On the other hand, intracellular components of immunological signalling pathways overwhelmingly show non-monotonic temporal patterns of gene expression, despite the underlying assumption of monotonicity in most ecological and comparative transcriptomics studies that rely on cross-sectional analyses. Our results raise a host of new questions, including to what extent variation in host resistance, infection tolerance and immunopathology can be explained by variation in the slope or sensitivity of these newly characterized patterns.
Collapse
Affiliation(s)
- Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
37
|
Xiong W, Zhai M, Yu X, Wei L, Mao J, Liu J, Xie J, Li B. Comparative RNA-sequencing analysis of ER-based HSP90 functions and signal pathways in Tribolium castaneum. Cell Stress Chaperones 2018; 23:29-43. [PMID: 28681272 PMCID: PMC5741579 DOI: 10.1007/s12192-017-0821-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/10/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
Tribolium castaneum, the red flour beetle, is a major agriculture pest that damages stored grains and cereal products. Heat-shock protein 90 of T. castaneum (Tchsp90) has been reported to play pivotal roles in heat stress response, development, reproduction, and life span. However, the signaling pathway of Tchsp90 remains unclear. Thus, the global transcriptome profiles between RNA interference (RNAi)-treated insects (ds-Tchsp90) and control insects of T. castaneum were investigated and compared by RNA sequencing. In all, we obtained 14,145,451 sequence reads, which assembled into 13,243 genes. Among these genes, 461 differentially expressed genes (DEGs) were identified between the ds-Tchsp90 and control samples. These DEGs were classified into 44 gene ontology (GO) functional groups, including the cellular process, the response to stimulus, the immune system process, the development process, and reproduction. Interestingly, knocking down the expression of Tchsp90 suppressed both the DNA replication and cell division signaling pathways, which most likely modulated the effects of Tchsp90 on development, reproduction, and life span. Moreover, the DEGs encoding AnnexinB9, frizzled-4, sno, Fem1B, TSL, and CSW might be related to the regulation of the development and reproduction of ds-Tchsp90 insects. The DEGs including TLR6, PGRP2, defensin1, and defensin2 were involved in heat stress and immune response simultaneously, which suggested that cross talk might exist between immunity and stress response. Additionally, RNAi of Tchsp90 altered large-scale serine protease (sp) gene expression patterns and amplified the SP signaling pathway to regulate the development and reproduction as well as the stress response and innate immunity in T. castaneum. All these results shed new light onto the regulatory mechanism of Tchsp90 involved in insect physiology and could further facilitate research into appropriate and sustainable pest control management.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Mengfan Zhai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Xiaojuan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
38
|
Wang H, Meeus I, Piot N, Smagghe G. Systemic Israeli acute paralysis virus (IAPV) infection in bumblebees (Bombus terrestris) through feeding and injection. J Invertebr Pathol 2017; 151:158-164. [PMID: 29203138 DOI: 10.1016/j.jip.2017.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
Abstract
Israeli acute paralysis virus (IAPV) can cause a systemic infection, resulting in mortality in both Apis and Bombus spp. bees. However, little is known about the virus infection dynamics within bee tissues. Here, we established systemic IAPV infections in reared bumblebee Bombus terrestris workers through feeding and injection and investigated the mortality, tissue tropism and viral localization. Injection of approximately 500 IAPV (IAPVinj stock) particles resulted in acute infection, viral loads within tissues that were relatively stable from bee to bee, and a distinctive tissue tropism, making this method suitable for studying systemic IAPV infection in bumblebees. Feeding with approximately 1 × 106 particles of the same virus stock did not result in systemic infection. A high-concentration stock of IAPV (IAPVfed stock) allowed us to feed bumblebees with approximately 1 × 109 viral particles, which induced both chronic and acute infection. We also observed a higher variability in viral titers within tissues and less clear tissue tropism during systemic infection, making feeding with IAPVfed stock less optimal for studying IAPV systemic infection. Strikingly, both infection methods and stocks with different viral loads gave a similar viral localization pattern in the brain and midgut of bumblebees with an acute infection. The implications of these findings in the study of the local immunity in bees and barriers to oral transmission are discussed. Our data provide useful information on the establishment of a systemic viral infection in bees.
Collapse
Affiliation(s)
- Haidong Wang
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Niels Piot
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
39
|
Rosa E, van Nouhuys S, Saastamoinen M. The more the merrier: Conspecific density improves performance of gregarious larvae and reduces susceptibility to a pupal parasitoid. Ecol Evol 2017; 7:10710-10720. [PMID: 29299251 PMCID: PMC5743493 DOI: 10.1002/ece3.3571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023] Open
Abstract
Aggregation can confer advantages in animal foraging, defense, and thermoregulation. There is a tight connection between the evolution of insect sociality and a highly effective immune system, presumably to inhibit rapid disease spread in a crowded environment. This connection is less evident for animals that spend only part of their life cycle in a social environment, such as noneusocial gregarious insects. Our aim was to elucidate the effects of group living by the gregarious larvae of the Glanville fritillary butterfly with respect to individual performance, immunity, and susceptibility to a parasitoid. We were also interested in the role of family relative to common postdiapause environment in shaping life‐history traits. Larvae were reared at high or low density and then exposed to the pupal parasitoid wasp Pteromalus apum, either in presence or absence of a previous immune challenge that was used to measure the encapsulation immune response. Surviving adult butterflies were further tested for immunity. The wasp offspring from successfully parasitized butterfly pupae were counted and their brood sex ratios assessed. Larvae reared at high density grew larger and faster than those at low density. Despite high mortality due to parasitism, survival was greater among individuals with high pupal immunity in both density treatments. Moreover, butterfly pupae reared at high density were able to kill a larger fraction of individuals in the parasitoid broods, although this did not increase survival of the host. Finally, a larger proportion of variation observed in most of the traits was explained by butterfly family than by common postdiapause rearing environment, except for adult survival and immunity, for which this pattern was reversed. This gregarious butterfly clearly benefits from high conspecific density in terms of developmental performance and its ability to fight a parasitoid. These positive effects may be driven by cooperative interactions during feeding.
Collapse
Affiliation(s)
- Elena Rosa
- Department of Biosciences Metapopulation Research Centre University of Helsinki Helsinki Finland
| | - Saskya van Nouhuys
- Department of Biosciences Metapopulation Research Centre University of Helsinki Helsinki Finland.,Department of Entomology Cornell University Ithaca NY USA
| | - Marjo Saastamoinen
- Department of Biosciences Metapopulation Research Centre University of Helsinki Helsinki Finland
| |
Collapse
|
40
|
McKinstry M, Chung C, Truong H, Johnston BA, Snow JW. The heat shock response and humoral immune response are mutually antagonistic in honey bees. Sci Rep 2017; 7:8850. [PMID: 28821863 PMCID: PMC5562734 DOI: 10.1038/s41598-017-09159-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/21/2017] [Indexed: 11/24/2022] Open
Abstract
The honey bee is of paramount importance to humans in both agricultural and ecological settings. Honey bee colonies have suffered from increased attrition in recent years, stemming from complex interacting stresses. Defining common cellular stress responses elicited by these stressors represents a key step in understanding potential synergies. The proteostasis network is a highly conserved network of cellular stress responses involved in maintaining the homeostasis of protein production and function. Here, we have characterized the Heat Shock Response (HSR), one branch of this network, and found that its core components are conserved. In addition, exposing bees to elevated temperatures normally encountered by honey bees during typical activities results in robust HSR induction with increased expression of specific heat shock proteins that was variable across tissues. Surprisingly, we found that heat shock represses multiple immune genes in the abdomen and additionally showed that wounding the cuticle of the abdomen results in decreased expression of multiple HSR genes in proximal and distal tissues. This mutually antagonistic relationship between the HSR and immune activation is unique among invertebrates studied to date and may promote understanding of potential synergistic effects of disparate stresses in this critical pollinator and social insects more broadly.
Collapse
Affiliation(s)
- Mia McKinstry
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - Charlie Chung
- Natural Sciences Department, LaGuardia Community College-CUNY, Long Island City, NY, 11101, USA
| | - Henry Truong
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - Brittany A Johnston
- Biology Department, The City College of New York-CUNY, New York, NY, 10031, USA
| | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY, 10027, USA.
| |
Collapse
|
41
|
Brutscher LM, Daughenbaugh KF, Flenniken ML. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense. Sci Rep 2017; 7:6448. [PMID: 28743868 PMCID: PMC5526946 DOI: 10.1038/s41598-017-06623-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
Recent high annual losses of honey bee colonies are associated with many factors, including RNA virus infections. Honey bee antiviral responses include RNA interference and immune pathway activation, but their relative roles in antiviral defense are not well understood. To better characterize the mechanism(s) of honey bee antiviral defense, bees were infected with a model virus in the presence or absence of dsRNA, a virus associated molecular pattern. Regardless of sequence specificity, dsRNA reduced virus abundance. We utilized next generation sequencing to examine transcriptional responses triggered by virus and dsRNA at three time-points post-infection. Hundreds of genes exhibited differential expression in response to co-treatment of dsRNA and virus. Virus-infected bees had greater expression of genes involved in RNAi, Toll, Imd, and JAK-STAT pathways, but the majority of differentially expressed genes are not well characterized. To confirm the virus limiting role of two genes, including the well-characterized gene, dicer, and a probable uncharacterized cyclin dependent kinase in honey bees, we utilized RNAi to reduce their expression in vivo and determined that virus abundance increased, supporting their involvement in antiviral defense. Together, these results further our understanding of honey bee antiviral defense, particularly the role of a non-sequence specific dsRNA-mediated antiviral pathway.
Collapse
Affiliation(s)
- Laura M Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,Pollinator Health Center, Montana State University, Bozeman, MT, USA
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.,Pollinator Health Center, Montana State University, Bozeman, MT, USA
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA. .,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA. .,Pollinator Health Center, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
42
|
In search of evidence for the experience of pain in honeybees: A self-administration study. Sci Rep 2017; 7:45825. [PMID: 28374827 PMCID: PMC5379194 DOI: 10.1038/srep45825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/06/2017] [Indexed: 11/08/2022] Open
Abstract
Despite their common use as model organisms in scientific experiments, pain and suffering in insects remains controversial and poorly understood. Here we explore potential pain experience in honeybees (Apis mellifera) by testing the self-administration of an analgesic drug. Foragers were subjected to two different types of injuries: (i) a clip that applied continuous pressure to one leg and (ii) amputation of one tarsus. The bees were given a choice between two feeders, one offering pure sucrose solution, the other sucrose solution plus morphine. We found that sustained pinching had no effect on the amount of morphine consumed, and hence is unlikely to be experienced as painful. The amputated bees did not shift their relative preference towards the analgesic either, but consumed more morphine and more solution in total compared to intact controls. While our data do not provide evidence for the self-administration of morphine in response to pain, they suggest that injured bees increase their overall food intake, presumably to meet the increased energy requirements for an immune response caused by wounding. We conclude that further experiments are required to gain insights into potential pain-like states in honeybees and other insects.
Collapse
|
43
|
Simmons WR, Angelini DR. Chronic exposure to a neonicotinoid increases expression of antimicrobial peptide genes in the bumblebee Bombus impatiens. Sci Rep 2017; 7:44773. [PMID: 28322347 PMCID: PMC5359568 DOI: 10.1038/srep44773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/13/2017] [Indexed: 12/18/2022] Open
Abstract
Bumblebees are important pollinators in wild and agricultural settings. In recent decades pollinator declines have been linked to the effects of increased pesticide use and the spread of disease. Synergy between these factors has been suggested, but no physiological mechanism has been identified. This study examines the connection between neonicotinoid exposure and innate immune function in the bumblebee Bombus impatiens, which is an important wild and commercial pollinator in eastern North America. Experimental colonies in the field were enclosed and provided pollen and sugar syrup containing an agriculturally relevant range of imidacloprid concentrations. Bumblebees were collected from colonies over four weeks, and the expression of antimicrobial peptides was measured using multiplex quantitative real time PCR. Significant increases in the expression of abaecin, apidaecin and hymenoptaecin were found over time in treatments receiving moderate to high concentrations of the pesticide. Responses were dependent on time of exposure and dose. These results indicate that immune function in bumblebees is affected by neonicotinoid exposure and suggest a physiological mechanism by which neonicotinoids may impact the innate immune function of bumblebee pollinators in wild and agricultural habitats.
Collapse
Affiliation(s)
- William R Simmons
- Department of Biology, Colby College, 5734 Mayflower Hill, Waterville, ME, 04901, USA.,National Human Genome Research Institute, 49 Convent Drive, Bethesda, MD, 20892, USA
| | - David R Angelini
- Department of Biology, Colby College, 5734 Mayflower Hill, Waterville, ME, 04901, USA
| |
Collapse
|
44
|
Lattorff HMG, Popp M, Parsche S, Helbing S, Erler S. Effective population size as a driver for divergence of an antimicrobial peptide (Hymenoptaecin) in two common European bumblebee species. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- H. Michael G. Lattorff
- Institut für Biologie; Molekulare Ökologie; Martin-Luther-Universität Halle-Wittenberg; Hoher Weg 4 06099 Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e; Leipzig 04103 Germany
| | - Mario Popp
- Institut für Biologie; Molekulare Ökologie; Martin-Luther-Universität Halle-Wittenberg; Hoher Weg 4 06099 Halle (Saale) Germany
| | - Susann Parsche
- Institut für Biologie; Molekulare Ökologie; Martin-Luther-Universität Halle-Wittenberg; Hoher Weg 4 06099 Halle (Saale) Germany
| | - Sophie Helbing
- Institut für Biologie; Molekulare Ökologie; Martin-Luther-Universität Halle-Wittenberg; Hoher Weg 4 06099 Halle (Saale) Germany
| | - Silvio Erler
- Institut für Biologie; Molekulare Ökologie; Martin-Luther-Universität Halle-Wittenberg; Hoher Weg 4 06099 Halle (Saale) Germany
| |
Collapse
|
45
|
Barribeau SM, Schmid-Hempel P. Sexual healing: mating induces a protective immune response in bumblebees. J Evol Biol 2016; 30:202-209. [PMID: 27538716 DOI: 10.1111/jeb.12964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022]
Abstract
The prevalence of sexual, as opposed to clonal, reproduction given the many costs associated with sexual recombination has been an enduring question in evolutionary biology. In addition to these often discussed costs, there are further costs associated with mating, including the induction of a costly immune response, which leaves individuals prone to infection. Here, we test whether mating results in immune activation and susceptibility to a common, ecologically important, parasite of bumblebees. We find that mating does result in immune activation as measured by gene expression of known immune genes, but that this activation improves resistance to this parasite. We conclude that although mating can corrupt immunity in some systems, it can also enhance immunity in others.
Collapse
Affiliation(s)
- S M Barribeau
- Department of Biology, East Carolina University, Greenville, NC, USA.,Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - P Schmid-Hempel
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
46
|
Barreaux AMG, Barreaux P, Koella JC. Overloading the immunity of the mosquito Anopheles gambiae with multiple immune challenges. Parasit Vectors 2016; 9:210. [PMID: 27080035 PMCID: PMC4832557 DOI: 10.1186/s13071-016-1491-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/03/2016] [Indexed: 11/14/2022] Open
Abstract
Background Melanisation – the production and deposition of a layer of melanin that encapsulates many pathogens, including bacteria, filarial nematodes and malaria parasites is one of the main immune responses in mosquitoes. Can a high parasite load overload this immune response? If so, how is the melanisation response distributed among the individual parasites? Methods We considered these questions with the mosquito Anopheles gambiae by inoculating individuals simultaneously with one, two or three negatively charged Sephadex beads, and estimating the melanisation as the darkness of the bead (which ranges from about 0 for unmelanised beads to 100 for the most melanised beads of our experiment). Results As the number of beads increased, the average degree to which beads were melanised decreased from 71 to 50. While the darkness of the least melanised bead in a mosquito decreased from an average of 71 to 35, the darkness of the most strongly melanised one did not change with the number of beads. Conclusions As the number of beads increased, the mosquito’s immune response became overloaded. The mosquito’s response was to prioritise the melanisation of one bead rather than distributing its response over all beads. Such immune overloading may be an important factor underlying the evolution of resistance against vector-borne diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1491-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A M G Barreaux
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| | - P Barreaux
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - J C Koella
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| |
Collapse
|
47
|
Rahnamaeian M, Cytryńska M, Zdybicka-Barabas A, Dobslaff K, Wiesner J, Twyman RM, Zuchner T, Sadd BM, Regoes RR, Schmid-Hempel P, Vilcinskas A. Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Proc Biol Sci 2016; 282:20150293. [PMID: 25833860 PMCID: PMC4426631 DOI: 10.1098/rspb.2015.0293] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) and proteins are important components of innate
immunity against pathogens in insects. The production of AMPs is costly owing to
resource-based trade-offs, and strategies maximizing the efficacy of AMPs at low
concentrations are therefore likely to be advantageous. Here, we show the
potentiating functional interaction of co-occurring insect AMPs (the bumblebee
linear peptides hymenoptaecin and abaecin) resulting in more potent
antimicrobial effects at low concentrations. Abaecin displayed no detectable
activity against Escherichia coli when tested alone at
concentrations of up to 200 μM, whereas hymenoptaecin affected bacterial
cell growth and viability but only at concentrations greater than 2 μM.
In combination, as little as 1.25 μM abaecin enhanced the bactericidal
effects of hymenoptaecin. To understand these potentiating functional
interactions, we investigated their mechanisms of action using atomic force
microscopy and fluorescence resonance energy transfer-based quenching assays.
Abaecin was found to reduce the minimal inhibitory concentration of
hymenoptaecin and to interact with the bacterial chaperone DnaK (an
evolutionarily conserved central organizer of the bacterial chaperone network)
when the membrane was compromised by hymenoptaecin. These naturally occurring
potentiating interactions suggest that combinations of AMPs could be used
therapeutically against Gram-negative bacterial pathogens that have acquired
resistance to common antibiotics.
Collapse
Affiliation(s)
- Mohammad Rahnamaeian
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen 35394, Germany
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Akademicka Street 19, Lublin 20-033, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Akademicka Street 19, Lublin 20-033, Poland
| | - Kristin Dobslaff
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center of Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| | - Jochen Wiesner
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen 35394, Germany
| | - Richard M Twyman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen 35394, Germany TRM Ltd, PO Box 93, York YO43 3WE, UK
| | - Thole Zuchner
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center of Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790, USA
| | - Roland R Regoes
- ETH Zürich, Institute of Integrative Biology, ETH-Zentrum CHN, Universitätsstrasse 16, Zürich 8092, Switzerland
| | - Paul Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology, ETH-Zentrum CHN, Universitätsstrasse 16, Zürich 8092, Switzerland
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen 35394, Germany Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany
| |
Collapse
|
48
|
Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions. ADVANCES IN GENETICS 2016; 94:307-64. [PMID: 27131329 DOI: 10.1016/bs.adgen.2016.01.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although many insects successfully live in dangerous environments exposed to diverse communities of microbes, they are often exploited and killed by specialist pathogens. Studies of host-pathogen interactions (HPI) provide valuable insights into the dynamics of the highly aggressive coevolutionary arms race between entomopathogenic fungi (EPF) and their arthropod hosts. The host defenses are designed to exclude the pathogen or mitigate the damage inflicted while the pathogen responds with immune evasion and utilization of host resources. EPF neutralize their immediate surroundings on the insect integument and benefit from the physiochemical properties of the cuticle and its compounds that exclude competing microbes. EPF also exhibit adaptations aimed at minimizing trauma that can be deleterious to both host and pathogen (eg, melanization of hemolymph), form narrow penetration pegs that alleviate host dehydration and produce blastospores that lack immunogenic sugars/enzymes but facilitate rapid assimilation of hemolymph nutrients. In response, insects deploy an extensive armory of hemocytes and macromolecules, such as lectins and phenoloxidase, that repel, immobilize, and kill EPF. New evidence suggests that immune bioactives work synergistically (eg, lysozyme with antimicrobial peptides) to combat infections. Some proteins, including transferrin and apolipophorin III, also demonstrate multifunctional properties, participating in metabolism, homeostasis, and pathogen recognition. This review discusses the molecular intricacies of these HPI, highlighting the interplay between immunity, stress management, and metabolism. Increased knowledge in this area could enhance the efficacy of EPF, ensuring their future in integrated pest management programs.
Collapse
Affiliation(s)
- T M Butt
- Swansea University, Swansea, Wales, United Kingdom
| | - C J Coates
- Swansea University, Swansea, Wales, United Kingdom
| | | | - N A Ratcliffe
- Swansea University, Swansea, Wales, United Kingdom; Universidade Federal Fluminense, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Amsalem E, Galbraith DA, Cnaani J, Teal PEA, Grozinger CM. Conservation and modification of genetic and physiological toolkits underpinning diapause in bumble bee queens. Mol Ecol 2015; 24:5596-615. [PMID: 26453894 DOI: 10.1111/mec.13410] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 02/02/2023]
Abstract
Diapause is the key adaptation allowing insects to survive unfavourable conditions and inhabit an array of environments. Physiological changes during diapause are largely conserved across species and are hypothesized to be regulated by a conserved suite of genes (a 'toolkit'). Furthermore, it is hypothesized that in social insects, this toolkit was co-opted to mediate caste differentiation between long-lived, reproductive, diapause-capable queens and short-lived, sterile workers. Using Bombus terrestris queens, we examined the physiological and transcriptomic changes associated with diapause and CO2 treatment, which causes queens to bypass diapause. We performed comparative analyses with genes previously identified to be associated with diapause in the Dipteran Sarcophaga crassipalpis and with caste differentiation in bumble bees. As in Diptera, diapause in bumble bees is associated with physiological and transcriptional changes related to nutrient storage, stress resistance and core metabolic pathways. There is a significant overlap, both at the level of transcript and gene ontology, between the genetic mechanisms mediating diapause in B. terrestris and S. crassipalpis, reaffirming the existence of a conserved insect diapause genetic toolkit. However, a substantial proportion (10%) of the differentially regulated transcripts in diapausing queens have no clear orthologs in other species, and key players regulating diapause in Diptera (juvenile hormone and vitellogenin) appear to have distinct functions in bumble bees. We also found a substantial overlap between genes related to caste determination and diapause in bumble bees. Thus, our studies demonstrate an intriguing interplay between pathways underpinning adaptation to environmental extremes and the evolution of sociality in insects.
Collapse
Affiliation(s)
- Etya Amsalem
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - David A Galbraith
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Peter E A Teal
- Chemistry Research Unit, US Department of Agriculture, 1600-1700 SW, 23rd Drive, Gainesville, FL, 32608, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
50
|
Konrad M, Grasse AV, Tragust S, Cremer S. Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host. Proc Biol Sci 2015; 282:20141976. [PMID: 25473011 DOI: 10.1098/rspb.2014.1976] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (β-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens.
Collapse
Affiliation(s)
- Matthias Konrad
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg 3400, Austria
| | - Anna V Grasse
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg 3400, Austria
| | - Simon Tragust
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg 3400, Austria Evolution, Genetics and Behaviour, University of Regensburg, Universitätsstrasse 31, Regensburg 93040, Germany
| | - Sylvia Cremer
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|