1
|
Blankson HNA, Kamara RF, Barilar I, Andres S, Conteh OS, Dallenga T, Foray L, Maurer F, Kranzer K, Utpatel C, Niemann S. Molecular determinants of multidrug-resistant tuberculosis in Sierra Leone. Microbiol Spectr 2024; 12:e0240523. [PMID: 38289066 PMCID: PMC10923214 DOI: 10.1128/spectrum.02405-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/28/2023] [Indexed: 03/06/2024] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) management has become a serious global health challenge. Understanding its epidemic determinants on the regional level is crucial for developing effective control measures. We used whole genome sequencing data of 238 of Mycobacterium tuberculosis complex (MTBC) strains to determine drug resistance profiles, phylogeny, and transmission dynamics of MDR/rifampicin-resistant (RR) MTBC strains from Sierra Leone. Forty-two strains were classified as RR, 196 as MDR, 5 were resistant to bedaquiline (BDQ) and clofazimine (CFZ), but none was found to be resistant to fluoroquinolones. Sixty-one (26%) strains were resistant to all first-line drugs, three of which had additional resistance to BDQ/CFZ. The strains were classified into six major MTBC lineages (L), with strains of L4 being the most prevalent, 62% (n = 147), followed by L6 (Mycobacterium africanum) strains, (21%, n = 50). The overall clustering rate (using ≤d12 single-nucleotide polymorphism threshold) was 44%, stratified into 31 clusters ranging from 2 to 16 strains. The largest cluster (n = 16) was formed by sublineage 2.2.1 Beijing Ancestral 3 strains, which developed MDR several times. Meanwhile, 10 of the L6 strains had a primary MDR transmission. We observed a high diversity of drug resistance mutations, including borderline resistance mutations to isoniazid and rifampicin, and mutations were not detected by commercial assays. In conclusion, one in five strains investigated was resistant to all first-line drugs, three of which had evidence of BDQ/CFZ resistance. Implementation of interventions such as rapid diagnostics that prevent further resistance development and stop MDR-TB transmission chains in the country is urgently needed. IMPORTANCE A substantial proportion of MDR-TB strains in Sierra Leone were resistant against all first line drugs; however this makes the all-oral-six-month BPaLM regimen or other 6-9 months all oral regimens still viable, mainly because there was no FQ resistance.Resistance to BDQ was detected, as well as RR, due to mutations outside of the hotspot region. While the prevalence of those resistances was low, it is still cause for concern and needs to be closely monitored.
Collapse
Affiliation(s)
- Harriet N. A. Blankson
- Molecular and Experimental Mycobacteriology, Research Center Borstel Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Reims, Borstel, Germany
- School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Rashidatu Fouad Kamara
- National Leprosy and Tuberculosis Control Programme Sierra Leone, Freetown, Sierra Leone
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Reims, Borstel, Germany
| | - Sönke Andres
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| | - Ousman S. Conteh
- National Leprosy and Tuberculosis Control Programme Sierra Leone, Freetown, Sierra Leone
| | - Tobias Dallenga
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Reims, Borstel, Germany
- Cellular Microbiology, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| | - Lynda Foray
- National Leprosy and Tuberculosis Control Programme Sierra Leone, Freetown, Sierra Leone
| | - Florian Maurer
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Reims, Borstel, Germany
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel Leibniz Lung Center, Borstel, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Kranzer
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Reims, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Reims, Borstel, Germany
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
2
|
Ojo OT, Odeyemi AO. Non-Mycobacteria Tuberculosis in Africa: A Literature Review. Ethiop J Health Sci 2023; 33:913-918. [PMID: 38784502 PMCID: PMC11111205 DOI: 10.4314/ejhs.v33i5.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/01/2023] [Indexed: 05/25/2024] Open
Abstract
Background Non-tuberculous mycobacteria (NTM) have been reported to cause pulmonary and extrapulmonary infections. These NTMs are often misdiagnosed as MTB due to their similar clinical presentations to tuberculosis, leading to inappropriate treatment and increased morbidity and mortality rates. This literature review aims to provide an overview of the prevalence, clinical manifestations, diagnosis, and management of NTM infections in Africa. Methods A systematic search was performed using various electronic databases including PubMed, Scopus, and Web of Science. The search was limited to studies published in the English language from 2000 to 2021. The following keywords were used: "non-tuberculous mycobacteria", "NTM", "Africa", and "prevalence". Studies that focused solely on the Mycobacterium tuberculosis complex or those that did not report prevalence rates were excluded. Data extraction was performed on eligible studies. Overall, a total of 32 studies met the inclusion criteria and were included in this review. Results In our literature review, we identified a total of 32 studies that reported non-tuberculosis mycobacteria (NTM) in Africa. The majority of these studies were conducted in South Africa, followed by Ethiopia and Nigeria. The most commonly isolated NTM species were Mycobacterium avium complex (MAC), Mycobacterium fortuitum, and Mycobacterium abscessus. Many of the studies reported a high prevalence of NTM infections among HIV-positive individuals. Other risk factors for NTM infection included advanced age, chronic lung disease, and previous tuberculosis infection. Conclusion In conclusion, this literature review highlights the significant burden of non-tuberculosis mycobacteria infections in Africa. The prevalence of these infections is high, and they are often misdiagnosed due to their similarity to tuberculosis. The lack of awareness and diagnostic tools for non-tuberculosis mycobacteria infections in Africa is a major concern that needs to be addressed urgently. It is crucial to improve laboratory capacity and develop appropriate diagnostic algorithms for these infections.
Collapse
Affiliation(s)
- O T Ojo
- Department of Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
- Department of Medicine, College of Medicine, Lagos State University, Lagos, Nigeria
| | - A O Odeyemi
- Department of Medicine, College of Health Sciences, Osun state University, Osogbo, Nigeria
- Department of Internal Medicine, UNIOSUN Teaching Hospital, Osogbo, Nigeria
| |
Collapse
|
3
|
Silva ML, Cá B, Osório NS, Rodrigues PNS, Maceiras AR, Saraiva M. Tuberculosis caused by Mycobacterium africanum: Knowns and unknowns. PLoS Pathog 2022; 18:e1010490. [PMID: 35617217 PMCID: PMC9135246 DOI: 10.1371/journal.ppat.1010490] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis (TB), one of the deadliest threats to human health, is mainly caused by 2 highly related and human-adapted bacteria broadly known as Mycobacterium tuberculosis and Mycobacterium africanum. Whereas M. tuberculosis is widely spread, M. africanum is restricted to West Africa, where it remains a significant cause of tuberculosis. Although several differences have been identified between these 2 pathogens, M. africanum remains a lot less studied than M. tuberculosis. Here, we discuss the genetic, phenotypic, and clinical similarities and differences between strains of M. tuberculosis and M. africanum. We also discuss our current knowledge on the immune response to M. africanum and how it possibly articulates with distinct disease progression and with the geographical restriction attributed to this pathogen. Understanding the functional impact of the diversity existing in TB-causing bacteria, as well as incorporating this diversity in TB research, will contribute to the development of better, more specific approaches to tackle TB.
Collapse
Affiliation(s)
- Marta L. Silva
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Baltazar Cá
- INASA - Instituto Nacional de Saúde Pública da Guiné-Bissau, Bissau, Guinea-Bissau
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
| | - Nuno S. Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro N. S. Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Ana Raquel Maceiras
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
4
|
Panaiotov S, Madzharov D, Hodzhev Y. Biodiversity of Mycobacterium tuberculosis in Bulgaria Related to Human Migrations or Ecological Adaptation. Microorganisms 2022; 10:microorganisms10010146. [PMID: 35056596 PMCID: PMC8778017 DOI: 10.3390/microorganisms10010146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Bulgaria is among the 18 high-priority countries of the WHO European Region with high rates of tuberculosis. The causative agent of tuberculosis is thought to have emerged in Africa 70,000 years ago, or during the Neolithic age, and colonized the world through human migrations. The established main lineages of tuberculosis correlate highly with geography. The goal of our study was to investigate the biodiversity of Mycobacteriumtuberculosis in Bulgaria in association with human migration history during the last 10 centuries. We analyzed spoligotypes and MIRU-VNTR genotyping data of 655 drug-sensitive and 385 multidrug-resistant M. tuberculosis strains collected in Bulgaria from 2008 to 2018. We assigned the genotype of all isolates using SITVITWEB and MIRU-VNTRplus databases and software. We investigated the major well-documented historical events of immigration to Bulgaria that occurred during the last millennium. Genetic profiles demonstrated that, with the exceptions of 3 strains of Mycobacterium bovis and 18 strains of Lineage 2 (W/Beijing spoligotype), only Lineage 4 (Euro-American) was widely diffused in Bulgaria. Analysis of well-documented immigrations of Roma from the Indian subcontinent during the 10th to the 12th centuries, Turkic peoples from Central Asia in the medieval centuries, and more recently Armenians, Russians, and Africans in the 20th century influenced the biodiversity of M. tuberculosis in Bulgaria but only with genotypes of sublineages within the L4. We hypothesize that these sublineages were more virulent, or that ecological adaptation of imported M. tuberculosis genotypes was the main driver contributing to the current genetic biodiversity of M. tuberculosis in Bulgaria. We also hypothesize that some yet unknown local environmental factors may have been decisive in the success of imported genotypes. The ecological factors leading to local genetic biodiversity in M. tuberculosis are multifactorial and have not yet been fully clarified. The coevolution of long-lasting pathogen hosts should be studied, taking into account environmental and ecological changes.
Collapse
Affiliation(s)
- Stefan Panaiotov
- National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria;
- Correspondence: ; Tel.: +359-887-720-061
| | | | - Yordan Hodzhev
- National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria;
| |
Collapse
|
5
|
Molecular epidemiology and drug susceptibility profiles of Mycobacterium tuberculosis complex isolates from Northern Ghana. Int J Infect Dis 2021; 109:294-303. [PMID: 34273514 DOI: 10.1016/j.ijid.2021.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE We conducted a cross-sectional study in the five administrative regions of Northern Ghana to determine the diversity of Mycobacterium tuberculosis complex (MTBC) sub/lineages and their susceptibility to isoniazid (INH) and rifampicin (RIF). METHODS Sputum specimens were collected and cultured from 566 pulmonary tuberculosis patients reporting to 17 health facilities from 2015 to 2019. Mycobacterial isolates obtained from solid cultures were confirmed as members of the MTBC by PCR amplification of IS6110 and rpoß and assigned lineages and sub-lineages using spoligotyping. RESULTS Of 294 mycobacterial isolates recovered, MTBC species identified were: M. tuberculosis sensu stricto (Mtbss) 241 (82.0%), M. africanum 41 (13.9%) and M. bovis four (1.4%) with eight (2.7%) unidentified. The human-adapted lineages (L) identified (N=279) were L1 (8/279, 2.9%), L2 (15/279, 5.4%), L3 (7/279, 2.5%), L4 (208/279, 74.5%), L5 (13/279, 4.7%) and L6 (28/279, 10.0%) with three unidentified lineages. Among the 208 L4, the dominant sub-lineages in the region were the Cameroon 120/208 (57.7%) and Ghana 50/208 (24.0%). We found 4.4% (13/294) and 0.7% (2/294) of the patients infected with MTBC isolates resistant to INH only and RIF only, respectively, with 2.4% (7/294) being infected with MDR strains. Whereas L6 was associated with the elderly, we identified that the Ghana sub-lineage of L4 was associated with both INH and MDR (p<0.05), making them important TB pathogens in Northern Ghana and a growing public health concern.
Collapse
|
6
|
Ameke S, Asare P, Aboagye SY, Otchere ID, Osei-Wusu S, Yeboah-Manu D, Asante-Poku A. Molecular epidemiology of Mycobacterium tuberculosis complex in the Volta Region of Ghana. PLoS One 2021; 16:e0238898. [PMID: 33730036 PMCID: PMC7968653 DOI: 10.1371/journal.pone.0238898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/27/2021] [Indexed: 11/18/2022] Open
Abstract
CONTEXT Available molecular epidemiological data from recent studies suggest significant genetic variation between the different lineages of Mycobacterium tuberculosis complex (MTBC) and the MTBC lineages might have adapted to different human populations. AIM This study sought to determine the population structure of clinical MTBC isolates from the Volta Region of Ghana. METHODS The MTBC isolates obtained from collected sputum samples were identified by PCR detecting of IS6110 and genotyped using spoligotyping. Non-tuberculous mycobacterial isolates were characterized by amplification of the heat shock protein 65 (hsp65) gene and sequencing. The drug susceptibility profiles of the MTBCs determined using GenoType MTBDRplus. RESULTS One hundred and seventeen (117, 93.6%) out of 125 mycobacterial positive isolates were characterized as members of the MTBC of which M. tuberculosis sensu stricto (MTBss) and M. africanum (MAF) were respectively 94 (80.3%) and 23 (19.7%). In all, 39 distinct spoligotype patterns were obtained; 26 for MTBss and 13 for MAF lineages. Spoligotyping identified 89 (76%) Lineage 4, 16 (13.6%) Lineage 5, 7 (6.0%) Lineage 6, 3 (2.6%) Lineage 2, 1(0.9%) Lineage 3 and 1 (0.9%) Lineage 1. Among the Lineage 4 isolates, 62/89 (69.7%) belonged to Cameroon sub-lineage, 13 (14.7%) Ghana, 8 (9.0%) Haarlem, 2 (2.2%) LAM, 1 (1.1%) Uganda I, 1 (1.1%) X and the remaining two (2.2%) were orphan. Significant localization of MAF was found within the Ho municipality (n = 13, 29.5%) compared to the more cosmopolitan Ketu-South/Aflao (n = 3, 8.3%) (p-value = 0.017). Eight (8) non-tuberculous mycobacteria were characterized as M. abscessus (7) and M. fortuitum (1). CONCLUSION We confirmed the importance of M. africanum lineages as a cause of TB in the Volta region of Ghana.
Collapse
Affiliation(s)
- Selassie Ameke
- Bacteriology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Prince Asare
- Bacteriology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Samuel Yaw Aboagye
- Bacteriology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Isaac Darko Otchere
- Bacteriology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- Bacteriology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- Bacteriology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Adwoa Asante-Poku
- Bacteriology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Kone B, Somboro AM, Holl JL, Baya B, Togo AACG, Sarro YDS, Diarra B, Kodio O, Murphy RL, Bishai W, Maiga M, Doumbia S. Exploring the usefulness of molecular epidemiology of tuberculosis in Africa: a systematic review. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2020; 11:1-15. [PMID: 32714498 PMCID: PMC7373718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Tuberculosis (TB) is caused by Mycobacterium tuberculosis complex (MTBC) and remains a serious global public health threat, especially in resource-limited settings such as the African region. Recent developments in molecular epidemiology tools have significantly improved our understanding of TB transmission patterns and revealed the high genetic diversity of TB isolates across geographical entities in Africa. This study reports the results of a systematic review of current knowledge about MTBC strain diversity and geographical distribution in African regions. METHODS Search tools (PubMed, Embase, Popline, OVID and Africa Wide Information) were employed to identify the relevant literature about prevalence, strain diversity, and geographic distribution of MTBC infection in Africa. RESULTS A total of 59 articles from 739 citations met our inclusion criteria. Most articles reported about patients with presumptive pulmonary TB (73%), fewer reports were on retreatment and treatment failure cases (12%), and presumptive drug resistance cases (3%). Spoligotyping was the most used, alone in 21 studies and in parallel with either the Mycobacterial Interspersed Repetitive Units Variable Number of Tandem Repeats or the Restriction Fragment Length Polymorphism. Various TB lineages were observed across the African continent, with the originally European lineage 4 spotted in all countries studied. CONCLUSION TB molecular epidemiology tools have substantially improved our understanding of the MTBC circulating isolates, their evolution, and diversity in this highly endemic region of Africa. We found that only TB lineage 4 is present throughout all the continent and the clusters identified provides an extended insight into the disease transmission dynamics.
Collapse
Affiliation(s)
- Bourahima Kone
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Anou M Somboro
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
- Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurban, South Africa
| | | | - Bocar Baya
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Antieme ACG Togo
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Yeya Dit Sadio Sarro
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Bassirou Diarra
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Ousmane Kodio
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Robert L Murphy
- Institute for Global Health, Northwestern UniversityChicago, Illinois, USA
| | - William Bishai
- Center for TB Research, Johns Hopkins UniversityBaltimore, MD, USA
| | - Mamoudou Maiga
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
- Institute for Global Health, Northwestern UniversityChicago, Illinois, USA
| | - Seydou Doumbia
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| |
Collapse
|
8
|
A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nat Commun 2020; 11:2917. [PMID: 32518235 PMCID: PMC7283319 DOI: 10.1038/s41467-020-16626-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/13/2020] [Indexed: 02/03/2023] Open
Abstract
The human- and animal-adapted lineages of the Mycobacterium tuberculosis complex (MTBC) are thought to have expanded from a common progenitor in Africa. However, the molecular events that accompanied this emergence remain largely unknown. Here, we describe two MTBC strains isolated from patients with multidrug resistant tuberculosis, representing an as-yet-unknown lineage, named Lineage 8 (L8), seemingly restricted to the African Great Lakes region. Using genome-based phylogenetic reconstruction, we show that L8 is a sister clade to the known MTBC lineages. Comparison with other complete mycobacterial genomes indicate that the divergence of L8 preceded the loss of the cobF genome region - involved in the cobalamin/vitamin B12 synthesis - and gene interruptions in a subsequent common ancestor shared by all other known MTBC lineages. This discovery further supports an East African origin for the MTBC and provides additional molecular clues on the ancestral genome reduction associated with adaptation to a pathogenic lifestyle. The human- and animal-adapted lineages of the Mycobacterium tuberculosis complex (MTBC) are thought to be evolved from a common progenitor in Africa. Here, the authors identify two MTBC strains isolated from patients with multidrug-resistant tuberculosis, representing an as-yet-unknown lineage further supporting an East African origin for the MTBC.
Collapse
|
9
|
Ofori-Anyinam B, Riley AJ, Jobarteh T, Gitteh E, Sarr B, Faal-Jawara TI, Rigouts L, Senghore M, Kehinde A, Onyejepu N, Antonio M, de Jong BC, Gehre F, Meehan CJ. Comparative genomics shows differences in the electron transport and carbon metabolic pathways of Mycobacterium africanum relative to Mycobacterium tuberculosis and suggests an adaptation to low oxygen tension. Tuberculosis (Edinb) 2020; 120:101899. [PMID: 32090860 PMCID: PMC7049902 DOI: 10.1016/j.tube.2020.101899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 12/21/2022]
Abstract
The geographically restricted Mycobacterium africanum lineages (MAF) are primarily found in West Africa, where they account for a significant proportion of tuberculosis. Despite this phenomenon, little is known about the co-evolution of these ancient lineages with West Africans. MAF and M. tuberculosis sensu stricto lineages (MTB) differ in their clinical, in vitro and in vivo characteristics for reasons not fully understood. Therefore, we compared genomes of 289 MAF and 205 MTB clinical isolates from the 6 main human-adapted M. tuberculosis complex lineages, for mutations in their Electron Transport Chain and Central Carbon Metabolic pathway in order to explain these metabolic differences. Furthermore, we determined, in silico, whether each mutation could affect the function of genes encoding enzymes in these pathways. We found more mutations with the potential to affect enzymes in these pathways in MAF lineages compared to MTB lineages. We also found that similar mutations occurred in these pathways between MAF and some MTB lineages. Generally, our findings show further differences between MAF and MTB lineages that may have contributed to the MAF clinical and growth phenotype and indicate potential adaptation of MAF lineages to a distinct ecological niche, which we suggest includes areas characterized by low oxygen tension.
Collapse
Affiliation(s)
- Boatema Ofori-Anyinam
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia; Center for Global Health Security and Diplomacy, Ottawa, Canada
| | - Abi Janet Riley
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia
| | - Tijan Jobarteh
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia
| | - Ensa Gitteh
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia
| | - Binta Sarr
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia
| | | | - Leen Rigouts
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, Antwerp University, Antwerp, Belgium
| | - Madikay Senghore
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia
| | - Aderemi Kehinde
- Department of Medical Microbiology & Parasitology, University College Hospital, Ibadan, Nigeria; Department of Medical Microbiology & Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Nneka Onyejepu
- Center for Tuberculosis Research, Nigeria Institute of Medical Research, Lagos, Nigeria
| | - Martin Antonio
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia; Division of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Medical School, University of Warwick, Coventry, United Kingdom
| | - Bouke C de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Florian Gehre
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia; Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Conor J Meehan
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; School of Chemistry and Biosciences, University of Bradford, Bradford, United Kingdom.
| |
Collapse
|
10
|
Cá B, Fonseca KL, Sousa J, Maceiras AR, Machado D, Sanca L, Rabna P, Rodrigues PNS, Viveiros M, Saraiva M. Experimental Evidence for Limited in vivo Virulence of Mycobacterium africanum. Front Microbiol 2019; 10:2102. [PMID: 31552007 PMCID: PMC6746983 DOI: 10.3389/fmicb.2019.02102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/26/2019] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis remains a public health problem and a main cause of death to humans. Both Mycobacterium tuberculosis and Mycobacterium africanum cause tuberculosis. In contrast to M. tuberculosis, which is geographically spread, M. africanum is restricted to West Africa. Differences have also been found in the growth rate and type of disease caused by M. africanum, globally suggesting an attenuation of this bacteria. In this study, we used the mouse model of infection to follow the dynamics of M. africanum infection in terms of bacterial burdens and tissue pathology, as well as the immune response triggered. Our findings support a lower virulence of M. africanum as compared to M. tuberculosis, including in mice lacking IFN-γ, a major protective cytokine in tuberculosis. Furthermore, the lung immune response triggered by M. africanum infection in wild-type animals was characterized by a discrete influx of leukocytes and a modest transcriptional upregulation of inflammatory mediators. Our findings contribute to elucidate the pathogenesis of M. africanum, supporting the hypothesis that this is an attenuated member of the tuberculosis-causing bacteria. Understanding the biology of M. africanum and how it interacts with the host to establish infection will have implications for our knowledge of TB and for the development of novel and better tools to control this devastating disease.
Collapse
Affiliation(s)
- Baltazar Cá
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Instituto Nacional de Saúde Pública/Projeto de Saúde de Bandim, Bissau, Guinea-Bissau
| | - Kaori L Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jeremy Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Raquel Maceiras
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Diana Machado
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Lilica Sanca
- Instituto Nacional de Saúde Pública/Projeto de Saúde de Bandim, Bissau, Guinea-Bissau
| | - Paulo Rabna
- Instituto Nacional de Saúde Pública/Projeto de Saúde de Bandim, Bissau, Guinea-Bissau
| | - Pedro N S Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Miguel Viveiros
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Couvin D, Reynaud Y, Rastogi N. Two tales: Worldwide distribution of Central Asian (CAS) versus ancestral East-African Indian (EAI) lineages of Mycobacterium tuberculosis underlines a remarkable cleavage for phylogeographical, epidemiological and demographical characteristics. PLoS One 2019; 14:e0219706. [PMID: 31299060 PMCID: PMC6625721 DOI: 10.1371/journal.pone.0219706] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/29/2019] [Indexed: 11/18/2022] Open
Abstract
The East African Indian (EAI) and Central Asian (CAS) lineages of Mycobacterium tuberculosis complex (MTBC) mainly infect tuberculosis (TB) patients in the eastern hemisphere which contains many of the 22 high TB burden countries including China and India. We investigated if phylogeographical, epidemiological and demographical characteristics for these 2 lineages differed in SITVIT2 database. Genotyping results and associated data (age, sex, HIV serology, drug resistance) on EAI and CAS lineages (n = 10,974 strains) were extracted. Phylogenetic and Bayesian, and other statistical analyses were used to compare isolates. The male/female sex ratio was 907/433 (2.09) for the EAI group vs. 881/544 (1.62) for CAS (p-value<0.002). The proportion of younger patients aged 0-20 yrs. with CAS lineage was significantly higher than for EAI lineage (18.07% vs. 10.85%, p-value<0.0001). The proportion of multidrug resistant and extensively drug resistant TB among CAS group (30.63% and 1.03%, respectively) was significantly higher than in the EAI group (12.14% and 0.29%, respectively; p-value<0.0001). Lastly, the proportion of HIV+ patients was 20.34% among the EAI group vs. 3.46% in the CAS group (p-value<0.0001). This remarkable split observed between various parameters for these 2 lineages was further corroborated by their geographic distribution profile (EAI being predominantly found in Eastern-Coast of Africa, South-India and Southeast Asia, while CAS was predominantly found in Afghanistan, Pakistan, North India, Nepal, Middle-east, Libya, Sudan, Ethiopia, Kenya and Tanzania). Some geo-specificities were highlighted. This study demonstrated a remarkable cleavage for aforementioned characteristics of EAI and CAS lineages, showing a North-South divide along the tropic of cancer in Eastern hemisphere-mainly in Asia, and partly prolonged along the horn of Africa. Such studies would be helpful to better comprehend prevailing TB epidemic in context of its historical spread and evolutionary features, and provide clues to better treatment and patient-care in countries and regions concerned by these lineages.
Collapse
Affiliation(s)
- David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (DC); (NR)
| | - Yann Reynaud
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (DC); (NR)
| |
Collapse
|
12
|
Insights on the Mycobacterium tuberculosis population structure associated with migrants from Portuguese-speaking countries over a three-year period in Greater Lisbon, Portugal: Implications at the public health level. INFECTION GENETICS AND EVOLUTION 2019; 71:159-165. [PMID: 30928606 DOI: 10.1016/j.meegid.2019.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 11/22/2022]
Abstract
Tuberculosis among foreign-born patients is a key indicator of country-level epidemiological profiles and, of an increasing concern in Europe given the more intensified migratory waves of refugees. Since Portugal presents a lower immigrant-associated TB incidence rate when compared to other European countries, we sought to characterize the epidemiology and transmission dynamics among the foreign-born population coming from Portuguese-speaking countries that are associated with higher TB incidences. In the present study we analyzed 133 Mycobacterium tuberculosis isolates obtained from foreign-born individuals over a three-year period in Lisbon, Portugal, using molecular epidemiological methods such as spoligotyping and 24-loci MIRU-VNTR. Moreover, all strains were subjected to drug susceptibility testing. The genetic profiles obtained suggest that strain importation from Portuguese speaking countries plays a less important role in TB epidemiology but instead argue in favor of a high degree of penetrance of Portuguese endemic strains to the migrant population, including multidrug resistant strains, which is particularly relevant to active screening programs.
Collapse
|
13
|
Adesokan HK, Streicher EM, van Helden PD, Warren RM, Cadmus SIB. Genetic diversity of Mycobacterium tuberculosis complex strains isolated from livestock workers and cattle in Nigeria. PLoS One 2019; 14:e0211637. [PMID: 30785899 PMCID: PMC6382159 DOI: 10.1371/journal.pone.0211637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/17/2019] [Indexed: 12/02/2022] Open
Abstract
Molecular typing techniques are useful in understanding tuberculosis epidemiology; yet, they have been under-utilised at the human-animal interface in Nigeria. Sixty-four Mycobacterium tuberculosis complex (MTBC) isolates including 42 M. tuberculosis, 13 M. bovis and nine M. africanum obtained from livestock workers (LW, n = 47) and their cattle (n = 17) in three geographical zones of Nigeria were genotyped to identify and evaluate the genetic diversity of the circulating MTBC using spoligotyping. Distribution into clades of M. tuberculosis revealed; 45.3% Uganda I- [SIT46- cattle: 1; LW: 28], 14.1% Latin American Mediterranean- [SIT61, cattle: 1; LW: 8], and 1.6% T- [SIT53—LW: 1]. The M. bovis strains were 6.3% SB0944 [cattle: 4] and 1.6% each of SB0300, SB1026, SB1027 and SB1439 [cattle: 4]. Seventeen MTBC isolates [cattle: 7; LW: 10] yielded 14 new spoligotype patterns including three M. tuberculosis strains (three isolates), five M. bovis strains (five isolates) and six M. africanum strains (nine isolates), two of which belonged to MAF1. Only few families namely, the not previously described Uganda I-, LAM and SB0944 are predominant among the LW and cattle, with other types in lower prevalences. The strain population structure indicates an intriguing diversity and possible zoonotic linkage with consequences for TB control in the country. The need to employ newer molecular techniques such as Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeats and whole genome sequence to decipher circulating MTBC strains in Nigeria is advocated.
Collapse
Affiliation(s)
- Hezekiah K. Adesokan
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
- * E-mail: (HKA); (SIBC)
| | - Elizabeth M. Streicher
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Paul D. van Helden
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Rob M. Warren
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Simeon I. B. Cadmus
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
- Centre for Control and Prevention of Zoonoses, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
- * E-mail: (HKA); (SIBC)
| |
Collapse
|
14
|
Perdigão J, Silva C, Diniz J, Pereira C, Machado D, Ramos J, Silva H, Abilleira F, Brum C, Reis AJ, Macedo M, Scaini JL, Silva AB, Esteves L, Macedo R, Maltez F, Clemente S, Coelho E, Viegas S, Rabna P, Rodrigues A, Taveira N, Jordao L, Kritski A, Lapa E Silva JR, Mokrousov I, Couvin D, Rastogi N, Couto I, Pain A, McNerney R, Clark TG, von Groll A, Dalla-Costa ER, Rossetti ML, Silva PEA, Viveiros M, Portugal I. Clonal expansion across the seas as seen through CPLP-TB database: A joint effort in cataloguing Mycobacterium tuberculosis genetic diversity in Portuguese-speaking countries. INFECTION GENETICS AND EVOLUTION 2018; 72:44-58. [PMID: 29559379 PMCID: PMC6598853 DOI: 10.1016/j.meegid.2018.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/22/2022]
Abstract
Tuberculosis (TB) remains a major health problem within the Community of Portuguese Language Speaking Countries (CPLP). Despite the marked variation in TB incidence across its member-states and continued human migratory flux between countries, a considerable gap in the knowledge on the Mycobacterium tuberculosis population structure and strain circulation between the countries still exists. To address this, we have assembled and analysed the largest CPLP M. tuberculosis molecular and drug susceptibility dataset, comprised by a total of 1447 clinical isolates, including 423 multidrug-resistant isolates, from five CPLP countries. The data herein presented reinforces Latin American and Mediterranean (LAM) strains as the hallmark of M. tuberculosis populational structure in the CPLP coupled with country-specific differential prevalence of minor clades. Moreover, using high-resolution typing by 24-loci MIRU-VNTR, six cross-border genetic clusters were detected, thus supporting recent clonal expansion across the Lusophone space. To make this data available to the scientific community and public health authorities we developed CPLP-TB (available at http://cplp-tb.ff.ulisboa.pt), an online database coupled with web-based tools for exploratory data analysis. As a public health tool, it is expected to contribute to improved knowledge on the M. tuberculosis population structure and strain circulation within the CPLP, thus supporting the risk assessment of strain-specific trends. The Community of Portuguese Speaking Countries (CPLP) occupies a vast geographical area. Three CPLP countries are shortlisted in the WHO's list of Top 30 high-burden countries. Common Mycobacterium tuberculosis population structure denote historical strain flow. Cross-border clusters suggest recent intercontinental tuberculosis transmission. CPLP-TB: a novel strain database and framework for collaborative studies and strain tracing.
Collapse
Affiliation(s)
- João Perdigão
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| | - Carla Silva
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Jaciara Diniz
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Catarina Pereira
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Machado
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Jorge Ramos
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Hugo Silva
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Fernanda Abilleira
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Clarice Brum
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Ana J Reis
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Maíra Macedo
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - João L Scaini
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Ana B Silva
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Leonardo Esteves
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, Brazil
| | - Rita Macedo
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Fernando Maltez
- Serviço de Doenças Infecciosas, Hospital de Curry Cabral, Lisboa, Portugal
| | - Sofia Clemente
- Hospital da Divina Providência, Serviço de Doenças Infecciosas, Luanda, Angola
| | - Elizabeth Coelho
- Programa Nacional de Controlo da Tuberculose, Ministério da Saúde de Moçambique, Mozambique
| | - Sofia Viegas
- Instituto Nacional de Saúde, Ministério da Saúde de Moçambique, Mozambique
| | - Paulo Rabna
- Instituto Nacional de Saúde Pública, Projecto de Saúde de Bandim (INASA/PSB), Bissau, Guinea-Bissau
| | - Amabélia Rodrigues
- Instituto Nacional de Saúde Pública, Projecto de Saúde de Bandim (INASA/PSB), Bissau, Guinea-Bissau
| | - Nuno Taveira
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Portugal
| | - Luísa Jordao
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Afrânio Kritski
- Academic Tuberculosis Program, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Lapa E Silva
- Thoracic Diseases Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics (former Laboratory of Molecular Microbiology), St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière Abymes, Guadeloupe, France
| | - Isabel Couto
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ruth McNerney
- Lung Infection and Immunity Unit, UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Observatory, 7925, Cape Town, South Africa
| | - Taane G Clark
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Andrea von Groll
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Elis R Dalla-Costa
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, Brazil
| | - Maria Lúcia Rossetti
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, Brazil; Universidade Luterana do Brasil (ULBRA/RS), Porto Alegre, Brazil
| | - Pedro E A Silva
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Isabel Portugal
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
15
|
Sanoussi CN, Affolabi D, Rigouts L, Anagonou S, de Jong B. Genotypic characterization directly applied to sputum improves the detection of Mycobacterium africanum West African 1, under-represented in positive cultures. PLoS Negl Trop Dis 2017; 11:e0005900. [PMID: 28863143 PMCID: PMC5599059 DOI: 10.1371/journal.pntd.0005900] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/14/2017] [Accepted: 08/23/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND This study aimed to compare the prevalence of Mycobacterium tuberculosis complex (MTBc) lineages between direct genotyping (on sputum) and indirect genotyping (on culture), to characterize potential culture bias against difficult growers. METHODOLOGY/PRINCIPAL FINDINGS Smear-positive sputa from consecutive new tuberculosis patients diagnosed in Cotonou, (Benin) were included, before patients had started treatment. An aliquot of decontaminated sputum was used for direct spoligotyping, and another aliquot was cultured on Löwenstein Jensen (LJ) medium (90 days), for indirect spoligotyping. After DNA extraction, spoligotyping was done according to the standard method for all specimens, and patterns obtained from sputa were compared versus those from the derived culture isolates. From 199 patient's sputa, 146 (73.4%) yielded a positive culture. In total, direct spoligotyping yielded a pattern in 98.5% (196/199) of the specimens, versus 73.4% (146/199) for indirect spoligotyping on cultures. There was good agreement between sputum- and isolate derived patterns: 94.4% (135/143) at spoligotype level and 96.5% (138/143) at (sub)lineage level. Two of the 8 pairs with discrepant pattern were suggestive of mixed infection in sputum. Ancestral lineages (Lineage 1, and M. africanum Lineages 5 and 6) were less likely to grow in culture (OR = 0.30, 95%CI (0.14 to 0.64), p = 0.0016); especially Lineage 5 (OR = 0.37 95%CI (0.17 to 0.79), p = 0.010). Among modern lineages, Lineage 4 was over-represented in positive-culture specimens (OR = 3.01, 95%CI (1.4 to 6.51), p = 0.005). CONCLUSIONS/ SIGNIFICANCE Ancestral lineages, especially M. africanum West African 1 (Lineage 5), are less likely to grow in culture relative to modern lineages, especially M. tuberculosis Euro-American (Lineage 4). Direct spoligotyping on smear positive sputum is effective and efficient compared to indirect spoligotyping of cultures. It allows for a more accurate unbiased determination of the population structure of the M. tuberculosis complex. TRIAL REGISTRATION ClinicalTrials.gov NCT02744469.
Collapse
Affiliation(s)
- C. N’Dira Sanoussi
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Laboratoire de Référence des Mycobactéries, Centre National Hospitalier Universitaire de Pneumo-Phtisiologie de Cotonou, National Tuberculosis Programme, Cotonou, Benin
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Dissou Affolabi
- Laboratoire de Référence des Mycobactéries, Centre National Hospitalier Universitaire de Pneumo-Phtisiologie de Cotonou, National Tuberculosis Programme, Cotonou, Benin
| | - Leen Rigouts
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Séverin Anagonou
- Laboratoire de Référence des Mycobactéries, Centre National Hospitalier Universitaire de Pneumo-Phtisiologie de Cotonou, National Tuberculosis Programme, Cotonou, Benin
| | - Bouke de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
16
|
Zumla A, Otchere ID, Mensah GI, Asante-Poku A, Gehre F, Maeurer M, Bates M, Mwaba P, Ntoumi F, Yeboah-Manu D. Learning from epidemiological, clinical, and immunological studies on Mycobacterium africanum for improving current understanding of host–pathogen interactions, and for the development and evaluation of diagnostics, host-directed therapies, and vaccines for tuberculosis. Int J Infect Dis 2017; 56:126-129. [DOI: 10.1016/j.ijid.2016.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
|
17
|
Yeboah-Manu D, de Jong BC, Gehre F. The Biology and Epidemiology of Mycobacterium africanum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:117-133. [PMID: 29116632 DOI: 10.1007/978-3-319-64371-7_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
West Africa is the only region in the world where six out of seven mycobacterial lineages of human importance are endemic. In particular, two evolutionary ancient lineages, Mycobacterium africanum West Africa 1 (MTBC Lineage 5) and M. africanum West Africa 2 (MTBC Lineage 6) are of interest as they cause up to 40% of all pulmonary TB cases in some West African countries. Although these M. africanum lineages are closely related to M. tuberculosis sensu stricto lineages, they differ significantly in respect to biology, epidemiology and in their potential to cause disease in humans. Most importantly the M. africanum lineages are exclusive to West Africa. Although the exact mechanisms underlying this geographical restriction are still not understood, it is increasingly suspected that this is due to an adaptation of the bacteria to West African host populations. In this chapter, we summarize the geographical distribution of the M. africanum lineages within the region, describe biological and clinical differences and the consequent implications for TB control in West Africa. We also try to shed light on the geographical restriction, based on recently published analyses on whole genomes of M. africanum isolates.
Collapse
Affiliation(s)
- Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | | | - Florian Gehre
- Institute for Tropical Medicine, Antwerp, Belgium
- Medical Research Council (MRC) Unit, The Gambia Serrekunda, Gambia
| |
Collapse
|
18
|
Biological and Epidemiological Consequences of MTBC Diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:95-116. [PMID: 29116631 DOI: 10.1007/978-3-319-64371-7_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis is caused by different groups of bacteria belonging to the Mycobacterium tuberculosis complex (MTBC). The combined action of human factors, environmental conditions and bacterial virulence determine the extent and form of human disease. MTBC virulence is a composite of different clinical phenotypes such as transmission rate and disease severity among others. Clinical phenotypes are also influenced by cellular and immunological phenotypes. MTBC phenotypes are determined by the genotype, therefore finding genotypes responsible for clinical phenotypes would allow discovering MTBC virulence factors. Different MTBC strains display different cellular and clinical phenotypes. Strains from Lineage 5 and Lineage 6 are metabolically different, grow slower, and are less virulent. Also, at least certain groups of Lineage 2 and Lineage 4 strains are more virulent in terms of disease severity and human-to-human transmission. Because phenotypic differences are ultimately caused by genotypic differences, different genomic loci have been related to various cellular and clinical phenotypes. However, defining the impact of specific bacterial genomic loci on virulence when other bacterial determinants, human and environmental factors are also impacting the phenotype would contribute to a better knowledge of tuberculosis virulence and ultimately benefit tuberculosis control.
Collapse
|
19
|
Genetic Structure and Drug Susceptibility Patterns of Mycobacterium tuberculosis Complex Strains Responsible of Human Pulmonary Tuberculosis in the Major Rearing Region in Cameroon. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2904832. [PMID: 28119925 PMCID: PMC5227118 DOI: 10.1155/2016/2904832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 11/17/2022]
Abstract
Background. Cameroon this last decade continues to present a low contribution of M. africanum and M. bovis in human tuberculosis (TB), while M. bovis was prevalent in cattle but all these pieces of information only concerned West and Center regions. Methods. We carried out the first study in Adamaoua, one of the most rearing regions of Cameroon, on the genetic structure and drug susceptibility of the MTBC strains isolated from newly diagnosed sputum smear-positive patients aged 15 years and above. For that purpose, spoligotyping, a modified 15 standard MIRU/VNTR loci typing, and the proportion method were used. Results. Four hundred and thirty-seven MTBC isolates were analyzed by spoligotyping. Of these, 423 were identified as M. tuberculosis, within the Cameroon family being dominant with 278 (65.7%) isolates; twelve (2.75%) isolates were classified as M. africanum and two as M. bovis. MIRU/VNTR typing of the most prevalent sublineage (SIT 61) suggested that this lineage is not a unique clone as thought earlier but could constitute a group of strains implicated to different pocket of TB transmission. Only M. tuberculosis sublineages were associated with antituberculosis drug resistance. Conclusion. These results showed the weak contribution of M. africanum and M. bovis to human active pulmonary tuberculosis in Cameroon even in the rearing region.
Collapse
|
20
|
Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria. Clin Microbiol Rev 2016; 29:239-90. [PMID: 26912567 DOI: 10.1128/cmr.00055-15] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular typing has revolutionized epidemiological studies of infectious diseases, including those of a mycobacterial etiology. With the advent of fingerprinting techniques, many traditional concepts regarding transmission, infectivity, or pathogenicity of mycobacterial bacilli have been revisited, and their conventional interpretations have been challenged. Since the mid-1990s, when the first typing methods were introduced, a plethora of other modalities have been proposed. So-called molecular epidemiology has become an essential subdiscipline of modern mycobacteriology. It serves as a resource for understanding the key issues in the epidemiology of tuberculosis and other mycobacterial diseases. Among these issues are disclosing sources of infection, quantifying recent transmission, identifying transmission links, discerning reinfection from relapse, tracking the geographic distribution and clonal expansion of specific strains, and exploring the genetic mechanisms underlying specific phenotypic traits, including virulence, organ tropism, transmissibility, or drug resistance. Since genotyping continues to unravel the biology of mycobacteria, it offers enormous promise in the fight against and prevention of the diseases caused by these pathogens. In this review, molecular typing methods for Mycobacterium tuberculosis and nontuberculous mycobacteria elaborated over the last 2 decades are summarized. The relevance of these methods to the epidemiological investigation, diagnosis, evolution, and control of mycobacterial diseases is discussed.
Collapse
|
21
|
Deciphering the recent phylogenetic expansion of the originally deeply rooted Mycobacterium tuberculosis lineage 7. BMC Evol Biol 2016; 16:146. [PMID: 27363525 PMCID: PMC4929747 DOI: 10.1186/s12862-016-0715-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/22/2016] [Indexed: 11/10/2022] Open
Abstract
Background A deeply rooted phylogenetic lineage of Mycobacterium tuberculosis (M. tuberculosis) termed lineage 7 was discovered in Ethiopia. Whole genome sequencing of 30 lineage 7 strains from patients in Ethiopia was performed. Intra-lineage genome variation was defined and unique characteristics identified with a focus on genes involved in DNA repair, recombination and replication (3R genes). Results More than 800 mutations specific to M. tuberculosis lineage 7 strains were identified. The proportion of non-synonymous single nucleotide polymorphisms (nsSNPs) in 3R genes was higher after the recent expansion of M. tuberculosis lineage 7 strain started. The proportion of nsSNPs in genes involved in inorganic ion transport and metabolism was significantly higher before the expansion began. A total of 22346 bp deletions were observed. Lineage 7 strains also exhibited a high number of mutations in genes involved in carbohydrate transport and metabolism, transcription, energy production and conversion. Conclusions We have identified unique genomic signatures of the lineage 7 strains. The high frequency of nsSNP in 3R genes after the phylogenetic expansion may have contributed to recent variability and adaptation. The abundance of mutations in genes involved in inorganic ion transport and metabolism before the expansion period may indicate an adaptive response of lineage 7 strains to enable survival, potentially under environmental stress exposure. As lineage 7 strains originally were phylogenetically deeply rooted, this may indicate fundamental adaptive genomic pathways affecting the fitness of M. tuberculosis as a species. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0715-z) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Combined Genotypic, Phylogenetic, and Epidemiologic Analyses of Mycobacterium tuberculosis Genetic Diversity in the Rhône Alpes Region, France. PLoS One 2016; 11:e0153580. [PMID: 27128522 PMCID: PMC4851328 DOI: 10.1371/journal.pone.0153580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/31/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The present work relates to identification and a deep molecular characterization of circulating Mycobacterium tuberculosis complex (MTBC) strains in the Rhône-Alpes region, France from 2000 to 2010. It aimed to provide with a first snapshot of MTBC genetic diversity in conjunction with bacterial drug resistance, type of disease and available demographic and epidemiologic characteristics over an eleven-year period, in the south-east of France. METHODS Mycobacterium tuberculosis complex (MTBC) strains isolated in the Rhône-Alpes region, France (n = 2257, 1 isolate per patient) between 2000 and 2010 were analyzed by spoligotyping. MIRU-VNTR typing was applied on n = 1698 strains (with full results available for 974 strains). The data obtained were compared with the SITVIT2 database, followed by detailed genotyping, phylogenetic, and epidemiologic analyses in correlation with anonymized data on available demographic, and epidemiologic characteristics, and location of disease (pulmonary or extrapulmonary TB). RESULTS The most predominant spoligotyping clusters were SIT53/T1 (n = 346, 15.3%) > SIT50/H3 (n = 166, 7.35%) > SIT42/LAM9 (n = 125, 5.5%) > SIT1/Beijing (n = 72, 3.2%) > SIT47/H1 (n = 71, 3.1%). Evolutionary-recent strains belonging to the Principal Genetic Group (PGG) 2/3, or Euro-American lineages (T, LAM, Haarlem, X, S) were predominant and represented 1768 or 78.33% of all isolates. For strains having drug resistance information (n = 1119), any drug resistance accounted for 14.83% cases vs. 1.52% for multidrug resistance (MDR); and was significantly more associated with age group 21-40 years (p-value<0.001). Extra-pulmonary TB was more common among female patients while pulmonary TB predominated among men (p-value<0.001; OR = 2.16 95%CI [1.69; 2.77]). Also, BOV and CAS lineages were significantly well represented in patients affected by extra-pulmonary TB (p-value<0.001). The origin was known for 927/2257 patients: 376 (40.6%) being French-born vs. 551 (59.4%) Foreign-born. French patients were significantly older (mean age: 58.42 yrs 95%CI [56.04; 60.80]) than Foreign-born patients (mean age: 42.38 yrs. 95%CI [40.75; 44.0]). CONCLUSION The study underlined the importance of imported TB cases on the genetic diversity and epidemiologic characteristics of circulating MTBC strains in Rhône-Alpes region, France over a large time-period. It helps better understand intricate relationships between certain lineages and geographic origin of the patients, and pinpoints genotypic and phylogenetic specificities of prevailing MTBC strains. Lastly, it also demonstrated a slow decline in isolation of M. africanum lineage in this region between 2000 and 2010.
Collapse
|
23
|
Gehre F, Kumar S, Kendall L, Ejo M, Secka O, Ofori-Anyinam B, Abatih E, Antonio M, Berkvens D, de Jong BC. A Mycobacterial Perspective on Tuberculosis in West Africa: Significant Geographical Variation of M. africanum and Other M. tuberculosis Complex Lineages. PLoS Negl Trop Dis 2016; 10:e0004408. [PMID: 26964059 PMCID: PMC4786107 DOI: 10.1371/journal.pntd.0004408] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/05/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Phylogenetically distinct Mycobacterium tuberculosis lineages differ in their phenotypes and pathogenicity. Consequently, understanding mycobacterial population structures phylogeographically is essential for design, interpretation and generalizability of clinical trials. Comprehensive efforts are lacking to date to establish the West African mycobacterial population structure on a sub-continental scale, which has diagnostic implications and can inform the design of clinical TB trials. METHODOLOGY/PRINCIPAL FINDINGS We collated novel and published genotyping (spoligotyping) data and classified spoligotypes into mycobacterial lineages/families using TBLineage and Spotclust, followed by phylogeographic analyses using statistics (logistic regression) and lineage axis plot analysis in GenGIS, in which a phylogenetic tree constructed in MIRU-VNTRplus was analysed. Combining spoligotyping data from 16 previously published studies with novel data from The Gambia, we obtained a total of 3580 isolates from 12 countries and identified 6 lineages comprising 32 families. By using stringent analytical tools we demonstrate for the first time a significant phylogeographic separation between western and eastern West Africa not only of the two M. africanum (West Africa 1 and 2) but also of several major M. tuberculosis sensu stricto families, such as LAM10 and Haarlem 3. Moreover, in a longitudinal logistic regression analysis for grouped data we showed that M. africanum West Africa 2 remains a persistent health concern. CONCLUSIONS/SIGNIFICANCE Because of the geographical divide of the mycobacterial populations in West Africa, individual research findings from one country cannot be generalized across the whole region. The unequal geographical family distribution should be considered in placement and design of future clinical trials in West Africa.
Collapse
Affiliation(s)
- Florian Gehre
- Mycobacterial Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Fajara, The Gambia
| | - Samrat Kumar
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Lindsay Kendall
- Statistics and Bioinformatics Department, Medical Research Council (MRC) Unit, Fajara, The Gambia
| | - Mebrat Ejo
- Mycobacterial Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- University of Gondar, Gondar, Ethiopia
| | - Oumie Secka
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Fajara, The Gambia
| | - Boatema Ofori-Anyinam
- Mycobacterial Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Fajara, The Gambia
| | - Emmanuel Abatih
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Martin Antonio
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Fajara, The Gambia
| | - Dirk Berkvens
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bouke C. de Jong
- Mycobacterial Unit, Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Fajara, The Gambia
- Division of Infectious Diseases, Department of Medicine, New York University (NYU), New York, New York, United States of America
| |
Collapse
|
24
|
Abstract
The causative agent of human tuberculosis (TB), Mycobacterium tuberculosis, is an obligate pathogen that evolved to exclusively persist in human populations. For M. tuberculosis to transmit from person to person, it has to cause pulmonary disease. Therefore, M. tuberculosis virulence has likely been a significant determinant of the association between M. tuberculosis and humans. Indeed, the evolutionary success of some M. tuberculosis genotypes seems at least partially attributable to their increased virulence. The latter possibly evolved as a consequence of human demographic expansions. If co-evolution occurred, humans would have counteracted to minimize the deleterious effects of M. tuberculosis virulence. The fact that human resistance to infection has a strong genetic basis is a likely consequence of such a counter-response. The genetic architecture underlying human resistance to M. tuberculosis remains largely elusive. However, interactions between human genetic polymorphisms and M. tuberculosis genotypes have been reported. Such interactions are consistent with local adaptation and allow for a better understanding of protective immunity in TB. Future 'genome-to-genome' studies, in which locally associated human and M. tuberculosis genotypes are interrogated in conjunction, will help identify new protective antigens for the development of better TB vaccines.
Collapse
Affiliation(s)
- Daniela Brites
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland
| | | |
Collapse
|
25
|
Takiff HE, Feo O. Clinical value of whole-genome sequencing of Mycobacterium tuberculosis. THE LANCET. INFECTIOUS DISEASES 2015; 15:1077-1090. [PMID: 26277037 DOI: 10.1016/s1473-3099(15)00071-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/27/2015] [Accepted: 05/20/2015] [Indexed: 01/25/2023]
Abstract
Whole-genome sequencing (WGS) is now common as a result of new technologies that can rapidly sequence a complete bacterial genome for US$500 or less. Many studies have addressed questions about tuberculosis with WGS, and knowing the sequence of the entire genome, rather than only a few fragments, has greatly increased the precision of molecular epidemiology and contact tracing. Additionally, topics such as the mutation rate, drug resistance, the target of new drugs, and the phylogeny and evolution of the Mycobacterium tuberculosis complex bacteria have been elucidated by WGS. Nonetheless, WGS has not explained differences in transmissibility between strains, or why some strains are more virulent than others or more prone to development of multidrug resistance. With advances in technology, WGS of clinical specimens could become routine in high-income countries; however, its relevance will probably depend on easy to use software to efficiently process the sequences produced and accessible genomic databases that can be mined in future studies.
Collapse
Affiliation(s)
- Howard E Takiff
- Laboratorio de Genética Molecular, CMBC, Instituto Venezolano de Investigaciones Cientificas (IVIC), Caracas, Venezuela; Unité de Génétique Mycobactérienne, Insitut Pasteur, Paris, France.
| | - Oscar Feo
- Laboratorio de Genética Molecular, CMBC, Instituto Venezolano de Investigaciones Cientificas (IVIC), Caracas, Venezuela
| |
Collapse
|
26
|
Rabna P, Ramos J, Ponce G, Sanca L, Mané M, Armada A, Machado D, Vieira F, Gomes VF, Martins E, Colombatti R, Riccardi F, Perdigão J, Sotero J, Portugal I, Couto I, Atouguia J, Rodrigues A, Viveiros M. Direct Detection by the Xpert MTB/RIF Assay and Characterization of Multi and Poly Drug-Resistant Tuberculosis in Guinea-Bissau, West Africa. PLoS One 2015; 10:e0127536. [PMID: 26017968 PMCID: PMC4446334 DOI: 10.1371/journal.pone.0127536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/16/2015] [Indexed: 11/18/2022] Open
Abstract
Background This study aimed to evaluate the usefulness of the Xpert MTB/RIF assay for the rapid direct detection of M. tuberculosis complex (MTBC) strains and rifampicin resistance associated mutations in a resource-limited setting such as Guinea-Bissau and its implications in the management of tuberculosis (TB) and drug resistant tuberculosis, complementing the scarce information on resistance and genotypic diversity of MTBC strains in this West African country. Methods and Results This cross-sectional prospective study included 100 consecutive TB patients with positive acid-fast smears at two months of anti-tuberculosis treatment or in a re-treatment situation, between May and December 2012. Resistance to rifampicin was detected using the GeneXpert system and the Xpert MTB/RIF assay. MTBC isolates obtained with the BACTEC MGIT 960 system were tested for susceptibility to first- and second-line anti-tuberculosis drugs. Overall, the prevalence of multidrug-resistant tuberculosis (MDR-TB) was found to be 9 cases. Of these, 67% (6 patients) of confirmed MDR-TB cases had no past history of TB treatment and 33% (3 patients) were previously treated cases. Extensively drug-resistant TB was not found. Molecular typing of the MDR-TB strains revealed recent transmission patterns of imported MDR strains. Conclusions The Xpert MTB/RIF assay was reliable for the detection of rifampicin resistant MTBC strains directly from sputum samples of patients undergoing first-line treatment for two months, being more trustworthy than the simple presence of acid-fast bacilli in the smear. Its implementation is technically simple, does not require specialized laboratory infrastructures and is suitable for resource-limited settings when a regular source of electricity and maintenance is available as well as financial and operation sustainability is guaranteed by the health authorities. A high prevalence of MDR-TB among patients at risk of MDR-TB after two months of first-line treatment was found, in support of the WHO recommendations for its use in the management of this risk group.
Collapse
Affiliation(s)
- Paulo Rabna
- Instituto Nacional de Saúde Pública/Projecto de Saúde de Bandim (INASA/PSB), Bissau, Guiné-Bissau
| | - Jorge Ramos
- Grupo de Micobactérias, Unidade de Microbiologia Médica, Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT, UNL), Lisboa, Portugal
| | - Gema Ponce
- Unidade de Clínica Tropical, Instituto de Higiene e Medicina Tropical de Lisboa/Universidade NOVA de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Lilica Sanca
- Instituto Nacional de Saúde Pública/Projecto de Saúde de Bandim (INASA/PSB), Bissau, Guiné-Bissau
| | - Morto Mané
- Instituto Nacional de Saúde Pública/Projecto de Saúde de Bandim (INASA/PSB), Bissau, Guiné-Bissau
| | - Ana Armada
- Grupo de Micobactérias, Unidade de Microbiologia Médica, Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT, UNL), Lisboa, Portugal
- Centro de Malária e Outras Doenças Tropicais (CMDT), Instituto de Higiene e Medicina Tropical de Lisboa/Universidade NOVA de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Diana Machado
- Grupo de Micobactérias, Unidade de Microbiologia Médica, Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT, UNL), Lisboa, Portugal
| | - Fina Vieira
- Hospital Raoul Follereau, Bissau, Guiné-Bissau
| | - Victor F. Gomes
- Ministério da Saúde/Programa Nacional de Luta contra a Tuberculose, Bissau, Guiné-Bissau
| | | | | | - Fabio Riccardi
- Aid, Health and Development-Onlus—Ahead-Onlus, Rome, Italy
| | - João Perdigão
- Centro de Patogénese Molecular, URIA, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Sotero
- Centro de Patogénese Molecular, URIA, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel Portugal
- Centro de Patogénese Molecular, URIA, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel Couto
- Grupo de Micobactérias, Unidade de Microbiologia Médica, Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT, UNL), Lisboa, Portugal
| | - Jorge Atouguia
- Unidade de Clínica Tropical, Instituto de Higiene e Medicina Tropical de Lisboa/Universidade NOVA de Lisboa (IHMT/UNL), Lisboa, Portugal
- Centro de Malária e Outras Doenças Tropicais (CMDT), Instituto de Higiene e Medicina Tropical de Lisboa/Universidade NOVA de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Amabélia Rodrigues
- Instituto Nacional de Saúde Pública/Projecto de Saúde de Bandim (INASA/PSB), Bissau, Guiné-Bissau
| | - Miguel Viveiros
- Grupo de Micobactérias, Unidade de Microbiologia Médica, Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT, UNL), Lisboa, Portugal
- Centro de Malária e Outras Doenças Tropicais (CMDT), Instituto de Higiene e Medicina Tropical de Lisboa/Universidade NOVA de Lisboa (IHMT/UNL), Lisboa, Portugal
- * E-mail:
| |
Collapse
|
27
|
Ejo M, Gehre F, Barry MD, Sow O, Bah NM, Camara M, Bah B, Uwizeye C, Nduwamahoro E, Fissette K, De Rijk P, Merle C, Olliaro P, Burgos M, Lienhardt C, Rigouts L, de Jong BC. First insights into circulating Mycobacterium tuberculosis complex lineages and drug resistance in Guinea. INFECTION GENETICS AND EVOLUTION 2015; 33:314-9. [PMID: 26004194 PMCID: PMC4503999 DOI: 10.1016/j.meegid.2015.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 11/23/2022]
Abstract
First insight into resistance levels and genetic diversity of TB in Guinea. Rapid expansion of drug-resistance prone LAM10 Cameroon family. Population structure reveals less ‘ancestral’ TB than in surrounding countries. Knowledge of genetic diversity is relevant for tuberculosis control programs.
In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 “orphan” and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs.
Collapse
Affiliation(s)
- Mebrat Ejo
- Institute of Tropical Medicine (ITM), Antwerp, Belgium; University of Gondar, Gondar, Ethiopia
| | - Florian Gehre
- Institute of Tropical Medicine (ITM), Antwerp, Belgium; Medical Research Council (MRC), Fajara, Gambia.
| | | | - Oumou Sow
- Reference Laboratory for Mycobacteria, Conakry, Guinea; National University Hospital IgnaceDeen, Conakry, Guinea
| | | | - Mory Camara
- Reference Laboratory for Mycobacteria, Conakry, Guinea
| | - Boubacar Bah
- National University Hospital IgnaceDeen, Conakry, Guinea
| | | | | | | | - Pim De Rijk
- Institute of Tropical Medicine (ITM), Antwerp, Belgium
| | - Corinne Merle
- London School of Hygiene and Tropical Medicine, London, UK; UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), Geneva, Switzerland
| | - Piero Olliaro
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), Geneva, Switzerland; Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marcos Burgos
- Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| | - Christian Lienhardt
- Clinical Trial Division, International Union against Tuberculosis and Lung Disease, Paris, France; World Health Organization, Geneva, Switzerland
| | - Leen Rigouts
- Institute of Tropical Medicine (ITM), Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Bouke C de Jong
- Institute of Tropical Medicine (ITM), Antwerp, Belgium; Medical Research Council (MRC), Fajara, Gambia; New York University (NYU), New York, United States
| |
Collapse
|
28
|
Bañuls AL, Sanou A, Van Anh NT, Godreuil S. Mycobacterium tuberculosis: ecology and evolution of a human bacterium. J Med Microbiol 2015; 64:1261-1269. [PMID: 26385049 DOI: 10.1099/jmm.0.000171] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Some species of the Mycobacterium tuberculosis complex (MTBC), particularly Mycobacterium tuberculosis, which causes human tuberculosis (TB), are the first cause of death linked to a single pathogen worldwide. In the last decades, evolutionary studies have much improved our knowledge on MTBC history and have highlighted its long co-evolution with humans. Its ability to remain latent in humans, the extraordinary proportion of asymptomatic carriers (one-third of the entire human population), the deadly epidemics and the observed increasing level of resistance to antibiotics are proof of its evolutionary success. Many MTBC molecular signatures show not only that these bacteria are a model of adaptation to humans but also that they have influenced human evolution. Owing to the unbalance between the number of asymptomatic carriers and the number of patients with active TB, some authors suggest that infection by MTBC could have a protective role against active TB disease and also against other pathologies. However, it would be inappropriate to consider these infectious pathogens as commensals or symbionts, given the level of morbidity and mortality caused by TB.
Collapse
Affiliation(s)
- Anne-Laure Bañuls
- MIVEGEC, UMR CNRS 5290-IRD 224-Université de Montpellier, Montpellier, France.,Laboratory of Tuberculosis, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Adama Sanou
- MIVEGEC, UMR CNRS 5290-IRD 224-Université de Montpellier, Montpellier, France
| | - Nguyen Thi Van Anh
- Laboratory of Tuberculosis, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Sylvain Godreuil
- INSERM U 1058, Infection by HIV and by Agents with Mucocutaneous Tropism: from Pathogenesis to Prevention, Montpellier, France.,Université Montpellier 1, Montpellier, France.,Centre Hospitalier Régional Universitaire (CHRU) de Montpellier, Département de Bactériologie - Virologie, Montpellier, France
| |
Collapse
|
29
|
Ramazanzadeh R, Roshani D, Shakib P, Rouhi S. Prevalence and occurrence rate of Mycobacterium tuberculosis Haarlem family multi-drug resistant in the worldwide population: A systematic review and meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2015; 20:78-88. [PMID: 25767526 PMCID: PMC4354070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/03/2014] [Accepted: 10/14/2014] [Indexed: 11/05/2022]
Abstract
BACKGROUND Transmission of Mycobacterium tuberculosis (M. tuberculosis) can occur in different ways. Furthermore, drug resistant in M. tuberculosis family is a major problem that creates obstacles in treatment and control of tuberculosis (TB) in the world. One of the most prevalent families of M. tuberculosis is Haarlem, and it is associated with drug resistant. Our objectives of this study were to determine the prevalence and occurrence rate of M. tuberculosis Haarlem family multi-drug resistant (MDR) in the worldwide using meta-analysis based on a systematic review that performed on published articles. MATERIALS AND METHODS Data sources of this study were 78 original articles (2002-2012) that were published in the literatures in several databases including PubMed, Science Direct, Google Scholar, Biological abstracts, ISI web of knowledge and IranMedex. The articles were systematically reviewed for prevalence and rate of MDR. Data were analyzed using meta-analysis and random effects models with the software package Meta R, Version 2.13 (P < 0.10). RESULTS Final analysis included 28601 persons in 78 articles. The highest and lowest occurrence rate of Haarlem family in M. tuberculosis was in Hungary in 2006 (66.20%) with negative MDR-TB and in China in 2010 (0.8%), respectively. From 2002 to 2012, the lowest rate of prevalence was in 2010, and the highest prevalence rate was in 2012. Also 1.076% were positive for MDR and 9.22% were negative (confidence interval: 95%).0020. CONCLUSION Many articles and studies are performed in this field globally, and we only chose some of them. Further studies are needed to be done in this field. Our study showed that M. tuberculosis Haarlem family is prevalent in European countries. According to the presence of MDR that was seen in our results, effective control programs are needed to control the spread of drug-resistant strains, especially Haarlem family.
Collapse
Affiliation(s)
- Rashid Ramazanzadeh
- Department of Microbiology, Cellular and Molecular Research Center, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Daem Roshani
- Department of Epidemiology and Biostatistics, Medical School, Kurdistan University of Medical Sciences, Sanandaj, Iran,Kurdistan Research Center for Social Determinants of Health, Medical School, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Pegah Shakib
- Department of Microbiology, Cellular and Molecular Research Center, Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Samaneh Rouhi
- Department of Microbiology, Cellular and Molecular Research Center, Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran,Address for correspondence: Dr. Samaneh Rouhi, Department of Microbiology, Cellular and Molecular Research Center, Member of Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran. E-mail:
| |
Collapse
|
30
|
Gehre F, Ejo M, Fissette K, de Rijk P, Uwizeye C, Nduwamahoro E, Goovaerts O, Affolabi D, Gninafon M, Lingoupou FM, Barry MD, Sow O, Merle C, Olliaro P, Ba F, Sarr M, Piubello A, Noeske J, Antonio M, Rigouts L, de Jong BC. Shifts in Mycobacterial Populations and Emerging Drug-Resistance in West and Central Africa. PLoS One 2014; 9:e110393. [PMID: 25493429 PMCID: PMC4262193 DOI: 10.1371/journal.pone.0110393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/13/2014] [Indexed: 11/18/2022] Open
Abstract
In this study, we retrospectively analysed a total of 605 clinical isolates from six West or Central African countries (Benin, Cameroon, Central African Republic, Guinea-Conakry, Niger and Senegal). Besides spoligotyping to assign isolates to ancient and modern mycobacterial lineages, we conducted phenotypic drug-susceptibility-testing for each isolate for the four first-line drugs. We showed that phylogenetically modern Mycobacterium tuberculosis strains are more likely associated with drug resistance than ancient strains and predict that the currently ongoing replacement of the endemic ancient by a modern mycobacterial population in West/Central Africa might result in increased drug resistance in the sub-region.
Collapse
Affiliation(s)
- Florian Gehre
- Institute of Tropical Medicine (ITM), Antwerp, Belgium
- Medical Research Council (MRC), The Gambia Unit, Fajara, The Gambia
- * E-mail:
| | - Mebrat Ejo
- Institute of Tropical Medicine (ITM), Antwerp, Belgium
| | | | - Pim de Rijk
- Institute of Tropical Medicine (ITM), Antwerp, Belgium
| | | | | | | | | | | | - Fanny M. Lingoupou
- Laboratoire des Mycobactéries, Institut Pasteur de Bangui, Bangui, Central African Republic
| | | | - Oumou Sow
- Laboratoire de Reference des Mycobactéries, Conakry, Guinea-Conakry
| | - Corinne Merle
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Piero Olliaro
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), Geneva, Switzerland
| | - Fatoumata Ba
- Laboratoire de Reference des Mycobactéries, Dakar, Senegal
| | | | | | | | - Martin Antonio
- Medical Research Council (MRC), The Gambia Unit, Fajara, The Gambia
| | - Leen Rigouts
- Institute of Tropical Medicine (ITM), Antwerp, Belgium
| | - Bouke C de Jong
- Institute of Tropical Medicine (ITM), Antwerp, Belgium
- New York University, New York, United States of America
| |
Collapse
|
31
|
Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 2014; 26:431-44. [PMID: 25453224 PMCID: PMC4314449 DOI: 10.1016/j.smim.2014.09.012] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Abstract
The causative agent of human tuberculosis, Mycobacterium tuberculosis complex (MTBC), comprises seven phylogenetically distinct lineages associated with different geographical regions. Here we review the latest findings on the nature and amount of genomic diversity within and between MTBC lineages. We then review recent evidence for the effect of this genomic diversity on mycobacterial phenotypes measured experimentally and in clinical settings. We conclude that overall, the most geographically widespread Lineage 2 (includes Beijing) and Lineage 4 (also known as Euro-American) are more virulent than other lineages that are more geographically restricted. This increased virulence is associated with delayed or reduced pro-inflammatory host immune responses, greater severity of disease, and enhanced transmission. Future work should focus on the interaction between MTBC and human genetic diversity, as well as on the environmental factors that modulate these interactions.
Collapse
Affiliation(s)
- Mireia Coscolla
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland.
| |
Collapse
|
32
|
Aubry A, Sougakoff W, Bodzongo P, Delcroix G, Armand S, Millot G, Jarlier V, Courcol R, Lemaître N. First evaluation of drug-resistant Mycobacterium tuberculosis clinical isolates from Congo revealed misdetection of fluoroquinolone resistance by line probe assay due to a double substitution T80A-A90G in GyrA. PLoS One 2014; 9:e95083. [PMID: 24743770 PMCID: PMC3990612 DOI: 10.1371/journal.pone.0095083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/21/2014] [Indexed: 11/26/2022] Open
Abstract
Background Tuberculosis (TB) is one of the major public health problems in Congo. However, data concerning Mycobacterium tuberculosis drug resistance are lacking because of the insufficient processing capacity. So, the aim of this study was to investigate for the first time the resistance patterns and the strain lineages of a sample of M. tuberculosis complex (MTBC) isolates collected in the two main cities of Congo. Methods Over a 9-day period, 114 smear-positive sputa isolated from 114 patients attending centers for the diagnosis and treatment of TB in Brazzaville and Pointe Noire were collected for culture and drug susceptibility testing (DST). Detection of mutations conferring drug resistance was performed by using line probe assays (GenoType MTBDRplus and MTBDRsl) and DNA sequencing. Strain lineages were determined by MIRU-VNTR genotyping. Results Of the 114 sputa, 46 were culture positive for MTBC. Twenty-one (46%) were resistant to one or more first-line antiTB drugs. Of these, 15 (71%) were multidrug resistant (MDR). The most prevalent mutations involved in rifampin and isoniazid resistance, D516V (60%) in rpoB and S315T (87%) in katG respectively, were well detected by MTBDRplus assay. All the 15 MDR strains were susceptible to fluoroquinolone and injectable second-line drug. No mutation was detected in the rrs locus involved in resistance to amikacin and capreomycin by both the MTBDRsl assay and DNA sequencing. By contrast, 9 MDR strains belonging to the same cluster related to T-family were identified as being falsely resistant to fluoroquinolone by the MTBDRsl assay due to the presence of a double substitution T80A-A90G in GyrA. Conclusions Taken together, these data revealed a possible spread of a particular MDR clone in Congo, misidentified as fluoroquinolone resistant by MTBDRsl assay. Thus, this test cannot replace gold-standard culture method and should be interpreted carefully in view of the patient's native land.
Collapse
Affiliation(s)
- Alexandra Aubry
- UPMC Université, Paris, France
- INSERM U1135, Paris, France
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Wladimir Sougakoff
- UPMC Université, Paris, France
- INSERM U1135, Paris, France
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | | | - Guy Delcroix
- Laboratoire de Bactériologie-Hygiène du CHRU, Lille, France
| | - Sylvie Armand
- Laboratoire de Bactériologie-Hygiène du CHRU, Lille, France
| | - Gérald Millot
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Vincent Jarlier
- UPMC Université, Paris, France
- INSERM U1135, Paris, France
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - René Courcol
- Laboratoire de Bactériologie-Hygiène du CHRU, Lille, France
- Université Lille Nord de France, Lille, France
- UDSL, F-59000 Lille, France
- INSERM U1019-UMR8204, Lille, France
| | - Nadine Lemaître
- Laboratoire de Bactériologie-Hygiène du CHRU, Lille, France
- Université Lille Nord de France, Lille, France
- UDSL, F-59000 Lille, France
- INSERM U1019-UMR8204, Lille, France
- * E-mail:
| |
Collapse
|
33
|
Gehre F, Antonio M, Otu JK, Sallah N, Secka O, Faal T, Owiafe P, Sutherland JS, Adetifa IM, Ota MO, Kampmann B, Corrah T, de Jong BC. Immunogenic Mycobacterium africanum strains associated with ongoing transmission in The Gambia. Emerg Infect Dis 2014; 19:1598-1604. [PMID: 24050158 PMCID: PMC3810728 DOI: 10.3201/eid1910.121023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In West Africa, Mycobacterium tuberculosis strains co-circulate with M. africanum, and both pathogens cause pulmonary tuberculosis in humans. Given recent findings that M. tuberculosis T-cell epitopes are hyperconserved, we hypothesized that more immunogenic strains have increased capacity to spread within the human host population. We investigated the relationship between the composition of the mycobacterial population in The Gambia, as measured by spoligotype analysis, and the immunogenicity of these strains as measured by purified protein derivative–induced interferon-γ release in ELISPOT assays of peripheral blood mononuclear cells. We found a positive correlation between strains with superior spreading capacity and their relative immunogenicity. Although our observation is true for M. tuberculosis and M. africanum strains, the association was especially pronounced in 1 M. africanum sublineage, characterized by spoligotype shared international type 181, which is responsible for 20% of all tuberculosis cases in the region and therefore poses a major public health threat in The Gambia.
Collapse
|
34
|
Firdessa R, Berg S, Hailu E, Schelling E, Gumi B, Erenso G, Gadisa E, Kiros T, Habtamu M, Hussein J, Zinsstag J, Robertson BD, Ameni G, Lohan AJ, Loftus B, Comas I, Gagneux S, Tschopp R, Yamuah L, Hewinson G, Gordon SV, Young DB, Aseffa A. Mycobacterial lineages causing pulmonary and extrapulmonary tuberculosis, Ethiopia. Emerg Infect Dis 2013; 19:460-3. [PMID: 23622814 PMCID: PMC3647644 DOI: 10.3201/eid1903.120256] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Molecular typing of 964 specimens from patients in Ethiopia with lymph node or pulmonary tuberculosis showed a similar distribution of Mycobacterium tuberculosis strains between the 2 disease manifestations and a minimal role for M. bovis. We report a novel phylogenetic lineage of M. tuberculosis strongly associated with the Horn of Africa.
Collapse
|
35
|
Gehre F, Antonio M, Faïhun F, Odoun M, Uwizeye C, de Rijk P, de Jong BC, Affolabi D. The first phylogeographic population structure and analysis of transmission dynamics of M. africanum West African 1--combining molecular data from Benin, Nigeria and Sierra Leone. PLoS One 2013; 8:e77000. [PMID: 24143198 PMCID: PMC3797137 DOI: 10.1371/journal.pone.0077000] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium africanum is an important cause of tuberculosis (TB) in West Africa. So far, two lineages called M. africanum West African 1 (MAF1) and M. africanum West African 2 (MAF2) have been defined. Although several molecular studies on MAF2 have been conducted to date, little is known about MAF1. As MAF1 is mainly present in countries around the Gulf of Guinea we aimed to estimate its prevalence in Cotonou, the biggest city in Benin. Between 2005–06 we collected strains in Cotonou/Benin and genotyped them using spoligo- and 12-loci-MIRU-VNTR-typing. Analyzing 194 isolates, we found that 31% and 6% were MAF1 and MAF2, respectively. Therefore Benin is one of the countries with the highest prevalence (37%) of M. africanum in general and MAF1 in particular. Moreover, we combined our data from Benin with publicly available genotyping information from Nigeria and Sierra Leone, and determined the phylogeographic population structure and genotypic clustering of MAF1. Within the MAF1 lineage, we identified an unexpected great genetic variability with the presence of at least 10 sub-lineages. Interestingly, 8 out of 10 of the discovered sub-lineages not only clustered genetically but also geographically. Besides showing a remarkable local restriction to certain regions in Benin and Nigeria, the sub-lineages differed dramatically in their capacity to transmit within the human host population. While identifying Benin as one of the countries with the highest overall prevalence of M. africanum, this study also contains the first detailed description of the transmission dynamics and phylogenetic composition of the MAF1 lineage.
Collapse
Affiliation(s)
- Florian Gehre
- Medical Research Council (MRC) Unit, Fajara, The Gambia
- Institute for Tropical Medicine (ITM), Antwerp, Belgium
- * E-mail:
| | | | - Frank Faïhun
- Laboratoire de Reference des Mycobacteries, Cotonou, Benin
| | - Mathieu Odoun
- Laboratoire de Reference des Mycobacteries, Cotonou, Benin
| | | | - Pim de Rijk
- Institute for Tropical Medicine (ITM), Antwerp, Belgium
| | - Bouke C. de Jong
- Medical Research Council (MRC) Unit, Fajara, The Gambia
- Institute for Tropical Medicine (ITM), Antwerp, Belgium
- New York University (NYU), New York, New York, United States of America
| | | |
Collapse
|
36
|
Diversity of Mycobacterium tuberculosis isolates from new pulmonary tuberculosis cases in Addis Ababa, Ethiopia. Tuberc Res Treat 2012; 2012:892079. [PMID: 23227330 PMCID: PMC3513727 DOI: 10.1155/2012/892079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 10/18/2012] [Indexed: 11/18/2022] Open
Abstract
Understanding the genetic diversity of Mycobacterium tuberculosis is needed for a better understanding of the epidemiology of TB and could have implications for the development of new diagnostics, drugs, and vaccines. M. tuberculosis isolates were characterized using spoligotyping and were compared with the SpoIDB4 database of the Pasteur Institute of Guadeloupe. A total of 53 different patterns were identified among 192 isolates examined. 169 of the isolates were classified into one of the 33 shared SITs, whereas the remaining 23 corresponded to 20 orphan patterns. 54% of the isolates were ascribed to the T family, a family which has not been well defined to date. Other prominent families were CAS, Haarlem, LAM, Beijing, and Unknown comprising 26%, 13%, 2.6%, 0.5%, and 2.1%, respectively. Among HIV-positive patients, 10 patterns were observed among 25 isolates. The T (38.5%), H (26.9%), and CAS (23.1%) families were the most common among HIV-positive individuals. The diversity of the M. tuberculosis strains found in this study is very high, and there was no difference in the distribution of families in HIV-positive and HIV-negative TB patients except the H family. Tuberculosis transmission in Addis Ababa is due to only the modern M. tuberculosis families (CAS, LAM, T, Beijing, Haarlem, and U).
Collapse
|
37
|
Lahlou O, Millet J, Chaoui I, Sabouni R, Filali-Maltouf A, Akrim M, El Mzibri M, Rastogi N, El Aouad R. The genotypic population structure of Mycobacterium tuberculosis complex from Moroccan patients reveals a predominance of Euro-American lineages. PLoS One 2012; 7:e47113. [PMID: 23077552 PMCID: PMC3471964 DOI: 10.1371/journal.pone.0047113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/12/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) remains a major health problem in Morocco. Characterization of circulating Mycobacterium tuberculosis genotypic lineages, important to understand the dynamic of the disease, was hereby addressed for the first time at a national level. METHODOLOGY/PRINCIPAL FINDINGS Spoligotyping was performed on a panel of 592 M. tuberculosis complex strains covering a 2-year period (2004-2006). It identified 129 patterns: 105 (n = 568 strains) corresponded to a SIT number in the SITVIT2 database, while 24 patterns were labeled as orphan. A total of 523 (88.3%) strains were clustered vs. 69 or 11.7% unclustered. Classification of strains within 3 large phylogenetical groups was as follows: group 1- ancestral/TbD1+/PGG1 (EAI, Bovis, Africanum), group 2- modern/TbD1-/PGG1 group (Beijing, CAS), group 3- evolutionary recent/TbD1-/PGG2/3 (Haarlem, X, S, T, LAM; alternatively designated as the Euro-American lineage). As opposed to group 3 strains (namely LAM, Haarlem, and T) that predominated (86.5% of all isolates), 6 strains belonged to group 2 (Beijing n = 5, CAS n = 1), and 3 strains (BOV_1 n = 2, BOV_4-CAPRAE) belonged to ancestral group 1 (EAI and AFRI lineage strains were absent). 12-loci MIRU-VNTR typing of the Casablanca subgroup (n = 114 strains) identified 71 patterns: 48 MITs and 23 orphan patterns; it allowed to reduce the clustering rate from 72.8% to 29.8% and the recent transmission rate from 64% to 20.2%. CONCLUSION The M. tuberculosis population structure in Morocco is highly homogeneous, and is characterized by the predominance of the Euro-American lineages, namely LAM, Haarlem, and T, which belong to the "evolutionary recent" TbD1-/PGG2/3 phylogenetic group. The combination of spoligotyping and MIRUs decreased the clustering rate significantly, and should now be systematically applied in larger studies. The methods used in this study appear well suited to monitor the M. tuberculosis population structure for an enhanced TB management program in Morocco.
Collapse
Affiliation(s)
- Ouafae Lahlou
- National Tuberculosis Reference Laboratory, National Institute of Hygiene, Rabat, Morocco
| | - Julie Millet
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Imane Chaoui
- Biology and Medical Research Unit, National Centre of Energy, Nuclear Sciences and Techniques, Rabat, Morocco
| | - Radia Sabouni
- National Tuberculosis Reference Laboratory, National Institute of Hygiene, Rabat, Morocco
| | - Abdelkarim Filali-Maltouf
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, University of Mohammed V-Agdal, Rabat, Morocco
| | - Mohammed Akrim
- National Tuberculosis Reference Laboratory, National Institute of Hygiene, Rabat, Morocco
| | - Mohammed El Mzibri
- Biology and Medical Research Unit, National Centre of Energy, Nuclear Sciences and Techniques, Rabat, Morocco
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Rajae El Aouad
- National Tuberculosis Reference Laboratory, National Institute of Hygiene, Rabat, Morocco
| |
Collapse
|
38
|
Gumi B, Schelling E, Berg S, Firdessa R, Erenso G, Mekonnen W, Hailu E, Melese E, Hussein J, Aseffa A, Zinsstag J. Zoonotic transmission of tuberculosis between pastoralists and their livestock in South-East Ethiopia. ECOHEALTH 2012; 9:139-49. [PMID: 22526748 PMCID: PMC3415617 DOI: 10.1007/s10393-012-0754-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 01/26/2012] [Accepted: 02/01/2012] [Indexed: 05/31/2023]
Abstract
Despite huge global efforts in tuberculosis (TB) control, pastoral areas remain under-investigated. During two years sputum and fine needle aspirate (FNA) specimens were collected from 260 Ethiopian pastoralists of Oromia and Somali Regional States with suspected pulmonary TB and from 32 cases with suspected TB lymphadenitis. In parallel, 207 suspected tuberculous lesions were collected from cattle, camels and goats at abattoirs. All specimens were processed and cultured for mycobacteria; samples with acid-fast stained bacilli (AFB) were further characterized by molecular methods including genus and deletion typing as well as spoligotyping. Non-tuberculous mycobacteria (NTM) were sequenced at the 16S rDNA locus. Culturing of AFB from human sputum and FNA samples gave a yield of 174 (67%) and 9 (28%) isolates, respectively. Molecular typing was performed on 173 of these isolates and 160 were confirmed as Mycobacterium tuberculosis, three as M. bovis, and the remaining 10 were typed as NTMs. Similarly, 48 AFB isolates (23%) yielded from tuberculous lesions of livestock, of which 39 were molecular typed, including 24 M. bovis and 4 NTMs from cattle, 1 M. tuberculosis and 1 NTM from camels and 9 NTMs from goats. Isolation of M. bovis from humans and M. tuberculosis from livestock suggests transmission between livestock and humans in the pastoral areas of South-East Ethiopia.
Collapse
Affiliation(s)
- Balako Gumi
- Jimma University College of Agriculture and Veterinary Medicine, P.O. Box 307, Jimma, Ethiopia
| | - Esther Schelling
- Swiss Tropical and Public Health Institute, P.O. Box, 4002 Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Stefan Berg
- Animal Health and Veterinary Laboratories Agency, New Haw, Surrey KT15 3NB UK
| | - Rebuma Firdessa
- Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Girume Erenso
- Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Wondale Mekonnen
- Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Elena Hailu
- Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Ermias Melese
- Jimma University College of Agriculture and Veterinary Medicine, P.O. Box 307, Jimma, Ethiopia
| | - Jemal Hussein
- Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, P.O. Box, 4002 Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
39
|
Sanchez-Padilla E, Dlamini T, Ascorra A, Rüsch-Gerdes S, Tefera ZD, Calain P, de la Tour R, Jochims F, Richter E, Bonnet M. High prevalence of multidrug-resistant tuberculosis, Swaziland, 2009-2010. Emerg Infect Dis 2012; 18:29-37. [PMID: 22260950 PMCID: PMC3310109 DOI: 10.3201/eid1801.110850] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One third of previously treated patients had MDR TB. In Africa, although emergence of multidrug-resistant (MDR) tuberculosis (TB) represents a serious threat in countries severely affected by the HIV epidemic, most countries lack drug-resistant TB data. This finding was particularly true in the Kingdom of Swaziland, which has the world’s highest HIV and TB prevalences. Therefore, we conducted a national survey in 2009–2010 to measure prevalence of drug-resistant TB. Of 988 patients screened, 420 new case-patients and 420 previously treated case-patients met the study criteria. Among culture-positive patients, 15.3% new case-patients and 49.5% previously treated case-patients harbored drug-resistant strains. MDR TB prevalence was 7.7% and 33.8% among new case-patients and previously treated case-patients, respectively. HIV infection and past TB treatment were independently associated with MDR TB. The findings assert the need for wide-scale intervention in resource-limited contexts such as Swaziland, where diagnostic and treatment facilities and health personnel are lacking.
Collapse
|
40
|
Ani AE, Diarra B, Dahle UR, Lekuk C, Yetunde F, Somboro AM, Anatole T, Idoko J. Identification of mycobacteria and other acid fast organisms associated with pulmonary disease. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2011. [DOI: 10.1016/s2222-1808(11)60061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
41
|
Smith NH. The global distribution and phylogeography of Mycobacterium bovis clonal complexes. INFECTION GENETICS AND EVOLUTION 2011; 12:857-65. [PMID: 21945588 DOI: 10.1016/j.meegid.2011.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 01/16/2023]
Abstract
The consequences of the clonality of the Mycobacterium tuberculosis complex are described and, in particular, the identification of clonal complexes. Clonal complexes are groups of strains all descended from a single cell that was the most recent common ancestor (MRCA) of the clonal complex and all bearing characteristics derived from the MRCA. Three clonal complexes of Mycobacterium bovis have been identified and called African 1, African 2 and European 1. Members of each clonal complex have a distinct spoligotype signature and are identified by a unique deletion present in each member of the clonal complex. The African 1 and African 2 clonal complexes are geographically localised to Central-West Africa and East Africa, respectively and have not been found in cattle outside of these regions. However, the European 1 clonal complex is globally distributed and has been identified in the British Isles, former British colonies, The Americas as well as Kazakhstan and Korea. It is suggested that modern cattle breeds, such as Herefords, bred in the UK in the 18th Century, would provide a good vehicle for the global distribution of this closely related group of strains. The phylogeography of M. bovis and M. tuberculosis are compared and in particular the diversity of M. tuberculosis in Africa, compared with the localised dominance of M. bovis clonal complexes, is highlighted. Finally, the practical use of M. bovis clonal complexes is reviewed, however, a more significant use of M. bovis clonal complexes is to generate testable hypotheses to understand the pathogenicity and spread of this important veterinary pathogen. This first look at the phylogeography of M. bovis clonal complexes has shown surprising geographical localisation of molecular types but also hints strongly that much of the worldwide distribution of bovine pathogen resulted from human trade in cattle within the last 200 years.
Collapse
Affiliation(s)
- Noel H Smith
- Animal Health and Veterinary Laboratories Agency, Weybridge, New Haw, Surrey KT15 3NB, UK.
| |
Collapse
|
42
|
Thumamo BP, Asuquo AE, Abia-Bassey LN, Lawson L, Hill V, Zozio T, Emenyonu N, Eko FO, Rastogi N. Molecular epidemiology and genetic diversity of Mycobacterium tuberculosis complex in the Cross River State, Nigeria. INFECTION GENETICS AND EVOLUTION 2011; 12:671-7. [PMID: 21878397 DOI: 10.1016/j.meegid.2011.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 01/18/2023]
Abstract
This study provides with a first insight on Mycobacterium tuberculosis complex epidemiology and genetic diversity in the Cross River State, Nigeria. Starting with 137 smear positive patients recruited over a period of 12months (June 2008 to May 2009), we obtained 97 pure mycobacterial isolates out of which 81 (83.5%) were identified as M. tuberculosis complex. Genotyping revealed a total of 27 spoligotypes patterns with 10 clusters (n=64% or 79% of clustered isolates, 2-32 isolates/cluster), with patients in the age group range 25-34 years being significantly associated with shared-type pattern SIT61 (p=0.019). Comparison with SITVIT2 database showed that with the exception of a single cluster (SIT727/H1), all other clusters observed were representative of West Africa; the two main lineages involved were LAM10-CAM (n=42/81% or 51.8%) of M. tuberculosis and AFRI_2 sublineage of Mycobacterium africanum (n=27/81% or 33.3%). Subsequent 12-loci MIRU typing resulted in a total of 13 SIT/MIT clusters (n=52 isolates, 2-9 isolates per cluster), with a resulting recent n-1 transmission rate of 48.1%. Available drug-susceptibility testing (DST) results for 58/81 clinical isolates revealed 6/58% or 10.4% cases of multiple drug-resistance (MDR); 5/6 MDR cases were caused by strains belonging to LAM10-CAM lineage (a specific cluster SIT61/MIT266 in 4/6 cases, and an orphan spoligotype pattern in 1/6 case). Additionally, MIT266 was associated with streptomycin resistance (p=0.016). All the six MDRTB isolates were concomitantly resistance to streptomycin and ethambutol; however, 4/6 MDR strains with identical MIRU patterns were characterized by consecutive strain numbers hence the possibility of laboratory cross contamination could not be excluded in 3/4 serial cases. The present preliminary study underlines the usefulness of spoligotyping and 12-loci MIRU-VNTRs to establish a baseline of circulating genotypic lineages of M. tuberculosis complex in Nigeria.
Collapse
Affiliation(s)
- Benjamin P Thumamo
- Department of Medical Laboratory Science, University of Calabar, Calabar, Nigeria
| | | | | | | | | | | | | | | | | |
Collapse
|