1
|
Taheri T, Davarpanah E, Samimi-Rad K, Seyed N. PUF Proteins as Critical RNA-Binding Proteins in TriTryp Parasites: A Review Article. IRANIAN JOURNAL OF PARASITOLOGY 2024; 19:278-289. [PMID: 39318822 PMCID: PMC11417976 DOI: 10.18502/ijpa.v19i3.16386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
In eukaryotes, translation is a fundamental step in the long pathway of protein synthesis within the cell. In this process, several proteins and factors have involved directly or indirectly, individually or in association with other elements to contact mRNA. For perfect translation, many essential modifications should be done, such as cis-splicing to remove introns and two main events for capping and poly A polymerization in 5' and 3' end of mRNA, respectively. Gene expression is then regulated at both translation and stability of the target mRNA molecule levels. Pumilio/FBFs (PUFs) are the main group of RNA-binding proteins which bind to the 3'-UTR of target RNA and thereby regulate the fate, stability and subcellular localization of mRNAs and adjust the translated protein level. PUF proteins have been found both in nucleus where that bind to precursor mRNA, for processing and maturation of rRNA, and in cytoplasm where that bind to mRNA, stall the ribosomes, suppress the translation and localization of the mRNA. They can regulate the expression of mRNAs through activation or suppression of translation. Therefore, these proteins have recently garnered much attention as new generation of therapeutic targets against diseases such as cancer and neurological disorders. In comparison to other eukaryotes, trypanosomatids have a high number of PUF proteins, which function not only as gene expression regulatory factors but also in several biological processes such as differentiation and life-cycle progression of the cells. Here, we review the molecular and biological roles of known PUF proteins in TriTryp parasites (Trypanosome brucei, T. cruzi and Leishmania) beside some other parasites.
Collapse
Affiliation(s)
- Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elaheh Davarpanah
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Katayon Samimi-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Mejía-Jaramillo AM, Fernandez GJ, Ospina-Zapata H, Murillo AM, Jimenez DE, Gómez LA, Triana-Chávez O. PUF3 RNA binding protein of Trypanosoma cruzi regulates mitochondrial morphology and function. Heliyon 2024; 10:e32810. [PMID: 39022037 PMCID: PMC11252720 DOI: 10.1016/j.heliyon.2024.e32810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The RNA-binding PUF proteins are post-transcriptional regulators found throughout the eukaryotic domain. In Trypanosoma cruzi, ten Puf genes termed Puf1 to Puf10 have been identified. Considering that the control of gene expression in this parasite is mainly at the post-transcriptional level, we characterized the PUF3 protein by knocking out and overexpressing the gene in T. cruzi epimastigotes and studied different genetic and biological features. The RNA-seq analyses in both genotypes showed significant changes in the number of regulated transcripts compared with wild-type parasites. Thus, the number of differentially expressed genes in the knockout (ΔTcPuf3) and the overexpressor (pTEXTcPuf3) were 238 and 187, respectively. In the knockout, a more significant proportion of genes was negatively regulated (166 out of 238). In contrast, in the overexpressor, positively regulated genes were predominant (149 out of 170). Additionally, when we predicted the subcellular location of the differentially expressed genes, the results revealed an important representation of nuclear genes encoding mitochondrial proteins. Therefore, we determined whether overexpression or knockout of TcPuf3 could lead to changes in both mitochondrial structure and cellular respiration. When mitochondria from ΔTcPuf3 and pTEXTcPuf3 parasites were analyzed by transmission electron microscopy (TEM), it was observed that the overexpressor had an abnormal mitochondrial morphology, evidenced by swelling. The results associated with cellular respiration showed that both the ΔTcPuf3 and pTEXTcPuf3 had a lower efficiency in routine respiration and the electron transport system capacity. Likewise, the mitochondria from overexpressing parasites showed a slight hyperpolarization. Additionally, several biological features, depending on the function of the mitochondria, were altered, such as growth, cell division, metacyclogenesis, ROS production, and response to benznidazole. In conclusion, our results suggest that although PUF3 is not an essential protein in T. cruzi, it influences mitochondrial transcripts, affecting mitochondrial morphology and function.
Collapse
Affiliation(s)
| | - Geysson Javier Fernandez
- Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Hader Ospina-Zapata
- Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Ana Milena Murillo
- Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Dianny Elizabeth Jimenez
- Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Luis A. Gómez
- Área de Ciencias Fundamentales, Universidad Eafit, Medellín, Colombia
| | - Omar Triana-Chávez
- Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
3
|
Liu C, Tang J, Liang K, Liu P, Li Z. Ready for renascence in mosquito: The regulation of gene expression in Plasmodium sexual development. Acta Trop 2024; 254:107191. [PMID: 38554994 DOI: 10.1016/j.actatropica.2024.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Malaria remains one of the most perilous vector-borne infectious diseases for humans globally. Sexual gametocyte represents the exclusive stage at which malaria parasites are transmitted from the vertebrate to the Anopheles host. The feasible and effective approach to prevent malaria transmission is by addressing the sexual developmental processes, that is, gametocytogenesis and gametogenesis. Thus, this review will comprehensively cover advances in the regulation of gene expression surrounding the transmissible stages, including epigenetic, transcriptional, and post-transcriptional control.
Collapse
Affiliation(s)
- Cong Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingjing Tang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Kejia Liang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peng Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhenkui Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Tarannum A, Rodríguez-Almonacid CC, Salazar-Bravo J, Karamysheva ZN. Molecular Mechanisms of Persistence in Protozoan Parasites. Microorganisms 2023; 11:2248. [PMID: 37764092 PMCID: PMC10534552 DOI: 10.3390/microorganisms11092248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Protozoan parasites are known for their remarkable capacity to persist within the bodies of vertebrate hosts, which frequently results in prolonged infections and the recurrence of diseases. Understanding the molecular mechanisms that underlie the event of persistence is of paramount significance to develop innovative therapeutic approaches, given that these pathways still need to be thoroughly elucidated. The present article provides a comprehensive overview of the latest developments in the investigation of protozoan persistence in vertebrate hosts. The focus is primarily on the function of persisters, their formation within the host, and the specific molecular interactions between host and parasite while they persist. Additionally, we examine the metabolomic, transcriptional, and translational changes that protozoan parasites undergo during persistence within vertebrate hosts, focusing on major parasites such as Plasmodium spp., Trypanosoma spp., Leishmania spp., and Toxoplasma spp. Key findings of our study suggest that protozoan parasites deploy several molecular and physiological strategies to evade the host immune surveillance and sustain their persistence. Furthermore, some parasites undergo stage differentiation, enabling them to acclimate to varying host environments and immune challenges. More often, stressors such as drug exposure were demonstrated to impact the formation of protozoan persisters significantly. Understanding the molecular mechanisms regulating the persistence of protozoan parasites in vertebrate hosts can reinvigorate our current insights into host-parasite interactions and facilitate the development of more efficacious disease therapeutics.
Collapse
Affiliation(s)
| | | | | | - Zemfira N. Karamysheva
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (A.T.); (C.C.R.-A.); (J.S.-B.)
| |
Collapse
|
5
|
Toenhake CG, Voorberg-van der Wel A, Wu H, Kanyal A, Nieuwenhuis IG, van der Werff NM, Hofman SO, Zeeman AM, Kocken CHM, Bártfai R. Epigenetically regulated RNA-binding proteins signify malaria hypnozoite dormancy. Cell Rep 2023; 42:112727. [PMID: 37392389 DOI: 10.1016/j.celrep.2023.112727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023] Open
Abstract
Dormancy enables relapsing malaria parasites, such as Plasmodium vivax and cynomolgi, to survive unfavorable conditions. It is enabled by hypnozoites, parasites remaining quiescent inside hepatocytes before reactivating and establishing blood-stage infection. We integrate omics approaches to explore gene-regulatory mechanisms underlying hypnozoite dormancy. Genome-wide profiling of activating and repressing histone marks identifies a few genes that get silenced by heterochromatin during hepatic infection of relapsing parasites. By combining single-cell transcriptomics, chromatin accessibility profiling, and fluorescent in situ RNA hybridization, we show that these genes are expressed in hypnozoites and that their silencing precedes parasite development. Intriguingly, these hypnozoite-specific genes mainly encode proteins with RNA-binding domains. We hence hypothesize that these likely repressive RNA-binding proteins keep hypnozoites in a developmentally competent but dormant state and that heterochromatin-mediated silencing of the corresponding genes aids reactivation. Exploring the regulation and exact function of these proteins hence could provide clues for targeted reactivation and killing of these latent pathogens.
Collapse
Affiliation(s)
| | | | - Haoyu Wu
- Department of Molecular Biology, Radboud University, 6525 GA Nijmegen, the Netherlands
| | - Abhishek Kanyal
- Department of Molecular Biology, Radboud University, 6525 GA Nijmegen, the Netherlands
| | | | | | - Sam Otto Hofman
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | | | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Guttery DS, Zeeshan M, Ferguson DJP, Holder AA, Tewari R. Division and Transmission: Malaria Parasite Development in the Mosquito. Annu Rev Microbiol 2022; 76:113-134. [PMID: 35609946 DOI: 10.1146/annurev-micro-041320-010046] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The malaria parasite life cycle alternates between two hosts: a vertebrate and the female Anopheles mosquito vector. Cell division, proliferation, and invasion are essential for parasite development, transmission, and survival. Most research has focused on Plasmodium development in the vertebrate, which causes disease; however, knowledge of malaria parasite development in the mosquito (the sexual and transmission stages) is now rapidly accumulating, gathered largely through investigation of the rodent malaria model, with Plasmodium berghei. In this review, we discuss the seminal genome-wide screens that have uncovered key regulators of cell proliferation, invasion, and transmission during Plasmodium sexual development. Our focus is on the roles of transcription factors, reversible protein phosphorylation, and molecular motors. We also emphasize the still-unanswered important questions around key pathways in cell division during the vector transmission stages and how they may be targeted in future studies.
Collapse
Affiliation(s)
- David S Guttery
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; ,
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom;
| | - Mohammad Zeeshan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; ,
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Sciences and John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom;
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Anthony A Holder
- Malaria Parasitology Laboratory, Francis Crick Institute, London, United Kingdom;
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; ,
| |
Collapse
|
7
|
Abugri J, Ayariga J, Sunwiale SS, Wezena CA, Gyamfi JA, Adu-Frimpong M, Agongo G, Dongdem JT, Abugri D, Dinko B. Targeting the Plasmodium falciparum proteome and organelles for potential antimalarial drug candidates. Heliyon 2022; 8:e10390. [PMID: 36033316 PMCID: PMC9398786 DOI: 10.1016/j.heliyon.2022.e10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/12/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
There is an unmet need to unearth alternative treatment options for malaria, wherein this quest is more pressing in recent times due to high morbidity and mortality data arising mostly from the endemic countries coupled with partial diversion of attention from the disease in view of the SARS-Cov-2 pandemic. Available therapeutic options for malaria have been severely threatened with the emergence of resistance to almost all the antimalarial drugs by the Plasmodium falciparum parasite in humans, which is a worrying situation. Artemisinin combination therapies (ACT) that have so far been the mainstay of malaria have encountered resistance by malaria parasite in South East Asia, which is regarded as a notorious ground zero for the emergence of resistance to antimalarial drugs. This review analyzes a few key druggable targets for the parasite and the potential of specific inhibitors to mitigate the emerging antimalarial drug resistance problem by providing a concise assessment of the essential proteins of the malaria parasite that could serve as targets. Moreover, this work provides a summary of the advances made in malaria parasite biology and the potential to leverage these findings for antimalarial drug production.
Collapse
Affiliation(s)
- James Abugri
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Joseph Ayariga
- The Biomedical Engineering Programme, Alabama State University, Montgomery, AL, 36104, USA
| | - Samuel Sunyazi Sunwiale
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Cletus Adiyaga Wezena
- Department of Microbiology, School of Biosciences, University for Development Studies (UDS), Nyankpala Campus, Tamale, Ghana
| | - Julien Agyemang Gyamfi
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Julius Tieroyaare Dongdem
- Department of Biochemistry and Molecular Medicine. School of Medicine. University for Development Studies (UDS), Tamale-Campus, Ghana
| | - Daniel Abugri
- Department of Biological Sciences, Microbiology PhD Programme, Laboratory of Ethnomedicine, Parasitology, and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, USA
| | - Bismarck Dinko
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho. Ghana
| |
Collapse
|
8
|
Singh D, Patri S, Narahari V, Segireddy RR, Dey S, Saurabh A, Macha V, Prabhu NP, Srivastava A, Kolli SK, Kota AK. A Conserved Plasmodium Structural Integrity Maintenance Protein (SIMP) is associated with sporozoite membrane and is essential for maintaining shape and infectivity. Mol Microbiol 2022; 117:1324-1339. [PMID: 35301756 DOI: 10.1111/mmi.14894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/27/2022]
Abstract
Plasmodium sporozoites are extracellular forms introduced during mosquito bite that selectively invade mammalian hepatocytes. Sporozoites are delimited by a cell membrane that is linked to the underlying acto-myosin molecular motor. While membrane proteins with roles in motility and invasion have been well studied, very little is known about proteins that maintain the sporozoite shape. We demonstrate that in Plasmodium berghei (Pb) a conserved hypothetical gene, PBANKA_1422900 specifies sporozoite structural integrity maintenance protein (SIMP) required for maintaining the sporozoite shape and motility. Sporozoites lacking SIMP exhibited loss of regular shape, extensive membrane blebbing at multiple foci and membrane detachment. The mutant sporozoites failed to infect hepatocytes, though the altered shape did not affect the organisation of cytoskeleton or inner membrane complex (IMC). Interestingly, the components of IMC failed to extend under the membrane blebs likely suggesting that SIMP may assist in anchoring the membrane to IMC. Endogenous C-terminal HA tagging localized SIMP to membrane and revealed the C-terminus of the protein to be extracellular. Since SIMP is highly conserved amongst Plasmodium species, these findings have important implications for utilising it as a novel sporozoite specific vaccine candidate.
Collapse
Affiliation(s)
- Dipti Singh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Smita Patri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Veeda Narahari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameswara R Segireddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sandeep Dey
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Archi Saurabh
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Vijay Macha
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, 500032, India
| | - N Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Anand Srivastava
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, 500032, India
| | - Surendra Kumar Kolli
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Arun Kumar Kota
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
9
|
Müller K, Gibbins MP, Roberts M, Reyes‐Sandoval A, Hill AVS, Draper SJ, Matuschewski K, Silvie O, Hafalla JCR. Low immunogenicity of malaria pre-erythrocytic stages can be overcome by vaccination. EMBO Mol Med 2021; 13:e13390. [PMID: 33709544 PMCID: PMC8033512 DOI: 10.15252/emmm.202013390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
Immunogenicity is considered one important criterion for progression of candidate vaccines to further clinical evaluation. We tested this assumption in an infection and vaccination model for malaria pre-erythrocytic stages. We engineered Plasmodium berghei parasites that harbour a well-characterised epitope for stimulation of CD8+ T cells, either as an antigen in the sporozoite surface-expressed circumsporozoite protein or the parasitophorous vacuole membrane associated protein upregulated in sporozoites 4 (UIS4) expressed in exo-erythrocytic forms (EEFs). We show that the antigen origin results in profound differences in immunogenicity with a sporozoite antigen eliciting robust, superior antigen-specific CD8+ T-cell responses, whilst an EEF antigen evokes poor responses. Despite their contrasting immunogenic properties, both sporozoite and EEF antigens gain access to antigen presentation pathways in hepatocytes, as recognition and targeting by vaccine-induced effector CD8+ T cells results in high levels of protection when targeting either antigen. Our study is the first demonstration that poorly immunogenic EEF antigens do not preclude their susceptibility to antigen-specific CD8+ T-cell killing, which has wide-ranging implications on antigen prioritisation for next-generation pre-erythrocytic malaria vaccines.
Collapse
Affiliation(s)
- Katja Müller
- Parasitology UnitMax Planck Institute for Infection BiologyBerlinGermany
- Department of Molecular ParasitologyInstitute of BiologyHumboldt UniversityBerlinGermany
| | - Matthew P Gibbins
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
- Present address:
Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Mark Roberts
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - Arturo Reyes‐Sandoval
- Jenner InstituteUniversity of OxfordOxfordUK
- Present address:
Instituto Politécnico NacionalIPN. Av. Luis Enrique Erro s/n, Unidad Adolfo López MateosMexico CityMexico
| | | | | | - Kai Matuschewski
- Parasitology UnitMax Planck Institute for Infection BiologyBerlinGermany
- Department of Molecular ParasitologyInstitute of BiologyHumboldt UniversityBerlinGermany
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies InfectieusesCIMI‐ParisParisFrance
| | - Julius Clemence R Hafalla
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
10
|
Müller K, Silvie O, Mollenkopf HJ, Matuschewski K. Pleiotropic Roles for the Plasmodium berghei RNA Binding Protein UIS12 in Transmission and Oocyst Maturation. Front Cell Infect Microbiol 2021; 11:624945. [PMID: 33747980 PMCID: PMC7973279 DOI: 10.3389/fcimb.2021.624945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/15/2021] [Indexed: 11/21/2022] Open
Abstract
Colonization of the mosquito host by Plasmodium parasites is achieved by sexually differentiated gametocytes. Gametocytogenesis, gamete formation and fertilization are tightly regulated processes, and translational repression is a major regulatory mechanism for stage conversion. Here, we present a characterization of a Plasmodium berghei RNA binding protein, UIS12, that contains two conserved eukaryotic RNA recognition motifs (RRM). Targeted gene deletion resulted in viable parasites that replicate normally during blood infection, but form fewer gametocytes. Upon transmission to Anopheles stephensi mosquitoes, both numbers and size of midgut-associated oocysts were reduced and their development stopped at an early time point. As a consequence, no salivary gland sporozoites were formed indicative of a complete life cycle arrest in the mosquito vector. Comparative transcript profiling in mutant and wild-type infected red blood cells revealed a decrease in transcript abundance of mRNAs coding for signature gamete-, ookinete-, and oocyst-specific proteins in uis12(-) parasites. Together, our findings indicate multiple roles for UIS12 in regulation of gene expression after blood infection in good agreement with the pleiotropic defects that terminate successful sporogony and onward transmission to a new vertebrate host.
Collapse
Affiliation(s)
- Katja Müller
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Olivier Silvie
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Hans-Joachim Mollenkopf
- Core Facility Microarray/Genomics, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
11
|
Briquet S, Marinach C, Silvie O, Vaquero C. Preparing for Transmission: Gene Regulation in Plasmodium Sporozoites. Front Cell Infect Microbiol 2021; 10:618430. [PMID: 33585284 PMCID: PMC7878544 DOI: 10.3389/fcimb.2020.618430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Plasmodium sporozoites are transmitted to mammals by anopheline mosquitoes and first infect the liver, where they transform into replicative exoerythrocytic forms, which subsequently release thousands of merozoites that invade erythrocytes and initiate the malaria disease. In some species, sporozoites can transform into dormant hypnozoites in the liver, which cause malaria relapses upon reactivation. Transmission from the insect vector to a mammalian host is a critical step of the parasite life cycle, and requires tightly regulated gene expression. Sporozoites are formed inside oocysts in the mosquito midgut and become fully infectious after colonization of the insect salivary glands, where they remain quiescent until transmission. Parasite maturation into infectious sporozoites is associated with reprogramming of the sporozoite transcriptome and proteome, which depends on multiple layers of transcriptional and post-transcriptional regulatory mechanisms. An emerging scheme is that gene expression in Plasmodium sporozoites is controlled by alternating waves of transcription activity and translational repression, which shape the parasite RNA and protein repertoires for successful transition from the mosquito vector to the mammalian host.
Collapse
Affiliation(s)
- Sylvie Briquet
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Carine Marinach
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Olivier Silvie
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Catherine Vaquero
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
12
|
Neal ML, Wei L, Peterson E, Arrieta-Ortiz ML, Danziger S, Baliga N, Kaushansky A, Aitchison J. A systems-level gene regulatory network model for Plasmodium falciparum. Nucleic Acids Res 2021; 49:4891-4906. [PMID: 33450011 PMCID: PMC8136813 DOI: 10.1093/nar/gkaa1245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/26/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
Many of the gene regulatory processes of Plasmodium falciparum, the deadliest malaria parasite, remain poorly understood. To develop a comprehensive guide for exploring this organism's gene regulatory network, we generated a systems-level model of P. falciparum gene regulation using a well-validated, machine-learning approach for predicting interactions between transcription regulators and their targets. The resulting network accurately predicts expression levels of transcriptionally coherent gene regulatory programs in independent transcriptomic data sets from parasites collected by different research groups in diverse laboratory and field settings. Thus, our results indicate that our gene regulatory model has predictive power and utility as a hypothesis-generating tool for illuminating clinically relevant gene regulatory mechanisms within P. falciparum. Using the set of regulatory programs we identified, we also investigated correlates of artemisinin resistance based on gene expression coherence. We report that resistance is associated with incoherent expression across many regulatory programs, including those controlling genes associated with erythrocyte-host engagement. These results suggest that parasite populations with reduced artemisinin sensitivity are more transcriptionally heterogenous. This pattern is consistent with a model where the parasite utilizes bet-hedging strategies to diversify the population, rendering a subpopulation more able to navigate drug treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John D Aitchison
- To whom correspondence should be addressed. Tel: +1 206 884 3125; Fax: +1 206 884 3104;
| |
Collapse
|
13
|
Wang C, Yang C, Liu J, Liu Q. NcPuf1 Is a Key Virulence Factor in Neospora caninum. Pathogens 2020; 9:pathogens9121019. [PMID: 33276672 PMCID: PMC7761618 DOI: 10.3390/pathogens9121019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Neospora caninum is an apicomplexan parasite that infects many mammals and particularly causes abortion in cattle. The key factors in its wide distribution are its virulence and ability to transform between tachyzoite and bradyzoite forms. However, the factors are not well understood. Although Puf protein (named after Pumilio from Drosophila melanogaster and fem-3 binding factor from Caenorhabditis elegans) have a functionally conserved role in promoting proliferation and inhibiting differentiation in many eukaryotes, the function of the Puf proteins in N. caninum is poorly understood. METHODS The CRISPR/CAS9 system was used to identify and study the function of the Puf protein in N. caninum. RESULTS We showed that N. caninum encodes a Puf protein, which was designated NcPuf1. NcPuf1 is found in the cytoplasm in intracellular parasites and in processing bodies (P-bodies), which are reported for the first time in N. caninum in extracellular parasites. NcPuf1 is not needed for the formation of P-bodies in N. caninum. The deletion of NcPuf1 (ΔNcPuf1) does not affect the differentiation in vitro and tissue cysts formation in the mouse brain. However, ΔNcPuf1 resulted in decreases in the proliferative capacity of N. caninum in vitro and virulence in mice. CONCLUSIONS Altogether, the disruption of NcPuf1 does not affect bradyzoites differentiation, but seriously impairs tachyzoite proliferation in vitro and virulence in mice. These results can provide a theoretical basis for the development of attenuated vaccines to prevent the infection of N. caninum.
Collapse
Affiliation(s)
| | | | - Jing Liu
- Correspondence: (J.L.); (Q.L.); Tel.: +86-010-62734496 (Q.L.)
| | - Qun Liu
- Correspondence: (J.L.); (Q.L.); Tel.: +86-010-62734496 (Q.L.)
| |
Collapse
|
14
|
Importance of the Immunodominant CD8 + T Cell Epitope of Plasmodium berghei Circumsporozoite Protein in Parasite- and Vaccine-Induced Protection. Infect Immun 2020; 88:IAI.00383-20. [PMID: 32719159 DOI: 10.1128/iai.00383-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
The circumsporozoite protein (CSP) builds up the surface coat of sporozoites and is the leading malaria pre-erythrocytic-stage vaccine candidate. CSP has been shown to induce robust CD8+ T cell responses that are capable of eliminating developing parasites in hepatocytes, resulting in protective immunity. In this study, we characterized the importance of the immunodominant CSP-derived epitope SYIPSAEKI of Plasmodium berghei in both sporozoite- and vaccine-induced protection in murine infection models. In BALB/c mice, where SYIPSAEKI is efficiently presented in the context of the major histocompatibility complex class I (MHC-I) molecule H-2-Kd, we established that epitope-specific CD8+ T cell responses contribute to parasite killing following sporozoite immunization. Yet, sterile protection was achieved in the absence of this epitope, substantiating the concept that other antigens can be sufficient for parasite-induced protective immunity. Furthermore, we demonstrated that SYIPSAEKI-specific CD8+ T cell responses elicited by viral-vectored CSP-expressing vaccines effectively targeted parasites in hepatocytes. The resulting sterile protection strictly relied on the expression of SYIPSAEKI. In C57BL/6 mice, which are unable to present the immunodominant epitope, CSP-based vaccines did not confer complete protection, despite the induction of high levels of CSP-specific antibodies. These findings underscore the significance of CSP in protection against malaria pre-erythrocytic stages and demonstrate that a significant proportion of the protection against the parasite is mediated by CD8+ T cells specific for the immunodominant CSP-derived epitope.
Collapse
|
15
|
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, The Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, The Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites. Nat Commun 2019; 10:4964. [PMID: 31673027 PMCID: PMC6823429 DOI: 10.1038/s41467-019-12936-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023] Open
Abstract
Plasmodium sporozoites are transmitted from infected mosquitoes to mammals, and must navigate the host skin and vasculature to infect the liver. This journey requires distinct proteomes. Here, we report the dynamic transcriptomes and proteomes of both oocyst sporozoites and salivary gland sporozoites in both rodent-infectious Plasmodium yoelii parasites and human-infectious Plasmodium falciparum parasites. The data robustly define mRNAs and proteins that are upregulated in oocyst sporozoites (UOS) or upregulated in infectious sporozoites (UIS) within the salivary glands, including many that are essential for sporozoite functions in the vector and host. Moreover, we find that malaria parasites use two overlapping, extensive, and independent programs of translational repression across sporozoite maturation to temporally regulate protein expression. Together with gene-specific validation experiments, these data indicate that two waves of translational repression are implemented and relieved at different times during sporozoite maturation, migration and infection, thus promoting their successful development and vector-to-host transition. Here, the authors report transcriptomes and proteomes of oocyst sporozoite and salivary gland sporozoite stages in rodent-infectious Plasmodium yoelii parasites and human infectious Plasmodium falciparum parasites and define two waves of translational repression during sporozoite maturation.
Collapse
|
17
|
Bennink S, Pradel G. The molecular machinery of translational control in malaria parasites. Mol Microbiol 2019; 112:1658-1673. [PMID: 31531994 DOI: 10.1111/mmi.14388] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2019] [Indexed: 12/30/2022]
Abstract
Translational control regulates the levels of protein synthesized from its transcript and is key for the rapid adjustment of gene expression in response to environmental stimuli. The regulation of translation is of special importance for malaria parasites, which pass through a complex life cycle that includes various replication phases in the different organs of the human and mosquito hosts and a sexual reproduction phase in the mosquito midgut. In particular, the quiescent transmission stages rely on translational control to rapidly adapt to the new environment, once they switch over from the human to the mosquito and vice versa. Three control mechanisms are currently proposed in Plasmodium, (1) global regulation that acts on the translation initiation complex; (2) mRNA-specific regulation, involving cis control elements, mRNA-binding proteins and translational repressors; and (3) induced mRNA decay by the Ccr4-Not and the RNA exosome complex. The main molecules controlling translation are highly conserved in malaria parasites and an increasing number of studies shed light on the interwoven pathways leading to the up or downregulation of protein synthesis in the diverse plasmodial stages. We here highlight recent findings on translational control during life cycle progression of Plasmodium and discuss the molecules involved in regulating protein synthesis.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
18
|
Hart KJ, Oberstaller J, Walker MP, Minns AM, Kennedy MF, Padykula I, Adams JH, Lindner SE. Plasmodium male gametocyte development and transmission are critically regulated by the two putative deadenylases of the CAF1/CCR4/NOT complex. PLoS Pathog 2019; 15:e1007164. [PMID: 30703164 PMCID: PMC6355032 DOI: 10.1371/journal.ppat.1007164] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/10/2018] [Indexed: 12/28/2022] Open
Abstract
With relatively few known specific transcription factors to control the abundance of specific mRNAs, Plasmodium parasites may rely more on the regulation of transcript stability and turnover to provide sufficient gene regulation. Plasmodium transmission stages impose translational repression on specific transcripts in part to accomplish this. However, few proteins are known to participate in this process, and those that are characterized primarily affect female gametocytes. We have identified and characterized Plasmodium yoelii (Py) CCR4-1, a putative deadenylase, which plays a role in the development and activation of male gametocytes, regulates the abundance of specific mRNAs in gametocytes, and ultimately increases the efficiency of host-to-vector transmission. We find that when pyccr4-1 is deleted or its protein made catalytically inactive, there is a loss in the initial coordination of male gametocyte maturation and a reduction of parasite infectivity of the mosquito. Expression of only the N-terminal CAF1 domain of the essential CAF1 deadenylase leads to a similar phenotype. Comparative RNA-seq revealed that PyCCR4-1 affects transcripts important for transmission-related functions that are associated with male or female gametocytes, some of which directly associate with the immunoprecipitated complex. Finally, circular RT-PCR of one of the bound, dysregulated transcripts showed that deletion of the pyccr4-1 gene does not result in gross changes to its UTR or poly(A) tail length. We conclude that the two putative deadenylases of the CAF1/CCR4/NOT complex play critical and intertwined roles in gametocyte maturation and transmission.
Collapse
Affiliation(s)
- Kevin J. Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, State College, Pennsylvania, United States of America
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research, Department of Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Michael P. Walker
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, State College, Pennsylvania, United States of America
| | - Allen M. Minns
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, State College, Pennsylvania, United States of America
| | - Mark F. Kennedy
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, State College, Pennsylvania, United States of America
| | - Ian Padykula
- Center for Global Health and Infectious Diseases Research, Department of Global Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, State College, Pennsylvania, United States of America
| |
Collapse
|
19
|
Tadesse FG, Meerstein-Kessel L, Gonçalves BP, Drakeley C, Ranford-Cartwright L, Bousema T. Gametocyte Sex Ratio: The Key to Understanding Plasmodium falciparum Transmission? Trends Parasitol 2018; 35:226-238. [PMID: 30594415 PMCID: PMC6396025 DOI: 10.1016/j.pt.2018.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 11/25/2022]
Abstract
A mosquito needs to ingest at least one male and one female gametocyte to become infected with malaria. The sex of Plasmodium falciparum gametocytes can be determined microscopically but recent transcriptomics studies paved the way for the development of molecular methods that allow sex-ratio assessments at much lower gametocyte densities. These sex-specific gametocyte diagnostics were recently used to examine gametocyte dynamics in controlled and natural infections as well as the impact of different antimalarial drugs. It is currently unclear to what extent sex-specific gametocyte diagnostics obviate the need for mosquito feeding assays to formally assess transmission potential. Here, we review recent and historic assessments of gametocyte sex ratio in relation to host and parasite characteristics, treatment, and transmission potential. Recent RNA sequencing studies have uncovered a number of P. falciparum gametocyte sex-specific targets and provided new insights in gametocyte biology. After decades when gametocyte sex-ratio research was restricted to nonhuman malarias or in vitro experiments, molecular tools for assessing gametocyte sex ratio are now increasingly available for use in natural P. falciparum infections. Evidence that gametocyte sex ratio is influenced by total gametocyte density and antimalarial treatment, and improves predictions of transmission potential, highlight the relevance of understanding the gametocyte sex ratio during natural infections. The finding that the most widely used P. falciparum gametocyte marker Pfs25 is expressed predominantly by female gametocytes and has non-negligible levels of background expression in asexual parasites necessitates a re-evaluation of existing gametocyte data.
Collapse
Affiliation(s)
- Fitsum G Tadesse
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia; Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia; These authors contributed equally
| | - Lisette Meerstein-Kessel
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; These authors contributed equally
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Lisa Ranford-Cartwright
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
20
|
Tu V, Yakubu R, Weiss LM. Observations on bradyzoite biology. Microbes Infect 2018; 20:466-476. [PMID: 29287987 PMCID: PMC6019562 DOI: 10.1016/j.micinf.2017.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/06/2023]
Abstract
Tachyzoites of the Apicomplexan Toxoplasma gondii cause acute infection, disseminate widely in their host, and eventually differentiate into a latent encysted form called bradyzoites that are found within tissue cysts. During latent infection, whenever transformation to tachyzoites occurs, any tachyzoites that develop are removed by the immune system. In contrast, cysts containing bradyzoites are sequestered from the immune system. In the absence of an effective immune response released organisms that differentiate into tachyzoites cause acute infection. Tissue cysts, therefore, serve as a reservoir for the reactivation of toxoplasmosis when the host becomes immunocompromised by conditions such as HIV infection, organ transplantation, or due to the impaired immune response that occurs when pathogens are acquired in utero. While tachyzoites and bradyzoites are well defined morphologically, there is no clear consensus on how interconversion occurs or what exact signal(s) mediate this transformation. Advances in research methods have facilitated studies on T. gondii bradyzoites providing important new insights into the biology of latent infection.
Collapse
Affiliation(s)
- Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rama Yakubu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
21
|
Liang X, Hart KJ, Dong G, Siddiqui FA, Sebastian A, Li X, Albert I, Miao J, Lindner SE, Cui L. Puf3 participates in ribosomal biogenesis in malaria parasites. J Cell Sci 2018; 131:jcs.212597. [PMID: 29487181 DOI: 10.1242/jcs.212597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, we characterized the Puf family gene member Puf3 in the malaria parasites Plasmodium falciparum and Plasmodium yoelii Secondary structure prediction suggested that the RNA-binding domains of the Puf3 proteins consisted of 11 pumilio repeats that were similar to those in the human Puf-A (also known as PUM3) and Saccharomyces cerevisiae Puf6 proteins, which are involved in ribosome biogenesis. Neither P. falciparum (Pf)Puf3 nor P. yoelii (Py)Puf3 could be genetically disrupted, suggesting they may be essential for the intraerythrocytic developmental cycle. Cellular fractionation of PfPuf3 in the asexual stages revealed preferential partitioning to the nuclear fraction, consistent with nuclear localization of PfPuf3::GFP and PyPuf3::GFP as detected by immunofluorescence. Furthermore, PfPuf3 colocalized with the nucleolar marker PfNop1, demonstrating that PfPuf3 is a nucleolar protein in the asexual stages. We found, however, that PyPuf3 changed its localization from being nucleolar to being present in cytosolic puncta in the mosquito and liver stages, which may reflect alternative functions in these stages. Affinity purification of molecules that associated with a PTP-tagged variant of PfPuf3 revealed 31 proteins associated with the 60S ribosome, and an enrichment of 28S rRNA and internal transcribed spacer 2 sequences. Taken together, these results suggest an essential function for PfPuf3 in ribosomal biogenesis.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin J Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Gang Dong
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Faiza A Siddiqui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Aswathy Sebastian
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Xiaolian Li
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Istvan Albert
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jun Miao
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
22
|
Müller K, Gibbins MP, Matuschewski K, Hafalla JCR. Evidence of cross-stage CD8+ T cell epitopes in malaria pre-erythrocytic and blood stage infections. Parasite Immunol 2017; 39. [PMID: 28380250 DOI: 10.1111/pim.12434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022]
Abstract
Malaria parasites have a complex, multistage life cycle and there is a widely held view that each stage displays a distinct set of antigens presented to the immune system. Yet, molecular analysis of malaria parasites suggests that many putative antigenic targets are shared amongst the different stages. The specificities of these cross-stage antigens and the functions of the immune responses they elicit are poorly characterized. It is well-known that CD8+ T cells play opposing immune functions following Plasmodium berghei (Pb) infection of C57BL/6 mice. Whilst these cells play a crucial role in protective immunity against pre-erythrocytic stages, they are implicated in the development of severe disease during blood stages. Recently, CD8+ T cell epitopes derived from proteins supposedly specific for either pre-erythrocytic or blood stages have been described. In this brief report, we have compiled and confirmed data that the majority of the mRNAs and/or proteins from which these epitopes are derived display expression across pre-erythrocytic and blood stages. Importantly, we provide evidence of cross-stage immune recognition of the majority of these CD8+ T cell epitopes. Hence, our findings provide a resource to further examine the relevance of antigen-specific cross-stage responses during malaria infections.
Collapse
Affiliation(s)
- K Müller
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - M P Gibbins
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, UK
| | - K Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - J C R Hafalla
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
23
|
Rono MK, Nyonda MA, Simam JJ, Ngoi JM, Mok S, Kortok MM, Abdullah AS, Elfaki MM, Waitumbi JN, El-Hassan IM, Marsh K, Bozdech Z, Mackinnon MJ. Adaptation of Plasmodium falciparum to its transmission environment. Nat Ecol Evol 2017; 2:377-387. [PMID: 29255304 DOI: 10.1038/s41559-017-0419-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022]
Abstract
Success in eliminating malaria will depend on whether parasite evolution outpaces control efforts. Here, we show that Plasmodium falciparum parasites (the deadliest of the species causing human malaria) found in low-transmission-intensity areas have evolved to invest more in transmission to new hosts (reproduction) and less in within-host replication (growth) than parasites found in high-transmission areas. At the cellular level, this adaptation manifests as increased production of reproductive forms (gametocytes) early in the infection at the expense of processes associated with multiplication inside red blood cells, especially membrane transport and protein trafficking. At the molecular level, this manifests as changes in the expression levels of genes encoding epigenetic and translational machinery. Specifically, expression levels of the gene encoding AP2-G-the transcription factor that initiates reproduction-increase as transmission intensity decreases. This is accompanied by downregulation and upregulation of genes encoding HDAC1 and HDA1-two histone deacetylases that epigenetically regulate the parasite's replicative and reproductive life-stage programmes, respectively. Parasites in reproductive mode show increased reliance on the prokaryotic translation machinery found inside the plastid-derived organelles. Thus, our dissection of the parasite's adaptive regulatory architecture has identified new potential molecular targets for malaria control.
Collapse
Affiliation(s)
- Martin K Rono
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mary A Nyonda
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | | | - Joyce M Ngoi
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Sachel Mok
- Columbia University Medical Center, New York, NY, USA
| | - Moses M Kortok
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Mohammed M Elfaki
- Department of Microbiology and Parasitology, Faculty of Medicine, Jazan University, Gizan, Jazan, Saudi Arabia
| | - John N Waitumbi
- Walter Reed Army Institute of Research/Kenya Medical Research Institute, Kisumu, Kenya
| | - Ibrahim M El-Hassan
- Faculty of Public Health and Tropical Medicine, Jazan University, Gizan, Jazan, Saudi Arabia
| | - Kevin Marsh
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | |
Collapse
|
24
|
Zuck M, Austin LS, Danziger SA, Aitchison JD, Kaushansky A. The Promise of Systems Biology Approaches for Revealing Host Pathogen Interactions in Malaria. Front Microbiol 2017; 8:2183. [PMID: 29201016 PMCID: PMC5696578 DOI: 10.3389/fmicb.2017.02183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Despite global eradication efforts over the past century, malaria remains a devastating public health burden, causing almost half a million deaths annually (WHO, 2016). A detailed understanding of the mechanisms that control malaria infection has been hindered by technical challenges of studying a complex parasite life cycle in multiple hosts. While many interventions targeting the parasite have been implemented, the complex biology of Plasmodium poses a major challenge, and must be addressed to enable eradication. New approaches for elucidating key host-parasite interactions, and predicting how the parasite will respond in a variety of biological settings, could dramatically enhance the efficacy and longevity of intervention strategies. The field of systems biology has developed methodologies and principles that are well poised to meet these challenges. In this review, we focus our attention on the Liver Stage of the Plasmodium lifecycle and issue a “call to arms” for using systems biology approaches to forge a new era in malaria research. These approaches will reveal insights into the complex interplay between host and pathogen, and could ultimately lead to novel intervention strategies that contribute to malaria eradication.
Collapse
Affiliation(s)
- Meghan Zuck
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States
| | - Laura S Austin
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States
| | - Samuel A Danziger
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - John D Aitchison
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - Alexis Kaushansky
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
25
|
Translational Control in the Latency of Apicomplexan Parasites. Trends Parasitol 2017; 33:947-960. [PMID: 28942109 DOI: 10.1016/j.pt.2017.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023]
Abstract
Apicomplexan parasites Toxoplasma gondii and Plasmodium spp. use latent stages to persist in the host, facilitate transmission, and thwart treatment of infected patients. Therefore, it is important to understand the processes driving parasite differentiation to and from quiescent stages. Here, we discuss how a family of protein kinases that phosphorylate the eukaryotic initiation factor-2 (eIF2) function in translational control and drive differentiation. This translational control culminates in reprogramming of the transcriptome to facilitate parasite transition towards latency. We also discuss how eIF2 phosphorylation contributes to the maintenance of latency and provides a crucial role in the timing of reactivation of latent parasites towards proliferative stages.
Collapse
|
26
|
Muñoz EE, Hart KJ, Walker MP, Kennedy MF, Shipley MM, Lindner SE. ALBA4 modulates its stage-specific interactions and specific mRNA fates during Plasmodium yoelii growth and transmission. Mol Microbiol 2017; 106:266-284. [PMID: 28787542 DOI: 10.1111/mmi.13762] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
Transmission of the malaria parasite occurs in an unpredictable moment, when a mosquito takes a blood meal. Plasmodium has therefore evolved strategies to prepare for transmission, including translationally repressing and protecting mRNAs needed to establish the infection. However, mechanisms underlying these critical controls are not well understood, including whether Plasmodium changes its translationally repressive complexes and mRNA targets in different stages. Efforts to understand this have been stymied by severe technical limitations due to substantial mosquito contamination of samples. Here using P. yoelii, for the first time we provide a proteomic comparison of a protein complex across asexual blood, sexual and sporozoite stages, along with a transcriptomic comparison of the mRNAs that are affected in these stages. We find that the Apicomplexan-specific ALBA4 RNA-binding protein acts to regulate development of the parasite's transmission stages, and that ALBA4 associates with both stage-specific and stage-independent partners to produce opposing mRNA fates. These efforts expand our understanding and ability to interrogate both sexual and sporozoite transmission stages and the molecular preparations they evolved to perpetuate their infectious cycle.
Collapse
Affiliation(s)
- Elyse E Muñoz
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Kevin J Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Michael P Walker
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Mark F Kennedy
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Mackenzie M Shipley
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
27
|
Kreutzfeld O, Müller K, Matuschewski K. Engineering of Genetically Arrested Parasites (GAPs) For a Precision Malaria Vaccine. Front Cell Infect Microbiol 2017; 7:198. [PMID: 28620583 PMCID: PMC5450620 DOI: 10.3389/fcimb.2017.00198] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Continuous stage conversion and swift changes in the antigenic repertoire in response to acquired immunity are hallmarks of complex eukaryotic pathogens, including Plasmodium species, the causative agents of malaria. Efficient elimination of Plasmodium liver stages prior to blood infection is one of the most promising malaria vaccine strategies. Here, we describe different genetically arrested parasites (GAPs) that have been engineered in Plasmodium berghei, P. yoelii and P. falciparum and compare their vaccine potential. A better understanding of the immunological mechanisms of prime and boost by arrested sporozoites and experimental strategies to enhance vaccine efficacy by further engineering existing GAPs into a more immunogenic form hold promise for continuous improvements of GAP-based vaccines. A critical hurdle for vaccines that elicit long-lasting protection against malaria, such as GAPs, is safety and efficacy in vulnerable populations. Vaccine research should focus on solutions toward turning malaria into a vaccine-preventable disease, which would offer an exciting new path of malaria control.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Katja Müller
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| |
Collapse
|
28
|
Frischknecht F, Matuschewski K. Plasmodium Sporozoite Biology. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025478. [PMID: 28108531 DOI: 10.1101/cshperspect.a025478] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plasmodium sporozoite transmission is a critical population bottleneck in parasite life-cycle progression and, hence, a target for prophylactic drugs and vaccines. The recent progress of a candidate antisporozoite subunit vaccine formulation to licensure highlights the importance of sporozoite transmission intervention in the malaria control portfolio. Sporozoites colonize mosquito salivary glands, migrate through the skin, penetrate blood vessels, breach the liver sinusoid, and invade hepatocytes. Understanding the molecular and cellular mechanisms that mediate the remarkable sporozoite journey in the invertebrate vector and the vertebrate host can inform evidence-based next-generation drug development programs and immune intervention strategies.
Collapse
Affiliation(s)
- Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, 69120 Heidelberg, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| |
Collapse
|
29
|
Petersen W, Stenzel W, Silvie O, Blanz J, Saftig P, Matuschewski K, Ingmundson A. Sequestration of cholesterol within the host late endocytic pathway restricts liver-stage Plasmodium development. Mol Biol Cell 2017; 28:726-735. [PMID: 28122820 PMCID: PMC5349780 DOI: 10.1091/mbc.e16-07-0531] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022] Open
Abstract
While lysosomes are degradative compartments and one of the defenses against invading pathogens, they are also hubs of metabolic activity. Late endocytic compartments accumulate around Plasmodium berghei liver-stage parasites during development, and whether this is a host defense strategy or active recruitment by the parasites is unknown. In support of the latter hypothesis, we observed that the recruitment of host late endosomes (LEs) and lysosomes is reduced in uis4- parasites, which lack a parasitophorous vacuole membrane protein and arrest during liver-stage development. Analysis of parasite development in host cells deficient for late endosomal or lysosomal proteins revealed that the Niemann-Pick type C (NPC) proteins, which are involved in cholesterol export from LEs, and the lysosome-associated membrane proteins (LAMP) 1 and 2 are important for robust liver-stage P. berghei growth. Using the compound U18666A, which leads to cholesterol sequestration in LEs similar to that seen in NPC- and LAMP-deficient cells, we show that the restriction of parasite growth depends on cholesterol sequestration and that targeting this process can reduce parasite burden in vivo. Taken together, these data reveal that proper LE and lysosome function positively contributes to liver-stage Plasmodium development.
Collapse
Affiliation(s)
- Wiebke Petersen
- Molecular Parasitology, Humboldt University, 10115 Berlin, Germany
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Werner Stenzel
- Institute for Neuropathology, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Olivier Silvie
- Institut National de la Santé et de la Recherche Médicale, U1135, Centre d'Immunologie et des Maladies Infectieuses, F-75013 Paris, France
| | - Judith Blanz
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany
| | - Kai Matuschewski
- Molecular Parasitology, Humboldt University, 10115 Berlin, Germany
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Alyssa Ingmundson
- Molecular Parasitology, Humboldt University, 10115 Berlin, Germany
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| |
Collapse
|
30
|
Miao J, Chen Z, Wang Z, Shrestha S, Li X, Li R, Cui L. Sex-Specific Biology of the Human Malaria Parasite Revealed from the Proteomes of Mature Male and Female Gametocytes. Mol Cell Proteomics 2017; 16:537-551. [PMID: 28126901 DOI: 10.1074/mcp.m116.061804] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/08/2016] [Indexed: 11/06/2022] Open
Abstract
The gametocytes of the malaria parasites are obligate for perpetuating the parasite's life cycle through mosquitoes, but the sex-specific biology of gametocytes is poorly understood. We generated a transgenic line in the human malaria parasite Plasmodium falciparum, which allowed us to accurately separate male and female gametocytes by flow cytometry. In-depth analysis of the proteomes by liquid chromatography-tandem mass spectrometry identified 1244 and 1387 proteins in mature male and female gametocytes, respectively. GFP-tagging of nine selected proteins confirmed their sex-partitions to be agreeable with the results from the proteomic analysis. The sex-specific proteomes showed significant differences that are consistent with the divergent functions of the two sexes. Although the male-specific proteome (119 proteins) is enriched in proteins associated with the flagella and genome replication, the female-specific proteome (262 proteins) is more abundant in proteins involved in metabolism, translation and organellar functions. Compared with the Plasmodium berghei sex-specific proteomes, this study revealed both extensive conservation and considerable divergence between these two species, which reflect the disparities between the two species in proteins involved in cytoskeleton, lipid metabolism and protein degradation. Comparison with three sex-specific proteomes allowed us to obtain high-confidence lists of 73 and 89 core male- and female-specific/biased proteins conserved in Plasmodium The identification of sex-specific/biased proteomes in Plasmodium lays a solid foundation for understanding the molecular mechanisms underlying the unique sex-specific biology in this early-branching eukaryote.
Collapse
Affiliation(s)
- Jun Miao
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802;
| | - Zhao Chen
- §Department of Statistics, The Pennsylvania State University, 413 Thomas Building, University Park, Pennsylvania 16802
| | - Zenglei Wang
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802
| | - Sony Shrestha
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802
| | - Xiaolian Li
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802
| | - Runze Li
- §Department of Statistics, The Pennsylvania State University, 413 Thomas Building, University Park, Pennsylvania 16802
| | - Liwang Cui
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802;
| |
Collapse
|
31
|
Distinct Prominent Roles for Enzymes of Plasmodium berghei Heme Biosynthesis in Sporozoite and Liver Stage Maturation. Infect Immun 2016; 84:3252-3262. [PMID: 27600503 DOI: 10.1128/iai.00148-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/29/2016] [Indexed: 11/20/2022] Open
Abstract
Malarial parasites have evolved complex regulation of heme supply and disposal to adjust to heme-rich and -deprived host environments. In addition to its own pathway for heme biosynthesis, Plasmodium likely harbors mechanisms for heme scavenging from host erythrocytes. Elaborate compartmentalization of de novo heme synthesis into three subcellular locations, including the vestigial plastid organelle, indicates critical roles in life cycle progression. In this study, we systematically profile the essentiality of heme biosynthesis by targeted gene deletion of enzymes in early steps of this pathway. We show that disruption of endogenous heme biosynthesis leads to a first detectable defect in oocyst maturation and sporogony in the Anopheles vector, whereas blood stage propagation, colonization of mosquito midguts, or initiation of oocyst development occurs indistinguishably from that of wild-type parasites. Although sporozoites are produced by parasites lacking an intact pathway for heme biosynthesis, they are absent from mosquito salivary glands, indicative of a vital role for heme biosynthesis only in sporozoite maturation. Rescue of the first defect in sporogony permitted analysis of potential roles in liver stages. We show that liver stage parasites benefit from but do not strictly depend upon their own aminolevulinic acid synthase and that they can scavenge aminolevulinic acid from the host environment. Together, our experimental genetics analysis of Plasmodium enzymes for heme biosynthesis exemplifies remarkable shifts between the use of endogenous and host resources during life cycle progression.
Collapse
|
32
|
Shrestha S, Li X, Ning G, Miao J, Cui L. The RNA-binding protein Puf1 functions in the maintenance of gametocytes in Plasmodium falciparum. J Cell Sci 2016; 129:3144-52. [PMID: 27383769 DOI: 10.1242/jcs.186908] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/01/2016] [Indexed: 01/17/2023] Open
Abstract
Translation control plays an important role in the regulation of gene expression in the malaria parasite Plasmodium falciparum, especially in transition stages between the vertebrate host and mosquito vector. Here, we determined the function of the Puf-family member Puf1 (denoted as PfPuf1 for the P. falciparum protein) during P. falciparum sexual development. We show that PfPuf1 was expressed in all gametocyte stages and at higher levels in female gametocytes. PfPuf1 disruption did not interfere with the asexual erythrocyte cycle of the parasite but resulted in an approximately tenfold decrease of mature gametocytes. In the PfPuf1-disrupted lines, gametocytes appeared normal before stage III but subsequently exhibited a sharp decline in gametocytemia. This was accompanied by a concomitant accumulation of dead and dying late-stage gametocytes, which retained normal gross morphology. In addition, significantly more female gametocytes were lost in the PfPuf1-disrupted lines during development, resulting in a reversed male-to-female sex ratio. These results indicate that PfPuf1 is important for the differentiation and maintenance of gametocytes, especially female gametocytes.
Collapse
Affiliation(s)
- Sony Shrestha
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaolian Li
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gang Ning
- Microscopy and Cytometry Facility, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jun Miao
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Liwang Cui
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
33
|
Bunnik EM, Batugedara G, Saraf A, Prudhomme J, Florens L, Le Roch KG. The mRNA-bound proteome of the human malaria parasite Plasmodium falciparum. Genome Biol 2016; 17:147. [PMID: 27381095 PMCID: PMC4933991 DOI: 10.1186/s13059-016-1014-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/20/2016] [Indexed: 02/08/2023] Open
Abstract
Background Gene expression is controlled at multiple levels, including transcription, stability, translation, and degradation. Over the years, it has become apparent that Plasmodium falciparum exerts limited transcriptional control of gene expression, while at least part of Plasmodium’s genome is controlled by post-transcriptional mechanisms. To generate insights into the mechanisms that regulate gene expression at the post-transcriptional level, we undertook complementary computational, comparative genomics, and experimental approaches to identify and characterize mRNA-binding proteins (mRBPs) in P. falciparum. Results Close to 1000 RNA-binding proteins are identified by hidden Markov model searches, of which mRBPs encompass a relatively large proportion of the parasite proteome as compared to other eukaryotes. Several abundant mRNA-binding domains are enriched in apicomplexan parasites, while strong depletion of mRNA-binding domains involved in RNA degradation is observed. Next, we experimentally capture 199 proteins that interact with mRNA during the blood stages, 64 of which with high confidence. These captured mRBPs show a significant overlap with the in silico identified candidate RBPs (p < 0.0001). Among the experimentally validated mRBPs are many known translational regulators active in other stages of the parasite’s life cycle, such as DOZI, CITH, PfCELF2, Musashi, and PfAlba1–4. Finally, we also detect several proteins with an RNA-binding domain abundant in Apicomplexans (RAP domain) that is almost exclusively found in apicomplexan parasites. Conclusions Collectively, our results provide the most complete comparative genomics and experimental analysis of mRBPs in P. falciparum. A better understanding of these regulatory proteins will not only give insight into the intricate parasite life cycle but may also provide targets for novel therapeutic strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1014-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelien M Bunnik
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Gayani Batugedara
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Jacques Prudhomme
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Karine G Le Roch
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
| |
Collapse
|
34
|
Vembar SS, Droll D, Scherf A. Translational regulation in blood stages of the malaria parasite Plasmodium spp.: systems-wide studies pave the way. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:772-792. [PMID: 27230797 PMCID: PMC5111744 DOI: 10.1002/wrna.1365] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 11/10/2022]
Abstract
The malaria parasite Plasmodium spp. varies the expression profile of its genes depending on the host it resides in and its developmental stage. Virtually all messenger RNA (mRNA) is expressed in a monocistronic manner, with transcriptional activation regulated at the epigenetic level and by specialized transcription factors. Furthermore, recent systems-wide studies have identified distinct mechanisms of post-transcriptional and translational control at various points of the parasite lifecycle. Taken together, it is evident that 'just-in-time' transcription and translation strategies coexist and coordinate protein expression during Plasmodium development, some of which we review here. In particular, we discuss global and specific mechanisms that control protein translation in blood stages of the human malaria parasite Plasmodium falciparum, once a cytoplasmic mRNA has been generated, and its crosstalk with mRNA decay and storage. We also focus on the widespread translational delay observed during the 48-hour blood stage lifecycle of P. falciparum-for over 30% of transcribed genes, including virulence factors required to invade erythrocytes-and its regulation by cis-elements in the mRNA, RNA-processing enzymes and RNA-binding proteins; the first-characterized amongst these are the DNA- and RNA-binding Alba proteins. More generally, we conclude that translational regulation is an emerging research field in malaria parasites and propose that its elucidation will not only shed light on the complex developmental program of this parasite, but may also reveal mechanisms contributing to drug resistance and define new targets for malaria intervention strategies. WIREs RNA 2016, 7:772-792. doi: 10.1002/wrna.1365 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Shruthi Sridhar Vembar
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France.
| | - Dorothea Droll
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Artur Scherf
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| |
Collapse
|
35
|
A Plasmodium yoelii Mei2-Like RNA Binding Protein Is Essential for Completion of Liver Stage Schizogony. Infect Immun 2016; 84:1336-1345. [PMID: 26883588 DOI: 10.1128/iai.01417-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022] Open
Abstract
Plasmodium parasites employ posttranscriptional regulatory mechanisms as their life cycle transitions between host cell invasion and replication within both the mosquito vector and mammalian host. RNA binding proteins (RBPs) provide one mechanism for modulation of RNA function. To explore the role of Plasmodium RBPs during parasite replication, we searched for RBPs that might play a role during liver stage development, the parasite stage that exhibits the most extensive growth and replication. We identified a parasite ortholog of the Mei2 (Meiosis inhibited 2) RBP that is conserved among Plasmodium species (PlasMei2) and exclusively transcribed in liver stage parasites. Epitope-tagged Plasmodium yoelii PlasMei2 was expressed only during liver stage schizogony and showed an apparent granular cytoplasmic location. Knockout of PlasMei2 (plasmei2(-)) in P. yoelii only affected late liver stage development. The P. yoelii plasmei2(-) liver stage size increased progressively until late in development, similar to wild-type parasite development. However, P. yoelii plasmei2(-) liver stage schizonts exhibited an abnormal DNA segregation phenotype and failed to form exoerythrocytic merozoites. Consequently the cellular integrity of P. yoelii plasmei2(-) liver stages became increasingly compromised late in development and the majority of P. yoelii plasmei2(-) underwent cell death by the time wild-type liver stages mature and release merozoites. This resulted in a complete block of P. yoelii plasmei2(-) transition from liver stage to blood stage infection in mice. Our results show for the first time the importance of a Plasmodium RBP in the coordinated progression of late liver stage schizogony and maturation of new invasive forms.
Collapse
|
36
|
Silva PAGC, Guerreiro A, Santos JM, Braks JAM, Janse CJ, Mair GR. Translational Control of UIS4 Protein of the Host-Parasite Interface Is Mediated by the RNA Binding Protein Puf2 in Plasmodium berghei Sporozoites. PLoS One 2016; 11:e0147940. [PMID: 26808677 PMCID: PMC4726560 DOI: 10.1371/journal.pone.0147940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
UIS4 is a key protein component of the host-parasite interface in the liver stage of the rodent malaria parasite Plasmodium berghei and required for parasite survival after invasion. In the infectious sporozoite, UIS4 protein has variably been shown to be translated but also been reported to be translationally repressed. Here we show that uis4 mRNA translation is regulated by the P. berghei RNA binding protein Pumilio-2 (PbPuf2 or Puf2 from here on forward) in infectious salivary gland sporozoites in the mosquito vector. Using RNA immunoprecipitation we show that uis4 mRNA is bound by Puf2 in salivary gland sporozoites. In the absence of Puf2, uis4 mRNA translation is de-regulated and UIS4 protein expression upregulated in salivary gland sporozoites. Here, using RNA immunoprecipitation, we reveal the first Puf2-regulated mRNA in this parasite.
Collapse
Affiliation(s)
- Patrícia A. G. C. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Jorge M. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | | | | | - Gunnar R. Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
37
|
Zhang M, Mishra S, Sakthivel R, Fontoura BMA, Nussenzweig V. UIS2: A Unique Phosphatase Required for the Development of Plasmodium Liver Stages. PLoS Pathog 2016; 12:e1005370. [PMID: 26735921 PMCID: PMC4712141 DOI: 10.1371/journal.ppat.1005370] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/07/2015] [Indexed: 12/28/2022] Open
Abstract
Plasmodium salivary sporozoites are the infectious form of the malaria parasite and are dormant inside salivary glands of Anopheles mosquitoes. During dormancy, protein translation is inhibited by the kinase UIS1 that phosphorylates serine 59 in the eukaryotic initiation factor 2α (eIF2α). De-phosphorylation of eIF2α-P is required for the transformation of sporozoites into the liver stage. In mammalian cells, the de-phosphorylation of eIF2α-P is mediated by the protein phosphatase 1 (PP1). Using a series of genetically knockout parasites we showed that in malaria sporozoites, contrary to mammalian cells, the eIF2α-P phosphatase is a member of the PP2C/PPM phosphatase family termed UIS2. We found that eIF2α was highly phosphorylated in uis2 conditional knockout sporozoites. These mutant sporozoites maintained the crescent shape after delivery into mammalian host and lost their infectivity. Both uis1 and uis2 were highly transcribed in the salivary gland sporozoites but uis2 expression was inhibited by the Pumilio protein Puf2. The repression of uis2 expression was alleviated when sporozoites developed into liver stage. While most eukaryotic phosphatases interact transiently with their substrates, UIS2 stably bound to phosphorylated eIF2α, raising the possibility that high-throughput searches may identify chemicals that disrupt this interaction and prevent malaria infection. Malaria is transmitted to humans by female mosquitoes as they take a blood meal. Plasmodium sporozoites are the infectious and quiescent forms of malaria parasites, which reside in the salivary glands of mosquitoes. Global protein synthesis is inhibited in sporozoites through phosphorylation of the translational factor eIF2α. However, the development of the parasites in the host liver requires de-phosphorylation of eIF2α-P. We find that a unique Plasmodium phosphatase termed UIS2 de-phosphorylates eIF2α-P in malaria. The eIF2α is highly phosphorylated in the uis2 mutant sporozoites. The uis2 mutant parasites did not change their morphology after delivery into the host and could not properly infect the host. We also showed that UIS2 expression was inhibited by the Pumilio protein Puf2. However, this repression was relieved when sporozoites developed into liver stage. In sum, our findings revealed a new mechanism that evolved to control eIF2α dephosphorylation and suggest that identification of UIS2 inhibitors may be useful in anti-malaria therapy.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
- * E-mail:
| | - Satish Mishra
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Ramanavelan Sakthivel
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Beatriz M. A. Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Victor Nussenzweig
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
38
|
Reddy BPN, Shrestha S, Hart KJ, Liang X, Kemirembe K, Cui L, Lindner SE. A bioinformatic survey of RNA-binding proteins in Plasmodium. BMC Genomics 2015; 16:890. [PMID: 26525978 PMCID: PMC4630921 DOI: 10.1186/s12864-015-2092-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background The malaria parasites in the genus Plasmodium have a very complicated life cycle involving an invertebrate vector and a vertebrate host. RNA-binding proteins (RBPs) are critical factors involved in every aspect of the development of these parasites. However, very few RBPs have been functionally characterized to date in the human parasite Plasmodium falciparum. Methods Using different bioinformatic methods and tools we searched P. falciparum genome to list and annotate RBPs. A representative 3D models for each of the RBD domain identified in P. falciparum was created using I-TESSAR and SWISS-MODEL. Microarray and RNAseq data analysis pertaining PfRBPs was performed using MeV software. Finally, Cytoscape was used to create protein-protein interaction network for CITH-Dozi and Caf1-CCR4-Not complexes. Results We report the identification of 189 putative RBP genes belonging to 13 different families in Plasmodium, which comprise 3.5 % of all annotated genes. Almost 90 % (169/189) of these genes belong to six prominent RBP classes, namely RNA recognition motifs, DEAD/H-box RNA helicases, K homology, Zinc finger, Puf and Alba gene families. Interestingly, almost all of the identified RNA-binding helicases and KH genes have cognate homologs in model species, suggesting their evolutionary conservation. Exploration of the existing P. falciparum blood-stage transcriptomes revealed that most RBPs have peak mRNA expression levels early during the intraerythrocytic development cycle, which taper off in later stages. Nearly 27 % of RBPs have elevated expression in gametocytes, while 47 and 24 % have elevated mRNA expression in ookinete and asexual stages. Comparative interactome analyses using human and Plasmodium protein-protein interaction datasets suggest extensive conservation of the PfCITH/PfDOZI and PfCaf1-CCR4-NOT complexes. Conclusions The Plasmodium parasites possess a large number of putative RBPs belonging to most of RBP families identified so far, suggesting the presence of extensive post-transcriptional regulation in these parasites. Taken together, in silico identification of these putative RBPs provides a foundation for future functional studies aimed at defining a unique network of post-transcriptional regulation in P. falciparum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2092-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- B P Niranjan Reddy
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Sony Shrestha
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Kevin J Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, W223 Millennium Science Complex, University Park, PA, 16802, USA
| | - Xiaoying Liang
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Karen Kemirembe
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Liwang Cui
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA.
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, W223 Millennium Science Complex, University Park, PA, 16802, USA.
| |
Collapse
|
39
|
Josling GA, Llinás M. Sexual development in Plasmodium parasites: knowing when it's time to commit. Nat Rev Microbiol 2015; 13:573-87. [DOI: 10.1038/nrmicro3519] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
Cui L, Lindner S, Miao J. Translational regulation during stage transitions in malaria parasites. Ann N Y Acad Sci 2014; 1342:1-9. [PMID: 25387887 DOI: 10.1111/nyas.12573] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The complicated life cycle of the malaria parasite involves a vertebrate host and a mosquito vector, and translational regulation plays a prominent role in orchestrating the developmental events in the two transition stages: gametocytes and sporozoites. Translational regulation is executed in both global and transcript-specific manners. Plasmodium uses a conserved mechanism involving phosphorylation of eIF2α to repress global protein synthesis during the latent period of sporozoite development in the mosquito salivary glands. Transcript-specific translational regulation is achieved by a network of RNA-binding proteins (RBPs), among which the Dhh1 RNA helicase DOZI and Puf family RBPs are by far the best studied in Plasmodium. While the DOZI complex defines a new P granule with a role in protecting certain gametocyte mRNAs from degradation, the Puf proteins appear to repress expression of mRNAs in both gametocytes and sporozoites. These examples underscore the significance of translational regulation in Plasmodium development.
Collapse
|
41
|
Liu M, Miao J, Liu T, Sullivan WJ, Cui L, Chen X. Characterization of TgPuf1, a member of the Puf family RNA-binding proteins from Toxoplasma gondii. Parasit Vectors 2014; 7:141. [PMID: 24685055 PMCID: PMC3997814 DOI: 10.1186/1756-3305-7-141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022] Open
Abstract
Background Puf proteins act as translational regulators and affect many cellular processes in a wide range of eukaryotic organisms. Although Puf proteins have been well characterized in many model systems, little is known about the structural and functional characteristics of Puf proteins in the parasite Toxoplasma gondii. Methods Using a combination of conventional molecular approaches, we generated endogenous TgPuf1 tagged with hemagglutinin (HA) epitope and investigated the TgPuf1 expression levels and localization in the tachyzoites and bradyzoites. We used RNA Electrophoretic Mobility Shfit Assay (EMSA) to determine whether the recombination TgPuf1 has conserverd RNA binding activity and specificity. Results TgPuf1 was expressed at a significantly higher level in bradyzoites than in tachyzoites. TgPuf1 protein was predominantly localized within the cytoplasm and showed a much more granular cytoplasmic staining pattern in bradyzoites. The recombinant Puf domain of TgPuf1 showed strong binding affinity to two RNA fragments containing Puf-binding motifs from other organisms as artificial target sequences. However, two point mutations in the core Puf-binding motif resulted in a significant reduction in binding affinity, indicating that TgPuf1 also binds to conserved Puf-binding motif. Conclusions TgPuf1 appears to exhibit different expression levels in the tachyzoites and bradyzoites, suggesting that TgPuf1 may function in regulating the proliferation or/and differentiation that are important in providing parasites with the ability to respond rapidly to changes in environmental conditions. This study provides a starting point for elucidating the function of TgPuf1 during parasite development.
Collapse
Affiliation(s)
| | | | | | | | - Liwang Cui
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | | |
Collapse
|
42
|
Depletion of the Trypanosome Pumilio domain protein PUF2 or of some other essential proteins causes transcriptome changes related to coding region length. EUKARYOTIC CELL 2014; 13:664-74. [PMID: 24681684 DOI: 10.1128/ec.00018-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pumilio domain RNA-binding proteins are known mainly as posttranscriptional repressors of gene expression that reduce mRNA translation and stability. Trypanosoma brucei has 11 PUF proteins. We show here that PUF2 is in the cytosol, with roughly the same number of molecules per cell as there are mRNAs. Although PUF2 exhibits a low level of in vivo RNA binding, it is not associated with polysomes. PUF2 also decreased reporter mRNA levels in a tethering assay, consistent with a repressive role. Depletion of PUF2 inhibited growth of bloodstream-form trypanosomes, causing selective loss of mRNAs with long open reading frames and increases in mRNAs with shorter open reading frames. Reexamination of published RNASeq data revealed the same trend in cells depleted of some other proteins. We speculate that these length effects could be caused by inhibition of the elongation phase of transcription or by an influence of translation status or polysomal conformation on mRNA decay.
Collapse
|
43
|
Silvie O, Briquet S, Müller K, Manzoni G, Matuschewski K. Post-transcriptional silencing of UIS4 in Plasmodium berghei sporozoites is important for host switch. Mol Microbiol 2014; 91:1200-13. [PMID: 24446886 DOI: 10.1111/mmi.12528] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2014] [Indexed: 01/15/2023]
Abstract
Plasmodium sporozoites are transmitted by mosquitoes and first infect hepatocytes of their mammalian host, wherein they develop as liver stages, surrounded by the parasitophorous vacuole membrane (PVM). The parasite must rapidly adapt to its changing environment after switching host. Shortly after invasion, the PVM is remodelled by insertion of essential parasite proteins of the early transcribed membrane protein family such as UIS4. Here, using the rodent malaria model Plasmodium berghei, we show that transcripts encoding UIS4 are stored in a translationally repressed state in sporozoites, allowing UIS4 protein synthesis only after host cell invasion. Using a series of reporter transgenic parasite lines we could demonstrate that the open reading frame of UIS4 mRNA is critical for gene silencing, whereas the 5' and 3' untranslated regions are dispensable. Our data further indicate that the UIS4 translational repression machinery is present only in mature sporozoites in the mosquito salivary glands, and that premature expression of UIS4 protein results in a loss of parasite infectivity. Our findings reveal the importance of specific post-transcriptional control in sporozoites, and establish that host switch requires high levels of translationally silent UIS4 RNA, which permits stage conversion, yet avoids premature expression of this liver stage-specific protein.
Collapse
Affiliation(s)
- Olivier Silvie
- Sorbonne Universités, UPMC Univ Paris 06, CR7, 75013, Paris, France; INSERM, U1135, 75013, Paris, France; CNRS, ERL 8255, 75013, Paris, France
| | | | | | | | | |
Collapse
|
44
|
Grützke J, Rindte K, Goosmann C, Silvie O, Rauch C, Heuer D, Lehmann MJ, Mueller AK, Brinkmann V, Matuschewski K, Ingmundson A. The spatiotemporal dynamics and membranous features of the Plasmodium liver stage tubovesicular network. Traffic 2014; 15:362-82. [PMID: 24423236 DOI: 10.1111/tra.12151] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/09/2014] [Accepted: 01/15/2014] [Indexed: 11/28/2022]
Abstract
For membrane-bound intracellular pathogens, the surrounding vacuole is the portal of communication with the host cell. The parasitophorous vacuole (PV) harboring intrahepatocytic Plasmodium parasites satisfies the parasites' needs of nutrition and protection from host defenses to allow the rapid parasite growth that occurs during the liver stage of infection. In this study, we visualized the PV membrane (PVM) and the associated tubovesicular network (TVN) through fluorescent tagging of two PVM-resident Plasmodium berghei proteins, UIS4 and IBIS1. This strategy revealed previously unrecognized dynamics with which these membranes extend throughout the host cell. We observed dynamic vesicles, elongated clusters of membranes and long tubules that rapidly extend and contract from the PVM in a microtubule-dependent manner. Live microscopy, correlative light-electron microscopy and fluorescent recovery after photobleaching enabled a detailed characterization of these membranous features, including velocities, the distribution of UIS4 and IBIS1, and the connectivity of PVM and TVN. Labeling of host cell compartments revealed association of late endosomes and lysosomes with the elongated membrane clusters. Moreover, the signature host autophagosome protein LC3 was recruited to the PVM and TVN and colocalized with UIS4. Together, our data demonstrate that the membranes surrounding intrahepatic Plasmodium are involved in active remodeling of host cells.
Collapse
Affiliation(s)
- Josephine Grützke
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Offeddu V, Rauch M, Silvie O, Matuschewski K. The Plasmodium protein P113 supports efficient sporozoite to liver stage conversion in vivo. Mol Biochem Parasitol 2014; 193:101-9. [DOI: 10.1016/j.molbiopara.2014.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 03/01/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
|
46
|
Kramer S. RNA in development: how ribonucleoprotein granules regulate the life cycles of pathogenic protozoa. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:263-84. [PMID: 24339376 DOI: 10.1002/wrna.1207] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
Ribonucleoprotein (RNP) granules are important posttranscriptional regulators of messenger RNA (mRNA) fate. Several types of RNP granules specifically regulate gene expression during development of multicellular organisms and are commonly referred to as germ granules. The function of germ granules is not entirely understood and probably diverse, but it is generally agreed that one main function is posttranscriptional regulation of gene expression during early development, when transcription is silent. One example is the translational repression of maternally derived mRNAs in oocytes. Here, I hope to show that the need for regulation of gene expression by RNP granules is not restricted to animal development, but plays an equally important role during the development of pathogenic protozoa. Apicomplexa and Trypanosomatidae have complex life cycles with frequent host changes. The need to quickly adapt gene expression to a new environment as well as the ability to suppress translation to survive latencies is critical for successful completion of life cycles. Posttranscriptional gene regulation is not necessarily simpler in protozoa. Apicomplexa surprise with the presence of micro RNA (miRNAs) and upstream open reading frames (µORFs). Trypanosomes have an unusually large repertoire of different RNP granule types. A better understanding of RNP granules in protozoa may help to gain insight into the evolutionary origin of RNP granules: Trypanosomes for example have two types of granules with interesting similarities to animal germ granules.
Collapse
Affiliation(s)
- Susanne Kramer
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
47
|
The unfolded protein response in the protozoan parasite Toxoplasma gondii features translational and transcriptional control. EUKARYOTIC CELL 2013; 12:979-89. [PMID: 23666622 DOI: 10.1128/ec.00021-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The unfolded protein response (UPR) is an important regulatory network that responds to perturbations in protein homeostasis in the endoplasmic reticulum (ER). In mammalian cells, the UPR features translational and transcriptional mechanisms of gene expression aimed at restoring proteostatic control. A central feature of the UPR is phosphorylation of the α subunit of eukaryotic initiation factor-2 (eIF2) by PERK (EIF2AK3/PEK), which reduces the influx of nascent proteins into the ER by lowering global protein synthesis, coincident with preferential translation of key transcription activators of genes that function to expand the processing capacity of this secretory organelle. Upon ER stress, the apicomplexan parasite Toxoplasma gondii is known to induce phosphorylation of Toxoplasma eIF2α and lower translation initiation. To characterize the nature of the ensuing UPR in this parasite, we carried out microarray analyses to measure the changes in the transcriptome and in translational control during ER stress. We determined that a collection of transcripts linked with the secretory process are induced in response to ER stress, supporting the idea that a transcriptional induction phase of the UPR occurs in Toxoplasma. Furthermore, we determined that about 500 gene transcripts showed enhanced association with translating ribosomes during ER stress. Many of these target genes are suggested to be involved in gene expression, including JmjC5, which continues to be actively translated during ER stress. This study indicates that Toxoplasma triggers a UPR during ER stress that features both translational and transcriptional regulatory mechanisms, which is likely to be important for parasite invasion and development.
Collapse
|
48
|
Miao J, Fan Q, Parker D, Li X, Li J, Cui L. Puf mediates translation repression of transmission-blocking vaccine candidates in malaria parasites. PLoS Pathog 2013; 9:e1003268. [PMID: 23637595 PMCID: PMC3630172 DOI: 10.1371/journal.ppat.1003268] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 02/08/2013] [Indexed: 01/01/2023] Open
Abstract
Translational control of gene expression plays an essential role in development. In malaria parasites, translational regulation is critical during the development of specialized transition stages between the vertebrate host and mosquito vector. Here we show that a Pumilio/FBF (Puf) family RNA-binding protein, PfPuf2, is required for the translation repression of a number of transcripts in gametocytes including two genes encoding the transmission-blocking vaccine candidates Pfs25 and Pfs28. Whereas studies to date support a paradigm of Puf-mediated translation regulation through 3' untranslated regions (UTRs) of target mRNAs, this study, for the first time, identifies a functional Puf-binding element (PBE) in the 5'UTR of pfs25. We provide both in vitro and in vivo evidence to demonstrate that PfPuf2 binds to the PBEs in pfs25 and pfs28 to mediate translation repression. This finding provides a renewed view of Pufs as versatile translation regulators and sheds light on their functions in the development of lower branches of eukaryotes.
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Qi Fan
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Dalian Institute of Biotechnology, Dalian, Liaoning Province, China
| | - Daniel Parker
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Xiaolian Li
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
49
|
Lindner SE, Mikolajczak SA, Vaughan AM, Moon W, Joyce BR, Sullivan WJ, Kappe SHI. Perturbations of Plasmodium Puf2 expression and RNA-seq of Puf2-deficient sporozoites reveal a critical role in maintaining RNA homeostasis and parasite transmissibility. Cell Microbiol 2013; 15:1266-83. [PMID: 23356439 DOI: 10.1111/cmi.12116] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 12/30/2022]
Abstract
Malaria's cycle of infection requires parasite transmission between a mosquito vector and a mammalian host. We here demonstrate that the Plasmodium yoelii Pumilio-FBF family member Puf2 allows the sporozoite to remain infectious in the mosquito salivary glands while awaiting transmission. Puf2 mediates this solely through its RNA-binding domain (RBD) likely by stabilizing or hastening the degradation of specific mRNAs. Puf2 traffics to sporozoite cytosolic granules, which are negative for several markers of stress granules and P-bodies, and disappear rapidly after infection of hepatocytes. In contrast to previously described Plasmodium berghei pbpuf2(-) parasites, pypuf2(-) sporozoites have no apparent defect in host infection when tested early in salivary gland residence, but become progressively non-infectious and prematurely transform into EEFs during prolonged salivary gland residence. The premature overexpression of Puf2 in oocysts causes striking deregulation of sporozoite maturation and infectivity while extension of Puf2 expression in liverstages causes no defect, suggesting that the presence of Puf2 alone is not sufficient for its functions. Finally, by conducting the first comparative RNA-seq analysis of Plasmodium sporozoites, we find that Puf2 may play a role in directly or indirectly maintaining the homeostasis of specific transcripts. These findings uncover requirements for maintaining a window of opportunity for the malaria parasite to accommodate the unpredictable moment of transmission from mosquito to mammalian host.
Collapse
Affiliation(s)
- Scott E Lindner
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis.
Collapse
|