1
|
Senpuku K, Kataoka-Nakamura C, Kunishima Y, Hirai T, Yoshioka Y. An inactivated whole-virion vaccine for Enterovirus D68 adjuvanted with CpG ODN or AddaVax elicits potent protective immunity in mice. Vaccine 2024; 42:2463-2474. [PMID: 38472067 DOI: 10.1016/j.vaccine.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Enterovirus D68 (EV-D68), a pathogen that causes respiratory symptoms, mainly in children, has been implicated in acute flaccid myelitis, which is a poliomyelitis-like paralysis. Currently, there are no licensed vaccines or treatments for EV-D68 infections. Here, we investigated the optimal viral inactivation reagents, vaccine adjuvants, and route of vaccination in mice to optimize an inactivated whole-virion (WV) vaccine against EV-D68. We used formalin, β-propiolactone (BPL), and hydrogen peroxide as viral inactivation reagents and compared their effects on antibody responses. Use of any of these three viral inactivation reagents effectively induced neutralizing antibodies. Moreover, the antibody response induced by the BPL-inactivated WV vaccine was enhanced when adjuvanted with cytosine phosphoguanine oligodeoxynucleotide (CpG ODN) or AddaVax (MF59-like adjuvant), but not with aluminum hydroxide (alum). Consistent with the antibody response results, the protective effect of the inactivated WV vaccine against the EV-D68 challenge was enhanced when adjuvanted with CpG ODN or AddaVax, but not with alum. Further, while the intranasal inactivated WV vaccine induced EV-D68-specific IgA antibodies in the respiratory tract, it was less protective against EV-D68 challenge than the injectable vaccine. Thus, an injectable inactivated EV-D68 WV vaccine prepared with appropriate viral inactivation reagents and an optimal adjuvant is a promising EV-D68 vaccine.
Collapse
Affiliation(s)
- Kota Senpuku
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chikako Kataoka-Nakamura
- The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuta Kunishima
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiro Hirai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Tan XH, Chong WL, Lee VS, Abdullah S, Jasni K, Suarni SQ, Perera D, Sam IC, Chan YF. Substitution of Coxsackievirus A16 VP1 BC and EF Loop Altered the Protective Immune Responses in Chimera Enterovirus A71. Vaccines (Basel) 2023; 11:1363. [PMID: 37631931 PMCID: PMC10458053 DOI: 10.3390/vaccines11081363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a childhood disease caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Capsid loops are important epitopes for EV-A71 and CV-A16. Seven chimeric EV-A71 (ChiE71) involving VP1 BC (45.5% similarity), DE, EF, GH and HI loops, VP2 EF loop and VP3 GH loop (91.3% similarity) were substituted with corresponding CV-A16 loops. Only ChiE71-1-BC, ChiE71-1-EF, ChiE71-1-GH and ChiE71-3-GH were viable. EV-A71 and CV-A16 antiserum neutralized ChiE71-1-BC and ChiE71-1-EF. Mice immunized with inactivated ChiE71 elicited high IgG, IFN-γ, IL-2, IL-4 and IL-10. Neonatal mice receiving passive transfer of WT EV-A71, ChiE71-1-EF and ChiE71-1-BC immune sera had 100%, 80.0% and no survival, respectively, against lethal challenges with EV-A71, suggesting that the substituted CV-A16 loops disrupted EV-A71 immunogenicity. Passive transfer of CV-A16, ChiE71-1-EF and ChiE71-1-BC immune sera provided 40.0%, 20.0% and 42.9% survival, respectively, against CV-A16. One-day-old neonatal mice immunized with WT EV-A71, ChiE71-1-BC, ChiE71-1-EF and CV-A16 achieved 62.5%, 60.0%, 57.1%, and no survival, respectively, after the EV-A71 challenge. Active immunization using CV-A16 provided full protection while WT EV-A71, ChiE71-1-BC and ChiE71-1-EF immunization showed partial cross-protection in CV-A16 lethal challenge with survival rates of 50.0%, 20.0% and 40%, respectively. Disruption of a capsid loop could affect virus immunogenicity, and future vaccine design should include conservation of the enterovirus capsid loops.
Collapse
Affiliation(s)
- Xiu Hui Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| | - Wei Lim Chong
- Department of Chemistry, Center of Theoretical and Computational Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Center of Theoretical and Computational Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Syahril Abdullah
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kartini Jasni
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Saiful Qushairi Suarni
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - David Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia;
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| |
Collapse
|
3
|
Marchel M, Marrucho IM. Application of Aqueous Biphasic Systems Extraction in Various Biomolecules Separation and Purification: Advancements Brought by Quaternary Systems. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2136574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mateusz Marchel
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Gdansk, Poland
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel M. Marrucho
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Lee CH, Huang PN, Mwale PF, Wang WC, Leu SJ, Tseng SN, Shih SR, Chiang LC, Mao YC, Tsai BY, Dlamini NB, Nguyen TC, Tsai CH, Yang YY. The Bottlenecks of Preparing Virus Particles by Size Exclusion for Antibody Generation. Int J Mol Sci 2022; 23:12967. [PMID: 36361757 PMCID: PMC9653933 DOI: 10.3390/ijms232112967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
Enterovirus 71 (EV71) is the major etiological agent contributing to the development of hand-foot-mouth disease (HFMD). There are not any global available vaccines or antibody drugs against EV71 released yet. In this study, we perform the virus immunization in a cost-effective and convenient approach by preparing virus particles from size exclusion and immunization of chicken. Polyclonal yolk-immunoglobulin (IgY) was simply purified from egg yolk and monoclonal single-chain variable fragments (scFv) were selected via phage display technology with two scFv libraries containing 6.0 × 106 and 1.3 × 107 transformants. Specific clones were enriched after 5 rounds of bio-panning and four identical genes were classified after the sequence analysis. Moreover, the higher mutation rates were revealed in the CDR regions, especially in the CDR3. IgY showed specific binding activities to both EV71-infected and Coxsackievirus 16-infected cell lysates and high infectivity inhibitory activity of EV71. However, while IgY detected a 37 kDa protein, the selected scFv seemingly detected higher size proteins which could be cell protein instead of EV71 proteins. Despite the highly effective chicken antibody generation, the purity of virus particles prepared by size exclusion is the limitation of this study, and further characterization should be carried out rigorously.
Collapse
Affiliation(s)
- Chi-Hsin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 333423, Taiwan
- Division of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Pharaoh Fellow Mwale
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Wei-Chu Wang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Sung-Nien Tseng
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 333423, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 333423, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Liao-Chun Chiang
- College of Life Sciences, National Tsing Hua University, Hsinchu 300040, Taiwan
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Bor-Yu Tsai
- Navi Bio-Therapeutics Inc., Taipei 10351, Taiwan
| | - Nhlanhla Benedict Dlamini
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Tien-Cuong Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Chen-Hsin Tsai
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Yi-Yuan Yang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
5
|
Zhou Z, Zhu R, Yang H, Xu L, Chen H, Wu Y, Yin Z, Huang Q, Zhang D, Liu C, Que Y, Zhang J, Xia N, Cheng T. Development of a rapid neutralization testing system for Rhinovirus C15 based on the enzyme-linked immunospot assay. Front Microbiol 2022; 13:983656. [PMID: 36212859 PMCID: PMC9539532 DOI: 10.3389/fmicb.2022.983656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Human Rhinoviruses (RVs) are dominant pathogens causing a wide range of respiratory tract diseases, posing a huge threat to public health worldwide. Viruses belonging to the RV-C species are more likely to cause severe illnesses and are strongly associated with asthma onset or exacerbations than RV-A or RV-B. Rapid and sensitive detection of neutralizing antibodies (NAbs) against RV-C can promote the development of vaccines and antiviral drugs and help in the diagnosis of viral infection. In this study, a rapid neutralization testing system for RV-C15, based on an enzyme-linked immunospot assay (Nt-ELISPOT) was developed. A monoclonal antibody (MAb), named 9F9, with high binding efficacy for RV-C15 conjugated to horseradish peroxidase (HRP), was used to detect RV-C15-infected cells at a concentration of 2 μg/ml. The optimal infectious dose of RV-C15 was set at 1 × 104 TCID50/well and the cells were fixed with 0.5% formaldehyde diluted in PBS after incubation for 20 h. Compared with the traditional cytopathic effect (CPE)-based neutralization assay (Nt-CPE), Nt-ELISPOT significantly shortened the detection period and showed good consistency with the detection of neutralizing titers of both sera and NAbs. Using Nt-ELISPOT, three anti-RV-C15 NAbs were obtained with IC50 values of 0.16, 0.27, and 11.8 μg/ml, respectively. Moreover, 64 human serum samples collected from a wide range of age groups were tested for NAb against RV-C15 by Nt-ELISPOT. The total seroprevalence was 48.4% (31/64) and the positive rate was lowest in the group under 6 years old. Thus, the Nt-ELISPOT established in this study can be used as a high-throughput and rapid neutralization assay for the screening of NAbs and for seroepidemiological investigation against RV-C15.
Collapse
|
6
|
Lien SC, Lu CC, Shen YS, Yang YT, Wu SR, Fang CY, Chow YH, Liao CL, Chiang JR, Liu CC. Separation and purification of highly infectious enterovirus A71 particles using a strong anion-exchange column. J Chromatogr A 2022; 1680:463427. [PMID: 36029731 DOI: 10.1016/j.chroma.2022.463427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
Virions produced from cell culture is the primary source for production of formalin-inactivated whole virus vaccines for enteroviruses. EV-A71 particles produced from culture system comprise two major types, the immature/empty (E)-particle and the mature/full (F)-particle, which both exhibit low isoelectric point (pI) values but have distinct differences in infectivity and immunogenicity. Although EV-A71 particles can conventionally be separated into E-particle and F-particle using sucrose gradient ultracentrifugation, this procedure is cumbersome and difficult to put into practice for vaccine production. Methods based on ion-exchange chromatography have been exploited to improve the purification efficacy; however, none of them are capable of separating the E- and F-particles efficiently. In this study, we aimed to develop an approach to isolate and purify the highly immunogenic mature EV-A71 particles. By applying a step gradient elution procedure, we successfully isolated the viral structure protein VP0-cleaved particles of EV-A71 from a mixture of cultured viral solution using the Q-membrane anion-exchange chromatography. The elution started with 0.1x phosphate buffered saline (PBS) solution while increasing the percentage of 1x PBS containing 1M NaCl in sequential steps. By this procedure, the VP0-cleaved mature particles and VP0-uncleaved immature particles of EV-A71 could be separated into different fractions in Q-membrane with gradually increased NaCl concentration in elution buffer. The purified VP0-cleaved particles were shown to have characteristics equivalent to those of the highly infectious F-particles of EV-A71. The overall recovery rate for the mature EV-A71 particles by Q-membrane is 56% and its purity was shown to be equivalent to those isolated by the sucrose gradient ultracentrifugation. Our approach provides a simple and efficient purification method for recovering mature, highly infectious virus particles from the EV-A71 culture bulk.
Collapse
Affiliation(s)
- Sheng-Chieh Lien
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Chun Lu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Yu-Sheng Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Ya-Ting Yang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Yen-Hung Chow
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Jen-Ron Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan; Centers for Disease Control, Taipei, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.
| |
Collapse
|
7
|
R.Swartz A, Shieh Y, Gulasarian A, Olson J, R.Rustandi R. Binding of Coxsackievirus A21 procapsids to immobilized glutathione depends on cell culture conditions during infection. Virology 2022; 573:167-175. [DOI: 10.1016/j.virol.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023]
|
8
|
Konstantinidis S, Poplyk MR, Swartz AR, Rustandi RR, Thompson R, Wang SC. Application of cation exchange chromatography in bind and elute and flowthrough mode for the purification of enteroviruses. J Chromatogr A 2022; 1676:463259. [PMID: 35759911 DOI: 10.1016/j.chroma.2022.463259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Members of the enterovirus genus are promising oncolytic agents. Their morphogenesis involves the generation of both genome-packed infectious capsids and empty capsids. The latter are typically considered as an impurity in need of removal from the final product. The separation of empty and full capsids can take place with centrifugation methods, which are of low throughput and poorly scalable, or scalable chromatographic processes, which typically require peak cutting and a significant trade-off between purity and yield. Here we demonstrate the application of packed bed cation exchange (CEX) column chromatography for the separation of empty capsids from infectious virions for a prototype strain of Coxsackievirus A21. This separation was developed using high throughput chromatography techniques and scaled up as a bind and elute polishing step. The separation was robust over a wide range of operating conditions and returned highly resolved empty and full capsids. The CEX step could be operated in bind and elute or flowthrough mode with similar selectivity and returned yields greater than 70% for full mature virus particles. Similar performance was also achieved using a selection of other bead based CEX chromatography media, demonstrating general applicability of this type of chromatography for Coxsackievirus A21 purification. These results highlight the wide applicability and excellent performance of CEX chromatography for the purification of enteroviruses, such as Coxsackievirus A21.
Collapse
Affiliation(s)
| | - Murphy R Poplyk
- Vaccine Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Andrew R Swartz
- Vaccine Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | | | - Rachel Thompson
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Sheng-Ching Wang
- Vaccine Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
9
|
Li Y, Gao F, Wang Y, Li J, Zhang Y, Lv H, Wang S, Yang H, Liu X, Li K, Wang H, Yin Z, Liang Z, An Z, Mao Q, Feng Z. Immunogenicity and safety of inactivated enterovirus A71 vaccines in children aged 6-35 months in China: a non-inferiority, randomised controlled trial. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2021; 16:100284. [PMID: 34881371 PMCID: PMC8579145 DOI: 10.1016/j.lanwpc.2021.100284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND China's three inactivated enterovirus A71 (EV-A71) vaccines are the first and currently world's only EV-A71 vaccines approved by a national regulatory authority and used to prevent EV-A71 associated diseases. The three vaccines vary by vaccine strain, manufacturing cell substrate, and antigen dose, but no head-to-head comparisons of these vaccines have been done. We compared immunogenicity of the vaccines in children 6-35 months old. METHODS We recruited healthy children aged 6-35 months who lived in a study site county into a multicentre, open-label, non-inferiority, three-group, randomised controlled trial that was conducted in five counties in China. Enrolled children were randomly assigned (1:1:1) to receive two doses of one of the three EV-A71 vaccines. The primary outcome was the proportion of children with EV-A71 neutralizing antibody seroconversion 4 weeks after the second dose; a secondary outcome was adverse events in the 4 weeks after each dose. Analyses of immunogenicity included all children who completed the study (per-protocol analysis). Safety analysis included all children completed safety follow-up after at least one. We used a 10% margin to establish non-inferiority. This trial was registered on a World Health Organization platform: Chinese Clinical Trial Registry (ChiCTR1900026663). FINDINGS 1631 children were assessed for eligibility between Nov 4 and Nov 20, 2019. Of 1500 (92%) enrolled children, 500 were assigned to vaccine group A, B, or C; 483 in group A,484 in group B, and 487 in group C completed the study. Before dose one, the seropositive rates in groups A, B, and C were 9.7%, 7.2%, and 7.0%. Four weeks after the second dose, seroconversion rates of groups A, B, and C were 98.8%, 99.4% and 99.8% - mutually non-inferior in all two-group comparisons. There were no serious adverse events in any group and no evidence of a difference among the three groups in the incidence of local adverse event or systemic adverse event. Fever was the most common adverse event. All children with reported adverse events recovered. INTERPRETATION Non-inferior and high seroconversion rates and equivalent safety of three EV-A71 vaccines supports use any of these vaccines to prevent EV-A71-associated diseases. These results may be useful for regulators, vaccine policy makers, and immunization programmes in China and in countries where EV-A71 is endemic.
Collapse
Affiliation(s)
- Yan Li
- National Immunization Programme, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fan Gao
- National Institutes for Food and Drug Control, Beijing, China
| | - Yamin Wang
- National Immunization Programme, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Li
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Yuxi Zhang
- Baoding prefectural Center for Disease Control and Prevention, Baoding, China
| | - Huakun Lv
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shenyu Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Haitao Yang
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Xiaoqiang Liu
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Keli Li
- National Immunization Programme, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaqing Wang
- National Immunization Programme, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zundong Yin
- National Immunization Programme, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing, China
| | - Zhijie An
- National Immunization Programme, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qunying Mao
- National Institutes for Food and Drug Control, Beijing, China
| | - Zijian Feng
- National Immunization Programme, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
10
|
Gu H, Liu Y, Wang L, Zhang B, Yin D, Zhang Q. Polymer
brush‐grafted
monolithic macroporous
polyHIPEs
obtained by
surface‐initiated ARGET ATRP
and heparinized for Enterovirus 71 purification. J Appl Polym Sci 2020. [DOI: 10.1002/app.50427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huimin Gu
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an China
| | - Yibin Liu
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an China
| | - Lichun Wang
- Institute of Medical Biology Chinese Academy of Medical Sciences Kun'ming China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an China
| | - Dezhong Yin
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an China
| |
Collapse
|
11
|
Nie J, Sun Y, Peng F, Han F, Yang Y, Liu X, Liu C, Li Y, Bai Z. Pseudorabies virus production using a serum-free medium in fixed-bed bioreactors with low cell inoculum density. Biotechnol Lett 2020; 42:2551-2560. [PMID: 32816175 DOI: 10.1007/s10529-020-02987-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/13/2020] [Indexed: 11/29/2022]
Abstract
Fixed-bed bioreactors packed with macrocarriers show great potential to be used for vaccine process development and large-scale production due to distinguishing features of low shear force, high cell adhering surface area, and easy replacement of culture media in situ. As an initial step of utilizing this type of bioreactors for Pseudorabies virus production (PRV) by African green monkey kidney (Vero) cells, we developed a tube-fixed-bed bioreactor in the previous study, which represents a scale-down model for further process optimization. By using this scale-down model, here we evaluated impacts of two strategies (use of serum-free medium and low cell inoculum density) on PRV production, which have benefits of simplifying downstream process and reducing risk of contamination. We first compared Vero cell cultures with different media, bioreactors and inoculum densities, and conclude that cell growth with serum-free medium is comparable to that with serum-containing medium in tube-fixed-bed bioreactor, and low inoculum density supports cell growth only in this bioreactor. Next, we applied serum-free medium and low inoculum cell density for PRV production. By optimization of time of infection (TOI), multiplicity of infection (MOI) and the harvesting strategy, we obtained total amount of virus particles ~ 9 log10 TCID50 at 5 days post-infection (dpi) in the tube-fixed-bed bioreactor. This process was then scaled up by 25-fold to a Xcell 1-L fixed-bed bioreactor, which yields totally virus particles of 10.5 log10 TCID50, corresponding to ~ 3 × 105 doses of vaccine. The process studied in this work holds promise to be developed as a generic platform for the production of vaccines for animal and human health.
Collapse
Affiliation(s)
- Jianqi Nie
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Yang Sun
- Institute of Bioengineering, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Feng Peng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Fei Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Chunli Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China. .,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China. .,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
12
|
Antiviral Activity of a Llama-Derived Single-Domain Antibody against Enterovirus A71. Antimicrob Agents Chemother 2020; 64:AAC.01922-19. [PMID: 32152074 DOI: 10.1128/aac.01922-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/19/2020] [Indexed: 12/28/2022] Open
Abstract
In the past few decades, enterovirus A71 (EVA71) has caused devastating outbreaks in the Asia-Pacific region, resulting in serious sequelae in infected young children. No preventive or therapeutic interventions are currently available for curing EVA71 infection, highlighting a great unmet medical need for this disease. Here, we showed that one novel single-domain antibody (sdAb), F1, isolated from an immunized llama, could alleviate EVA71 infection both in vitro and in vivo We also confirmed that the sdAb clone F1 recognizes EVA71 through a novel conformational epitope comprising the highly conserved region of VP3 capsid protein by using competitive-binding and overlapping-peptide enzyme-linked immunosorbent assays (ELISAs). Because of the virion's icosahedral structure, we reasoned that adjacent epitopes must be clustered within molecular ranges that may be simultaneously bound by an engineered antibody with multiple valency. Therefore, two single-domain binding modules (F1) were fused to generate an sdAb-in-tandem design so that the capture of viral antigens could be further increased by valency effects. We showed that the tetravalent construct F1×F1-hFc, containing two sdAb-in-tandem on a fragment crystallizable (Fc) scaffold, exhibits more potent neutralization activity against EVA71 than does the bivalent sdAb F1-hFc by at least 5.8-fold. We also demonstrated that, using a human scavenger receptor class B member 2 (hSCARB2) transgenic mouse model, a half dose of the F1×F1-hFc provided better protection against EVA71 infection than did the F1-hFc. Thus, our study furnishes important insights into multivalent sdAb engineering against viral infection and provides a novel strategic deployment approach for preparedness of emerging infectious diseases such as EVA71.
Collapse
|
13
|
Hassine IH, Gharbi J, Hamrita B, Almalki MA, Rodríguez JF, Ben M'hadheb M. Characterization of Coxsackievirus B4 virus-like particles VLP produced by the recombinant baculovirus-insect cell system expressing the major capsid protein. Mol Biol Rep 2020; 47:2835-2843. [PMID: 32240468 DOI: 10.1007/s11033-020-05333-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/18/2020] [Indexed: 01/17/2023]
Abstract
Coxsackievirus B4 (CV-B4) is suspected to be an environmental factor that has the intrinsic capacity to damage the pancreatic beta cells and therefore causes insulitis and type 1 diabetes (T1D). Although vaccination against CV-B4 could reduce the incidence of this chronic auto-immune disease, there is currently no therapeutic reagent or vaccine in clinical use. By the employment of the Bac-to-Bac® vector system to express the major viral capsid protein, we contributed towards the development of a CV-B4 vaccine by producing CV-B4 virus-like particles (VLPs) from recombinant baculovirus in infected insect cells. In fact Western blot and Immunofluorescence analysis detected the viral protein 1 (VP1) in the cells resulting from the construction of a recombinant bacmid DNA carrying the key immunogenic protein then transfected in the insect cells. Sucrose gradient ultracentrifugation fractions of the infected cell lysates contained the recombinant protein and the electron microscopy demonstrated the presence of VLPs in these sucrose fractions. This study clearly shows for the first time the expression of CVB4 VP1 structure protein alone can form VLPs in the baculovirus-infected insect cell keeping conserved both characteristics and morphology.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia.,Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Jawhar Gharbi
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia. .,Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982, Saudi Arabia.
| | - Bechr Hamrita
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia
| | - Mohammed A Almalki
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982, Saudi Arabia
| | - José Francisco Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Manel Ben M'hadheb
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia
| |
Collapse
|
14
|
Workshop Report on Global Harmonization of Enterovirus Vaccines. Emerg Infect Dis 2020. [PMCID: PMC7101126 DOI: 10.3201/eid2604.191273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Nie J, Sun Y, Han F, Yang Y, Liu X, Liu C, Li Y, Bai Z. Rapid process development of serum-free pseudorabies virus production with the Quality by Design approach. Cytotechnology 2020; 72:283-293. [PMID: 32086694 DOI: 10.1007/s10616-020-00377-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 11/26/2022] Open
Abstract
This study described a successful application of the Quality by Design (QbD) approach to pseudorabies virus (PRV) production process development in a fixed-bed bioreactor using the serum-free medium (SFM). The innovated tube-fixed-bed bioreactor was used as a scale-down model of the fixed-bed bioreactor for process development. Risk analysis was performed using Ishikawa diagram combined with failure mode effects analysis (FMEA). The comparative experiment was performed to screen proper medium for adherent African green monkey kidney (Vero) cells from three commercially available SFMs (VP-SFM, ProVERO-1 and Vero-A). The Vero-A medium showed as an outstanding one for further study. The PRV titer in harvest medium was consider as Critical Quality Attribute (CQA) and the Critical Process Parameters (CPPs) [time of infection (TOI), multiplicity of infection (MOI) and initial inoculation cell density] ranked high with risk priority number (RPN) were taken into design of experiment (DoE) methodology. Then prediction model of PRV production process was established and a robust PRV production process was explored. Under the robust setpoint conditions, the Xcell 1 L laboratory-scale fixed-bed bioreactor yielded PRV titer up to 7.87 log10 TCID50/mL at 3 dpi, which was comparable with that in the tube-fixed-bed bioreactor. Combination of the tube-fixed-bed bioreactor and QbD approach could further accelerate the development of a robust virus production process.
Collapse
Affiliation(s)
- Jianqi Nie
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Yang Sun
- Institute of Bioengineering, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Fei Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Chunli Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
16
|
Nahand JS, Mahjoubin-Tehran M, Moghoofei M, Pourhanifeh MH, Mirzaei HR, Asemi Z, Khatami A, Bokharaei-Salim F, Mirzaei H, Hamblin MR. Exosomal miRNAs: novel players in viral infection. Epigenomics 2020; 12:353-370. [PMID: 32093516 PMCID: PMC7713899 DOI: 10.2217/epi-2019-0192] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomes are secreted nanovesicles that are able to transfer their cargo (such as miRNAs) between cells. To determine to what extent exosomes and exosomal miRNAs are involved in the pathogenesis, progression and diagnosis of viral infections. The scientific literature (PubMed and Google Scholar) was searched from 1970 to 2019. The complex biogenesis of exosomes and miRNAs was reviewed. Exosomes contain both viral and host miRNAs that can be used as diagnostic biomarkers for viral diseases. Viral proteins can alter miRNAs, and conversely miRNAs can alter the host response to viral infections in a positive or negative manner. It is expected that exosomal miRNAs will be increasingly used for diagnosis, monitoring and even treatment of viral infections.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
17
|
Nie J, Sun Y, Peng F, Li X, Yang Y, Liu X, Li Y, Liu C, Bai Z. Production Process Development of Pseudorabies Virus Vaccine by Using a Novel Scale-Down Model of a Fixed-Bed Bioreactor. J Pharm Sci 2019; 109:959-965. [PMID: 31604085 DOI: 10.1016/j.xphs.2019.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 12/22/2022]
Abstract
In this study, a novel tube-fixed-bed bioreactor which consists of a TubeSpin bioreactor 50 tube and 0.44 g macrocarriers was developed as the scale-down model of a fixed-bed bioreactor. The adherent Vero cell-based pseudorabies virus (PRV) production process was tested in this novel model. The Vero cells grew well in the tube-fixed-bed bioreactor, and the cell density reached 5.8 × 106 cells/mL after 7 days of culture. The PRV production parameters (time of infection, multiplicity of infection, and harvest process) were optimized in the tube-fixed-bed bioreactor. Then the optimized process (time of infection = 3 days, multiplicity of infection = 0.001 and multiple harvest process) was scaled up 25-fold to an Xcell 1-L laboratory-scale fixed-bed bioreactor and 125-fold to an Xcell 5-L fixed-bed bioreactor successfully. The total PRV harvest in the Xcell 1-L bioreactor at 5 days after infection (dpi) was 10.25 log10 TCID50 which corresponds to 177,827 doses of vaccine. The total PRV harvest in the Xcell 5-L bioreactor at 5 dpi was 11.13 log10 TCID50 which corresponded to 1,348,962 doses of vaccine. The comparable growth curve, metabolism, and PRV production profile of the scaled-up bioreactors confirmed the feasibility and scalability of the tube-fixed-bed bioreactor as a scale-down model of the fixed-bed bioreactor for virus production process development.
Collapse
Affiliation(s)
- Jianqi Nie
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Yang Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Feng Peng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Xinran Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Chunli Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
Wu XX, Chen KD, Chen DZ, Xiao LL, Huang KZ, Zhang YJ, Li LJ. Process optimization for the rapid production of Enterovirus 71. Cytotechnology 2019; 71:1053-1061. [PMID: 31559514 DOI: 10.1007/s10616-019-00340-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/20/2019] [Indexed: 10/25/2022] Open
Abstract
Enterovirus 71 (EV71) infection can cause hand-foot-and-mouth disease (HFMD). Inactivated EV71 vaccine was effective to prevent EV71 derived HFMD. A highly efficient and economical process for producing EV71 is needed. In our study, the epidemic strain of EV71 (EV71-2013ZJHFMD) was obtained and purified. The Vero cells were cultured for production of EV71. The mini-bioreactor vessel (Amprotein Inc., China) packed with a 0.6 g polymer fiber carrier was used to determine the best seeding cell density, multiplicity of infection (MOI) and temperature. Then the optimized procedure was further applied in a 10 L disposable perfusion bioreactor ACPB (AmProtein Current Perfusion Bioreactor). The Vero cell culture and viral titer were monitored. The seeding density of 1.5 × 107 cells per 0.6 g disk was considered to be the most appropriate for the culture. The best MOI was 0.1 and the temperature was 32 °C. The total cell number increased from 1.5 × 109 to 3.0 × 1010. The maximum viral titers reached 1.0 × 108/mL 3 days post-infection in our optimized special culture procedure (serum-free during the harvest period, supplemented with 0.25% Lactalbumin Hydrolysate). The total volume of the harvested supernatant was 25 L and the total virus yield was 1.93 × 1012. The procedure using Vero cells grown on polymer fiber paper carriers was effective for the large-scale production of EV71.
Collapse
Affiliation(s)
- Xiao-Xin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovative Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ke-Da Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovative Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Da-Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovative Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lan-Lan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovative Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Kai-Zhou Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovative Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yan-Jun Zhang
- Department of Virus Inspection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovative Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
19
|
Yang Z, Gao F, Wang X, Shi L, Zhou Z, Jiang Y, Ma X, Zhang C, Zhou C, Zeng X, Liu G, Fan J, Mao Q, Shi L. Development and characterization of an enterovirus 71 (EV71) virus-like particles (VLPs) vaccine produced in Pichia pastoris. Hum Vaccin Immunother 2019; 16:1602-1610. [PMID: 31403352 DOI: 10.1080/21645515.2019.1649554] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Enterovirus 71 (EV71) is one of the major causative agents for hand, foot and mouth disease (HFMD) in children. Although there are three inactivated virus-based HFMD vaccines licensed in China, alternative approaches have been taken to produce an effective and safer vaccine that is easier to manufacture in large scale. Among these, a virus-like particles (VLPs) based EV71 vaccine is under active development. For this purpose, an efficient methodology for the production of EV71-VLPs by recombinant technology is needed. We here report the construction and expression of the P1 and 3C genes of EV71 in Pichia pastoris for producing VLP-based EV71 vaccine antigen with a high yield and simple manufacturing process. Based on codon-optimized P1 and 3C genes, EV71-VLPs were efficiently expressed in Pichia pastoris system, and the expression level reached 270 mg/L. Biochemical and biophysical analyses showed that the produced EV71-VLPs consisted of processed VP0, VP1, and VP3 present as ~35nm spherical particles. The immune response as a function of EV71-VLPs and adjuvant dose ratio was investigated for vaccine development. Immunization with EV71-VLPs of 1-5 µg/dose and adjuvant of 225 µg/dose induced robust neutralizing antibody responses in mice and provided effective protection against lethal challenge in both maternally transferred antibody and passive transfer protection mouse models. Therefore, the yeast produced EV71-VLPs antigen is a promising candidate for the development of a vaccine against HFMD.
Collapse
Affiliation(s)
- Zhijian Yang
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Fan Gao
- Division of Hepatitis Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) , Beijing, PR China
| | - Xiaoliang Wang
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Likang Shi
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Zheng Zhou
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | | | - Xinxing Ma
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Chao Zhang
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Chenliang Zhou
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Xianfang Zeng
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Ge Liu
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Jiang Fan
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Qunying Mao
- Division of Hepatitis Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) , Beijing, PR China
| | - Li Shi
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| |
Collapse
|
20
|
Tan CCS, Maurer-Stroh S, Wan Y, Sessions OM, de Sessions PF. A novel method for the capture-based purification of whole viral native RNA genomes. AMB Express 2019; 9:45. [PMID: 30963294 PMCID: PMC6453989 DOI: 10.1186/s13568-019-0772-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/02/2019] [Indexed: 01/06/2023] Open
Abstract
Current technologies for targeted characterization and manipulation of viral RNA primarily involve amplification or ultracentrifugation with isopycnic gradients of viral particles to decrease host RNA background. The former strategy is non-compatible for characterizing properties innate to RNA strands such as secondary structure, RNA-RNA interactions, and also for nanopore direct RNA sequencing involving the sequencing of native RNA strands. The latter strategy, ultracentrifugation, causes loss in genomic information due to its inability to retrieve unassembled viral RNA. To address this, we developed a novel application of current nucleic acid hybridization technologies for direct characterization of RNA. In particular, we modified a current enrichment protocol to capture whole viral native RNA genomes for downstream RNA assays to circumvent the abovementioned problems. This technique involves hybridization of biotinylated baits at 500 nucleotides (nt) intervals, stringent washes and release of free native RNA strands using DNase I treatment, with a turnaround time of about 6 h 15 min. RT-qPCR was used as the primary proof of concept that capture-based purification indeed removes host background. Subsequently, capture-based purification was applied to direct RNA sequencing as proof of concept that capture-based purification can be coupled with downstream RNA assays. We report that this protocol was able to successfully purify viral RNA by 561- to 791-fold. We also report that application of this protocol to direct RNA sequencing yielded a reduction in human host RNA background by 1580-fold, a 99.91% recovery of viral genome with at least 15× coverage, and a mean coverage across the genome of 120×. This report is, to the best of our knowledge, the first description of a capture-based purification method for assays that involve direct manipulation or characterisation of native RNA. This report also describes a successful application of capture-based purification as a direct RNA sequencing strategy that addresses certain limitations of current strategies in sequencing RNA viral genomes.
Collapse
Affiliation(s)
- Cedric Chih Shen Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- A*STAR Graduate Academy, Singapore, Singapore
- University College London, London, UK
| | | | - Yue Wan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Paola Florez de Sessions
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
21
|
Wen L, Zhang A, Li Y, Lai H, Li H, Luo Q, Jin S, Chen R. Suspension culture of Marek’s disease virus and evaluation of its immunological effects. Avian Pathol 2019; 48:183-190. [DOI: 10.1080/03079457.2018.1556385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lianghai Wen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Zhaoqing Institute of Biotechnology Co. Ltd., Zhaoqing, People’s Republic of China
| | - Aiguo Zhang
- Zhaoqing Institute of Biotechnology Co. Ltd., Zhaoqing, People’s Republic of China
- Henan University of Animal Husbandry and Economy, Zhengzhou, People’s Republic of China
| | - Yanpeng Li
- Zhaoqing Institute of Biotechnology Co. Ltd., Zhaoqing, People’s Republic of China
- ZhaoqingDaHuaNong Biology Medicine Co. Ltd., Zhaoqing, People’s Republic of China
| | - Hanzhang Lai
- ZhaoqingDaHuaNong Biology Medicine Co. Ltd., Zhaoqing, People’s Republic of China
| | - Huimin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Qiong Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- ZhaoqingDaHuaNong Biology Medicine Co. Ltd., Zhaoqing, People’s Republic of China
| | - Shuangxing Jin
- Zhaoqing Institute of Biotechnology Co. Ltd., Zhaoqing, People’s Republic of China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Zhaoqing Institute of Biotechnology Co. Ltd., Zhaoqing, People’s Republic of China
- ZhaoqingDaHuaNong Biology Medicine Co. Ltd., Zhaoqing, People’s Republic of China
| |
Collapse
|
22
|
Kim HJ, Son HS, Lee SW, Yoon Y, Hyeon JY, Chung GT, Lee JW, Yoo JS. Efficient expression of enterovirus 71 based on virus-like particles vaccine. PLoS One 2019; 14:e0210477. [PMID: 30845175 PMCID: PMC6405078 DOI: 10.1371/journal.pone.0210477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/25/2018] [Indexed: 01/23/2023] Open
Abstract
Enterovirus (EV) 71 is the main pathogen associated with hand-foot-mouth disease (HFMD) and can lead to the disease with severe mortality in children. Since 2009, in the Republic of Korea, an outbreak of EV71 C4a infection with neurologic involvement emerged, where in HFMD involvement was identified and central nervous system complications were reported. In this study, EV71 C4a virus-like particles (VLPs) produced by recombinant technology were generated in a baculovirus expression system. To improve the production yield, EV71 VLP was constructed using the dual promoter system baculovirus P1 and 3CD (baculo-P1-3CD), which harbored both the structural protein-encoding P1 region under the control of the polyhedron promoter and the 3CD protease gene under the regulation of the CMV-IE, lef3, gp41, or chitinase promoters to augment the level of gene transcription. Efficient VLP expression was demonstrated through optimization of incubation time and insect cell type. In addition, to evaluate the potential of VLP as a vaccine candidate, we tested the neutralizing antibodies and total anti-EV71 IgG from the purified EV71 C4a VLP serum. The recombinant EV71 VLP exhibited the morphology of self-assembled VLP, as determined by electron microscopy. Use of baculo-P1-3CD-gp41 led to a high yield (11.3mg/L < 40kDa) of VLPs in High-FiveTM cells at 3 days post-infection. Furthermore, the potential of VLP as a vaccine was evaluated through the neutralizing ability elicited by the purified EV71 VLP after immunization of BALB/c mice, which was shown to induce potent and long-lasting humoral immune responses as evidenced by the cross-neutralization titer. Our results could be used to expedite the developmental process for vaccines under clinical trials and to ensure manufacturing consistency for licensing requirements.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Division of Vaccine Research, Center for Infectious Diseases, Korea National Institutes of Health, Korea Centers for Disease Control and Prevention, Osong-eup, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Ho Sun Son
- Division of Vaccine Research, Center for Infectious Diseases, Korea National Institutes of Health, Korea Centers for Disease Control and Prevention, Osong-eup, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Sang Won Lee
- Division of Strategic Planning for Emerging Infectious Disease, Centers for Disease Control and Prevention, Osong, CheongJu, Chungcheongbuk-do, South Korea
| | - Youngsil Yoon
- Division of Viral Disease, Center for Laboratory control of Infectious Disease, Centers for Disease Control and Prevention, Osong, CheongJu, Chungcheongbuk-do, South Korea
| | - Ji-Yeon Hyeon
- Division of Vaccine Research, Center for Infectious Diseases, Korea National Institutes of Health, Korea Centers for Disease Control and Prevention, Osong-eup, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Gyung Tae Chung
- Division of Strategic Planning for Emerging Infectious Disease, Centers for Disease Control and Prevention, Osong, CheongJu, Chungcheongbuk-do, South Korea
| | - June-Woo Lee
- Division of Vaccine Research, Center for Infectious Diseases, Korea National Institutes of Health, Korea Centers for Disease Control and Prevention, Osong-eup, Cheongju, Chungcheongbuk-do, Republic of Korea
- * E-mail: (JSY); (JWL)
| | - Jung Sik Yoo
- Division of Vaccine Research, Center for Infectious Diseases, Korea National Institutes of Health, Korea Centers for Disease Control and Prevention, Osong-eup, Cheongju, Chungcheongbuk-do, Republic of Korea
- * E-mail: (JSY); (JWL)
| |
Collapse
|
23
|
Wu CY, Yu SL, Chen YT, Chen YH, Hsiao PW, Chow YH, Chen JR. The mature EV71 virion induced a broadly cross-neutralizing VP1 antibody against subtypes of the EV71 virus. PLoS One 2019; 14:e0210553. [PMID: 30650163 PMCID: PMC6334917 DOI: 10.1371/journal.pone.0210553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022] Open
Abstract
Enterovirus 71 (EV71) has emerged as a neurological virus causing life-threatening diseases in young children and infants. Although EV71 vaccines in development have presented promising results in several clinical trials, the identified key antigen for improving the broad protective efficacy of EV71 vaccines has not been well investigated. In this report, we show that different multiplicities of infection (MOIs) of the B4(E59) virus significantly affect EV71 vaccine production in a serum-free microcarrier bioreactor system. The antigens produced from high MOIs of 10−1 and 10−2 exhibited higher yield and more infectious full particle (FP) contents in the EV71 vaccines than those produced with low MOIs of 10−4 and 10−6, leading to better cross-neutralizing efficacy. The C4(E36) neutralization results showed that only antisera raised from EV71 FPs provided substantial neutralizing titers against C4(E36), whereas empty particles (EPs) of EV71 conferred no efficacy. Competitive ELISA showed that anti-FP mainly binds to FPs and that 20% of antibodies bind to EPs, whereas most anti-EP binds EPs, with only 10% antibodies binding to FPs. VP1-adsorbed anti-FP lost most of the virus neutralization efficiency, suggesting that the VP1 subunit of FP is the major immunogenic antigen determining the ability of the EV71 vaccine to elicit cross-neutralizing antibodies against EV71 virus subtypes. These findings demonstrate that the high-MOI production approach is significantly correlated with FP productivity, thereby improving the cross-neutralization efficacy of an EV71 vaccine and providing the basis for a better vaccine design against widespread EV71 viruses.
Collapse
Affiliation(s)
| | - Shu-Ling Yu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | | | | | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yen-Hung Chow
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- * E-mail: (Juine-Ruey Chen); (Yen-Hung Chow)
| | - Juine-Ruey Chen
- Adimmune Corporation, Taichung, Taiwan
- * E-mail: (Juine-Ruey Chen); (Yen-Hung Chow)
| |
Collapse
|
24
|
Development of an efficient neutralization assay for Coxsackievirus A10. Appl Microbiol Biotechnol 2019; 103:1931-1938. [PMID: 30617817 DOI: 10.1007/s00253-018-09598-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
Abstract
Coxsackievirus A10 (CVA10) recently has become one of the major pathogens of hand, foot, and mouth disease (HFMD) in children worldwide, but no cure or vaccine against CVA10 is available yet. Serological evaluation of herd immunity to CVA10 will promote the development of vaccine. The traditional neutralization assay based on inhibition of cytopathic effect (Nt-CPE) is a common method for measuring neutralizing antibody titer against CVA10, which is time-consuming and labor-intensive. In this study, an efficient neutralization test based on a monoclonal antibody (mAb) 3D1 against CVA10, called Elispot-based neutralization test (Nt-Elispot), was developed. In the Nt-Elispot, the mAb 3D1 labeled with horseradish peroxidase (HRP) was used to detect the CVA10-infected RD cells at a 1:4000 dilution and the optimal infectious dose of CVA10 was set at 105 TCID50/well when combined with a fixed incubation time of 14 h. Compared with the Nt-CPE, the Nt-Elispot method effectively shortened the detection period and presented a good correlativity with it. Using the Nt-Elispot, a total of 123 sera from healthy children were tested for neutralizing antibody against CVA10, demonstrating that the overall seroprevalence was 49.3% (54/123) and the geometric mean titer (GMT) had been calculated as 574.2. Furthermore, 2 anti-CVA10 neutralizing mAbs were obtained by screening via the Nt-Elispot. Overall, the established Nt-Elispot could be used as an efficient and high-throughput method for evaluating immunity to CVA10 and screening the neutralizing antibodies.
Collapse
|
25
|
Chia MY, Chung WY, Wang CH, Chang WH, Lee MS. Development of a high-growth enterovirus 71 vaccine candidate inducing cross-reactive neutralizing antibody responses. Vaccine 2018; 36:1167-1173. [PMID: 29398272 DOI: 10.1016/j.vaccine.2018.01.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 02/04/2023]
Abstract
Although Enterovirus 71 (EV71) has only one serotype based on serum neutralization tests using hyperimmune animal antisera, three major genogroups (A, B and C) including eleven genotypes (A, B1-B2, and C1-C5) can be well classified based on phylogenetic analysis. Since 1997, large-scale EV71 epidemics occurred cyclically with different genotypes in the Asia-Pacific region. Therefore, development of EV71 vaccines is a national priority in several Asian countries. Currently, five vaccine candidates have been evaluated in clinical trials in China (three C4 candidates), Singapore (one B2 candidate), and Taiwan (one B4 candidate). Overall, the peak viral titers of these 5 vaccine candidates could only reach about 107 TCID50/mL. Moreover, genotypes of these 5 candidates are different from the current predominant genotype B5 in Taiwan and South-Eastern Asia. We adapted a high-growth EV71 genotype B5 (HG-B5) virus after multiple passages and plaque selections in Vero cells and the HG-B5 virus could reach high titers (>108 TCID50/mL) in a microcarrier-based cell culture system. The viral particles were further purified and formulated with alum adjuvant. After two doses of intramuscular immunization in rabbits, the HG-B5 vaccine candidate could induce cross-reactive neutralizing antibodies against the three major EV71 genogroups. In conclusion, a high-growth EV71 virus was successfully adapted in Vero cells and could induce broad spectrum neutralizing antibody titers against three (A, B5, and C4) genotypes in rabbits.
Collapse
Affiliation(s)
- Min-Yuan Chia
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan; Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Yu Chung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | | | - Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
26
|
Yen MH, Huang CI, Lee MS, Cheng YP, Hsieh CJ, Chiang LC, Chang JS. Artemisia capillaris inhibited enterovirus 71-induced cell injury by preventing viral internalization. Kaohsiung J Med Sci 2018; 34:150-159. [DOI: 10.1016/j.kjms.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/13/2023] Open
|
27
|
Zhang C, Zhang X, Dai W, Liu Q, Xiong P, Wang S, Geng L, Gong S, Huang Z. A Mouse Model of Enterovirus D68 Infection for Assessment of the Efficacy of Inactivated Vaccine. Viruses 2018; 10:v10020058. [PMID: 29385753 PMCID: PMC5850365 DOI: 10.3390/v10020058] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 12/15/2022] Open
Abstract
In recent years, enterovirus D68 (EVD68) has been reported increasingly to be associated with severe respiratory tract infections and acute flaccid myelitis (AFM) in children all over the world. Yet, no effective vaccines or antiviral drugs are currently available for EVD68. Although several experimental animal models have been developed, immunogenicity and protective efficacy of inactivated EVD68 vaccines has not been fully evaluated. To promote the development of vaccines, we established an Institute of Cancer Research (ICR) suckling mouse model of EVD68 infection in this study. The results showed that ICR neonatal mice up to about nine days of age were susceptible to infection with EVD68 clinical strain US/MO/14-18947 by intraperitoneal injection. The infected mice exhibited progressive limb paralysis prior to death and the mortality of mice was age- and virus dose-dependent. Tissue viral load analysis showed that limb muscle and spinal cord were the major sites of viral replication. Moreover, histopathologic examination revealed the severe necrosis of the limb and juxtaspinal muscles, suggesting that US/MO/14-18947 has a strong tropism toward muscle tissues. Additionally, β-propiolactone-inactivated EVD68 vaccine showed high purity and quality and induced robust EVD68-specific neutralizing antibody responses in adult mice. Importantly, results from both antisera transfer and maternal immunization experiments clearly showed that inactivated EVD68 vaccine was able to protect against lethal viral infection in the mouse model. In short, these results demonstrate the successful establishment of the mouse model of EVD68 infection for evaluating candidate vaccines against EVD68 and also provide important information for the development of inactivated virus-based EVD68 vaccines.
Collapse
Affiliation(s)
- Chao Zhang
- Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China; (C.Z.); (L.G.)
- Unit of Vaccinology & Antiviral Strategies, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.Z); (W.D.); (Q.L.); (P.X.); (S.W)
| | - Xueyang Zhang
- Unit of Vaccinology & Antiviral Strategies, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.Z); (W.D.); (Q.L.); (P.X.); (S.W)
| | - Wenlong Dai
- Unit of Vaccinology & Antiviral Strategies, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.Z); (W.D.); (Q.L.); (P.X.); (S.W)
| | - Qingwei Liu
- Unit of Vaccinology & Antiviral Strategies, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.Z); (W.D.); (Q.L.); (P.X.); (S.W)
| | - Pei Xiong
- Unit of Vaccinology & Antiviral Strategies, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.Z); (W.D.); (Q.L.); (P.X.); (S.W)
| | - Shuxia Wang
- Unit of Vaccinology & Antiviral Strategies, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.Z); (W.D.); (Q.L.); (P.X.); (S.W)
| | - Lanlan Geng
- Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China; (C.Z.); (L.G.)
| | - Sitang Gong
- Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China; (C.Z.); (L.G.)
- Correspondence: (Z.H.); (S.G.)
| | - Zhong Huang
- Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China; (C.Z.); (L.G.)
- Unit of Vaccinology & Antiviral Strategies, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.Z); (W.D.); (Q.L.); (P.X.); (S.W)
- Correspondence: (Z.H.); (S.G.)
| |
Collapse
|
28
|
A 3.0-Angstrom Resolution Cryo-Electron Microscopy Structure and Antigenic Sites of Coxsackievirus A6-Like Particles. J Virol 2018; 92:JVI.01257-17. [PMID: 29093091 DOI: 10.1128/jvi.01257-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
Coxsackievirus A6 (CVA6) has recently emerged as one of the predominant causative agents of hand, foot, and mouth disease (HFMD). The structure of the CVA6 mature viral particle has not been solved thus far. Our previous work shows that recombinant virus-like particles (VLPs) of CVA6 represent a promising CVA6 vaccine candidate. Here, we report the first cryo-electron microscopy (cryo-EM) structure of the CVA6 VLP at 3.0-Å resolution. The CVA6 VLP exhibits the characteristic features of enteroviruses but presents an open channel at the 2-fold axis and an empty, collapsed VP1 pocket, which is broadly similar to the structures of the enterovirus 71 (EV71) VLP and coxsackievirus A16 (CVA16) 135S expanded particle, indicating that the CVA6 VLP is in an expanded conformation. Structural comparisons reveal that two common salt bridges within protomers are maintained in the CVA6 VLP and other viruses of the Enterovirus genus, implying that these salt bridges may play a critical role in enteroviral protomer assembly. However, there are apparent structural differences among the CVA6 VLP, EV71 VLP, and CVA16 135S particle in the surface-exposed loops and C termini of subunit proteins, which are often antigenic sites for enteroviruses. By immunological assays, we identified two CVA6-specific linear B-cell epitopes (designated P42 and P59) located at the GH loop and the C-terminal region of VP1, respectively, in agreement with the structure-based prediction of antigenic sites. Our findings elucidate the structural basis and important antigenic sites of the CVA6 VLP as a strong vaccine candidate and also provide insight into enteroviral protomer assembly.IMPORTANCE Coxsackievirus A6 (CVA6) is becoming one of the major pathogens causing hand, foot, and mouth disease (HFMD), leading to significant morbidity and mortality in children and adults. However, no vaccine is currently available to prevent CVA6 infection. Our previous work shows that recombinant virus-like particles (VLPs) of CVA6 are a promising CVA6 vaccine candidate. Here, we present a 3.0-Å structure of the CVA6 VLP determined by cryo-electron microscopy. The overall architecture of the CVA6 VLP is similar to those of the expanded structures of enterovirus 71 (EV71) and coxsackievirus A16 (CVA16), but careful structural comparisons reveal significant differences in the surface-exposed loops and C termini of each capsid protein of these particles. In addition, we identified two CVA6-specific linear B-cell epitopes and mapped them to the GH loop and the C-terminal region of VP1, respectively. Collectively, our findings provide a structural basis and important antigenic information for CVA6 VLP vaccine development.
Collapse
|
29
|
Structure, Immunogenicity, and Protective Mechanism of an Engineered Enterovirus 71-Like Particle Vaccine Mimicking 80S Empty Capsid. J Virol 2017; 92:JVI.01330-17. [PMID: 29070691 DOI: 10.1128/jvi.01330-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/12/2017] [Indexed: 01/20/2023] Open
Abstract
Enterovirus 71 (EV71) is the major causative agent of severe hand, foot, and mouth disease, which affects millions of young children in the Asia-Pacific region annually. In this study, we engineered a novel EV71 virus-like particle (VLP) that lacks VP4 (therefore designated VLPΔVP4) and investigated its structure, antigenicity, and vaccine potential. The cryo-electron microscopy (cryo-EM) structure of VLPΔVP4 was reconstructed to 3.71-Å resolution. Results from structural and biochemical analyses revealed that VLPΔVP4 resembles the end product of the viral uncoating process, the 80S empty capsid. VLPΔVP4 is able to elicit high-titer neutralizing antibodies and to fully protect mice against lethal viral challenge. Mechanistic studies showed that, at the cellular level, the anti-VLPΔVP4 sera exert neutralization effects at both pre- and postattachment stages by inhibiting both virus attachment and internalization, and at the molecular level, the antisera can block multiple interactions between EV71 and its key receptors. Our study gives a better understanding of EV71 capsid assembly and provides important information for the design and development of new-generation vaccines for EV71, and perhaps for other enteroviruses, as well.IMPORTANCE Enterovirus 71 (EV71) infection may lead to severe hand, foot, and mouth disease, with significant morbidity and mortality. Knowledge regarding EV71 particle assembly remains limited. Here, we report the generation and characterization of a novel EV71 virus-like particle that lacks the VP4 capsid subunit protein. This particle, termed VLPΔVP4, structurally mimics the 80S empty capsid, which is the end stage of EV71 uncoating. We further show that VLPΔVP4 exhibits desirable immunogenicity and protective efficacy in proof-of-concept studies. In addition, the inhibitory mechanisms of the VLPΔVP4-induced antibodies are unraveled at both the cellular and molecular levels. Our work provides the first evidence of picornaviral particle assembly in the complete absence of VP4 and identifies VLPΔVP4 as an improved EV71 vaccine candidate with desirable traits. These findings not only enhance our understanding of particle assembly and uncoating of picornaviruses, but also provide important information for structure-guided vaccine design for EV71 and other enteroviruses.
Collapse
|
30
|
Allmaier G, Blaas D, Bliem C, Dechat T, Fedosyuk S, Gösler I, Kowalski H, Weiss VU. Monolithic anion-exchange chromatography yields rhinovirus of high purity. J Virol Methods 2017; 251:15-21. [PMID: 28966037 DOI: 10.1016/j.jviromet.2017.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 11/26/2022]
Abstract
For vaccine development, 3D-structure determination, direct fluorescent labelling, and numerous other studies, homogeneous virus preparations of high purity are essential. Working with human rhinoviruses (RVs), members of the picornavirus family and the main cause of generally mild respiratory infections, we noticed that our routine preparations appeared highly pure on analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), exclusively showing the four viral capsid proteins (VPs). However, the preparations turned out to contain substantial amounts of contaminating material when analyzed by orthogonal analytical methods including capillary zone electrophoresis, nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA), and negative stain transmission electron microscopy (TEM). Because these latter analyses are not routine to many laboratories, the above contaminations might remain unnoticed and skew experimental results. By using human rhinovirus serotype A2 (RV-A2) as example we report monolithic anion-exchange chromatography (AEX) as a last polishing step in the purification and demonstrate that it yields infective, highly pure, virus (RV-A2 in the respective fractions was confirmed by peptide mass fingerprinting) devoid of foreign material as judged by the above criteria.
Collapse
Affiliation(s)
- Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Dieter Blaas
- Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Christina Bliem
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Thomas Dechat
- Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Sofiya Fedosyuk
- Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Irene Gösler
- Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Heinrich Kowalski
- Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria.
| |
Collapse
|
31
|
A highly conserved amino acid in VP1 regulates maturation of enterovirus 71. PLoS Pathog 2017; 13:e1006625. [PMID: 28938017 PMCID: PMC5634653 DOI: 10.1371/journal.ppat.1006625] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/10/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022] Open
Abstract
Enterovirus 71 (EV71) is the major causative agent of hand, foot and mouth disease (HFMD) in children, causing severe clinical outcomes and even death. Here, we report an important role of the highly conserved alanine residue at position 107 in the capsid protein VP1 (VP1A107) in the efficient replication of EV71. Substitutional mutations of VP1A107 significantly diminish viral growth kinetics without significant effect on viral entry, expression of viral genes and viral production. The results of mechanistic studies reveal that VP1A107 regulates the efficient cleavage of the VP0 precursor during EV71 assembly, which is required, in the next round of infection, for the transformation of the mature virion (160S) into an intermediate or A-particle (135S), a key step of virus uncoating. Furthermore, the results of molecular dynamic simulations and hydrogen-bond networks analysis of VP1A107 suggest that flexibility of the VP1 BC loop or the region surrounding the VP1107 residue directly correlates with viral infectivity. It is possible that sufficient flexibility of the region surrounding the VP1107 residue favors VP0 conformational change that is required for the efficient cleavage of VP0 as well as subsequent viral uncoating and viral replication. Taken together, our data reveal the structural role of the highly conserved VP1A107 in regulating EV71 maturation. Characterization of this novel determinant of EV71 virulence would promote the study on pathogenesis of Enteroviruses.
Collapse
|
32
|
Fu Y, Zhang L, Zhang F, Tang T, Zhou Q, Feng C, Jin Y, Wu Z. Exosome-mediated miR-146a transfer suppresses type I interferon response and facilitates EV71 infection. PLoS Pathog 2017; 13:e1006611. [PMID: 28910400 PMCID: PMC5614653 DOI: 10.1371/journal.ppat.1006611] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/26/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
Exosomes can transfer genetic materials between cells. Their roles in viral infections are beginning to be appreciated. Researches have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate recipient’s cellular response and result in productive infection of the recipient host. Here, we showed that EV71 infection resulted in upregulated exosome secretion and differential packaging of the viral genomic RNA and miR-146a into exosomes. We provided evidence showing that miR-146a was preferentially enriched in exosomes while the viral RNA was not in infected cells. Moreover, the exosomes contained replication-competent EV71 RNA in complex with miR-146a, Ago2, and GW182 and could mediate EV71 transmission independent of virus-specific receptor. The exosomal viral RNA could be transferred to and replicate in a new target cell while the exosomal miR-146a suppressed type I interferon response in the target cell, thus facilitating the viral replication. Additionally, we found that the IFN-stimulated gene factors (ISGs), BST-2/tetherin, were involved in regulating EV71-induced upregulation of exosome secretion. Importantly, in vivo study showed that exosomal viral RNA exhibited differential tissue accumulation as compared to the free virus particles. Together, our findings provide evidence that exosomes secreted by EV71-infected cells selectively packaged high level miR-146a that can be functionally transferred to and facilitate exosomal EV71 RNA to replicate in the recipient cells by suppressing type I interferon response. Exosomes are small membrane-encapsulated vesicles that secrete into the extracellular environment. Various proteins and RNA molecules have been identified in exosomes whose content reflects the physiological or pathological state of the host cells. Researches have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate recipient’s cellular responses and result in productive infection of the recipient host. Here, we showed that Enterovirus 71 (EV71), a non-enveloped, single-strand positive sense RNA virus that belongs to the family Picornaviridae and is a major etiologic agent of hand-foot and-mouth disease (HFMD), could stimulate exosome secretion and differential packaging of the viral genomic RNA and miR-146a into exosomes. The exosomal viral RNA could be transferred to and replicate in a new target cell while the exosomal miR-146a suppressed type I interferon response in the target cell, thus facilitating the viral replication. Importantly, in vivo study showed that exosomal viral RNA exhibited differential tissue accumulation as compared to the free virus particles. We postulate that the preferential packaging of miRNA-146a into exosome is a viral strategy of suppressing host innate immunity upon infection and the exosomal EV 71 RNA may play an important pathogenic role in the infection.
Collapse
Affiliation(s)
- Yuxuan Fu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Li Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Fang Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Ting Tang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Qi Zhou
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing, PR China
| | - Chunhong Feng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Yu Jin
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing, PR China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
- State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, PR China
- Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China
- * E-mail:
| |
Collapse
|
33
|
Hong CH, Hsieh CF, Tseng CS, Huang WC, Guo CY, Lin S, Lee SC. A nanobiosensing method based on force measurement of antibody-antigen interaction for direct detection of enterovirus 71 by the chemically modified atomic force microscopic probe. Microb Pathog 2017; 111:292-297. [PMID: 28867629 DOI: 10.1016/j.micpath.2017.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/18/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
Hand, Foot and mouth disease (HFMD) is a common disease with high infectivity for children, and enterovirus 71 (EV71) is one of the main pathogens to cause the type of illness. Therefore, the aim of this study was to propose a rapid and effective technique for detecting EV71 directly based on the mechanism of biological intermolecular force by using atomic force microscopy (AFM). At first, we coated EV71 particles on the mica surface and made the EV71 antibodies (anti-EV71) fixed on the AFM tip by means of several chemical procedures. Then, AFM chemically modified tip was applied to measure the unbinding forces between EV71 and anti-EV71 by contact mode. Finally, by using AFM imaging calculating software, the EV71 particle size (mean±SD) was 31.36±3.87 nm (n = 200) and this result was concordance with previous literature. Besides, the force (mean±SD) between EV71 antigen and antibody complex was 336.9±64.7 pN. The force (mean±SD) between anti-EV71 and non-specific specimens was 47.1±15.1 pN and was significantly smaller (P < 0.05). Apparently, the results show that we can precisely identify EV71 infection among the samples by measuring the force magnitude and observing the occurrence of EV71/anti-EV71 unbinding events. Therefore, the combination of AFM system and the chemically modified tip has the potential to be a rapid and effective method for detecting EV71 directly.
Collapse
Affiliation(s)
- Chung-Hung Hong
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chung-Fan Hsieh
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Shin Tseng
- National Taiwan University College of Medicine/Hospital, National Taiwan University, Taipei, Taiwan
| | - Wei-Chih Huang
- Institute of Medical Device and Imaging, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yan Guo
- Institute of Medical Device and Imaging, National Taiwan University, Taipei, Taiwan
| | - Shiming Lin
- Institute of Medical Device and Imaging, National Taiwan University, Taipei, Taiwan.
| | - Si-Chen Lee
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan; Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
34
|
Anastasina M, Domanska A, Palm K, Butcher S. Human picornaviruses associated with neurological diseases and their neutralization by antibodies. J Gen Virol 2017. [PMID: 28631594 DOI: 10.1099/jgv.0.000780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Picornaviruses are the most commonly encountered infectious agents in mankind. They typically cause mild infections of the gastrointestinal or respiratory tract, but sometimes also invade the central nervous system. There, they can cause severe diseases with long-term sequelae and even be lethal. The most infamous picornavirus is poliovirus, for which significant epidemics of poliomyelitis were reported from the end of the nineteenth century. A successful vaccination campaign has brought poliovirus close to eradication, but neurological diseases caused by other picornaviruses have increasingly been reported since the late 1990s. In this review we focus on enterovirus 71, coxsackievirus A16, enterovirus 68 and human parechovirus 3, which have recently drawn attention because of their links to severe neurological diseases. We discuss the clinical relevance of these viruses and the primary role of humoral immunity in controlling them, and summarize current knowledge on the neutralization of such viruses by antibodies.
Collapse
Affiliation(s)
- Maria Anastasina
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland.,Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia
| | - Aušra Domanska
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| | - Kaia Palm
- Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia.,Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Sarah Butcher
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| |
Collapse
|
35
|
Li M, Duan Y, Yang X, Yang Q, Pang B, Wang Y, Ren T, Wang X, Zhao Z, Liu S. Intradermal injection of a fractional dose of an inactivated HFMD vaccine elicits similar protective immunity to intramuscular inoculation of a full dose of an Al(OH)3-adjuvanted vaccine. Vaccine 2017; 35:3709-3717. [DOI: 10.1016/j.vaccine.2017.05.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/14/2017] [Accepted: 05/20/2017] [Indexed: 10/19/2022]
|
36
|
Hankaniemi MM, Laitinen OH, Stone VM, Sioofy-Khojine A, Määttä JAE, Larsson PG, Marjomäki V, Hyöty H, Flodström-Tullberg M, Hytönen VP. Optimized production and purification of Coxsackievirus B1 vaccine and its preclinical evaluation in a mouse model. Vaccine 2017; 35:3718-3725. [PMID: 28579231 DOI: 10.1016/j.vaccine.2017.05.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 10/19/2022]
Abstract
Coxsackie B viruses are among the most common enteroviruses, causing a wide range of diseases. Recent studies have also suggested that they may contribute to the development of type 1 diabetes. Vaccination would provide an effective way to prevent CVB infections, and the objective of this study was to develop an efficient vaccine production protocol for the generation of novel CVB vaccines. Various steps in the production of a formalin-inactivated Coxsackievirus B1 (CVB1) vaccine were optimized including the Multiplicity Of Infection (MOI) used for virus amplification, virus cultivation time, type of cell growth medium, virus purification method and formulation of the purified virus. Safety and immunogenicity of the formalin inactivated CVB1 vaccine was characterized in a mouse model. Two of the developed methods were found to be optimal for virus purification: the first employed PEG-precipitation followed by gelatin-chromatography and sucrose cushion pelleting (three-step protocol), yielding 19-fold increase in virus concentration (0.06µg/cm2) as compared to gold standard method. The second method utilized tandem sucrose pelleting without a PEG precipitation step, yielding 83-fold increase in virus concentration (0.24µg/cm2), but it was more labor-intensive and cannot be efficiently scaled up. Both protocols provide radically higher virus yields compared with traditional virus purification protocols involving PEG-precipitation and sucrose gradient ultracentrifugation. Formalin inactivation of CVB1 produced a vaccine that induced a strong, virus-neutralizing antibody response in vaccinated mice, which protected against challenge with CVB1 virus. Altogether, these results provide valuable information for the development of new enterovirus vaccines.
Collapse
Affiliation(s)
- Minna M Hankaniemi
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland; Fimlab Laboratories, FI-33520 Tampere, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland; Fimlab Laboratories, FI-33520 Tampere, Finland
| | - Virginia M Stone
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland; The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Karolinska University Hospital Huddinge, F59, SE-141 86 Stockholm, Sweden
| | - Amirbabak Sioofy-Khojine
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland; Fimlab Laboratories, FI-33520 Tampere, Finland
| | - Juha A E Määttä
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland; Fimlab Laboratories, FI-33520 Tampere, Finland
| | - Pär G Larsson
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Karolinska University Hospital Huddinge, F59, SE-141 86 Stockholm, Sweden
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland; Fimlab Laboratories, FI-33520 Tampere, Finland
| | - Malin Flodström-Tullberg
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland; The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Karolinska University Hospital Huddinge, F59, SE-141 86 Stockholm, Sweden
| | - Vesa P Hytönen
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland; Fimlab Laboratories, FI-33520 Tampere, Finland.
| |
Collapse
|
37
|
Reyes M, Piotrowski M, Ang SK, Chan J, He S, Chu JJH, Kah JCY. Exploiting the Anti-Aggregation of Gold Nanostars for Rapid Detection of Hand, Foot, and Mouth Disease Causing Enterovirus 71 Using Surface-Enhanced Raman Spectroscopy. Anal Chem 2017; 89:5373-5381. [PMID: 28414218 DOI: 10.1021/acs.analchem.7b00066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enterovirus 71 (EV71) is a major public health threat that requires rapid point-of-care detection. Here, we developed a surface-enhanced Raman spectroscopy (SERS)-based scheme that utilized protein-induced aggregation of colloidal gold nanostars (AuNS) to rapidly detect EV71 without the need for fabricating a solid substrate, Raman labels or complicated sample handling. We used AuNS (hydrodynamic diameter, DH of 105.12 ± 1.13 nm) conjugated to recombinant scavenger receptor class B, member 2 (SCARB2) protein with known affinity to EV71. In the absence of EV71, AuNS-SCARB2 aggregated in biological media and produced four enhanced Raman peaks at 390, 510, 670, and 910 cm-1. In the presence of EV71, the three peaks at 510, 670, and 910 cm-1 disappeared, while the peak at 390 cm-1 diminished in intensity as the virus bound to AuNS-SCARB2 and prevented them from aggregation. These three peaks (510, 670, and 910 cm-1) were potential markers for specific detection of EV71 as their disappearance was not observable with a different dengue virus (DENV) as our control. Furthermore, the Raman measurements from colloidal SERS were more sensitive in probing the aggregation of AuNS-SCARB2 for detecting the presence of EV71 in protein-rich samples compared to UV-vis spectrum measurements. With this facile "anti-aggregation" approach, we were able to detect EV71 in protein-rich biological medium within 15 min with reasonable sensitivity of 107 pfu/mL and minimal sample preparation, making this translatable for point-of-care applications.
Collapse
Affiliation(s)
- Miguel Reyes
- Department of Materials Science and Engineering, National University of Singapore , 9 Engineering Drive 1, Blk EA, #03-09, Singapore 117575
| | - Marek Piotrowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , Niezapominajek 8, 30-239 Krakow, Poland
- International Iberian Nanotechnology Laboratory , Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Swee Kim Ang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore , 5 Science Drive 2, Blk MD4, Level 5, Singapore 117597
| | - Jingqi Chan
- Temasek Junior College , 22 Bedok South Road, Singapore 469278
| | - Shuai He
- Department of Biomedical Engineering, National University of Singapore , 4 Engineering Drive 3, Blk E4, #04-08, Singapore 117583
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore , 5 Science Drive 2, Blk MD4, Level 5, Singapore 117597
| | - James Chen Yong Kah
- Department of Biomedical Engineering, National University of Singapore , 4 Engineering Drive 3, Blk E4, #04-08, Singapore 117583
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS) , #05-01, 28 Medical Drive, Singapore 117456
| |
Collapse
|
38
|
Yee PTI, Laa Poh C. Impact of genetic changes, pathogenicity and antigenicity on Enterovirus- A71 vaccine development. Virology 2017; 506:121-129. [PMID: 28384566 DOI: 10.1016/j.virol.2017.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
Abstract
Enterovirus-A71 (EV-A71) is an etiological agent of the hand, foot and mouth disease (HFMD). EV-A71 infection produces high fever and ulcers in children. Some EV-A71 strains produce severe infections leading to pulmonary edema and death. Although the protective efficacy of the inactivated vaccine (IV) was ≥90% against mild HFMD, there was approximately 80% protection against severe HFMD. The monovalent EV-A71 IV elicits humoral immunity but lacks long-term immunogenicity. Spontaneous mutations of the EV-A71 genome could lead to antigenicity changes and the virus may not be neutralized by antibodies elicited by the IV. A better alternative would be the live attenuated vaccine (LAV) that elicits cellular and humoral immunity. The LAV induces excellent antigenicity and chances of reversion is reduced by presence of multiple mutations which could reduce pathogenicity. Besides CV-A16, outbreaks have been caused by CV-A6 and CV-A10, hence the development of bivalent and trivalent vaccines is required.
Collapse
Affiliation(s)
- Pinn Tsin Isabel Yee
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia.
| | - Chit Laa Poh
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia.
| |
Collapse
|
39
|
Beta-Propiolactone Inactivation of Coxsackievirus A16 Induces Structural Alteration and Surface Modification of Viral Capsids. J Virol 2017; 91:JVI.00038-17. [PMID: 28148783 DOI: 10.1128/jvi.00038-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/20/2022] Open
Abstract
Beta-propiolactone (BPL) is an inactivating agent that is widely used in the vaccine industry. However, its effects on vaccine protein antigens and its mechanisms of action remain poorly understood. Here we present cryo-electron microscopy (cryo-EM) structures of BPL-treated coxsackievirus A16 (CVA16) mature virions and procapsids at resolutions of 3.9 Å and 6.5 Å, respectively. Notably, both particles were found to adopt an expanded conformation resembling the 135S-like uncoating intermediate, with characteristic features including an opened 2-fold channel, the externalization of the N terminus of VP1 capsid protein, and the absence of pocket factor. However, major neutralizing epitopes are very well preserved on these particles. Further biochemical analyses revealed that BPL treatment impairs the abilities of CVA16 particles to bind to the attachment receptor heparan sulfate and to a conformation-dependent monoclonal antibody in a BPL dose-dependent manner, indicating that BPL is able to modify surface-exposed amino acid residues. Taken together, our results demonstrate that BPL treatment may induce alteration of the overall structure and surface properties of a nonenveloped viral capsid, thus revealing a novel mode of action of BPL.IMPORTANCE Beta-propiolactone (BPL) is commonly used as an inactivating reagent to produce viral vaccines. It is recognized that BPL inactivates viral infectivity through modification of viral nucleic acids. However, its effect on viral proteins remains largely unknown. Here, we present high-resolution cryo-EM structures of BPL-treated coxsackievirus A16 (CVA16) mature virions and procapsids, which reveals an expanded overall conformation and characteristic features that are typical for the 135S-like uncoating intermediate. We further show that the BPL concentration affects the binding of inactivated CVA16 particles to their receptor/antibody. Thus, BPL treatment can alter the overall structure and surface properties of viral capsids, which may lead to antigenic and immunogenic variations. Our findings provide important information for future development of BPL-inactivated vaccines.
Collapse
|
40
|
Liu CC, Wu SC, Wu SR, Lin HY, Guo MS, Yung-Chih Hu A, Chow YH, Chiang JR, Shieh DB, Chong P. Enhancing enterovirus A71 vaccine production yield by microcarrier profusion bioreactor culture. Vaccine 2017; 36:3134-3139. [PMID: 28274636 DOI: 10.1016/j.vaccine.2017.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/17/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Hand, foot and mouth diseases (HFMD) are mainly caused by Enterovirus A71 (EV-A71) infections. Clinical trials in Asia conducted with formalin-inactivated EV-A71 vaccine candidates produced from serum-free Vero cell culture using either roller bottle or cell factory technology, are found to be safe and highly efficacious. To increase vaccine yields and reduce the production costs, the bioprocess improvement for EV-A71 vaccine manufacturing is currently being investigated. The parameters that could affect and enhance the production yields of EV-A71 virus growth in the microcarrier bioreactor were investigated. The medium replacement culture strategy included a multi-harvested semi-batch process and perfusion technology and was found to increase the production yields more than 7-14 folds. Based on the western blot and cryo-EM analyses of the EV-A71 virus particles produced from either the multi-harvested semi-batch (MHSBC) or perfusion cultures were found to be similar to those virus particles obtained from the single batch culture. Mouse immunogenicity studies indicate that the EV-A71 vaccine candidates produced from the perfusion culture have similar potency to those obtained from single batch bioprocess. The physical structures of the EV-A71 particles revealed by the cryo-EM analysis were found to be spherical capsid particles. These results provide feasible technical bioprocesses for increasing virus yields and the scale up of EV-A71 vaccine manufacturing using the bioreactor cell culture methods.
Collapse
Affiliation(s)
- Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.
| | - Suh-Chin Wu
- Institute of Biotechnology, Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Yu Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Meng-Shin Guo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Yen-Hung Chow
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Jen-Ron Chiang
- Vaccine Center, Centers for Disease Control, Taipei, Taiwan
| | - Dar-Bin Shieh
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pele Chong
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| |
Collapse
|
41
|
Purification and assembling a fused capsid protein as an enterovirus 71 vaccine candidate from inclusion bodies to pentamer-based nanoparticles. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Gu H, Yin D, Ren J, Zhang B, Zhang Q. Preparation of quaternary amine monolithic column for strong anion-exchange chromatography and its application to the separation of Enterovirus 71. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:399-405. [DOI: 10.1016/j.jchromb.2016.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 01/31/2023]
|
43
|
Shen C, Liu Q, Zhou Y, Ku Z, Wang L, Lan K, Ye X, Huang Z. Inactivated coxsackievirus A10 experimental vaccines protect mice against lethal viral challenge. Vaccine 2016; 34:5005-5012. [DOI: 10.1016/j.vaccine.2016.08.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 01/02/2023]
|
44
|
Development of a full-length cDNA-derived enterovirus A71 vaccine candidate using reverse genetics technology. Antiviral Res 2016; 132:225-32. [PMID: 27387826 DOI: 10.1016/j.antiviral.2016.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/15/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023]
Abstract
Enterovirus A71 (EV-A71) is responsible for epidemics of hand, foot and mouth disease (HFMD) in young children. To circumvent difficulties in obtaining clinical enterovirus isolates that might be contaminated with other viruses, a platform technology was developed to quickly generate vaccine virus strains based on the published enterovirus genomic sequences. A recombinant plasmid containing the full-length infectious cDNA clone of EV-A71 vaccine strain E59 was directly generated after transfecting the recombinant plasmid into Vero, RD or HEK293A cells, and phenotypic characteristics similar to the parental strain were observed. The cDNA-derived infectious EV-A71 virus grown in Vero cells produced relatively stable virus titers in both T-flasks and microcarrier culture systems. To evaluate the genetic stability of the cDNA-derived EV-A71 viruses, the immunodominant structural proteins, VP1 and VP2, of the recombinant EV-A71 viruses were sequenced and analyzed. The cDNA-derived EV-A71 virus showed weak pathogenicity in a human SCARB2 mouse model. These results show the successful generation of a recombinant virus derived from a published viral genomic sequence that demonstrated good genetic stability and viral yields, which could represent an efficient and safe vaccine strain for cGMP-grade manufacturing.
Collapse
|
45
|
Vesicular stomatitis virus-based vaccines expressing EV71 virus-like particles elicit strong immune responses and protect newborn mice from lethal challenges. Vaccine 2016; 34:4196-4204. [PMID: 27373596 DOI: 10.1016/j.vaccine.2016.06.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/02/2016] [Accepted: 06/20/2016] [Indexed: 01/28/2023]
Abstract
Enterovirus 71 (EV71) belonging to the Picornaviridae family is considered the most frequently detected causative agent in hand-foot-and-mouth disease (HFMD) and is a serious threat to public health in the Asia-Pacific region. There are currently no approved vaccines or effective drugs for EV71. In this study, using recombinant vesicular stomatitis virus (rVSV) expressing viral VP1 protein (mVP1) of EV71 as a control, we generated two types of rVSVs that can form EV71 virus-like particles (VLPs). First, we co-infected two rVSVs singly expressing P1 (mP1) and 3CD (m3CD) of EV71. Second, we inserted P1 and 3CD into one VSV backbone to generate an rVSV expressing P1 and 3CD together (mP1-3CD). When P1 and 3CD were expressed in the cells either co-infected with mP1 and m3CD (mP1/m3CD) or infected with mP1-3CD, P1 was cleaved by 3CD and produced VP1, VP3, and VP0 to form VLPs. Furthermore, mice immunized with mP1/m3CD or mP1-3CD showed higher humoral and cellular immunity responses than mice immunized with mVP1. Finally, the rVSVs expressing the EV71 proteins were evaluated in mice to determine their potential to protect against a lethal EV71 virus challenge, and among all the rVSVs, the mP1-3CD was shown to be the most promising vaccine candidate for EV71 protection.
Collapse
|
46
|
Hsieh YJ, Yen MH, Chiang YW, Yeh CF, Chiang LC, Shieh DE, Yeh IJ, Chang JS. Gan-Lu-Siao-Du-yin, a prescription of traditional Chinese medicine, inhibited enterovirus 71 replication, translation, and virus-induced cell apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2016; 185:132-139. [PMID: 26993050 DOI: 10.1016/j.jep.2016.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/05/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gan-Lu-Siao-Du-yin (GLSDY) is a prescription of traditional Chinese medicine. GLSDY contains 11 ingredients and is commonly used for endemic diseases. Enterovirus 71 (EV71) is an endemic disease that can cause meningoencephalitis with mortality and neurologic sequelae without any effective management. It is unknown whether GLSDY is effective against EV71 infection. AIM OF THE STUDY To test the hypothesis that GLSDY can protect cell from EV71-induced injury. MATERIALS AND METHODS Effects of a hot water extract of GLSDY on EV71 were tested in human foreskin fibroblast cells (CCFS-1/KMC) and human rhabdomyosarcoma cells (RD cells) by plaque reduction assay and flow cytometry respectively. Inhibition of viral replication was further examined by reverse quantitative RT-PCR (qRT-PCR). Its effect on viral protein translation and virus-induced apoptosis were examined by western blot. RESULTS GLSDY was dose-dependently effective against EV71 infection (p<0.0001) in both CCFS-1/KMC cells and RD cells. GLSDY was highly effective when supplemented after viral inoculation (P<0.0001) with an IC50 of 8.7μg/mL. GLSDY inhibited viral RNA replication (P<0.0001), formation of viral structural proteins (VP0, VP1, VP2 and VP3) and non-structural proteins (protease 2B and 3AB). Furthermore, 300μg/mL GLSDY is effective to inhibit virus-induced apoptosis possibly through direct inhibition of caspase-8 and indirectly by inhibition of Bax. CONCLUSIONS GLSDY is cheap and readily available to manage EV71 infection by inhibiting viral replication, viral protein formations, and EV71-induced apoptosis.
Collapse
Affiliation(s)
- Ya Ju Hsieh
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming Hong Yen
- School of Pharmacy and Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Taiwan
| | - Ya Wen Chiang
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Chia Feng Yeh
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Lien Chai Chiang
- Department of Microbiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Den En Shieh
- Department of Food Science and Technology, Tajen University of Technology, Ping-Tung, Taiwan
| | - IJeng Yeh
- Division of Internal Medicine, Department of Emergency Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Jung San Chang
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan.
| |
Collapse
|
47
|
Wang KT, Lin SJ, Wang HC, Chen PC, Lin JJ, Chiang JR, Chang CL, Shih DYC, Lo CF, Wang DY. Establishment of an animal challenge model as a potency assay for an inactivated Enterovirus Type 71 vaccine. Biologicals 2016; 44:183-190. [PMID: 27068365 DOI: 10.1016/j.biologicals.2016.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/29/2015] [Accepted: 01/22/2016] [Indexed: 11/19/2022] Open
Abstract
Enterovirus 71 (EV71) belongs to the Enterovirus genus of the Picornaviridae family, and its occurrence in Asia is associated with hand-foot-and-mouth disease (HFMD), leading to death in some cases, in young children. An effective EV71 vaccine is therefore urgently needed. In this study, we established a two-step EV71 vaccine potency model. Intraperitoneal injections in 2-day-old suckling mice were used to establish the LD50 of EV71 B4, B5, C2, C4, and C5 subgenotypes. Only C4 caused hind limb paralysis in mice (LD50: 2.62 ± 0.45). EV71 VP1 protein was identified in the brain tissues at histology. In the second phase of the model, 3-week-old female ICR mice received one primary and two boosting i.p. injections of formalin-inactivated EV71 B4 and C4 vaccine. Immunized serum was neutralized in vitro with EV71 C4 and applied to the murine challenge model. The C4 vaccine-immunized serum exhibited the highest protective titre (ED50 = 114.6), while the B4 immunized serum had the weakest protective titre (ED50 = 34.3). Additionally, human plasma and intravenous immunoglobulin displayed significant protection in the neutralization assay. Our results could facilitate candidate EV71 vaccine immunogenicity and efficacy evaluations, and may help establish reference EV71 antisera in the future.
Collapse
Affiliation(s)
- Kun-Teng Wang
- Food and Drug Administration, Ministry of Health and Welfare, Taiwan, ROC
| | - Shih-Jie Lin
- Food and Drug Administration, Ministry of Health and Welfare, Taiwan, ROC
| | - Hsiu-Chi Wang
- Food and Drug Administration, Ministry of Health and Welfare, Taiwan, ROC
| | - Pin-Chun Chen
- Food and Drug Administration, Ministry of Health and Welfare, Taiwan, ROC
| | - Jiao-Jung Lin
- Food and Drug Administration, Ministry of Health and Welfare, Taiwan, ROC
| | - Jen-Ron Chiang
- Centers for Disease Control, Ministry of Health and Welfare, Taiwan, ROC
| | - Chao-Liang Chang
- Food and Drug Administration, Ministry of Health and Welfare, Taiwan, ROC
| | | | - Chi-Fang Lo
- Food and Drug Administration, Ministry of Health and Welfare, Taiwan, ROC
| | - Der-Yuan Wang
- Food and Drug Administration, Ministry of Health and Welfare, Taiwan, ROC; National Taipei University of Technology, Taiwan, ROC.
| |
Collapse
|
48
|
Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody. PLoS Pathog 2016; 12:e1005454. [PMID: 26938634 PMCID: PMC4777393 DOI: 10.1371/journal.ppat.1005454] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/23/2016] [Indexed: 02/01/2023] Open
Abstract
Enterovirus 71 (EV71) is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM) single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3) of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2), the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection.
Collapse
|
49
|
Immunological and biochemical characterizations of coxsackievirus A6 and A10 viral particles. Antiviral Res 2016; 129:58-66. [PMID: 26899790 DOI: 10.1016/j.antiviral.2016.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 11/24/2022]
Abstract
Childhood exanthema caused by different serotypes of coxsackievirus (CV-A) and enterovirus A71 (EV-A71) has become a serious global health problem; it is commonly known as hand, foot, and mouth disease (HFMD). Current EV-A71 vaccine clinical trials have demonstrated that human antibody responses generated by EV-A71 vaccinations do not cross-neutralize coxsackievirus A16 (CV-A16). An effective multivalent HFMD vaccine is urgently needed. From molecular epidemiological studies in Southeast Asia, CV-A6 and CV-A10 are commonly found in HFMD outbreaks. In this study, CV-A6 and CV-A10 were individually cultured in rhabdomyosarcoma (RD) cells grown in medium containing serum, harvested and concentrated. In viral downstream purification, two viral fractions were separated by sucrose gradient zonal ultracentrifugation and detected using a SDS-PAGE analysis and a virus infectivity assay. These two viral fractions were formalin-inactivated, and only the infectious particle fraction was found to be capable of inducing CV-A serotype-specific neutralizing antibody responses in animal immunogenicity studies. These mouse and rabbit antisera also failed to cross-neutralize EV-A71 and CV-A16 infections. Only a combination of formalin-inactivated EV-A71, CV-A6, CV-A10 and CV-A16 multivalent vaccine candidates elicited cross-neutralizing antibody responses in both mouse and rabbit immunogenicity studies. The current results certainly provide important information for multivalent HFMD vaccine development.
Collapse
|
50
|
Wang X, Xiao X, Zhao M, Liu W, Pang L, Sun X, Cen S, Yang BB, Huang Y, Sheng W, Zeng Y. EV71 virus-like particles produced by co-expression of capsid proteins in yeast cells elicit humoral protective response against EV71 lethal challenge. BMC Res Notes 2016; 9:42. [PMID: 26809443 PMCID: PMC4724958 DOI: 10.1186/s13104-015-1780-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) is the most common causative pathogens of hand, foot and mouth disease (HFMD) associated with severe neurological complications. There is a great need to develop prophylactic vaccine against EV71 infection. RESULTS EV71 virus-like particle (VLP) was produced in yeast expression system by the co-expression of four EV71 structural proteins VP1-VP4. Immunization with the recombinant VLPs elicited potent anti-EV71 antibody responses in adult mice and anti-VLP sera were able to neutralize EV71 virus in vitro. Neonatal mice model demonstrated VLP immunization conferred protection to suckling mice against the lethal viral challenge. CONCLUSIONS Co-expression of four EV71 structural proteins VP1-VP4 in yeast expression systems is an effective method to produce EV71 VLPs. VLP-based vaccine shows great potential to prevent EV71 infection.
Collapse
Affiliation(s)
- Xiaowen Wang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, People's Republic of China.
| | - Xiangqian Xiao
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, People's Republic of China.
| | - Miao Zhao
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, People's Republic of China.
| | - Wei Liu
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, People's Republic of China.
| | - Lin Pang
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Xin Sun
- Research Center for Life Science, Beihua University, Jilin, People's Republic of China.
| | - Shan Cen
- Department of Virology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China.
| | - Burton B Yang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 2075 Bayview Avenue, Toronto, M4N 3M5, Canada.
| | - Yuming Huang
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Wang Sheng
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, People's Republic of China.
| | - Yi Zeng
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, People's Republic of China.
| |
Collapse
|