1
|
Kaur A, Vaccari M. Exploring HIV Vaccine Progress in the Pre-Clinical and Clinical Setting: From History to Future Prospects. Viruses 2024; 16:368. [PMID: 38543734 PMCID: PMC10974975 DOI: 10.3390/v16030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/01/2024] Open
Abstract
The human immunodeficiency virus (HIV) continues to pose a significant global health challenge, with millions of people affected and new cases emerging each year. While various treatment and prevention methods exist, including antiretroviral therapy and non-vaccine approaches, developing an effective vaccine remains the most crucial and cost-effective solution to combating the HIV epidemic. Despite significant advancements in HIV research, the HIV vaccine field has faced numerous challenges, and only one clinical trial has demonstrated a modest level of efficacy. This review delves into the history of HIV vaccines and the current efforts in HIV prevention, emphasizing pre-clinical vaccine development using the non-human primate model (NHP) of HIV infection. NHP models offer valuable insights into potential preventive strategies for combating HIV, and they play a vital role in informing and guiding the development of novel vaccine candidates before they can proceed to human clinical trials.
Collapse
Affiliation(s)
- Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Monica Vaccari
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Joshi LR, do Nascimento GM, Diel DG. The transcriptome of the parapoxvirus Orf virus reveals novel promoters for heterologous gene expression by poxvirus vectors. Virology 2023; 587:109864. [PMID: 37595395 DOI: 10.1016/j.virol.2023.109864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
Orf virus (ORFV) has been used as a vaccine delivery vector for multiple animal species. Several strategies are being used to improve the immunogenicity and efficacy of ORFV vectors, including the use of poxviral promoter(s) with strong early and late activity capable of driving the expression of the heterologous genes for a prolonged time and eliciting a potent immune response. Here, we used RNA-sequencing (RNA-Seq) approach to analyze the transcriptome of ORFV during infection in primary ovine cells. Based on the transcriptional profile of individual ORFV genes, we identified ORFV promoters with strong early and late activity and have shown that they can be used to express heterologous genes in ORFV vectors. Our results show that the intergenic regulatory sequence containing core promoter sequences present upstream of ORF112 (p112) and ORF116 (p116) lead to markedly higher transgene expression than conventional poxviral promoters. Thus, these promoters are valuable alternatives to express transgenes in poxviral vectors.
Collapse
Affiliation(s)
- Lok R Joshi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Gabriela Mansano do Nascimento
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, USA.
| |
Collapse
|
3
|
Moulson AJ, Av-Gay Y. BCG immunomodulation: From the 'hygiene hypothesis' to COVID-19. Immunobiology 2021; 226:152052. [PMID: 33418320 PMCID: PMC7833102 DOI: 10.1016/j.imbio.2020.152052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/07/2020] [Accepted: 12/17/2020] [Indexed: 12/23/2022]
Abstract
The century-old tuberculosis vaccine BCG has been the focus of renewed interest due to its well-documented ability to protect against various non-TB pathogens. Much of these broad spectrum protective effects are attributed to trained immunity, the epigenetic and metabolic reprogramming of innate immune cells. As BCG vaccine is safe, cheap, widely available, amendable to use as a recombinant vector, and immunogenic, it has immense potential for use as an immunotherapeutic agent for various conditions including autoimmune, allergic, neurodegenerative, and neoplastic diseases as well as a preventive measure against infectious agents. Of particular interest is the use of BCG vaccination to counteract the increasing prevalence of autoimmune and allergic conditions in industrialized countries attributable to reduced infectious burden as described by the 'hygiene hypothesis.' Furthermore, BCG vaccination has been proposed as a potential therapy to mitigate spread and disease burden of COVID-19 as a bridge to development of a specific vaccine and recombinant BCG expression vectors may prove useful for the introduction of SARS-CoV-2 antigens (rBCG-SARS-CoV-2) to induce long-term immunity. Understanding the immunomodulatory effects of BCG vaccine in these disease contexts is therefore critical. To that end, we review here BCG-induced immunomodulation focusing specifically on BCG-induced trained immunity and how it relates to the 'hygiene hypothesis' and COVID-19.
Collapse
Affiliation(s)
- Aaron J Moulson
- Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| | - Yossef Av-Gay
- Faculty of Medicine, University of British Columbia, Vancouver, Canada; Division of Infectious Disease, University of British Columbia, Vancouver, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Sharan R, Kaushal D. Vaccine strategies for the Mtb/HIV copandemic. NPJ Vaccines 2020; 5:95. [PMID: 33083030 PMCID: PMC7555484 DOI: 10.1038/s41541-020-00245-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
One-third of world’s population is predicted to be infected with tuberculosis (TB). The resurgence of this deadly disease has been inflamed by comorbidity with human immunodeficiency virus (HIV). The risk of TB in people living with HIV (PLWH) is 15–22 times higher than people without HIV. Development of a single vaccine to combat both diseases is an ardent but tenable ambition. Studies have focused on the induction of specific humoral and cellular immune responses against HIV-1 following recombinant BCG (rBCG) expressing HIV-1 antigens. Recent advances in the TB vaccines led to the development of promising candidates such as MTBVAC, the BCG revaccination approach, H4:IC31, H56:IC31, M72/AS01 and more recently, intravenous (IV) BCG. Modification of these vaccine candidates against TB/HIV coinfection could reveal key correlates of protection in a representative animal model. This review discusses the (i) potential TB vaccine candidates that can be exploited for use as a dual vaccine against TB/HIV copandemic (ii) progress made in the realm of TB/HIV dual vaccine candidates in small animal model, NHP model, and human clinical trials (iii) the failures and promising targets for a successful vaccine strategy while delineating the correlates of vaccine-induced protection.
Collapse
Affiliation(s)
- Riti Sharan
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227 USA
| | - Deepak Kaushal
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227 USA
| |
Collapse
|
5
|
Covián C, Fernández-Fierro A, Retamal-Díaz A, Díaz FE, Vasquez AE, Lay MK, Riedel CA, González PA, Bueno SM, Kalergis AM. BCG-Induced Cross-Protection and Development of Trained Immunity: Implication for Vaccine Design. Front Immunol 2019; 10:2806. [PMID: 31849980 PMCID: PMC6896902 DOI: 10.3389/fimmu.2019.02806] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
The Bacillus Calmette-Guérin (BCG) is a live attenuated tuberculosis vaccine that has the ability to induce non-specific cross-protection against pathogens that might be unrelated to the target disease. Vaccination with BCG reduces mortality in newborns and induces an improved innate immune response against microorganisms other than Mycobacterium tuberculosis, such as Candida albicans and Staphylococcus aureus. Innate immune cells, including monocytes and natural killer (NK) cells, contribute to this non-specific immune protection in a way that is independent of memory T or B cells. This phenomenon associated with a memory-like response in innate immune cells is known as "trained immunity." Epigenetic reprogramming through histone modification in the regulatory elements of particular genes has been reported as one of the mechanisms associated with the induction of trained immunity in both, humans and mice. Indeed, it has been shown that BCG vaccination induces changes in the methylation pattern of histones associated with specific genes in circulating monocytes leading to a "trained" state. Importantly, these modifications can lead to the expression and/or repression of genes that are related to increased protection against secondary infections after vaccination, with improved pathogen recognition and faster inflammatory responses. In this review, we discuss BCG-induced cross-protection and acquisition of trained immunity and potential heterologous effects of recombinant BCG vaccines.
Collapse
Affiliation(s)
- Camila Covián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Ayleen Fernández-Fierro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Abel E Vasquez
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago, Chile
| | - Margarita K Lay
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Kilpeläinen A, Saubi N, Guitart N, Olvera A, Hanke T, Brander C, Joseph J. Recombinant BCG Expressing HTI Prime and Recombinant ChAdOx1 Boost Is Safe and Elicits HIV-1-Specific T-Cell Responses in BALB/c Mice. Vaccines (Basel) 2019; 7:E78. [PMID: 31382453 PMCID: PMC6789536 DOI: 10.3390/vaccines7030078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 01/08/2023] Open
Abstract
Despite the availability of anti-retroviral therapy, HIV-1 infection remains a massive burden on healthcare systems. Bacillus Calmette-Guérin (BCG), the only licensed vaccine against tuberculosis, confers protection against meningitis and miliary tuberculosis in infants. Recombinant BCG has been used as a vaccine vehicle to express both HIV-1 and Simian Immunodeficiemcy Virus (SIV) immunogens. In this study, we constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HTI.int, expressing the HIVACAT T-cell immunogen (HTI). The plasmid was transformed into a lysine auxotrophic Mycobacterium bovis BCG strain (BCGΔLys) to generate the vaccine BCG.HTI2auxo.int. The DNA sequence coding for the HTI immunogen and HTI protein expression were confirmed, and working vaccine stocks were genetically and phenotypically characterized. We demonstrated that the vaccine was stable in vitro for 35 bacterial generations, and that when delivered in combination with chimpanzee adenovirus (ChAd)Ox1.HTI in adult BALB/c mice, it was well tolerated and induced HIV-1-specific T-cell responses. Specifically, priming with BCG.HTI2auxo.int doubled the magnitude of the T-cell response in comparison with ChAdOx1.HTI alone while maintaining its breadth. The use of integrative expression vectors and novel HIV-1 immunogens can aid in improving mycobacterial vaccine stability as well as specific immunogenicity. This vaccine candidate may be a useful tool in the development of an effective vaccine platform for priming protective responses against HIV-1/TB and other prevalent pediatric pathogens.
Collapse
Affiliation(s)
- Athina Kilpeläinen
- Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, 08036 Barcelona, Catalonia, Spain
- Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Catalonia, Spain
| | - Narcís Saubi
- Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, 08036 Barcelona, Catalonia, Spain
- Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Catalonia, Spain
| | - Núria Guitart
- Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, 08036 Barcelona, Catalonia, Spain
| | - Alex Olvera
- Irsicaixa AIDS Research Institute, 08916 Badalona, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Barcelona, Spain
| | - Tomáš Hanke
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Christian Brander
- Irsicaixa AIDS Research Institute, 08916 Badalona, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
- AELIX Therapeutics, 08028 Barcelona, Catalonia, Spain
| | - Joan Joseph
- Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, 08036 Barcelona, Catalonia, Spain.
- Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Catalonia, Spain.
| |
Collapse
|
7
|
Kilpeläinen A, Maya-Hoyos M, Saubí N, Soto CY, Joseph Munne J. Advances and challenges in recombinant Mycobacterium bovis BCG-based HIV vaccine development: lessons learned. Expert Rev Vaccines 2018; 17:1005-1020. [PMID: 30300040 DOI: 10.1080/14760584.2018.1534588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome, tuberculosis, and malaria are responsible for most human deaths produced by infectious diseases worldwide. Vaccination against HIV requires generation of memory T cells and neutralizing antibodies, mucosal immunity, and stimulation of an innate immune responses. In this context, the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a live vaccine vehicle is a promising approach for T-cell induction. AREAS COVERED In this review, we provide a comprehensive summary of the literature regarding immunogenicity studies in animal models performed since 2005. Furthermore, we provide expert commentary and 5-year view on how the development of potential recombinant BCG-based HIV vaccines involves careful selection of the HIV antigen, expression vectors, promoters, BCG strain, preclinical animal models, influence of preexisting immunity, and safety issues, for the rational design of recombinant BCG:HIV vaccines to prevent HIV transmission in the general population. EXPERT COMMENTARY The three critical issues to be considered when developing a rBCG:HIV vaccine are codon optimization, antigen localization, and plasmid stability in vivo. The use of integrative expression vectors are likely to improve the mycobacterial vaccine stability and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.
Collapse
Affiliation(s)
- Athina Kilpeläinen
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Milena Maya-Hoyos
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Narcís Saubí
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Carlos Y Soto
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Joan Joseph Munne
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| |
Collapse
|
8
|
Alharbi NK. Poxviral promoters for improving the immunogenicity of MVA delivered vaccines. Hum Vaccin Immunother 2018; 15:203-209. [PMID: 30148692 DOI: 10.1080/21645515.2018.1513439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a replication-deficient poxvirus, attenuated in chick embryo fibroblast primary cells. It has been utilised as a viral vector to develop many vaccines against cancer and infectious diseases such as malaria, HIV/AIDS, influenza, and tuberculosis, MERS-CoV, and Ebola virus infection. There is accumulating data from many preclinical and clinical studies that highlights the excellent safety and immunogenicity of MVA. However, due to the complex nature of many pathogens and their pathogenicity, MVA vectored vaccine candidates need to be optimised to improve their immunogenicity. One of the main approaches to improve MVA immunogenicity focuses on optimising poxviral promoters that drive recombinant vaccine antigens, encoded within recombinant MVA vector genome. A number of promoters were described or optimised to improve the development of MVA based vaccines such as p7.5, pF11, and mH5 promoters. This review focuses on poxviral promoters, their optimisation, genetic stability, and clinical use.
Collapse
Affiliation(s)
- Naif Khalaf Alharbi
- a Infectious Disease Research Department , King Abdullah International Medical Research Center (KAIMRC) , Riyadh , Saudi Arabia
| |
Collapse
|
9
|
Mahant A, Saubi N, Eto Y, Guitart N, Gatell JM, Hanke T, Joseph J. Preclinical development of BCG.HIVA 2auxo.int, harboring an integrative expression vector, for a HIV-TB Pediatric vaccine. Enhancement of stability and specific HIV-1 T-cell immunity. Hum Vaccin Immunother 2017; 13:1798-1810. [PMID: 28426273 PMCID: PMC5557246 DOI: 10.1080/21645515.2017.1316911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the critical issues that should be addressed in the development of a BCG-based HIV vaccine is genetic plasmid stability. Therefore, to address this issue we have considered using integrative vectors and the auxotrophic mutant of BCG complemented with a plasmid carrying a wild-type complementing gene. In this study, we have constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HIVAint, expressing the HIV-1 clade A immunogen HIVA. This shuttle vector uses an antibiotic resistance-free mechanism for plasmid selection and maintenance. It was first transformed into a glycine auxotrophic E. coli strain and subsequently transformed into a lysine auxotrophic Mycobacterium bovis BCG strain to generate the vaccine BCG.HIVA2auxo.int. Presence of the HIVA gene sequence and protein expression was confirmed. We demonstrated that the in vitro stability of the integrative plasmid p2auxo.HIVAint was increased 4-fold, as compared with the BCG strain harboring the episomal plasmid, and was genetically and phenotypically characterized. The BCG.HIVA2auxo.int vaccine in combination with modified vaccinia virus Ankara (MVA).HIVA was found to be safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. We have engineered a more stable and immunogenic BCG-vectored vaccine using the prototype immunogen HIVA. Thus, the use of integrative expression vectors and the antibiotic-free plasmid selection system based on “double” auxotrophic complementation are likely to improve the mycobacterial vaccine stability in vivo and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.
Collapse
Affiliation(s)
- Aakash Mahant
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Narcís Saubi
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Yoshiki Eto
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Núria Guitart
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Josep Ma Gatell
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Tomáš Hanke
- b The Jenner Institute , University of Oxford , Oxford , UK
| | - Joan Joseph
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| |
Collapse
|
10
|
Alharbi NK, Spencer AJ, Salman AM, Tully CM, Chinnakannan SK, Lambe T, Yamaguchi Y, Morris SJ, Orubu T, Draper SJ, Hill AV, Gilbert SC. Enhancing cellular immunogenicity of MVA-vectored vaccines by utilizing the F11L endogenous promoter. Vaccine 2016; 34:49-55. [DOI: 10.1016/j.vaccine.2015.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/20/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022]
|
11
|
Korioth-Schmitz B, Perley CC, Sixsmith JD, Click EM, Lee S, Letvin NL, Frothingham R. Rhesus immune responses to SIV Gag expressed by recombinant BCG vectors are independent from pre-existing mycobacterial immunity. Vaccine 2015; 33:5715-5722. [PMID: 26192357 DOI: 10.1016/j.vaccine.2015.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 06/02/2015] [Accepted: 07/07/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND A recombinant Mycobacterium bovis BCG (rBCG) vector expressing HIV transgenes is an attractive candidate as a dual vaccine against HIV and TB. However, pre-existing immune responses to mycobacteria may influence immune responses to rBCG. We analyzed data from a rhesus rBCG trial to determine the effect of pre-existing mycobacterial immune responses on the vaccine-induced responses to the vector and expressed transgene. METHODS Indian-origin rhesus macaques were primed with rBCG expressing simian immunodeficiency virus (SIV) Gag and boosted with attenuated vaccinia NYVAC gag-pol. Mycobacteria responses were measured by Mycobacterium tuberculosis (Mtb) purified protein derivative (PPD) interferon-γ ELISpot and Mtb whole cell lysate (WCL) ELISA. SIV Gag responses were measured by SIV Gag ELISpot and by p11C tetramer binding. RESULTS Baseline Mtb PPD ELISpot responses and Mtb WCL antibody responses in rhesus macaques overlapped those in human populations. Cellular and antibody responses boosted sharply 4 weeks after rBCG vaccination. Mtb WCL antibody titers at 4 weeks correlated with baseline titers. Primates vaccinated with rBCG developed strong SIV Gag ELISpot and p11C tetramer responses after rBCG prime and NYVAC boost. There were no correlations between the pre-existing mycobacterial immune responses and the SIV Gag T cell responses after vaccination. CONCLUSIONS Rhesus immune responses to SIV Gag expressed by rBCG vectors were independent from pre-existing anti-mycobacterial immunity. Rhesus macaques may serve as a surrogate for investigations of pre-existing anti-mycobacterial immunity in humans.
Collapse
Affiliation(s)
- Birgit Korioth-Schmitz
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States
| | - Casey C Perley
- Duke University School of Medicine, Durham, NC 27710, United States
| | - Jaimie D Sixsmith
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States
| | - Eva M Click
- Duke University School of Medicine, Durham, NC 27710, United States
| | - Sunhee Lee
- Duke University School of Medicine, Durham, NC 27710, United States
| | - Norman L Letvin
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States
| | | |
Collapse
|
12
|
Investigation of IRES Insertion into the Genome of Recombinant MVA as a Translation Enhancer in the Context of Transcript Decapping. PLoS One 2015; 10:e0127978. [PMID: 26011541 PMCID: PMC4444188 DOI: 10.1371/journal.pone.0127978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 04/21/2015] [Indexed: 11/29/2022] Open
Abstract
Recombinant modified vaccinia virus Ankara (MVA) has been used to deliver vaccine candidate antigens against infectious diseases and cancer. MVA is a potent viral vector for inducing high magnitudes of antigen-specific CD8+ T cells; however the cellular immune responses to a recombinant antigen in MVA could be further enhanced by increasing transgene expression. Previous reports showed the importance of utilizing an early poxviral promoter for increasing transgene expression and therefore enhancing cellular immune responses. However, the vaccinia D10 decapping enzyme is reported to target and decap vaccinia virus early transcripts – a mechanism that could limit the usefulness of early promoters in MVA viral vectors if this enzyme shows the same activity in this closely related virus. Therefore, we attempted to increase transgene expression in recombinant MVA by inserting the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) upstream of a transgene sequence that is controlled by the B8R early promoter, and assessed D10 enzyme decapping activity in MVA. The aim of the IRES element was to initiate translation of the transgene transcript (after the removal of the cap structure by the D10 decapping protein) in a cap-independent manner. Here, we report that overexpression of the D10 decapping protein, in trans, in MVA reduced growth and transgene expression; however, the IRES element was not able to compensate for the negative effect of the D10 decapping protein. Recombinant MVA with EMCV IRES induced levels of both gene expression and transcription that were similar to the control recombinant MVA, encoding the same transgene but without the IRES element. Both viruses were tested in BALB/c mice and induced similar magnitudes of epitope-specific CD8+ T cells. This work indicates that the MVA version of the D10 decapping enzyme, overexpressed using a plasmid, is functional, but its negative effect on transgene expression by recombinant MVA cannot be overcome by the use of the EMCV IRES inserted upstream of the transgene initiation codon.
Collapse
|
13
|
Early Kinetics of the HLA Class I-Associated Peptidome of MVA.HIVconsv-Infected Cells. J Virol 2015; 89:5760-71. [PMID: 25810538 PMCID: PMC4442425 DOI: 10.1128/jvi.03627-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/09/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Cytotoxic T cells substantially contribute to the control of intracellular pathogens such as human immunodeficiency virus type 1 (HIV-1). Here, we evaluated the immunopeptidome of Jurkat cells infected with the vaccine candidate MVA.HIVconsv, which delivers HIV-1 conserved antigenic regions by using modified vaccinia virus Ankara (MVA). We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify 6,358 unique peptides associated with the class I human leukocyte antigen (HLA), of which 98 peptides were derived from the MVA vector and 7 were derived from the HIVconsv immunogen. Human vaccine recipients responded to the peptide sequences identified by LC-MS/MS. Peptides derived from the conserved HIV-1 regions were readily detected as early as 1.5 h after MVA.HIVconsv infection. Four of the seven conserved peptides were monitored between 0 and 3.5 h of infection by using quantitative mass spectrometry (Q-MS), and their abundance in HLA class I associations reflected levels of the whole HIVconsv protein in the cell. While immunopeptides delivered by the incoming MVA vector proteins could be detected, all early HIVconsv-derived immunopeptides were likely synthesized de novo. MVA.HIVconsv infection generally altered the composition of HLA class I-associated human (self) peptides, but these changes corresponded only partially to changes in the whole cell host protein abundance. IMPORTANCE The vast changes in cellular antigen presentation after infection of cells with a vectored vaccine, as shown here for MVA.HIVconsv, highlight the complexity of factors that need to be considered for efficient antigen delivery and presentation. Identification and quantitation of HLA class I-associated peptides by Q-MS will not only find broad application in T-cell epitope discovery but also inform vaccine design and allow evaluation of efficient epitope presentation using different delivery strategies.
Collapse
|
14
|
Njuguna IN, Ambler G, Reilly M, Ondondo B, Kanyugo M, Lohman-Payne B, Gichuhi C, Borthwick N, Black A, Mehedi SR, Sun J, Maleche-Obimbo E, Chohan B, John-Stewart GC, Jaoko W, Hanke T. PedVacc 002: a phase I/II randomized clinical trial of MVA.HIVA vaccine administered to infants born to human immunodeficiency virus type 1-positive mothers in Nairobi. Vaccine 2014; 32:5801-8. [PMID: 25173484 PMCID: PMC4414927 DOI: 10.1016/j.vaccine.2014.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/07/2014] [Accepted: 08/15/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND A safe, effective vaccine for breastfeeding infants born to HIV-1-positive mothers could complement antiretroviral therapy (ART) for prevention of mother-to-child transmission of HIV-1. To date, only a few HIV-1 vaccine candidates have been tested in infants. TRIAL DESIGN A phase I/II randomized controlled trial PedVacc 002 was conducted to determine the safety and immunogenicity of a single, low dose of MVA.HIVA vaccine delivered intramuscularly to healthy 20-week-old infants born to HIV-1-positive mothers in Nairobi, Kenya. METHODS Pregnant HIV-1-positive women in the 2nd/3rd trimester of gestation were enrolled, provided with ART and self-selected their infant-feeding modality. Infants received nevirapine and cotrimoxazole prophylaxis. At 20 weeks of age, eligible HIV-1-negative infants were randomized to vaccine versus no-treatment arms and followed to 48 weeks of age for assessments of vaccine safety, HIV-1-specific T-cell responses and antibodies to routine childhood vaccines. RESULTS Between February and November 2010, 182 mothers were screened, 104 were eligible and followed on ART during pregnancy/postpartum, of whom 73 had eligible infants at 20 weeks postpartum. Thirty-six infants were randomized to vaccine and 37 to no treatment. Eighty-four percent of infants breastfed, and retention at 48 weeks was 99%. Adverse events were rare and similar between the two arms. HIV-1-specific T-cell frequencies in interferon-γ ELISPOT assay were transiently higher in the MVA.HIVA arm (p=0.002), but not above the threshold for a positive assay. Protective antibody levels were adequate and similar between arms for all routine childhood vaccines except HBV, where 71% of MVA.HIVA subjects compared to 92% of control subjects were protected (p=0.05). CONCLUSIONS This trial tested for the first time an MVA-vectored candidate HIV-1 vaccine in HIV-1-exposed infants in Africa, demonstrating trial feasibility and vaccine safety, low immunogenicity, and compatibility with routine childhood vaccinations. These results are reassuring for use of the MVA vector in more potent prime-boost regimens.
Collapse
Affiliation(s)
- Irene N Njuguna
- Department of Pediatrics and Child Health, University of Nairobi, PO Box 19676, 00202 Nairobi, Kenya
| | - Gwen Ambler
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
| | - Marie Reilly
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | | | - Mercy Kanyugo
- Department of Pediatrics and Child Health, University of Nairobi, PO Box 19676, 00202 Nairobi, Kenya
| | - Barbara Lohman-Payne
- Department of Pediatrics and Child Health, University of Nairobi, PO Box 19676, 00202 Nairobi, Kenya
| | - Christine Gichuhi
- Department of Clinical Medicine and Therapeutics, University of Nairobi, PO Box 19676, 00202 Nairobi, Kenya
| | | | - Antony Black
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Shams-Rony Mehedi
- Statistics and Data Management Department, Medical Research Council Unit, Fajara, The Gambia
| | - Jiyu Sun
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Elizabeth Maleche-Obimbo
- Department of Pediatrics and Child Health, University of Nairobi, PO Box 19676, 00202 Nairobi, Kenya
| | - Bhavna Chohan
- Department of Pediatrics and Child Health, University of Nairobi, PO Box 19676, 00202 Nairobi, Kenya
| | - Grace C John-Stewart
- Departments of Pediatrics, Medicine, Epidemiology, and Global Health, University of Washington, Seattle, WA 98104, USA
| | - Walter Jaoko
- KAVI-Institute of Clinical Research, University of Nairobi, PO Box 19676, 00202 Nairobi, Kenya
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
15
|
Ondondo BO. The influence of delivery vectors on HIV vaccine efficacy. Front Microbiol 2014; 5:439. [PMID: 25202303 PMCID: PMC4141443 DOI: 10.3389/fmicb.2014.00439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022] Open
Abstract
Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford Oxford, UK
| |
Collapse
|
16
|
Saubi N, Gea-Mallorquí E, Ferrer P, Hurtado C, Sánchez-Úbeda S, Eto Y, Gatell JM, Hanke T, Joseph J. Engineering new mycobacterial vaccine design for HIV-TB pediatric vaccine vectored by lysine auxotroph of BCG. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14017. [PMID: 26015961 PMCID: PMC4362382 DOI: 10.1038/mtm.2014.17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/26/2014] [Indexed: 02/05/2023]
Abstract
In this study, we have engineered a new mycobacterial vaccine design by using an antibiotic-free plasmid selection system. We assembled a novel Escherichia coli (E. coli)–mycobacterial shuttle plasmid p2auxo.HIVA, expressing the HIV-1 clade A immunogen HIVA. This shuttle vector employs an antibiotic resistance-free mechanism for plasmid selection and maintenance based on glycine complementation in E. coli and lysine complementation in mycobacteria. This plasmid was first transformed into glycine auxotroph of E. coli strain and subsequently transformed into lysine auxotroph of Mycobacterium bovis BCG strain to generate vaccine BCG.HIVA2auxo. We demonstrated that the episomal plasmid p2auxo.HIVA was stable in vivo over a 7-week period and genetically and phenotypically characterized the BCG.HIVA2auxo vaccine strain. The BCG.HIVA2auxo vaccine in combination with modified vaccinia virus Ankara (MVA). HIVA was safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. Polyfunctional HIV-1-specific CD8+ T cells, which produce interferon-γ and tumor necrosis factor-α and express the degranulation marker CD107a, were induced. Thus, we engineered a novel, safer, good laboratory practice–compatible BCG-vectored vaccine using prototype immunogen HIVA. This antibiotic-free plasmid selection system based on “double” auxotrophic complementation might be a new mycobacterial vaccine platform to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective response soon after birth.
Collapse
Affiliation(s)
- Narcís Saubi
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Ester Gea-Mallorquí
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Pau Ferrer
- Department of Chemical Engineering, Group of Bioprocess Engineering and Applied Biocatalysis, School of Engineering, Autonomous University of Barcelona , Barcelona, Catalonia, Spain
| | - Carmen Hurtado
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Sara Sánchez-Úbeda
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Yoshiki Eto
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Josep M Gatell
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford , Oxford, UK ; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford , Oxford, UK
| | - Joan Joseph
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Afolabi MO, Ndure J, Drammeh A, Darboe F, Mehedi SR, Rowland-Jones SL, Borthwick N, Black A, Ambler G, John-Stewart GC, Reilly M, Hanke T, Flanagan KL. A phase I randomized clinical trial of candidate human immunodeficiency virus type 1 vaccine MVA.HIVA administered to Gambian infants. PLoS One 2013; 8:e78289. [PMID: 24205185 PMCID: PMC3813444 DOI: 10.1371/journal.pone.0078289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/07/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A vaccine to decrease transmission of human immunodeficiency virus type 1 (HIV-1) during breast-feeding would complement efforts to eliminate infant HIV-1 infection by antiretroviral therapy. Relative to adults, infants have distinct immune development, potentially high-risk of transmission when exposed to HIV-1 and rapid progression to AIDS when infected. To date, there have been only three published HIV-1 vaccine trials in infants. TRIAL DESIGN We conducted a randomized phase I clinical trial PedVacc 001 assessing the feasibility, safety and immunogenicity of a single dose of candidate vaccine MVA.HIVA administered intramuscularly to 20-week-old infants born to HIV-1-negative mothers in The Gambia. METHODS Infants were followed to 9 months of age with assessment of safety, immunogenicity and interference with Expanded Program on Immunization (EPI) vaccines. The trial is the first stage of developing more complex prime-boost vaccination strategies against breast milk transmission of HIV-1. RESULTS From March to October 2010, 48 infants (24 vaccine and 24 no-treatment) were enrolled with 100% retention. The MVA.HIVA vaccine was safe with no difference in adverse events between vaccinees and untreated infants. Two vaccine recipients (9%) and no controls had positive ex vivo interferon-γ ELISPOT assay responses. Antibody levels elicited to the EPI vaccines, which included diphtheria, tetanus, whole-cell pertussis, hepatitis B virus, Haemophilus influenzae type b and oral poliovirus, reached protective levels for the vast majority and were similar between the two arms. CONCLUSIONS A single low-dose of MVA.HIVA administered to 20-week-old infants in The Gambia was found to be safe and without interference with the induction of protective antibody levels by EPI vaccines, but did not alone induce sufficient HIV-1-specific responses. These data support the use of MVA carrying other transgenes as a boosting vector within more complex prime-boost vaccine strategies against transmission of HIV-1 and/or other infections in this age group. TRIAL REGISTRATION ClinicalTrials.gov NCT00982579. The Pan African Clinical Trials Registry PACTR2008120000904116.
Collapse
Affiliation(s)
| | - Jorjoh Ndure
- Vaccinology Theme, Medical Research Council Unit, Fajara, The Gambia
| | - Abdoulie Drammeh
- Vaccinology Theme, Medical Research Council Unit, Fajara, The Gambia
| | - Fatoumatta Darboe
- Vaccinology Theme, Medical Research Council Unit, Fajara, The Gambia
| | - Shams-Rony Mehedi
- Statistics and Data Management Department, Medical Research Council Unit, Fajara, The Gambia
| | | | - Nicola Borthwick
- Departments of Biostatistics, Medicine, and Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Antony Black
- Departments of Biostatistics, Medicine, and Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Gwen Ambler
- Departments of Biostatistics, Medicine, and Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Grace C. John-Stewart
- Departments of Biostatistics, Medicine, and Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Marie Reilly
- Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Tomáš Hanke
- Departments of Biostatistics, Medicine, and Epidemiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Katie L. Flanagan
- Vaccinology Theme, Medical Research Council Unit, Fajara, The Gambia
| |
Collapse
|
18
|
Chapman R, Stutz H, Jacobs W, Shephard E, Williamson AL. Priming with recombinant auxotrophic BCG expressing HIV-1 Gag, RT and Gp120 and boosting with recombinant MVA induces a robust T cell response in mice. PLoS One 2013; 8:e71601. [PMID: 23977084 PMCID: PMC3748047 DOI: 10.1371/journal.pone.0071601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/08/2013] [Indexed: 11/23/2022] Open
Abstract
In previous studies we have shown that a pantothenate auxotroph of Myocbacterium bovis BCG (BCGΔpanCD) expressing HIV-1 subtype C Gag induced Gag-specific immune responses in mice and Chacma baboons after prime-boost immunization in combination with matched rMVA and VLP vaccines respectively. In this study recombinant BCG (rBCG) expressing HIV-1 subtype C reverse transcriptase and a truncated envelope were constructed using both the wild type BCG Pasteur strain as a vector and the pantothenate auxotroph. Mice were primed with rBCG expressing Gag and RT and boosted with a recombinant MVA, expressing a polyprotein of Gag, RT, Tat and Nef (SAAVI MVA-C). Priming with rBCGΔpanCD expressing Gag or RT rather than the wild type rBCG expressing Gag or RT resulted in higher frequencies of total HIV-specific CD8+ T cells and increased numbers of T cells specific to the subdominant Gag and RT epitopes. Increasing the dose of rBCG from 105 cfu to 107 cfu also led to an increase in the frequency of responses to subdominant HIV epitopes. A mix of the individual rBCGΔpanCD vaccines expressing either Gag, RT or the truncated Env primed the immune system for a boost with SAAVI MVA-C and generated five-fold higher numbers of HIV-specific IFN-γ-spot forming cells than mice primed with rBCGΔpanCD containing an empty vector control. Priming with the individual rBCGΔpanCD vaccines or the mix and boosting with SAAVI MVA-C also resulted in the generation of HIV-specific CD4+ and CD8+ T cells producing IFN-γ and TNF-α and CD4+ cells producing IL-2. The rBCG vaccines tested in this study were able to prime the immune system for a boost with rMVA expressing matching antigens, inducing robust, HIV-specific T cell responses to both dominant and subdominant epitopes in the individual proteins when used as individual vaccines or in a mix.
Collapse
Affiliation(s)
- Rosamund Chapman
- Institute of Infectious Disease and Molecular Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Medical Virology, Department of Clinical Laboratory Science, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| | - Helen Stutz
- Institute of Infectious Disease and Molecular Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Medical Virology, Department of Clinical Laboratory Science, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - William Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Enid Shephard
- Institute of Infectious Disease and Molecular Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Medical Research Council, Cape Town, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Medical Virology, Department of Clinical Laboratory Science, Albert Einstein College of Medicine, Bronx, New York, United States of America
- National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
19
|
Cottingham MG, Carroll MW. Recombinant MVA vaccines: dispelling the myths. Vaccine 2013; 31:4247-51. [PMID: 23523407 DOI: 10.1016/j.vaccine.2013.03.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022]
Abstract
Diseases such as HIV/AIDS, tuberculosis, malaria and cancer are prime targets for prophylactic or therapeutic vaccination, but have proven partially or wholly resistant to traditional approaches to vaccine design. New vaccines based on recombinant viral vectors expressing a foreign antigen are under intense development for these and other indications. One of the most advanced and most promising vectors is the attenuated, non-replicating poxvirus MVA (modified vaccinia virus Ankara), a safer derivative of the uniquely successful smallpox vaccine. Despite the ability of recombinant MVA to induce potent humoral and cellular immune responses against transgenic antigen in humans, especially when used as the latter element of a heterologous prime-boost regimen, doubts are occasionally expressed about the ultimate feasibility of this approach. In this review, five common misconceptions over recombinant MVA are discussed, and evidence is cited to show that recombinant MVA is at least sufficiently genetically stable, manufacturable, safe, and immunogenic (even in the face of prior anti-vector immunity) to warrant reasonable hope over the feasibility of large-scale deployment, should useful levels of protection against target pathogens, or therapeutic benefit for cancer, be demonstrated in efficacy trials.
Collapse
Affiliation(s)
- Matthew G Cottingham
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, UK.
| | | |
Collapse
|
20
|
Jensen K, Pena MGD, Wilson RL, Ranganathan UDK, Jacobs WR, Fennelly G, Larsen M, Van Rompay KKA, Kozlowski PA, Abel K. A neonatal oral Mycobacterium tuberculosis-SIV prime / intramuscular MVA-SIV boost combination vaccine induces both SIV and Mtb-specific immune responses in infant macaques. ACTA ACUST UNITED AC 2013; 2:53-63. [PMID: 24454591 DOI: 10.1016/j.trivac.2013.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mother-to-child-transmission of HIV by breast-feeding remains a major obstacle in the eradication of HIV infection. Compared to adults, HIV-infected infants have more rapid disease and show higher susceptibility to co-infections like tuberculosis (TB). Although the Bacille Calmette-Guérin vaccine can be administered at birth to protect against TB, BCG can disseminate in HIV-infected infants and increase mortality. Thus, a pediatric combination vaccine to stop both HIV and TB infection in infants is urgently needed. Towards the goal of developing a pediatric combination HIV-TB vaccine to prevent both oral HIV acquisition by breast-feeding and TB infection, we tested and optimized an immunization regimen using a novel live attenuated Mycobacterium tuberculosis vaccine engineered to express simian immunodeficiency (SIV) antigens followed by heterologous MVA-SIV boosting in the infant macaque model. A single oral dose of the attenuated Mtb-SIV vaccine strain mc26435 during the first week of life was sufficient to induce persistent TB-specific immune responses. SIV-specific immunity was induced at low but comparable magnitudes after oral or intradermal priming, and was enhanced following MVA-SIV boosts. T cell responses were most pronounced in intestinal tissues and oral lymph nodes. Importantly, in addition to plasma SIV-specific IgG and IgA antibodies, infant macaques developed mucosal SIV-specific IgA in saliva and intestinal IgA and IgG. While future SIV and Mtb challenge studies will be needed to determine the protective efficacy of the Mtb-SIV / MVA-SIV vaccine, infants at high risk for oral HIV acquisition by breast-feeding and TB infection could profoundly benefit from an effective combination vaccine.
Collapse
Affiliation(s)
- Kara Jensen
- Department of Microbiology and Immunology, and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, NC, United States
| | - Myra Grace Dela Pena
- Department of Microbiology and Immunology, and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, NC, United States
| | - Robert L Wilson
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA
| | | | | | - Glenn Fennelly
- Albert Einstein College of Medicine, New York, United States
| | - Michelle Larsen
- Albert Einstein College of Medicine, New York, United States
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California at Davis, CA, United States
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Kristina Abel
- Department of Microbiology and Immunology, and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, NC, United States
| |
Collapse
|
21
|
Saubi N, Mbewe-Mvula A, Gea-Mallorqui E, Rosario M, Gatell JM, Hanke T, Joseph J. Pre-clinical development of BCG.HIVA(CAT), an antibiotic-free selection strain, for HIV-TB pediatric vaccine vectored by lysine auxotroph of BCG. PLoS One 2012; 7:e42559. [PMID: 22927933 PMCID: PMC3424164 DOI: 10.1371/journal.pone.0042559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/09/2012] [Indexed: 01/13/2023] Open
Abstract
In the past, we proposed to develop a heterologous recombinant BCG prime-recombinant modified vaccinia virus Ankara (MVA) boost dual pediatric vaccine platform against transmission of breast milk HIV-1 and Mycobacterium tuberculosis (Mtb). In this study, we assembled an E. coli-mycobacterial shuttle plasmid pJH222.HIVACAT expressing HIV-1 clade A immunogen HIVA. This shuttle vector employs an antibiotic resistance-free mechanism based on Operator-Repressor Titration (ORT) system for plasmid selection and maintenance in E. coli and lysine complementation in mycobacteria. This shuttle plasmid was electroporated into parental lysine auxotroph (safer) strain of BCG to generate vaccine BCG.HIVACAT. All procedures complied with Good Laboratory Practices (GLPs). We demonstrated that the episomal plasmid pJH222.HIVACAT was stable in vivo over a 20-week period, and genetically and phenotypically characterized the BCG.HIVACAT vaccine strain. The BCG.HIVACAT vaccine in combination with MVA.HIVA induced HIV-1- and Mtb-specific interferon γ-producing T-cell responses in newborn and adult BALB/c mice. On the other hand, when adult mice were primed with BCG.HIVACAT and boosted with MVA.HIVA.85A, HIV-1-specific CD8+ T-cells producing IFN-γ, TNF-α, IL-2 and CD107a were induced. To assess the biosafety profile of BCG.HIVACAT-MVA.HIVA regimen, body mass loss of newborn mice was monitored regularly throughout the vaccination experiment and no difference was observed between the vaccinated and naïve groups of animals. Thus, we demonstrated T-cell immunogenicity of a novel, safer, GLP-compatible BCG-vectored vaccine using prototype immunogen HIVA. Second generation immunogens derived from HIV-1 as well as other major pediatric pathogens can be constructed in a similar fashion to prime protective responses soon after birth.
Collapse
Affiliation(s)
- Narcís Saubi
- AIDS Research Group, Hospital Clinic/IDIBAPS-HIVACAT, School of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Ester Gea-Mallorqui
- AIDS Research Group, Hospital Clinic/IDIBAPS-HIVACAT, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Maximillian Rosario
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Josep Maria Gatell
- AIDS Research Group, Hospital Clinic/IDIBAPS-HIVACAT, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Joan Joseph
- AIDS Research Group, Hospital Clinic/IDIBAPS-HIVACAT, School of Medicine, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
22
|
Orubu T, Alharbi NK, Lambe T, Gilbert SC, Cottingham MG. Expression and cellular immunogenicity of a transgenic antigen driven by endogenous poxviral early promoters at their authentic loci in MVA. PLoS One 2012; 7:e40167. [PMID: 22761956 PMCID: PMC3384612 DOI: 10.1371/journal.pone.0040167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/02/2012] [Indexed: 01/12/2023] Open
Abstract
CD8(+) T cell responses to vaccinia virus are directed almost exclusively against early gene products. The attenuated strain modified vaccinia virus Ankara (MVA) is under evaluation in clinical trials of new vaccines designed to elicit cellular immune responses against pathogens including Plasmodium spp., M. tuberculosis and HIV-1. All of these recombinant MVAs (rMVA) utilize the well-established method of linking the gene of interest to a cloned poxviral promoter prior to insertion into the viral genome at a suitable locus by homologous recombination in infected cells. Using BAC recombineering, we show that potent early promoters that drive expression of non-functional or non-essential MVA open reading frames (ORFs) can be harnessed for immunogenic expression of recombinant antigen. Precise replacement of the MVA orthologs of C11R, F11L, A44L and B8R with a model antigen positioned to use the same translation initiation codon allowed early transgene expression similar to or slightly greater than that achieved by the commonly-used p7.5 or short synthetic promoters. The frequency of antigen-specific CD8(+) T cells induced in mice by single shot or adenovirus-prime, rMVA-boost vaccination were similarly equal or marginally enhanced using endogenous promoters at their authentic genomic loci compared to the traditional constructs. The enhancement in immunogenicity observed using the C11R or F11L promoters compared with p7.5 was similar to that obtained with the mH5 promoter compared with p7.5. Furthermore, the growth rates of the viruses were unimpaired and the insertions were genetically stable. Insertion of a transgenic ORF in place of a viral ORF by BAC recombineering can thus provide not only a potent promoter, but also, concomitantly, a suitable insertion site, potentially facilitating development of MVA vaccines expressing multiple recombinant antigens.
Collapse
Affiliation(s)
- Toritse Orubu
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah C. Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
23
|
Chapman R, Shephard E, Stutz H, Douglass N, Sambandamurthy V, Garcia I, Ryffel B, Jacobs W, Williamson AL. Priming with a recombinant pantothenate auxotroph of Mycobacterium bovis BCG and boosting with MVA elicits HIV-1 Gag specific CD8+ T cells. PLoS One 2012; 7:e32769. [PMID: 22479338 PMCID: PMC3315557 DOI: 10.1371/journal.pone.0032769] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/30/2012] [Indexed: 12/03/2022] Open
Abstract
A safe and effective HIV vaccine is required to significantly reduce the number of people becoming infected with HIV each year. In this study wild type Mycobacterium bovis BCG Pasteur and an attenuated pantothenate auxotroph strain (BCGΔpanCD) that is safe in SCID mice, have been compared as vaccine vectors for HIV-1 subtype C Gag. Genetically stable vaccines BCG[pHS400] (BCG-Gag) and BCGΔpanCD[pHS400] (BCGpan-Gag) were generated using the Pasteur strain of BCG, and a panothenate auxotroph of Pasteur respectively. Stability was achieved by the use of a codon optimised gag gene and deletion of the hsp60-lysA promoter-gene cassette from the episomal vector pCB119. In this vector expression of gag is driven by the mtrA promoter and the Gag protein is fused to the Mycobacterium tuberculosis 19 kDa signal sequence. Both BCG-Gag and BCGpan-Gag primed the immune system of BALB/c mice for a boost with a recombinant modified vaccinia virus Ankara expressing Gag (MVA-Gag). After the boost high frequencies of predominantly Gag-specific CD8(+) T cells were detected when BCGpan-Gag was the prime in contrast to induction of predominantly Gag-specific CD4(+) T cells when priming with BCG-Gag. The differing Gag-specific T-cell phenotype elicited by the prime-boost regimens may be related to the reduced inflammation observed with the pantothenate auxotroph strain compared to the parent strain. These features make BCGpan-Gag a more desirable HIV vaccine candidate than BCG-Gag. Although no Gag-specific cells could be detected after vaccination of BALB/c mice with either recombinant BCG vaccine alone, BCGpan-Gag protected mice against a surrogate vaccinia virus challenge.
Collapse
Affiliation(s)
- Rosamund Chapman
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Clinical Laboratory Science, University of Cape Town, Cape Town, South Africa
| | - Enid Shephard
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Medical Research Council, Cape Town, South Africa
| | - Helen Stutz
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Clinical Laboratory Science, University of Cape Town, Cape Town, South Africa
| | - Nicola Douglass
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Clinical Laboratory Science, University of Cape Town, Cape Town, South Africa
| | | | - Irene Garcia
- Department of Pathology and Immunology, Centre Médical Universitaire, Hôpitaux Universitaires de Genève, University of Geneva, Geneva, Switzerland
| | - Bernhard Ryffel
- University of Orleans and Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Molecular Immunology and Embryology, Orleans, France
| | - William Jacobs
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Clinical Laboratory Science, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
24
|
Hopkins R, Bridgeman A, Bourne C, Mbewe-Mvula A, Sadoff JC, Both GW, Joseph J, Fulkerson J, Hanke T. Optimizing HIV-1-specific CD8+ T-cell induction by recombinant BCG in prime-boost regimens with heterologous viral vectors. Eur J Immunol 2011; 41:3542-52. [PMID: 21932450 DOI: 10.1002/eji.201141962] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/18/2011] [Accepted: 09/12/2011] [Indexed: 11/07/2022]
Abstract
The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen.
Collapse
Affiliation(s)
- Richard Hopkins
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|