1
|
Akbar H, Jarosinski KW. Temporal Dynamics of Purinergic Receptor Expression in the Lungs of Marek's Disease (MD) Virus-Infected Chickens Resistant or Susceptible to MD. Viruses 2024; 16:1130. [PMID: 39066292 PMCID: PMC11281646 DOI: 10.3390/v16071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease virus (MDV) is an economic concern for the poultry industry due to its poorly understood pathophysiology. Purinergic receptors (PRs) are potential therapeutic targets for viral infections, including herpesviruses, prompting our investigation into their role in MDV pathogenesis. The current study is part of an experimental series analyzing the expression of PRs during MDV infection. To address the early or short-acting P2 PR responses during natural MDV infection, we performed an "exposure" experiment where age-matched chickens were exposed to experimentally infected shedders to initiate natural infection. In addition, select non-PR regulatory gene responses were measured. Two groups of naïve contact chickens (n = 5/breed/time point) from MD-resistant (White Leghorns: WL) and -susceptible (Pure Columbian) chicken lines were housed separately with experimentally infected PC (×PC) and WL (×WL) chickens for 6 or 24 h. Whole lung lavage cells (WLLC) were collected, RNA was extracted, and RT-qPCR assays were used to measure specific PR responses. In addition, other potentially important markers in pathophysiology were measured. Our study revealed that WL chickens exhibited higher P1 PR expression during natural infection. WL chickens also showed higher expression of P1A3 and P2X3 at 6 and 24 h when exposed to PC-infected chickens. P2X5 and P2Y1 showed higher expression at 6 h, while P2Y5 showed higher expression at 6 and 24 h; regardless of the chicken line, PC chickens exhibited higher expression of P2X2, P2Y8, P2Y10, P2Y13, and P2Y14 when exposed to either group of infected chickens. In addition, MDV infection altered the expression of DDX5 in both WL and PC groups exposed to PC-infected birds only. However, irrespective of the source of exposure, BCL2 and ANGPTL4 showed higher expression in both WL and PC. The expression of STAT1A and STAT5A was influenced by time and breed, with major changes observed in STAT5A. CAT and SOD1 expression significantly increased in both WL and PC birds, regardless of the source of infection. GPX1 and GPX2 expression also increased in both WL and PC, although overall lower expression was observed in PC chickens at 24 h compared to 6 h. Our data suggest systemic changes in the host during early infection, indicated by the altered expression of PRs, DDX5, BCL2, ANGPTL4, and other regulatory genes during early MDV infection. The relative expression of these responses in PC and WL chickens suggests they may play a key role in their response to natural MDV infection in the lungs and long-term pathogenesis and survival.
Collapse
Affiliation(s)
| | - Keith W. Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA;
| |
Collapse
|
2
|
Bostedt L, Fénéant L, Leske A, Holzerland J, Günther K, Waßmann I, Bohn P, Groseth A. Alternative translation contributes to the generation of a cytoplasmic subpopulation of the Junín virus nucleoprotein that inhibits caspase activation and innate immunity. J Virol 2024; 98:e0197523. [PMID: 38294249 PMCID: PMC10878266 DOI: 10.1128/jvi.01975-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
The highly pathogenic arenavirus, Junín virus (JUNV), expresses three truncated alternative isoforms of its nucleoprotein (NP), i.e., NP53kD, NP47kD, and NP40kD. While both NP47kD and NP40kD have been previously shown to be products of caspase cleavage, here, we show that expression of the third isoform NP53kD is due to alternative in-frame translation from M80. Based on this information, we were able to generate recombinant JUNVs lacking each of these isoforms. Infection with these mutants revealed that, while all three isoforms contribute to the efficient control of caspase activation, NP40kD plays the predominant role. In contrast to full-length NP (i.e., NP65kD), which is localized to inclusion bodies, where viral RNA synthesis takes place, the loss of portions of the N-terminal coiled-coil region in these isoforms leads to a diffuse cytoplasmic distribution and a loss of function in viral RNA synthesis. Nonetheless, NP53kD, NP47kD, and NP40kD all retain robust interferon antagonistic and 3'-5' exonuclease activities. We suggest that the altered localization of these NP isoforms allows them to be more efficiently targeted by activated caspases for cleavage as decoy substrates, and to be better positioned to degrade viral double-stranded (ds)RNA species that accumulate in the cytoplasm during virus infection and/or interact with cytosolic RNA sensors, thereby limiting dsRNA-mediated innate immune responses. Taken together, this work provides insight into the mechanism by which JUNV leverages apoptosis during infection to generate biologically distinct pools of NP and contributes to our understanding of the expression and biological relevance of alternative protein isoforms during virus infection.IMPORTANCEA limited coding capacity means that RNA viruses need strategies to diversify their proteome. The nucleoprotein (NP) of the highly pathogenic arenavirus Junín virus (JUNV) produces three N-terminally truncated isoforms: two (NP47kD and NP40kD) are known to be produced by caspase cleavage, while, here, we show that NP53kD is produced by alternative translation initiation. Recombinant JUNVs lacking individual NP isoforms revealed that all three isoforms contribute to inhibiting caspase activation during infection, but cleavage to generate NP40kD makes the biggest contribution. Importantly, all three isoforms retain their ability to digest double-stranded (ds)RNA and inhibit interferon promoter activation but have a diffuse cytoplasmic distribution. Given the cytoplasmic localization of both aberrant viral dsRNAs, as well as dsRNA sensors and many other cellular components of innate immune activation pathways, we suggest that the generation of NP isoforms not only contributes to evasion of apoptosis but also robust control of the antiviral response.
Collapse
Affiliation(s)
- Linus Bostedt
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Lucie Fénéant
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anne Leske
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Julia Holzerland
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Karla Günther
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Irke Waßmann
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Patrick Bohn
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Allison Groseth
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Abstract
Rift Valley Fever Virus (RVFV) is a negative sense segmented RNA virus that can cause severe hemorrhagic fever. The tri-segmented virus genome encodes for six (6) multifunctional proteins that engage host factors at a variety of different stages in the replication cycle. The S segment encodes nucleoprotein (N) and nonstructural protein S (NSs), the M segment encodes viral glycoproteins Gn and Gc as well as nonstructural protein M (NSm) and the L segment encodes the viral polymerase (L). Viral glycoproteins Gn and Gc are responsible for entry by binding to a number of host factors. Our recent studies identified a scavenger receptor, LDL receptor related protein 1 (Lrp1), as a potential pro-viral host factor for RVFV and related viruses, including Oropouche virus (OROV) infection. Coincidentally, several recent studies identified other LDL family proteins as viral entry factors and receptors for other viral families. Collectively, these observations suggest that highly conserved LDL family proteins may play a significant role in facilitating entry of viruses from several distinct families. Given the significant roles of viral and host factors during infection, characterization of these interactions is critical for therapeutic targeting with neutralizing antibodies and vaccines.
Collapse
Affiliation(s)
- Safder S Ganaie
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States; Department of Medicine, Washington University School of Medicine, St Louis, MO, United States
| | - Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States.
| |
Collapse
|
4
|
Potential Role of Superoxide Dismutase 3 (SOD3) in Resistance to Influenza A Virus Infection. Antioxidants (Basel) 2023; 12:antiox12020354. [PMID: 36829913 PMCID: PMC9952479 DOI: 10.3390/antiox12020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Influenza A virus infection induces the production of excessive reactive oxygen species (ROS). Overproduction of ROS can overwhelm the antioxidant defense system, leading to increasing intensive oxidative stress. However, antioxidant defense against oxidative damage induced by influenza A virus infection, and in particular the significance of the SOD3 response in the pathogenesis of influenza virus infection, has not been well characterized. Here, we investigated the potential role of SOD3 in resistance to influenza A virus infection. In this study, SOD3, as an important antioxidant enzyme, was shown to be highly elevated in A549 cells following influenza A virus infection. Furthermore, inhibition of SOD3 impacted viral replication and virulence. We found that SOD3 disrupts IAV replication by impairing the synthesis of vRNA, whereas it did not affect viral ribonucleoprotein nuclear export. In addition, overexpression of SOD3 greatly reduced the levels of ROS caused by influenza A virus infection, regulated the inflammatory response to virus infection by inhibiting the phosphorylation of p65 of the NF-κB signaling pathway, and inhibited virus-induced apoptosis to a certain extent. Taken together, these findings indicate that SOD3 is actively involved in influenza A virus replication. Pharmacological modulation or targeting of SOD3 may pave the way for a novel therapeutic approach to combating influenza A virus infection.
Collapse
|
5
|
Wang X, Yuan Y, Liu Y, Zhang L. Arm race between Rift Valley fever virus and host. Front Immunol 2022; 13:1084230. [PMID: 36618346 PMCID: PMC9813963 DOI: 10.3389/fimmu.2022.1084230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Rift Valley fever (RVF) is a zoonotic disease caused by Rift Valley fever virus (RVFV), an emerging arbovirus within the Phenuiviridae family of Bunyavirales that has potential to cause severe diseases in both humans and livestock. It increases the incidence of abortion or foetal malformation in ruminants and leads to clinical manifestations like encephalitis or haemorrhagic fever in humans. Upon virus invasion, the innate immune system from the cell or the organism is activated to produce interferon (IFN) and prevent virus proliferation. Meanwhile, RVFV initiates countermeasures to limit antiviral responses at transcriptional and protein levels. RVFV nonstructural proteins (NSs) are the key virulent factors that not only perform immune evasion but also impact the cell replication cycle and has cytopathic effects. In this review, we summarize the innate immunity host cells employ depending on IFN signal transduction pathways, as well as the immune evasion mechanisms developed by RVFV primarily with the inhibitory activity of NSs protein. Clarifying the arms race between host innate immunity and RVFV immune evasion provides new avenues for drug target screening and offers possible solutions to current and future epidemics.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yupei Yuan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yihan Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
6
|
Rift Valley Fever Virus Propagates in Human Villous Trophoblast Cell Lines and Induces Cytokine mRNA Responses Known to Provoke Miscarriage. Viruses 2021; 13:v13112265. [PMID: 34835071 PMCID: PMC8625252 DOI: 10.3390/v13112265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 02/05/2023] Open
Abstract
The mosquito-borne Rift Valley fever (RVF) is a prioritised disease that has been listed by the World Health Organization for urgent research and development of counteraction. Rift Valley fever virus (RVFV) can cause a cytopathogenic effect in the infected cell and induce hyperimmune responses that contribute to pathogenesis. In livestock, the consequences of RVFV infection vary from mild symptoms to abortion. In humans, 1–3% of patients with RVFV infection develop severe disease, manifested as, for example, haemorrhagic fever, encephalitis or blindness. RVFV infection has also been associated with miscarriage in humans. During pregnancy, there should be a balance between pro-inflammatory and anti-inflammatory mediators to create a protective environment for the placenta and foetus. Many viruses are capable of penetrating that protective environment and infecting the foetal–maternal unit, possibly via the trophoblasts in the placenta, with potentially severe consequences. Whether it is the viral infection per se, the immune response, or both that contribute to the pathogenesis of miscarriage remains unknown. To investigate how RVFV could contribute to pathogenesis during pregnancy, we infected two human trophoblast cell lines, A3 and Jar, representing normal and transformed human villous trophoblasts, respectively. They were infected with two RVFV variants (wild-type RVFV and RVFV with a deleted NSs protein), and the infection kinetics and 15 different cytokines were analysed. The trophoblast cell lines were infected by both RVFV variants and infection caused upregulation of messenger RNA (mRNA) expression for interferon (IFN) types I–III and inflammatory cytokines, combined with cell line-specific mRNA expression of transforming growth factor (TGF)-β1 and interleukin (IL)-10. When comparing the two RVFV variants, we found that infection with RVFV lacking NSs function caused a hyper-IFN response and inflammatory response, while the wild-type RVFV suppressed the IFN I and inflammatory response. The induction of certain cytokines by RVFV infection could potentially lead to teratogenic effects that disrupt foetal and placental developmental pathways, leading to birth defects and other pregnancy complications, such as miscarriage.
Collapse
|
7
|
A Look into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins. Viruses 2021; 13:v13020314. [PMID: 33670641 PMCID: PMC7922539 DOI: 10.3390/v13020314] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Bunyavirales order was established by the International Committee on Taxonomy of Viruses (ICTV) to incorporate the increasing number of related viruses across 13 viral families. While diverse, four of the families (Peribunyaviridae, Nairoviridae, Hantaviridae, and Phenuiviridae) contain known human pathogens and share a similar tri-segmented, negative-sense RNA genomic organization. In addition to the nucleoprotein and envelope glycoproteins encoded by the small and medium segments, respectively, many of the viruses in these families also encode for non-structural (NS) NSs and NSm proteins. The NSs of Phenuiviridae is the most extensively studied as a host interferon antagonist, functioning through a variety of mechanisms seen throughout the other three families. In addition, functions impacting cellular apoptosis, chromatin organization, and transcriptional activities, to name a few, are possessed by NSs across the families. Peribunyaviridae, Nairoviridae, and Phenuiviridae also encode an NSm, although less extensively studied than NSs, that has roles in antagonizing immune responses, promoting viral assembly and infectivity, and even maintenance of infection in host mosquito vectors. Overall, the similar and divergent roles of NS proteins of these human pathogenic Bunyavirales are of particular interest in understanding disease progression, viral pathogenesis, and developing strategies for interventions and treatments.
Collapse
|
8
|
Price A, Okumura A, Haddock E, Feldmann F, Meade-White K, Sharma P, Artami M, Lipkin WI, Threadgill DW, Feldmann H, Rasmussen AL. Transcriptional Correlates of Tolerance and Lethality in Mice Predict Ebola Virus Disease Patient Outcomes. Cell Rep 2020; 30:1702-1713.e6. [PMID: 32049004 PMCID: PMC11062563 DOI: 10.1016/j.celrep.2020.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 11/07/2019] [Accepted: 01/07/2020] [Indexed: 01/26/2023] Open
Abstract
Host response to infection is a major determinant of disease severity in Ebola virus disease (EVD), but gene expression programs associated with outcome are poorly characterized. Collaborative Cross (CC) mice develop strain-dependent EVD phenotypes of differential severity, ranging from tolerance to lethality. We screen 10 CC lines and identify clinical, virologic, and transcriptomic features that distinguish tolerant from lethal outcomes. Tolerance is associated with tightly regulated induction of immune and inflammatory responses shortly following infection, as well as reduced inflammatory macrophages and increased antigen-presenting cells, B-1 cells, and γδ T cells. Lethal disease is characterized by suppressed early gene expression and reduced lymphocytes, followed by uncontrolled inflammatory signaling, leading to death. We apply machine learning to predict outcomes with 99% accuracy in mice using transcriptomic profiles. This signature predicts outcomes in a cohort of EVD patients from western Africa with 75% accuracy, demonstrating potential clinical utility.
Collapse
Affiliation(s)
- Adam Price
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Atsushi Okumura
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA; Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Elaine Haddock
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Pryanka Sharma
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Methinee Artami
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Angela L Rasmussen
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA.
| |
Collapse
|
9
|
da Silva Caetano CC, Camini FC, Almeida LT, Ferraz AC, da Silva TF, Lima RLS, de Freitas Carvalho MM, de Freitas Castro T, Carneiro CM, de Mello Silva B, de Queiroz Silva S, de Magalhães JC, de Brito Magalhães CL. Mayaro Virus Induction of Oxidative Stress is Associated With Liver Pathology in a Non-Lethal Mouse Model. Sci Rep 2019; 9:15289. [PMID: 31653913 PMCID: PMC6814867 DOI: 10.1038/s41598-019-51713-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/01/2019] [Indexed: 02/01/2023] Open
Abstract
Mayaro virus (MAYV) causes Mayaro fever in humans, a self-limiting acute disease, with persistent arthralgia and arthritis. Although MAYV has a remerging potential, its pathogenic mechanisms remain unclear. Here, we characterized a model of MAYV infection in 3-4-week BALB/c mice. We investigated whether the liver acts as a site of viral replication and if the infection could cause histopathological alterations and an imbalance in redox homeostasis, culminating with oxidative stress. MAYV-infected mice revealed lower weight gain; however, the disease was self-resolving. High virus titre, neutralizing antibodies, and increased levels of aspartate and alanine aminotransferases were detected in the serum. Infectious viral particles were recovered in the liver of infected animals and the histological examination of liver tissues revealed significant increase in the inflammatory infiltrate. MAYV induced significant oxidative stress in the liver of infected animals, as well as a deregulation of enzymatic antioxidant components. Collectively, this is the first study to report that oxidative stress occurs in MAYV infection in vivo, and that it may be crucial in virus pathogenesis. Future studies are warranted to address the alternative therapeutic strategies for Mayaro fever, such as those based on antioxidant compounds.
Collapse
Affiliation(s)
- Camila Carla da Silva Caetano
- Postgraduate Program of Biological Science, Biological Sciences Research Center, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Fernanda Caetano Camini
- Postgraduate Program of Biological Science, Biological Sciences Research Center, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Letícia Trindade Almeida
- Postgraduate Program of Biological Science, Biological Sciences Research Center, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ariane Coelho Ferraz
- Postgraduate Program of Biological Science, Biological Sciences Research Center, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Tales Fernando da Silva
- Postgraduate Program of Biological Science, Biological Sciences Research Center, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Mayara Medeiros de Freitas Carvalho
- Postgraduate Program of Biological Science, Biological Sciences Research Center, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Thalles de Freitas Castro
- Postgraduate Program of Biological Science, Biological Sciences Research Center, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Cláudia Martins Carneiro
- Postgraduate Program of Biological Science, Biological Sciences Research Center, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Clinical Analysis Departament, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Postgraduate Program of Biotechnology, Biological Sciences Research Center, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Breno de Mello Silva
- Postgraduate Program of Biological Science, Biological Sciences Research Center, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Biological Science Departament, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Postgraduate Program of Biotechnology, Biological Sciences Research Center, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Silvana de Queiroz Silva
- Biological Science Departament, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Postgraduate Program of Biotechnology, Biological Sciences Research Center, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - José Carlos de Magalhães
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Postgraduate Program of Biological Science, Biological Sciences Research Center, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
- Biological Science Departament, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Transcriptome profiling in Rift Valley fever virus infected cells reveals modified transcriptional and alternative splicing programs. PLoS One 2019; 14:e0217497. [PMID: 31136639 PMCID: PMC6538246 DOI: 10.1371/journal.pone.0217497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/13/2019] [Indexed: 12/27/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a negative-sense RNA virus belonging to the Phenuiviridae family that infects both domestic livestock and humans. The NIAID has designated RVFV as a Category A priority emerging pathogen due to the devastating public health outcomes associated with epidemic outbreaks. However, there is no licensed treatment or vaccine approved for human use. Therefore it is of great interest to understand RVFV pathogenesis in infected hosts in order to facilitate creation of targeted therapies and treatment options. Here we provide insight into the host-pathogen interface in human HEK293 cells during RVFV MP-12 strain infection using high-throughput mRNA sequencing technology. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes showed robust innate immune and cytokine-mediated inflammatory pathway activation as well as alterations in pathways associated with fatty acid metabolism and extracellular matrix receptor signaling. We also analyzed the promoter regions of DEGs for patterns in transcription factor binding sites, and found several that are known to act synergistically to impact apoptosis, immunity, metabolism, and cell growth and differentiation. Lastly, we noted dramatic changes in host alternative splicing patterns in genes associated with mRNA decay and surveillance, RNA transport, and DNA repair. This study has improved our understanding of RVFV pathogenesis and has provided novel insight into pathways and signaling modules important for RVFV diagnostics and therapeutic development.
Collapse
|
11
|
Pinkham C, Ahmed A, Bracci N, Narayanan A, Kehn-Hall K. Host-based processes as therapeutic targets for Rift Valley fever virus. Antiviral Res 2018; 160:64-78. [PMID: 30316916 DOI: 10.1016/j.antiviral.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/27/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022]
Abstract
Rift Valley fever virus (RVFV) is an enveloped, segmented, negative sense RNA virus that replicates within the host's cytoplasm. To facilitate its replication, RVFV must utilize host cell processes and as such, these processes may serve as potential therapeutic targets. This review summarizes key host cell processes impacted by RVFV infection. Specifically the influence of RVFV on host transcriptional regulation, post-transcriptional regulation, protein half-life and availability, host signal transduction, trafficking and secretory pathways, cytoskeletal modulation, and mitochondrial processes and oxidative stress are discussed. Therapeutics targeted towards host processes that are essential for RVFV to thrive as well as their efficacy and importance to viral pathogenesis are highlighted.
Collapse
Affiliation(s)
- Chelsea Pinkham
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Aslaa Ahmed
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Nicole Bracci
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
12
|
Alterations in the host transcriptome in vitro following Rift Valley fever virus infection. Sci Rep 2017; 7:14385. [PMID: 29085037 PMCID: PMC5662566 DOI: 10.1038/s41598-017-14800-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/16/2017] [Indexed: 01/01/2023] Open
Abstract
Rift Valley fever virus (RVFV) causes major outbreaks among livestock, characterized by "abortion storms" in which spontaneous abortion occurs in almost 100% of pregnant ruminants. Humans can also become infected with mild symptoms that can progress to more severe symptoms, such as hepatitis, encephalitis, and hemorrhagic fever. The goal of this study was to use RNA-sequencing (RNA-seq) to analyze the host transcriptome in response to RVFV infection. G2/M DNA damage checkpoint, ATM signaling, mitochondrial dysfunction, regulation of the antiviral response, and integrin-linked kinase (ILK) signaling were among the top altered canonical pathways with both the attenuated MP12 strain and the fully virulent ZH548 strain. Although several mRNA transcripts were highly upregulated, an increase at the protein level was not observed for the selected genes, which was at least partially due to the NSs dependent block in mRNA export. Inhibition of ILK signaling, which is involved in cell motility and cytoskeletal reorganization, resulted in reduced RVFV replication, indicating that this pathway is important for viral replication. Overall, this is the first global transcriptomic analysis of the human host response following RVFV infection, which could give insight into novel host responses that have not yet been explored.
Collapse
|
13
|
Atkins C, Freiberg AN. Recent advances in the development of antiviral therapeutics for Rift Valley fever virus infection. Future Virol 2017; 12:651-665. [PMID: 29181086 DOI: 10.2217/fvl-2017-0060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/26/2017] [Indexed: 12/25/2022]
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus endemic to sub-Saharan Africa and the Arabian Peninsula and the etiological agent of Rift Valley fever. Rift Valley fever is a disease of major public health and economic concern, affecting livestock and humans. In ruminants, RVFV infection is characterized by high mortality rates in newborns and near 100% abortion rates in pregnant animals. Infection in humans is typically manifested as a self-limiting febrile illness, but can lead to severe and fatal hepatitis, encephalitis, hemorrhagic fever or retinitis with partial or complete blindness. Currently, there are no specific treatment options available for RVFV infection. This review presents a summary of the therapeutic approaches that have been explored on the treatment of RVFV infection.
Collapse
Affiliation(s)
- Colm Atkins
- Department of Pathology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,Department of Pathology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Alexander N Freiberg
- Department of Pathology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,The Sealy Center for Vaccine Development, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,The Center for Biodefense & Emerging Infectious Diseases, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,Department of Pathology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,The Sealy Center for Vaccine Development, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,The Center for Biodefense & Emerging Infectious Diseases, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| |
Collapse
|
14
|
Camini FC, da Silva Caetano CC, Almeida LT, da Costa Guerra JF, de Mello Silva B, de Queiroz Silva S, de Magalhães JC, de Brito Magalhães CL. Oxidative stress in Mayaro virus infection. Virus Res 2017; 236:1-8. [DOI: 10.1016/j.virusres.2017.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/13/2022]
|
15
|
Keck F, Brooks-Faulconer T, Lark T, Ravishankar P, Bailey C, Salvador-Morales C, Narayanan A. Altered mitochondrial dynamics as a consequence of Venezuelan Equine encephalitis virus infection. Virulence 2017; 8:1849-1866. [PMID: 28075229 DOI: 10.1080/21505594.2016.1276690] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are sentinel organelles that are impacted by various forms of cellular stress, including viral infections. While signaling events associated with mitochondria, including those activated by pathogen associated molecular patterns (PAMPs), are widely studied, alterations in mitochondrial distribution and changes in mitochondrial dynamics are also beginning to be associated with cellular insult. Cells of neuronal origin have been demonstrated to display remarkable alterations in several instances, including neurodegenerative disorders. Venezuelan Equine Encephalitis Virus (VEEV) is a New World alphavirus that infects neuronal cells and contributes to an encephalitic phenotype. We demonstrate that upon infection by the vaccine strain of VEEV (TC-83), astrocytoma cells experience a robust drop in mitochondrial activity, which corresponds with an increased accumulation of reactive oxygen species (ROS) in an infection-dependent manner. Infection status also corresponds with a prominent perinuclear accumulation of mitochondria. Cellular enzymatic machinery, including PINK1 and Parkin, appears to be enriched in mitochondrial fractions as compared with uninfected cells, which is indicative of mitochondrial damage. Dynamin related protein 1 (Drp1), a protein that is associated with mitochondrial fission, demonstrated a modest enrichment in mitochondrial fractions of infected cells. Treatment with an inhibitor of mitochondrial fission, Mdivi-1, led to a decrease in caspase cleavage, suggesting that mitochondrial fission was likely to contribute to apoptosis of infected cells. Finally, our data demonstrate that mitophagy ensues in infected cells. In combination, our data suggest that VEEV infection results in significant changes in the mitochondrial landscape that may influence pathological outcomes in the infected cell.
Collapse
Affiliation(s)
- Forrest Keck
- a National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University , Manassas , VA , USA
| | - Taryn Brooks-Faulconer
- a National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University , Manassas , VA , USA
| | - Tyler Lark
- a National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University , Manassas , VA , USA
| | | | - Charles Bailey
- a National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University , Manassas , VA , USA
| | | | - Aarthi Narayanan
- a National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University , Manassas , VA , USA
| |
Collapse
|
16
|
Baer A, Shafagati N, Benedict A, Ammosova T, Ivanov A, Hakami RM, Terasaki K, Makino S, Nekhai S, Kehn-Hall K. Protein Phosphatase-1 regulates Rift Valley fever virus replication. Antiviral Res 2016; 127:79-89. [PMID: 26801627 DOI: 10.1016/j.antiviral.2016.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/21/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022]
Abstract
Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target.
Collapse
Affiliation(s)
- Alan Baer
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Nazly Shafagati
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Ashwini Benedict
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Tatiana Ammosova
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington, D.C., USA
| | - Andrey Ivanov
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington, D.C., USA
| | - Ramin M Hakami
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington, D.C., USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
17
|
Roberts KK, Hill TE, Davis MN, Holbrook MR, Freiberg AN. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus. J Gen Virol 2015; 96:1651-1663. [PMID: 25759029 PMCID: PMC4635452 DOI: 10.1099/vir.0.000119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/09/2015] [Indexed: 12/23/2022] Open
Abstract
Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection.
Collapse
Affiliation(s)
- Kimberly K. Roberts
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Terence E. Hill
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Melissa N. Davis
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michael R. Holbrook
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Integrated Research Facility, National Institute of Allergy and Infectious Disease, National Institutes of Health, Frederick, MD, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
18
|
Keck F, Amaya M, Kehn-Hall K, Roberts B, Bailey C, Narayanan A. Characterizing the effect of Bortezomib on Rift Valley Fever Virus multiplication. Antiviral Res 2015; 120:48-56. [PMID: 26001632 DOI: 10.1016/j.antiviral.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/02/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022]
Abstract
Rift Valley Fever Virus (RVFV) belongs to the family Bunyaviridae and is a known cause of epizootics and epidemics in Africa and the Middle East. With no FDA approved therapeutics available to treat RVFV infection, understanding the interactions between the virus and the infected host is crucial to developing novel therapeutic strategies. Here, we investigated the requirement of the ubiquitin-proteasome system (UPS) for the establishment of a productive RVFV infection. It was previously shown that the UPS plays a central role in RVFV multiplication involving degradation of PKR and p62 subunit of TFIIH. Using the FDA-approved proteasome inhibitor Bortezomib, we observed robust inhibition of intracellular and extracellular viral loads. Bortezomib treatment did not affect the nuclear/cytoplasmic distribution of the non-structural S-segment protein (NSs); however, the ability of NSs to form nuclear filaments was abolished as a result of Bortezomib treatment. In silico ubiquitination prediction analysis predicted that known NSs interactors (SAP30, YY1, and mSin3A) have multiple putative ubiquitination sites, while NSs itself was not predicted to be ubiquitinated. Immunoprecipitation studies indicated a decrease in interaction between SAP30 - NSs, and mSin3A - NSs in the context of Bortezomib treatment. This decrease in association between SAP30 - NSs also correlated with a decrease in the ubiquitination status of SAP30 with Bortezomib treatment. Bortezomib treatment, however, resulted in increased ubiquitination of mSin3A, suggesting that Bortezomib dynamically affects the ubiquitination status of host proteins that interact with NSs. Finally, we observed that expression of interferon beta (IFN-β) was increased in Bortezomib treated cells which indicated that the cellular antiviral mechanism was revived as a result of treatment and may contribute to control of viral multiplication.
Collapse
Affiliation(s)
- Forrest Keck
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA 20110, United States
| | - Moushimi Amaya
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA 20110, United States
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA 20110, United States
| | - Brian Roberts
- Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD 21703, United States
| | - Charles Bailey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA 20110, United States
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA 20110, United States.
| |
Collapse
|
19
|
Kreher F, Tamietti C, Gommet C, Guillemot L, Ermonval M, Failloux AB, Panthier JJ, Bouloy M, Flamand M. The Rift Valley fever accessory proteins NSm and P78/NSm-GN are distinct determinants of virus propagation in vertebrate and invertebrate hosts. Emerg Microbes Infect 2014; 3:e71. [PMID: 26038497 PMCID: PMC4217093 DOI: 10.1038/emi.2014.71] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/05/2014] [Accepted: 08/10/2014] [Indexed: 02/05/2023]
Abstract
Rift Valley fever virus (RVFV) is an enzootic virus circulating in Africa that is transmitted to its vertebrate host by a mosquito vector and causes severe clinical manifestations in humans and ruminants. RVFV has a tripartite genome of negative or ambisense polarity. The M segment contains five in-frame AUG codons that are alternatively used for the synthesis of two major structural glycoproteins, GN and GC, and at least two accessory proteins, NSm, a 14-kDa cytosolic protein, and P78/NSm-GN, a 78-kDa glycoprotein. To determine the relative contribution of P78 and NSm to RVFV infectivity, AUG codons were knocked out to generate mutant viruses expressing various sets of the M-encoded proteins. We found that, in the absence of the second AUG codon used to express NSm, a 13-kDa protein corresponding to an N-terminally truncated form of NSm, named NSm′, was synthesized from AUG 3. None of the individual accessory proteins had any significant impact on RVFV virulence in mice. However, a mutant virus lacking both NSm and NSm′ was strongly attenuated in mice and grew to reduced titers in murine macrophages, a major target cell type of RVFV. In contrast, P78 was not associated with reduced viral virulence in mice, yet it appeared as a major determinant of virus dissemination in mosquitoes. This study demonstrates how related accessory proteins differentially contribute to RVFV propagation in mammalian and arthropod hosts.
Collapse
Affiliation(s)
- Felix Kreher
- Molecular Genetics of Bunyaviruses, Institut Pasteur , F-75015 Paris, France ; Structural Virology, Institut Pasteur , F-75015 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité , F-75205 Paris, France
| | - Carole Tamietti
- Molecular Genetics of Bunyaviruses, Institut Pasteur , F-75015 Paris, France ; Structural Virology, Institut Pasteur , F-75015 Paris, France
| | - Céline Gommet
- Mouse Functional Genetics, Institut Pasteur , F-75015 Paris, France ; CNRS URA 2578, Institut Pasteur , F-75015 Paris, France ; Central Animal Facilities, Institut Pasteur , F-75015 Paris, France
| | - Laurent Guillemot
- Mouse Functional Genetics, Institut Pasteur , F-75015 Paris, France ; CNRS URA 2578, Institut Pasteur , F-75015 Paris, France
| | - Myriam Ermonval
- Molecular Genetics of Bunyaviruses, Institut Pasteur , F-75015 Paris, France
| | | | - Jean-Jacques Panthier
- Mouse Functional Genetics, Institut Pasteur , F-75015 Paris, France ; CNRS URA 2578, Institut Pasteur , F-75015 Paris, France
| | - Michèle Bouloy
- Molecular Genetics of Bunyaviruses, Institut Pasteur , F-75015 Paris, France
| | - Marie Flamand
- Molecular Genetics of Bunyaviruses, Institut Pasteur , F-75015 Paris, France ; Structural Virology, Institut Pasteur , F-75015 Paris, France
| |
Collapse
|
20
|
Caraparu virus induces damage and alterations in antioxidant defenses in the liver of BALB/c mice after subcutaneous infection. Arch Virol 2014; 159:2621-32. [DOI: 10.1007/s00705-014-2123-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 05/14/2014] [Indexed: 11/26/2022]
|
21
|
Morris G, Maes M. Oxidative and Nitrosative Stress and Immune-Inflammatory Pathways in Patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Curr Neuropharmacol 2014; 12:168-85. [PMID: 24669210 PMCID: PMC3964747 DOI: 10.2174/1570159x11666131120224653] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 07/12/2013] [Accepted: 11/02/2013] [Indexed: 02/07/2023] Open
Abstract
Myalgic Encephalomyelitis (ME) / Chronic Fatigue Syndrome (CFS) has been classified as a disease of the central nervous system by the WHO since 1969. Many patients carrying this diagnosis do demonstrate an almost bewildering array of biological abnormalities particularly the presence of oxidative and nitrosative stress (O&NS) and a chronically activated innate immune system. The proposal made herein is that once generated chronically activated O&NS and immune-inflammatory pathways conspire to generate a multitude of self-sustaining and self-amplifying pathological processes which are associated with the onset of ME/CFS. Sources of continuous activation of O&NS and immune-inflammatory pathways in ME/CFS are chronic, intermittent and opportunistic infections, bacterial translocation, autoimmune responses, mitochondrial dysfunctions, activation of the Toll-Like Receptor Radical Cycle, and decreased antioxidant levels. Consequences of chronically activated O&NS and immune-inflammatory pathways in ME/CFS are brain disorders, including neuroinflammation and brain hypometabolism / hypoperfusion, toxic effects of nitric oxide and peroxynitrite, lipid peroxidation and oxidative damage to DNA, secondary autoimmune responses directed against disrupted lipid membrane components and proteins, mitochondrial dysfunctions with a disruption of energy metabolism (e.g. compromised ATP production) and dysfunctional intracellular signaling pathways. The interplay between all of these factors leads to self-amplifying feed forward loops causing a chronic state of activated O&NS, immune-inflammatory and autoimmune pathways which may sustain the disease.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand ; Department of Psychiatry, Deakin University, Geelong, Australia
| |
Collapse
|
22
|
Elliott RM, Brennan B. Emerging phleboviruses. Curr Opin Virol 2014; 5:50-7. [PMID: 24607799 PMCID: PMC4031632 DOI: 10.1016/j.coviro.2014.01.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/20/2013] [Accepted: 01/31/2014] [Indexed: 02/07/2023]
Abstract
The Bunyavidae family is the largest grouping of RNA viruses and arguably the most diverse. Bunyaviruses have a truly global distribution and can infect vertebrates, invertebrates and plants. The majority of bunyaviruses are vectored by arthropods and thus have the remarkable capability to replicate in hosts of disparate phylogeny. The family has provided many examples of emerging viruses including Sin Nombre and related viruses responsible for hantavirus cardiopulmonary syndrome in the Americas, first identified in 1993, and Schmallenberg virus which emerged in Europe in 2011, causing foetal malformations in ruminants. In addition, some well-known bunyaviruses like Rift Valley fever and Crimean-Congo haemorrhagic fever viruses continue to emerge in new geographical locations. In this short review we focus on newly identified viruses associated with severe haemorrhagic disease in humans in China and the US.
Collapse
Affiliation(s)
- Richard M Elliott
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK.
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK
| |
Collapse
|
23
|
Reactive oxygen species activate NFκB (p65) and p53 and induce apoptosis in RVFV infected liver cells. Virology 2014; 449:270-86. [DOI: 10.1016/j.virol.2013.11.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/02/2013] [Accepted: 11/17/2013] [Indexed: 12/30/2022]
|
24
|
Micheal AS, Subramanyam MVV. Antioxidant enzymes as defense mechanism against oxidative stress in midgut tissue and hemocytes of Bombyx mori larvae subjected to various stressors. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 84:222-234. [PMID: 24222080 DOI: 10.1002/arch.21138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study, larvae of silkworm Bombyx mori were subjected to low temperature, hypoxia, and viral infection to evaluate stressor-mediated oxidative stress (OS) and the induction of antioxidant enzymes (AOEs). Exposure to cold, hypoxia, and nuclear polyhedral virus for 24 h resulted in a significant increase in hydrogen peroxide generation with concomitant increase in lipid peroxidation (LPO) and protein carbonyl levels in midgut and hemocytes. AOEs such as superoxide dismutase and catalase also increased significantly in both the tissues and the increased AOEs reverted to control values during recovery. Ontogenic stages of the larvae showed a diminishing ability of the tissues to overcome OS induced by the stressors. A significant increase in AOE activity during short stress period indicated a possible transitory defense mechanism to avoid OS-induced cell damage.
Collapse
|
25
|
Terasaki K, Won S, Makino S. The C-terminal region of Rift Valley fever virus NSm protein targets the protein to the mitochondrial outer membrane and exerts antiapoptotic function. J Virol 2013; 87:676-82. [PMID: 23097454 PMCID: PMC3536385 DOI: 10.1128/jvi.02192-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/18/2012] [Indexed: 11/20/2022] Open
Abstract
The NSm nonstructural protein of Rift Valley fever virus (family Bunyaviridae, genus Phlebovirus) has an antiapoptotic function and affects viral pathogenesis. We found that NSm integrates into the mitochondrial outer membrane and that the protein's N terminus is exposed to the cytoplasm. The C-terminal region of NSm, which contains a basic amino acid cluster and a putative transmembrane domain, targeted the protein to the mitochondrial outer membrane and exerted antiapoptotic function.
Collapse
Affiliation(s)
| | | | - Shinji Makino
- Department of Microbiology and Immunology
- Center for Biodefense and Emerging Infectious Diseases
- UTMB Center for Tropical Diseases
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
26
|
Narayanan A, Kehn-Hall K, Senina S, Lundberg L, Van Duyne R, Guendel I, Das R, Baer A, Bethel L, Turell M, Hartman AL, Das B, Bailey C, Kashanchi F. Curcumin inhibits Rift Valley fever virus replication in human cells. J Biol Chem 2012; 287:33198-214. [PMID: 22847000 DOI: 10.1074/jbc.m112.356535] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an arbovirus that is classified as a select agent, an emerging infectious virus, and an agricultural pathogen. Understanding RVFV-host interactions is imperative to the design of novel therapeutics. Here, we report that an infection by the MP-12 strain of RVFV induces phosphorylation of the p65 component of the NFκB cascade. We demonstrate that phosphorylation of p65 (serine 536) involves phosphorylation of IκBα and occurs through the classical NFκB cascade. A unique, low molecular weight complex of the IKK-β subunit can be observed in MP-12-infected cells, which we have labeled IKK-β2. The IKK-β2 complex retains kinase activity and phosphorylates an IκBα substrate. Inhibition of the IKK complex using inhibitors impairs viral replication, thus alluding to the requirement of an active IKK complex to the viral life cycle. Curcumin strongly down-regulates levels of extracellular infectious virus. Our data demonstrated that curcumin binds to and inhibits kinase activity of the IKK-β2 complex in infected cells. Curcumin partially exerts its inhibitory influence on RVFV replication by interfering with IKK-β2-mediated phosphorylation of the viral protein NSs and by altering the cell cycle of treated cells. Curcumin also demonstrated efficacy against ZH501, the fully virulent version of RVFV. Curcumin treatment down-regulated viral replication in the liver of infected animals. Our data point to the possibility that RVFV infection may result in the generation of novel versions of host components (such as IKK-β2) that, by virtue of altered protein interaction and function, qualify as unique therapeutic targets.
Collapse
Affiliation(s)
- Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Engdahl C, Näslund J, Lindgren L, Ahlm C, Bucht G. The Rift Valley Fever virus protein NSm and putative cellular protein interactions. Virol J 2012; 9:139. [PMID: 22838834 PMCID: PMC3439357 DOI: 10.1186/1743-422x-9-139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/17/2012] [Indexed: 12/19/2022] Open
Abstract
Rift Valley Fever is an infectious viral disease and an emerging problem in many countries of Africa and on the Arabian Peninsula. The causative virus is predominantly transmitted by mosquitoes and high mortality and abortion rates characterize outbreaks in animals while symptoms ranging from mild to life-threatening encephalitis and hemorrhagic fever are noticed among infected humans. For a better prevention and treatment of the infection, an increased knowledge of the infectious process of the virus is required. The focus of this work was to identify protein-protein interactions between the non-structural protein (NSm), encoded by the M-segment of the virus, and host cell proteins. This study was initiated by screening approximately 26 million cDNA clones of a mouse embryonic cDNA library for interactions with the NSm protein using a yeast two-hybrid system. We have identified nine murine proteins that interact with NSm protein of Rift Valley Fever virus, and the putative protein-protein interactions were confirmed by growth selection procedures and β-gal activity measurements. Our results suggest that the cleavage and polyadenylation specificity factor subunit 2 (Cpsf2), the peptidyl-prolyl cis-trans isomerase (cyclophilin)-like 2 protein (Ppil2), and the synaptosome-associated protein of 25 kDa (SNAP-25) are the most promising targets for the NSm protein of the virus during an infection.
Collapse
Affiliation(s)
- Cecilia Engdahl
- Department of Clinical Microbiology, Umeå University, SE-90187 Umeå, Sweden
| | | | | | | | | |
Collapse
|
28
|
Baer A, Austin D, Narayanan A, Popova T, Kainulainen M, Bailey C, Kashanchi F, Weber F, Kehn-Hall K. Induction of DNA damage signaling upon Rift Valley fever virus infection results in cell cycle arrest and increased viral replication. J Biol Chem 2012; 287:7399-410. [PMID: 22223653 DOI: 10.1074/jbc.m111.296608] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a highly pathogenic arthropod-borne virus infecting a wide range of vertebrate hosts. Of particular interest is the nonstructural NSs protein, which forms large filamentous fibril bundles in the nucleus. Past studies have shown NSs to be a multifaceted protein important for virulence through modulation of the interferon response as well acting as a general inhibitor of transcription. Here we investigated the regulation of the DNA damage signaling cascades by RVFV infection and found virally inducted phosphorylation of the classical DNA damage signaling proteins, ataxia-telangiectasia mutated (ATM) (Ser-1981), Chk.2 (Thr-68), H2A.X (Ser-139), and p53 (Ser-15). In contrast, ataxia-telangiectasia mutated and Rad3-related kinase (ATR) (Ser-428) phosphorylation was decreased following RVFV infection. Importantly, both the attenuated vaccine strain MP12 and the fully virulent strain ZH548 showed strong parallels in their up-regulation of the ATM arm of the DNA damage response and in the down-regulation of the ATR pathway. The increase in DNA damage signaling proteins did not result from gross DNA damage as no increase in DNA damage was observed following infection. Rather the DNA damage signaling was found to be dependent on the viral protein NSs, as an NSs mutant virus was not found to induce the equivalent signaling pathways. RVFV MP12-infected cells also displayed an S phase arrest that was found to be dependent on NSs expression. Use of ATM and Chk.2 inhibitors resulted in a marked decrease in S phase arrest as well as viral production. These results indicate that RVFV NSs induces DNA damage signaling pathways that are beneficial for viral replication.
Collapse
Affiliation(s)
- Alan Baer
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|