1
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Árnadóttir ER, Moore KHS, Guðmundsdóttir VB, Ebenesersdóttir SS, Guity K, Jónsson H, Stefánsson K, Helgason A. The rate and nature of mitochondrial DNA mutations in human pedigrees. Cell 2024; 187:3904-3918.e8. [PMID: 38851187 DOI: 10.1016/j.cell.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
We examined the rate and nature of mitochondrial DNA (mtDNA) mutations in humans using sequence data from 64,806 contemporary Icelanders from 2,548 matrilines. Based on 116,663 mother-child transmissions, 8,199 mutations were detected, providing robust rate estimates by nucleotide type, functional impact, position, and different alleles at the same position. We thoroughly document the true extent of hypermutability in mtDNA, mainly affecting the control region but also some coding-region variants. The results reveal the impact of negative selection on viable deleterious mutations, including rapidly mutating disease-associated 3243A>G and 1555A>G and pre-natal selection that most likely occurs during the development of oocytes. Finally, we show that the fate of new mutations is determined by a drastic germline bottleneck, amounting to an average of 3 mtDNA units effectively transmitted from mother to child.
Collapse
Affiliation(s)
| | | | - Valdís B Guðmundsdóttir
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | | | - Kamran Guity
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Kári Stefánsson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | - Agnar Helgason
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Department of Anthropology, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
3
|
Suárez-Menéndez M, Bérubé M, Furni F, Rivera-León VE, Heide-Jørgensen MP, Larsen F, Sears R, Ramp C, Eriksson BK, Etienne RS, Robbins J, Palsbøll PJ. Wild pedigrees inform mutation rates and historic abundance in baleen whales. Science 2023; 381:990-995. [PMID: 37651509 DOI: 10.1126/science.adf2160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/25/2023] [Indexed: 09/02/2023]
Abstract
Phylogeny-based estimates suggesting a low germline mutation rate (μ) in baleen whales have influenced research ranging from assessments of whaling impacts to evolutionary cancer biology. We estimated μ directly from pedigrees in four baleen whale species for both the mitochondrial control region and nuclear genome. The results suggest values higher than those obtained through phylogeny-based estimates and similar to pedigree-based values for primates and toothed whales. Applying our estimate of μ reduces previous genetic-based estimates of preexploitation whale abundance by 86% and suggests that μ cannot explain low cancer rates in gigantic mammals. Our study shows that it is feasible to estimate μ directly from pedigrees in natural populations, with wide-ranging implications for ecological and evolutionary research.
Collapse
Affiliation(s)
- Marcos Suárez-Menéndez
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Martine Bérubé
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- Center for Coastal Studies, Provincetown, MA, USA
| | - Fabrício Furni
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Vania E Rivera-León
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | | - Finn Larsen
- National Institute of Aquatic Resources, Kongens Lyngby, Denmark
| | - Richard Sears
- Mingan Island Cetacean Study Inc., St. Lambert, Quebec, Canada
| | - Christian Ramp
- Mingan Island Cetacean Study Inc., St. Lambert, Quebec, Canada
- Scottish Oceans Institute, University of St. Andrews, St. Andrews, UK
| | - Britas Klemens Eriksson
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | | - Per J Palsbøll
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- Center for Coastal Studies, Provincetown, MA, USA
| |
Collapse
|
4
|
Kim SY, Chiara V, Álvarez-Quintero N, da Silva A, Velando A. Maternal effect senescence via reduced DNA repair ability in the three-spined stickleback. Mol Ecol 2023; 32:4648-4659. [PMID: 37291748 DOI: 10.1111/mec.17046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Maternal effect senescence, a decline in offspring viability with maternal age, has been documented across diverse animals, but its mechanisms remain largely unknown. Here, we test maternal effect senescence and explore its possible molecular mechanisms in a fish. We compared the levels of maternal mRNA transcripts of DNA repair genes and mtDNA copies in eggs and the levels of DNA damage in somatic and germline tissues between young and old female sticklebacks. We also tested, in an in vitro fertilization experiment, whether maternal age and sperm DNA damage level interactively influence the expression of DNA repair genes in early embryos. Old females transferred less mRNA transcripts of DNA repair genes into their eggs than did young females, but maternal age did not influence egg mtDNA density. Despite a higher level of oxidative DNA damage in the skeletal muscle, old females had a similar level of damage in the gonad to young females, suggesting the prioritization for germline maintenance during ageing. The embryos of both old and young mothers increased the expression of DNA repair genes in response to an increased level of oxidative DNA damage in sperm used for their fertilization. The offspring of old mothers showed higher rates of hatching, morphological deformity and post-hatching mortality and had smaller body size at maturity. These results suggest that maternal effect senescence may be mediated by reduced capacity of eggs to detect and repair DNA damages, especially prior to the embryonic genomic activation.
Collapse
Affiliation(s)
- Sin-Yeon Kim
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Violette Chiara
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Náyade Álvarez-Quintero
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
- Department of Biology, University of Padova, Padova, Italy
| | - Alberto da Silva
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Alberto Velando
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
5
|
Kang MH, Kim YJ, Lee JH. Mitochondria in reproduction. Clin Exp Reprod Med 2023; 50:1-11. [PMID: 36935406 PMCID: PMC10030209 DOI: 10.5653/cerm.2022.05659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
In reproduction, mitochondria produce bioenergy, help to synthesize biomolecules, and support the ovaries, oogenesis, and preimplantation embryos, thereby facilitating healthy live births. However, the regulatory mechanism of mitochondria in oocytes and embryos during oogenesis and embryo development has not been clearly elucidated. The functional activity of mitochondria is crucial for determining the quality of oocytes and embryos; therefore, the underlying mechanism must be better understood. In this review, we summarize the specific role of mitochondria in reproduction in oocytes and embryos. We also briefly discuss the recovery of mitochondrial function in gametes and zygotes. First, we introduce the general characteristics of mitochondria in cells, including their roles in adenosine triphosphate and reactive oxygen species production, calcium homeostasis, and programmed cell death. Second, we present the unique characteristics of mitochondria in female reproduction, covering the bottleneck theory, mitochondrial shape, and mitochondrial metabolic pathways during oogenesis and preimplantation embryo development. Mitochondrial dysfunction is associated with ovarian aging, a diminished ovarian reserve, a poor ovarian response, and several reproduction problems in gametes and zygotes, such as aneuploidy and genetic disorders. Finally, we briefly describe which factors are involved in mitochondrial dysfunction and how mitochondrial function can be recovered in reproduction. We hope to provide a new viewpoint regarding factors that can overcome mitochondrial dysfunction in the field of reproductive medicine.
Collapse
Affiliation(s)
- Min-Hee Kang
- CHA Fertility Center Seoul Station, Seoul, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| | - Yu Jin Kim
- CHA Fertility Center Seoul Station, Seoul, Republic of Korea
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Seoul, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
6
|
Broz AK, Keene A, Fernandes Gyorfy M, Hodous M, Johnston IG, Sloan DB. Sorting of mitochondrial and plastid heteroplasmy in Arabidopsis is extremely rapid and depends on MSH1 activity. Proc Natl Acad Sci U S A 2022; 119:e2206973119. [PMID: 35969753 PMCID: PMC9407294 DOI: 10.1073/pnas.2206973119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
The fate of new mitochondrial and plastid mutations depends on their ability to persist and spread among the numerous organellar genome copies within a cell (heteroplasmy). The extent to which heteroplasmies are transmitted across generations or eliminated through genetic bottlenecks is not well understood in plants, in part because their low mutation rates make these variants so infrequent. Disruption of MutS Homolog 1 (MSH1), a gene involved in plant organellar DNA repair, results in numerous de novo point mutations, which we used to quantitatively track the inheritance of single nucleotide variants in mitochondrial and plastid genomes in Arabidopsis. We found that heteroplasmic sorting (the fixation or loss of a variant) was rapid for both organelles, greatly exceeding rates observed in animals. In msh1 mutants, plastid variants sorted faster than those in mitochondria and were typically fixed or lost within a single generation. Effective transmission bottleneck sizes (N) for plastids and mitochondria were N ∼ 1 and 4, respectively. Restoring MSH1 function further increased the rate of heteroplasmic sorting in mitochondria (N ∼ 1.3), potentially because of its hypothesized role in promoting gene conversion as a mechanism of DNA repair, which is expected to homogenize genome copies within a cell. Heteroplasmic sorting also favored GC base pairs. Therefore, recombinational repair and gene conversion in plant organellar genomes can potentially accelerate the elimination of heteroplasmies and bias the outcome of this sorting process.
Collapse
Affiliation(s)
- Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Alexandra Keene
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | | | - Mychaela Hodous
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, 5007, Norway
- Computational Biology Unit, University of Bergen, Bergen, 5007, Norway
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
7
|
Kim SY, Chiara V, Álvarez-Quintero N, Velando A. Mitochondrial DNA content in eggs as a maternal effect. Proc Biol Sci 2022; 289:20212100. [PMID: 35042411 PMCID: PMC8767187 DOI: 10.1098/rspb.2021.2100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023] Open
Abstract
The transmission of detrimental mutations in animal mitochondrial DNA (mtDNA) to the next generation is avoided by a high level of mtDNA content in mature oocytes. Thus, this maternal genetic material has the potential to mediate adaptive maternal effects if mothers change mtDNA level in oocytes in response to their environment or body condition. Here, we show that increased mtDNA abundance in mature oocytes was associated with fast somatic growth during early development but at the cost of increased mortality in three-spined sticklebacks. We also examined whether oocyte mtDNA and sperm DNA damage levels have interacting effects because they can determine the integrity of mitochondrial and nuclear genes in offspring. The level of oxidative DNA damage in sperm negatively affected fertility, but there was no interacting effect of oocyte mtDNA abundance and sperm DNA damage. Oocyte mtDNA level increased towards the end of the breeding season, and the females exposed to warmer temperatures during winter produced eggs with increased mtDNA copies. Our results suggest that oocyte mtDNA level can vary according to the expected energy demands for offspring during embryogenesis and early growth. Thus, mothers can affect offspring development and viability through the context-dependent effects of oocyte mtDNA abundance.
Collapse
Affiliation(s)
- Sin-Yeon Kim
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Violette Chiara
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Náyade Álvarez-Quintero
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Alberto Velando
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
8
|
mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences. Life (Basel) 2021; 11:life11070633. [PMID: 34209862 PMCID: PMC8307225 DOI: 10.3390/life11070633] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is predominately uniparentally transmitted. This results in organisms with a single type of mtDNA (homoplasmy), but two or more mtDNA haplotypes have been observed in low frequency in several species (heteroplasmy). In this review, we aim to highlight several aspects of heteroplasmy regarding its origin and its significance on mtDNA function and evolution, which has been progressively recognized in the last several years. Heteroplasmic organisms commonly occur through somatic mutations during an individual’s lifetime. They also occur due to leakage of paternal mtDNA, which rarely happens during fertilization. Alternatively, heteroplasmy can be potentially inherited maternally if an egg is already heteroplasmic. Recent advances in sequencing techniques have increased the ability to detect and quantify heteroplasmy and have revealed that mitochondrial DNA copies in the nucleus (NUMTs) can imitate true heteroplasmy. Heteroplasmy can have significant evolutionary consequences on the survival of mtDNA from the accumulation of deleterious mutations and for its coevolution with the nuclear genome. Particularly in humans, heteroplasmy plays an important role in the emergence of mitochondrial diseases and determines the success of the mitochondrial replacement therapy, a recent method that has been developed to cure mitochondrial diseases.
Collapse
|
9
|
Edwards DM, Røyrvik EC, Chustecki JM, Giannakis K, Glastad RC, Radzvilavicius AL, Johnston IG. Avoiding organelle mutational meltdown across eukaryotes with or without a germline bottleneck. PLoS Biol 2021; 19:e3001153. [PMID: 33891583 PMCID: PMC8064548 DOI: 10.1371/journal.pbio.3001153] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial DNA (mtDNA) and plastid DNA (ptDNA) encode vital bioenergetic apparatus, and mutations in these organelle DNA (oDNA) molecules can be devastating. In the germline of several animals, a genetic “bottleneck” increases cell-to-cell variance in mtDNA heteroplasmy, allowing purifying selection to act to maintain low proportions of mutant mtDNA. However, most eukaryotes do not sequester a germline early in development, and even the animal bottleneck remains poorly understood. How then do eukaryotic organelles avoid Muller’s ratchet—the gradual buildup of deleterious oDNA mutations? Here, we construct a comprehensive and predictive genetic model, quantitatively describing how different mechanisms segregate and decrease oDNA damage across eukaryotes. We apply this comprehensive theory to characterise the animal bottleneck with recent single-cell observations in diverse mouse models. Further, we show that gene conversion is a particularly powerful mechanism to increase beneficial cell-to-cell variance without depleting oDNA copy number, explaining the benefit of observed oDNA recombination in diverse organisms which do not sequester animal-like germlines (for example, sponges, corals, fungi, and plants). Genomic, transcriptomic, and structural datasets across eukaryotes support this mechanism for generating beneficial variance without a germline bottleneck. This framework explains puzzling oDNA differences across taxa, suggesting how Muller’s ratchet is avoided in different eukaryotes. A comprehensive model for mitochondrial and plasmid DNA segregation, supported by with genomic, transcriptomic, and single-cell data, shows how the attritional effects of Muller’s ratchet can be avoided in the organelles of diverse eukaryotes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Norway
- Computational Biology Unit, University of Bergen, Norway
- * E-mail:
| |
Collapse
|
10
|
Ricardo PC, Françoso E, Arias MC. Mitochondrial DNA intra-individual variation in a bumblebee species: A challenge for evolutionary studies and molecular identification. Mitochondrion 2020; 53:243-254. [PMID: 32569843 DOI: 10.1016/j.mito.2020.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/28/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Mitochondrial DNA (mtDNA) regions have been widely used as molecular markers in evolutionary studies and species identification. However, the presence of heteroplasmy and NUMTs may represent obstacles. Heteroplasmy is a state where an organism has different mitochondrial haplotypes. NUMTs are nuclear pseudogenes originating from mtDNA sequences transferred to nuclear DNA. Evidences of heteroplasmy were already verified in the bumblebee Bombus morio in an earlier study. The present work investigated in more detail the presence of intra-individual haplotypes variation in this species. Heteroplasmy was detected in individuals from all the ten sampled locations, with an average of six heteroplasmic haplotypes per individual. In addition, some of these heteroplasmic haplotypes were shared among individuals from different locations, suggesting the existence of stable heteroplasmy in B. morio. These results demonstrated that heteroplasmy is likely to affect inferences based on mtDNA analysis, especially in phylogenetic, phylogeographic and population genetics studies. In addition, NUMTs were also detected. These sequences showed divergence of 2.7% to 12% in relation to the mitochondrial haplotypes. These levels of divergence could mislead conclusions in evolutionary studies and affect species identification through DNA barcoding.
Collapse
Affiliation(s)
- Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Elaine Françoso
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
11
|
Wei W, Chinnery PF. Inheritance of mitochondrial DNA in humans: implications for rare and common diseases. J Intern Med 2020; 287:634-644. [PMID: 32187761 PMCID: PMC8641369 DOI: 10.1111/joim.13047] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022]
Abstract
The first draft human mitochondrial DNA (mtDNA) sequence was published in 1981, paving the way for two decades of discovery linking mtDNA variation with human disease. Severe pathogenic mutations cause sporadic and inherited rare disorders that often involve the nervous system. However, some mutations cause mild organ-specific phenotypes that have a reduced clinical penetrance, and polymorphic variation of mtDNA is associated with an altered risk of developing several late-onset common human diseases including Parkinson's disease. mtDNA mutations also accumulate during human life and are enriched in affected organs in a number of age-related diseases. Thus, mtDNA contributes to a wide range of human pathologies. For many decades, it has generally been accepted that mtDNA is inherited exclusively down the maternal line in humans. Although recent evidence has challenged this dogma, whole-genome sequencing has identified nuclear-encoded mitochondrial sequences (NUMTs) that can give the false impression of paternally inherited mtDNA. This provides a more likely explanation for recent reports of 'bi-parental inheritance', where the paternal alleles are actually transmitted through the nuclear genome. The presence of both mutated and wild-type variant alleles within the same individual (heteroplasmy) and rapid shifts in allele frequency can lead to offspring with variable severity of disease. In addition, there is emerging evidence that selection can act for and against specific mtDNA variants within the developing germ line, and possibly within developing tissues. Thus, understanding how mtDNA is inherited has far-reaching implications across medicine. There is emerging evidence that this highly dynamic system is amenable to therapeutic manipulation, raising the possibility that we can harness new understanding to prevent and treat rare and common human diseases where mtDNA mutations play a key role.
Collapse
Affiliation(s)
- W Wei
- From the, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - P F Chinnery
- From the, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Evolving mtDNA populations within cells. Biochem Soc Trans 2020; 47:1367-1382. [PMID: 31484687 PMCID: PMC6824680 DOI: 10.1042/bst20190238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes vital respiratory machinery. Populations of mtDNA molecules exist in most eukaryotic cells, subject to replication, degradation, mutation, and other population processes. These processes affect the genetic makeup of cellular mtDNA populations, changing cell-to-cell distributions, means, and variances of mutant mtDNA load over time. As mtDNA mutant load has nonlinear effects on cell functionality, and cell functionality has nonlinear effects on tissue performance, these statistics of cellular mtDNA populations play vital roles in health, disease, and inheritance. This mini review will describe some of the better-known ways in which these populations change over time in different organisms, highlighting the importance of quantitatively understanding both mutant load mean and variance. Due to length constraints, we cannot attempt to be comprehensive but hope to provide useful links to some of the many excellent studies on these topics.
Collapse
|
13
|
Koolkarnkhai P, Intakham C, Sangthong P, Surat W, Wonnapinij P. Portunus pelagicus mtDNA heteroplasmy inheritance and its effect on the use of mtCR and mtCOI sequence data. Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:848-860. [PMID: 31766903 DOI: 10.1080/24701394.2019.1693549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mitochondrial DNA (mtDNA) sequences, especially mitochondrial control region (mtCR) and mitochondrial cytochrome c oxidase subunit I (mtCOI), have been widely used in population and evolutionary genetic analyses of metazoan. The presence of mtDNA heteroplasmy - a mixture of mtDNA haplotypes - possibly affects these analyses. This study aimed to reveal mtDNA heteroplasmy in mtCR, mtCOI, and mtND2 (mitochondrial NADH dehydrogenase subunit 2) of Portunus pelagicus, and examine its effect on the use of mtCR and mtCOI sequences. The screening result showed that the probability of observing mtDNA heteroplasmy was approximately 8%. Across the three targeted regions, 92 heteroplasmic variants were observed from seven samples comprising three mothers and four offspring. Most inherited heteroplasmy presented transition and silence mutation. By comparing the proportion of shared variants among maternal relatives to that among non-relatives, the result suggested that most heteroplasmic variants observed in an individual are inherited. Statistical analyses carried out on the inter-generational differences suggested that random drift and purifying selection play roles in determining the offspring's heteroplasmy level. The size of the random shift varies according to the location of variants and the mothers. The phylogenetic analysis showed that the presence of mtDNA heteroplasmy in mtCR and mtCOI does not affect familial and species identification, respectively. This study firstly reported the mtDNA heteroplasmy in P. pelagicus, its inheritance pattern, and its effect on the use of mtDNA sequence data. This basic knowledge would be useful for the study based on mtDNA sequence data, especially in other invertebrates.
Collapse
Affiliation(s)
| | - Chidchanok Intakham
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pradit Sangthong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
| | - Wunrada Surat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
14
|
Johnston IG. Varied Mechanisms and Models for the Varying Mitochondrial Bottleneck. Front Cell Dev Biol 2019; 7:294. [PMID: 31824946 PMCID: PMC6879659 DOI: 10.3389/fcell.2019.00294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial DNA (mtDNA) molecules exist in populations within cells, and may carry mutations. Different cells within an organism, and organisms within a family, may have different proportions of mutant mtDNA in these cellular populations. This diversity is often thought of as arising from a “genetic bottleneck.” This article surveys approaches to characterize and model the generation of this genetic diversity, aiming to provide an introduction to the range of concepts involved, and to highlight some recent advances in understanding. In particular, differences between the statistical “genetic bottleneck” (mutant proportion spread) and the physical mtDNA bottleneck and other cellular processes are highlighted. Particular attention is paid to the quantitative analysis of the “genetic bottleneck,” estimation of its magnitude from observed data, and inference of its underlying mechanisms. Evidence that the “genetic bottleneck” (mutant proportion spread) varies with age, between individuals and species, and across mtDNA sequences, is described. The interpretation issues that arise from sampling errors, selection, and different quantitative definitions are also discussed.
Collapse
Affiliation(s)
- Iain G Johnston
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
15
|
The mitochondrial DNA genetic bottleneck: inheritance and beyond. Essays Biochem 2018; 62:225-234. [PMID: 29880721 DOI: 10.1042/ebc20170096] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Abstract
mtDNA is a multicopy genome. When mutations exist, they can affect a varying proportion of the mtDNA present within every cell (heteroplasmy). Heteroplasmic mtDNA mutations can be maternally inherited, but the proportion of mutated alleles differs markedly between offspring within one generation. This led to the genetic bottleneck hypothesis, explaining the rapid changes in allele frequency seen during transmission from one generation to the next. Although a physical reduction in mtDNA has been demonstrated in several species, a comprehensive understanding of the molecular mechanisms is yet to be revealed. Several questions remain, including the role of selection for and against specific alleles, whether all bottlenecks are the same, and precisely how the bottleneck is controlled during development. Although originally thought to be limited to the germline, there is evidence that bottlenecks exist in other cell types during development, perhaps explaining why different tissues in the same organism contain different levels of mutated mtDNA. Moreover, tissue-specific bottlenecks may occur throughout life in response to environmental influences, adding further complexity to the situation. Here we review key recent findings, and suggest ways forward that will hopefully advance our understanding of the role of mtDNA in human disease.
Collapse
|
16
|
Burgstaller JP, Kolbe T, Havlicek V, Hembach S, Poulton J, Piálek J, Steinborn R, Rülicke T, Brem G, Jones NS, Johnston IG. Large-scale genetic analysis reveals mammalian mtDNA heteroplasmy dynamics and variance increase through lifetimes and generations. Nat Commun 2018; 9:2488. [PMID: 29950599 PMCID: PMC6021422 DOI: 10.1038/s41467-018-04797-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/22/2018] [Indexed: 11/30/2022] Open
Abstract
Vital mitochondrial DNA (mtDNA) populations exist in cells and may consist of heteroplasmic mixtures of mtDNA types. The evolution of these heteroplasmic populations through development, ageing, and generations is central to genetic diseases, but is poorly understood in mammals. Here we dissect these population dynamics using a dataset of unprecedented size and temporal span, comprising 1947 single-cell oocyte and 899 somatic measurements of heteroplasmy change throughout lifetimes and generations in two genetically distinct mouse models. We provide a novel and detailed quantitative characterisation of the linear increase in heteroplasmy variance throughout mammalian life courses in oocytes and pups. We find that differences in mean heteroplasmy are induced between generations, and the heteroplasmy of germline and somatic precursors diverge early in development, with a haplotype-specific direction of segregation. We develop stochastic theory predicting the implications of these dynamics for ageing and disease manifestation and discuss its application to human mtDNA dynamics.
Collapse
Affiliation(s)
- Joerg P Burgstaller
- Department for Agrobiotechnology, Biotechnology in Animal Production, IFA Tulln, 3430, Tulln, Austria.
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
| | - Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
- University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - Vitezslav Havlicek
- Department for Biomedical Sciences, Reproduction Centre Wieselburg, University of Veterinary Medicine, Vienna, Austria
| | - Stephanie Hembach
- Department for Agrobiotechnology, Biotechnology in Animal Production, IFA Tulln, 3430, Tulln, Austria
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Gottfried Brem
- Department for Agrobiotechnology, Biotechnology in Animal Production, IFA Tulln, 3430, Tulln, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Nick S Jones
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
- EPSRC Centre for the Mathematics of Precision Healthcare, Imperial College London, London, SW7 2AZ, UK.
| | - Iain G Johnston
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
17
|
Untangling Heteroplasmy, Structure, and Evolution of an Atypical Mitochondrial Genome by PacBio Sequencing. Genetics 2017; 207:269-280. [PMID: 28679546 DOI: 10.1534/genetics.117.203380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/01/2017] [Indexed: 01/12/2023] Open
Abstract
The highly compact mitochondrial (mt) genome of terrestrial isopods (Oniscidae) presents two unusual features. First, several loci can individually encode two tRNAs, thanks to single nucleotide polymorphisms at anticodon sites. Within-individual variation (heteroplasmy) at these loci is thought to have been maintained for millions of years because individuals that do not carry all tRNA genes die, resulting in strong balancing selection. Second, the oniscid mtDNA genome comes in two conformations: a ∼14 kb linear monomer and a ∼28 kb circular dimer comprising two monomer units fused in palindrome. We hypothesized that heteroplasmy actually results from two genome units of the same dimeric molecule carrying different tRNA genes at mirrored loci. This hypothesis, however, contradicts the earlier proposition that dimeric molecules result from the replication of linear monomers-a process that should yield totally identical genome units within a dimer. To solve this contradiction, we used the SMRT (PacBio) technology to sequence mirrored tRNA loci in single dimeric molecules. We show that dimers do present different tRNA genes at mirrored loci; thus covalent linkage, rather than balancing selection, maintains vital variation at anticodons. We also leveraged unique features of the SMRT technology to detect linear monomers closed by hairpins and carrying noncomplementary bases at anticodons. These molecules contain the necessary information to encode two tRNAs at the same locus, and suggest new mechanisms of transition between linear and circular mtDNA. Overall, our analyses clarify the evolution of an atypical mt genome where dimerization counterintuitively enabled further mtDNA compaction.
Collapse
|
18
|
Wolff JN, Gemmell NJ, Tompkins DM, Dowling DK. Introduction of a male-harming mitochondrial haplotype via 'Trojan Females' achieves population suppression in fruit flies. eLife 2017; 6:e23551. [PMID: 28467301 PMCID: PMC5441865 DOI: 10.7554/elife.23551] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/27/2017] [Indexed: 01/05/2023] Open
Abstract
Pests are a global threat to biodiversity, ecosystem function, and human health. Pest control approaches are thus numerous, but their implementation costly, damaging to non-target species, and ineffective at low population densities. The Trojan Female Technique (TFT) is a prospective self-perpetuating control technique that is species-specific and predicted to be effective at low densities. The goal of the TFT is to harness naturally occurring mutations in the mitochondrial genome that impair male fertility while having no effect on females. Here, we provide proof-of-concept for the TFT, by showing that introduction of a male fertility-impairing mtDNA haplotype into replicated populations of Drosophila melanogaster causes numerical population suppression, with the magnitude of effect positively correlated with its frequency at trial inception. Further development of the TFT could lead to establishing a control strategy that overcomes limitations of conventional approaches, with broad applicability to invertebrate and vertebrate species, to control environmental and economic pests.
Collapse
Affiliation(s)
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Damian K Dowling
- School of Biological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
19
|
Replication Errors Made During Oogenesis Lead to Detectable De Novo mtDNA Mutations in Zebrafish Oocytes with a Low mtDNA Copy Number. Genetics 2016; 204:1423-1431. [PMID: 27770035 DOI: 10.1534/genetics.116.194035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/13/2016] [Indexed: 01/30/2023] Open
Abstract
Of all pathogenic mitochondrial DNA (mtDNA) mutations in humans, ∼25% is de novo, although the occurrence in oocytes has never been directly assessed. We used next-generation sequencing to detect point mutations directly in the mtDNA of 3-15 individual mature oocytes and three somatic tissues from eight zebrafish females. Various statistical and biological filters allowed reliable detection of de novo variants with heteroplasmy ≥1.5%. In total, we detected 38 de novo base substitutions, but no insertions or deletions. These 38 de novo mutations were present in 19 of 103 mature oocytes, indicating that ∼20% of the mature oocytes carry at least one de novo mutation with heteroplasmy ≥1.5%. This frequency of de novo mutations is close to that deducted from the reported error rate of polymerase gamma, the mitochondrial replication enzyme, implying that mtDNA replication errors made during oogenesis are a likely explanation. Substantial variation in the mutation prevalence among mature oocytes can be explained by the highly variable mtDNA copy number, since we previously reported that ∼20% of the primordial germ cells have a mtDNA copy number of ≤73 and would lead to detectable mutation loads. In conclusion, replication errors made during oogenesis are an important source of de novo mtDNA base substitutions and their location and heteroplasmy level determine their significance.
Collapse
|
20
|
Otten ABC, Theunissen TEJ, Derhaag JG, Lambrichs EH, Boesten IBW, Winandy M, van Montfoort APA, Tarbashevich K, Raz E, Gerards M, Vanoevelen JM, van den Bosch BJC, Muller M, Smeets HJM. Differences in Strength and Timing of the mtDNA Bottleneck between Zebrafish Germline and Non-germline Cells. Cell Rep 2016; 16:622-30. [PMID: 27373161 DOI: 10.1016/j.celrep.2016.06.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 04/15/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022] Open
Abstract
We studied the mtDNA bottleneck in zebrafish to elucidate size, timing, and variation in germline and non-germline cells. Mature zebrafish oocytes contain, on average, 19.0 × 10(6) mtDNA molecules with high variation between oocytes. During embryogenesis, the mtDNA copy number decreases to ∼170 mtDNA molecules per primordial germ cell (PGC), a number similar to that in mammals, and to ∼50 per non-PGC. These occur at the same developmental stage, implying considerable variation in mtDNA copy number in (non-)PGCs of the same female, dictated by variation in the mature oocyte. The presence of oocytes with low mtDNA numbers, if similar in humans, could explain how (de novo) mutations can reach high mutation loads within a single generation. High mtDNA copy numbers in mature oocytes are established by mtDNA replication during oocyte development. Bottleneck differences between germline and non-germline cells, due to early differentiation of PGCs, may account for different distribution patterns of familial mutations.
Collapse
Affiliation(s)
- Auke B C Otten
- Department of Genetics and Cell Biology, Clinical Genomics Unit, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Tom E J Theunissen
- Department of Genetics and Cell Biology, Clinical Genomics Unit, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Josien G Derhaag
- Department of Obstetrics and Gynaecology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Ellen H Lambrichs
- Department of Genetics and Cell Biology, Clinical Genomics Unit, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Iris B W Boesten
- Department of Genetics and Cell Biology, Clinical Genomics Unit, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Marie Winandy
- Laboratory of Organogenesis and Regeneration, GIGA-Research, Univérsité de Liège, 4000 Liège, Belgium
| | - Aafke P A van Montfoort
- Department of Obstetrics and Gynaecology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Katsiaryna Tarbashevich
- Institute for Cell Biology, Centre for Molecular Biology of Inflammation, Münster University, 48149 Münster, Germany
| | - Erez Raz
- Institute for Cell Biology, Centre for Molecular Biology of Inflammation, Münster University, 48149 Münster, Germany
| | - Mike Gerards
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University Medical Centre, 6200MD, the Netherlands
| | - Jo M Vanoevelen
- Department of Genetics and Cell Biology, Clinical Genomics Unit, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Bianca J C van den Bosch
- Department of Genetics and Cell Biology, Clinical Genomics Unit, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Marc Muller
- Laboratory of Organogenesis and Regeneration, GIGA-Research, Univérsité de Liège, 4000 Liège, Belgium
| | - Hubert J M Smeets
- Department of Genetics and Cell Biology, Clinical Genomics Unit, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands; Maastricht Centre for Systems Biology (MaCSBio), Maastricht University Medical Centre, 6200MD, the Netherlands.
| |
Collapse
|
21
|
Tower J. Mitochondrial maintenance failure in aging and role of sexual dimorphism. Arch Biochem Biophys 2015; 576:17-31. [PMID: 25447815 PMCID: PMC4409928 DOI: 10.1016/j.abb.2014.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/08/2014] [Accepted: 10/18/2014] [Indexed: 12/31/2022]
Abstract
Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and interventions are often sex-specific, indicating that both male and female sexual differentiation promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in Caenorhabditis elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in aging. Several interventions that increase life span cause a mitochondrial unfolded protein response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan life span interventions may act through a common hormesis mechanism involving liver UPRmt, mitochondrial maintenance and sexual differentiation.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States.
| |
Collapse
|
22
|
Johnston IG, Burgstaller JP, Havlicek V, Kolbe T, Rülicke T, Brem G, Poulton J, Jones NS. Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism. eLife 2015; 4:e07464. [PMID: 26035426 PMCID: PMC4486817 DOI: 10.7554/elife.07464] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/29/2015] [Indexed: 12/14/2022] Open
Abstract
Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly debated mechanism called the mtDNA bottleneck. Uncertainty surrounding this process limits our ability to address inherited mtDNA diseases. We produce a new, physically motivated, generalisable theoretical model for mtDNA populations during development, allowing the first statistical comparison of proposed bottleneck mechanisms. Using approximate Bayesian computation and mouse data, we find most statistical support for a combination of binomial partitioning of mtDNAs at cell divisions and random mtDNA turnover, meaning that the debated exact magnitude of mtDNA copy number depletion is flexible. New experimental measurements from a wild-derived mtDNA pairing in mice confirm the theoretical predictions of this model. We analytically solve a mathematical description of this mechanism, computing probabilities of mtDNA disease onset, efficacy of clinical sampling strategies, and effects of potential dynamic interventions, thus developing a quantitative and experimentally-supported stochastic theory of the bottleneck. DOI:http://dx.doi.org/10.7554/eLife.07464.001 Mitochondria are structures that provide vital sources of energy in our cells. DNA contained within mitochondria encodes important mitochondrial machinery, and most human cells contain hundreds or thousands of mitochondrial DNA molecules in addition to the DNA that is stored in the nucleus. Mitochondrial DNA is inherited from mothers via the egg, and the details of this inheritance are poorly understood. This question is important because inherited mistakes in mitochondrial DNA can have detrimental consequences on health, with links to fatal diseases and many other conditions. An unfertilised egg cell contains many copies of mitochondrial DNA molecules; some may have mutations and some may not. After fertilisation, the egg divides, the number of cells in the developing embryo increases, and the number of mitochondrial DNA molecules per cell changes. If the original egg cell contained defective mitochondrial DNA, some of these new cells end up containing more defective copies than others, leading to cell-to-cell differences in the developing embryo. This potentially allows cells with the greatest number of defective mitochondria to be eliminated. The increase in this cell-to-cell variability is called ‘bottlenecking’, and its mechanism remains highly debated. Johnston et al. have now used tools from maths, statistics and new experiments to address this debate, in the light of several studies that measured the mitochondrial DNA content in developing mice. This approach allowed a new theoretical model of mitochondrial DNA during the growth of an organism to be produced, which encompasses a wide range of existing theories and allows them to be compared. This model starts from the viewpoint that the hundreds or thousands of mitochondrial DNA molecules in a cell can be thought of as a population undergoing random ‘birth’ and ‘death’, and it allows the first statistical comparison of the many proposed bottleneck mechanisms. Johnston et al. find support for two ways that cells segregate mitochondria as they multiply, and show that the decrease in the number of mitochondrial DNA molecules during bottlenecking is flexible. This reconciles a debate amongst previous studies. These findings are confirmed using new experimental data from mice, which are genetically distinct from existing studies, illustrating the generality of the model's findings. Furthermore, an analytic mathematical description that describes in detail how bottlenecking might work is produced. Finally, Johnston et al. provide examples using this new theoretical model to suggest therapeutic strategies for diseases caused by mitochondrial DNA mutations. Future work will need to test these suggestions, and link mathematical understanding of mitochondria with healthcare data. DOI:http://dx.doi.org/10.7554/eLife.07464.002
Collapse
Affiliation(s)
- Iain G Johnston
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Joerg P Burgstaller
- Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, IFA Tulln, Tulln, Austria
| | - Vitezslav Havlicek
- Reproduction Centre Wieselburg, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jo Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
| | - Nick S Jones
- Department of Mathematics, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Otten ABC, Smeets HJM. Evolutionary defined role of the mitochondrial DNA in fertility, disease and ageing. Hum Reprod Update 2015; 21:671-89. [PMID: 25976758 DOI: 10.1093/humupd/dmv024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/22/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The endosymbiosis of an alpha-proteobacterium and a eubacterium a billion years ago paved the way for multicellularity and enabled eukaryotes to flourish. The selective advantage for the host was the acquired ability to generate large amounts of intracellular hydrogen-dependent adenosine triphosphate. The price was increased reactive oxygen species (ROS) inside the eukaryotic cell, causing high mutation rates of the mitochondrial DNA (mtDNA). According to the Muller's ratchet theory, this accumulation of mutations in asexually transmitted mtDNA would ultimately lead to reduced reproductive fitness and eventually extinction. However, mitochondria have persisted over the course of evolution, initially due to a rapid, extreme evolutionary reduction of the mtDNA content. After the phylogenetic divergence of eukaryotes into animals, fungi and plants, differences in evolution of the mtDNA occurred with different adaptations for coping with the mutation burden within these clades. As a result, mitochondrial evolutionary mechanisms have had a profound effect on human adaptation, fertility, healthy reproduction, mtDNA disease manifestation and transmission and ageing. An understanding of these mechanisms might elucidate novel approaches for treatment and prevention of mtDNA disease. METHODS The scientific literature was investigated to determine how mtDNA evolved in animals, plants and fungi. Furthermore, the different mechanisms of mtDNA inheritance and of balancing Muller's ratchet in these species were summarized together with the consequences of these mechanisms for human health and reproduction. RESULTS Animal, plant and fungal mtDNA have evolved differently. Animals have compact genomes, little recombination, a stable number of genes and a high mtDNA copy number, whereas plants have larger genomes with variable gene counts, a low mtDNA copy number and many recombination events. Fungal mtDNA is somewhere in between. In plants, the mtDNA mutation rate is kept low by effective ROS defence and efficient recombination-mediated mtDNA repair. In animal mtDNA, these mechanisms are not or less well-developed and the detrimental mutagenesis events are controlled by a high mtDNA copy number in combination with a genetic bottleneck and purifying selection during transmission. The mtDNA mutation rates in animals are higher than in plants, which allow mobile animals to adapt more rapidly to various environmental conditions in terms of energy production, whereas static plants do not have this need. Although at the level of the species, these mechanisms have been extremely successful, they can have adverse effects for the individual, resulting, in humans, in severe or unpredictably segregating mtDNA diseases, as well as fertility problems and unhealthy ageing. CONCLUSIONS Understanding the forces and processes that underlie mtDNA evolution among different species increases our knowledge on the detrimental consequences that individuals can have from these evolutionary end-points. Alternative outcomes in animals, fungi and plants will lead to a better understanding of the inheritance of mtDNA disorders and mtDNA-related fertility problems. These will allow the development of options to ameliorate, cure and/or prevent mtDNA diseases and mtDNA-related fertility problems.
Collapse
Affiliation(s)
- Auke B C Otten
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, PO box 616 (box 16), 6200 MD Maastricht, The Netherlands School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, PO box 616 (box 16), 6200 MD Maastricht, The Netherlands School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
24
|
Analysis of the behavior of mitochondria in the ovaries of the earthworm Dendrobaena veneta Rosa 1839. PLoS One 2015; 10:e0117187. [PMID: 25671521 PMCID: PMC4324959 DOI: 10.1371/journal.pone.0117187] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/22/2014] [Indexed: 11/19/2022] Open
Abstract
We examined six types of cells that form the ovary of the earthworm Dendrobena veneta ogonia, prooocytes, vitellogenic oocytes, trophocytes, fully grown postvitellogenic oocytes and somatic cells of the gonad. The quantitative stereological method revealed a much higher "volume density" of mitochondria in all of the types of germ-line cells except for the somatic cells. Fluorescent vital stain JC-1, however, showed a much higher oxidative activity of mitochondria in the somatic cells than in the germ-line cells. The distribution of active and inactive mitochondria within the studied cells was assessed using the computer program ImageJ. The analysis showed a higher luminosity of inactive mitochondria in all of the types of germ-line cells and a higher luminosity of active mitochondria in somatic cells. The OXPHOS activity was found in somatic cells mitochondria and in the peripheral mitochondria of the vitellogenic oocytes. The detection of reactive oxygen species (ROS) revealed a differentiated distribution of ROS in the different cell types. The amount of ROS substances was lower in somatic cells than in younger germ-line cells. The ROS level was also low in the cytoplasm of fully grown postwitellogenic oocytes. The distribution of the MnSOD enzyme that protects mitochondria against destructive role of ROS substances was high in the oogonia and in prooocytes and it was very high in vitellogenic and postvitellogenic oocytes. However, a much lower level of this protective enzyme was observed in the trophocytes and the lowest level was found in the cytoplasm of somatic cells. The lower mitochondrial activity and higher level of MnSOD activity in germ-line cells when compared to somatic cells testifies to the necessity of the organisms to protect the mitochondria of oocytes against the destructive role of the ROS that are produced during oxidative phosphorylation. The protection of the mitochondria in oocytes is essential for the transfer of healthy organelles to the next generation.
Collapse
|
25
|
Abstract
Since the unexpected discovery that mitochondria contain their own distinct DNA molecules, studies of the mitochondrial DNA (mtDNA) have yielded many surprises. In animals, transmission of the mtDNA genome is explicitly non-Mendelian, with a very high number of genome copies being inherited from the mother after a drastic bottleneck. Recent work has begun to uncover the molecular details of this unusual mode of transmission. Many surprising variations in animal mitochondrial biology are known; however, a series of recent studies have identified a core of evolutionarily conserved mechanisms relating to mtDNA inheritance, e.g., mtDNA bottlenecks during germ cell development, selection against specific mtDNA mutation types during maternal transmission, and targeted destruction of sperm mitochondria. In this review, we outline recent literature on the transmission of mtDNA in animals and highlight the implications for human health and ageing.
Collapse
|
26
|
Garvin MR, Gharrett AJ. Evolution: are the monkeys' typewriters rigged? ROYAL SOCIETY OPEN SCIENCE 2014; 1:140172. [PMID: 26064538 PMCID: PMC4448893 DOI: 10.1098/rsos.140172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/27/2014] [Indexed: 06/04/2023]
Abstract
Evolution is presumed to proceed by random mutations, which increase an individual's fitness. Increased fitness produces a higher survival rate for those individuals within populations and drives the variants to fixation over large timescales to produce new species. We recently identified positively selected sites in mitochondrial complex I in numerous, diverse taxa. In one taxon, a simple sequence repeat (SSR) encompassed the positively selected sites. We hypothesized a model in which: (i) slip-strand mis-pairing during replication due to the SSR increases the mutation rate at these sites, and (ii) a functional constraint at the protein level maintains the SSR and therefore a higher mutation rate at this site over large time scales to drive evolution. We tested this model by identifying SSRs in a mitochondrial-encoded protein in species from our previous work and determined that nearly all of the positively selected sites encompass an SSR. Furthermore, we show that our proposed model accounts for most of the mutations at neutral sites but it is probably the predominant mechanism at positively selected sites. This suggests that evolution does not proceed by simple random processes but is guided by physical properties of the DNA itself and functional constraint of the proteins encoded by the DNA.
Collapse
|
27
|
Bastiaans E, Aanen DK, Debets AJM, Hoekstra RF, Lestrade B, Maas MFPM. Regular bottlenecks and restrictions to somatic fusion prevent the accumulation of mitochondrial defects in Neurospora. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130448. [PMID: 24864316 PMCID: PMC4032522 DOI: 10.1098/rstb.2013.0448] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The replication and segregation of multi-copy mitochondrial DNA (mtDNA) are not under strict control of the nuclear DNA. Within-cell selection may thus favour variants with an intracellular selective advantage but a detrimental effect on cell fitness. High relatedness among the mtDNA variants of an individual is predicted to disfavour such deleterious selfish genetic elements, but experimental evidence for this hypothesis is scarce. We studied the effect of mtDNA relatedness on the opportunities for suppressive mtDNA variants in the fungus Neurospora carrying the mitochondrial mutator plasmid pKALILO. During growth, this plasmid integrates into the mitochondrial genome, generating suppressive mtDNA variants. These mtDNA variants gradually replace the wild-type mtDNA, ultimately culminating in growth arrest and death. We show that regular sequestration of mtDNA variation is required for effective selection against suppressive mtDNA variants. First, bottlenecks in the number of mtDNA copies from which a 'Kalilo' culture started significantly increased the maximum lifespan and variation in lifespan among cultures. Second, restrictions to somatic fusion among fungal individuals, either by using anastomosis-deficient mutants or by generating allotype diversity, prevented the accumulation of suppressive mtDNA variants. We discuss the implications of these results for the somatic accumulation of mitochondrial defects during ageing.
Collapse
Affiliation(s)
- E Bastiaans
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - D K Aanen
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - A J M Debets
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - R F Hoekstra
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - B Lestrade
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - M F P M Maas
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
28
|
Affiliation(s)
- J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Nicolas Pichaud
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney New South Wales 2052 Australia
- Laboratoire de Biologie Intégrative; Département de Biologie, Chimie et Géographie; Université du Québec à Rimouski; Rimouski Quebec Canada
| |
Collapse
|
29
|
Dowling DK. Evolutionary perspectives on the links between mitochondrial genotype and disease phenotype. Biochim Biophys Acta Gen Subj 2013; 1840:1393-403. [PMID: 24246955 DOI: 10.1016/j.bbagen.2013.11.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/24/2013] [Accepted: 11/11/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Disorders of the mitochondrial respiratory chain are heterogeneous in their symptoms and underlying genetics. Simple links between candidate mutations and expression of disease phenotype typically do not exist. It thus remains unclear how the genetic variation in the mitochondrial genome contributes to the phenotypic expression of complex traits and disease phenotypes. SCOPE OF REVIEW I summarize the basic genetic processes known to underpin mitochondrial disease. I highlight other plausible processes, drawn from the evolutionary biological literature, whose contribution to mitochondrial disease expression remains largely empirically unexplored. I highlight recent advances to the field, and discuss common-ground and -goals shared by researchers across medical and evolutionary domains. MAJOR CONCLUSIONS Mitochondrial genetic variance is linked to phenotypic variance across a variety of traits (e.g. reproductive function, life expectancy) fundamental to the upkeep of good health. Evolutionary theory predicts that mitochondrial genomes are destined to accumulate male-harming (but female-friendly) mutations, and this prediction has received proof-of-principle support. Furthermore, mitochondrial effects on the phenotype are typically manifested via interactions between mitochondrial and nuclear genes. Thus, whether a mitochondrial mutation is pathogenic in effect can depend on the nuclear genotype in which is it expressed. GENERAL SIGNIFICANCE Many disease phenotypes associated with OXPHOS malfunction might be determined by the outcomes of mitochondrial-nuclear interactions, and by the evolutionary forces that historically shaped mitochondrial DNA (mtDNA) sequences. Concepts and results drawn from the evolutionary sciences can have broad, but currently under-utilized, applicability to the medical sciences and provide new insights into understanding the complex genetics of mitochondrial disease. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Clayton 3800, VIC Australia
| |
Collapse
|
30
|
He XL, Ding CQ, Han JL. Lack of Structural Variation but Extensive Length Polymorphisms and Heteroplasmic Length Variations in the Mitochondrial DNA Control Region of Highly Inbred Crested Ibis, Nipponia nippon. PLoS One 2013; 8:e66324. [PMID: 23805212 PMCID: PMC3689774 DOI: 10.1371/journal.pone.0066324] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/03/2013] [Indexed: 01/21/2023] Open
Abstract
The animal mitochondrial DNA (mtDNA) length polymorphism and heteroplasmy are accepted to be universal. Here we report the lack of structural variation but the presence of length polymorphism as well as heteroplasmy in mtDNA control region of an endangered avian species - the Crested Ibis (Nipponia nippon). The complete control region was directly sequenced while the distribution pattern and inheritance of the length variations were examined using both direct sequencing and genotyping of the PCR fragments from captive birds with pedigrees, wild birds and a historical specimen. Our results demonstrated that there was no structural variation in the control region, however, different numbers of short tandem repeats with an identical motif of CA3CA2CA3 at the 3'-end of the control region determined the length polymorphisms among and heteroplasmy within individual birds. There were one to three predominant fragments in every bird; nevertheless multiple minor fragments coexist in all birds. These extremely high polymorphisms were suggested to have derived from the 'replication slippage' of a perfect microsatellite evolution following the step-wise mutational model. The patterns of heteroplasmy were found to be shifted between generations and among siblings but rather stable between blood and feather samples. This study provides the first evidence of a very extensive mtDNA length polymorphism and heteroplasmy in the highly inbred Crested Ibis which carries an mtDNA genome lack of structural genetic diversity. The analysis of pedigreed samples also sheds light on the transmission of mtDNA length heteroplasmy in birds following the genetic bottleneck theory. Further research focusing on the generation and transmission of particular mtDNA heteroplasmy patterns in single germ line of Crested Ibis is encouraged by this study.
Collapse
Affiliation(s)
- Xue-Lian He
- College of Nature Conservation, Beijing Forestry University, Beijing, China
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Chang-Qing Ding
- College of Nature Conservation, Beijing Forestry University, Beijing, China
- * E-mail: (CQD); (JLH)
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Livestock Research Institute (ILRI), Nairobi, Kenya
- * E-mail: (CQD); (JLH)
| |
Collapse
|
31
|
Wolff JN, Sutovsky P, Ballard JWO. Mitochondrial DNA content of mature spermatozoa and oocytes in the genetic model Drosophila. Cell Tissue Res 2013; 353:195-200. [PMID: 23686567 DOI: 10.1007/s00441-013-1628-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/05/2013] [Indexed: 01/09/2023]
Abstract
Although crucial to the success of fertilization and embryogenesis, little is known about the mitochondrial DNA (mtDNA) content of mature spermatozoa and oocytes across taxa and across different fertilization systems. Oocytes are assumed to hold a large population of mtDNAs that populate emerging cells during early embryogenesis, whereas spermatozoa harbor only a limited pool of mtDNAs that is believed to sustain functionality but fails to contribute paternal mtDNA to the zygote. Recent work suggests that mature sperm of the genetic model Drosophila melanogaster lack mtDNA, questioning the significance of zygotic mechanisms for the selective elimination of paternal mtDNA and their necessity for fertilization success. This finding further contradicts previous observations of the inheritance of paternal mtDNA in drosophilids. Using quantitative polymerase chain reaction, we estimate the mtDNA content of several laboratory strains of D. melanogaster and D. simulans to shed light on this discrepancy and to describe the mitochondrial/mtDNA load of gametes within this system. These measurements led to an average estimate of 22.91±4.61 mtDNA molecules/copies per spermatozoon across both species and to 1.07E+07±2.71E+06 molecules/copies per oocyte for D. simulans. As a consequence, the ratio of paternal and maternal mtDNA in the zygote was estimated at 1:4.65E+05.
Collapse
Affiliation(s)
- Jonci Nikolai Wolff
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | | | | |
Collapse
|
32
|
Paternal transmission of mitochondrial DNA as an integral part of mitochondrial inheritance in metapopulations of Drosophila simulans. Heredity (Edinb) 2012; 110:57-62. [PMID: 23010820 DOI: 10.1038/hdy.2012.60] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Maternal inheritance is one of the hallmarks of animal mitochondrial DNA (mtDNA) and central to its success as a molecular marker. This mode of inheritance and subsequent lack of heterologous recombination allows us to retrace evolutionary relationships unambiguously down the matriline and without the confounding effects of recombinant genetic information. Accumulating evidence of biparental inheritance of mtDNA (paternal leakage), however, challenges our current understanding of how this molecule is inherited. Here, using Drosophila simulans collected from an East African metapopulation exhibiting recurring mitochondrial heteroplasmy, we conducted single fly matings and screened F1 offspring for the presence of paternal mtDNA using allele-specific PCR assays (AS-PCR). In all, 27 out of 4092 offspring were identified as harboring paternal mtDNA, suggesting a frequency of 0.66% paternal leakage in this species. Our findings strongly suggest that recurring mtDNA heteroplasmy as observed in natural populations of Drosophila simulans is most likely caused by repeated paternal leakage. Our findings further suggest that this phenomenon to potentially be an integral part of mtDNA inheritance in these populations and consequently of significance for mtDNA as a molecular marker.
Collapse
|