1
|
Sudman M, Stöger R, Bentley GR, Melamed P. Association of childhood dehydroepiandrosterone sulfate concentration, pubertal development, and DNA methylation at puberty-related genes. Eur J Endocrinol 2024; 191:623-635. [PMID: 39670713 DOI: 10.1093/ejendo/lvae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/27/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE High concentrations of dehydroepiandrosterone sulfate (DHEAS) often precede premature puberty and sometimes polycystic ovary syndrome (PCOS). We hypothesized that the underlying mechanisms might involve DNA methylation. As an indicator of the downstream effects of DHEAS, we looked for associations between prepubertal DHEAS concentration, pubertal progression, and DNA methylation at puberty-related genes in blood cells. DESIGN Blood methylome and DHEAS concentration at 7.5 and 8.5 years, respectively, were analyzed in 91 boys and 82 girls. Pubertal development data were collected between 8.1 and 17 years (all from UK birth cohort, Avon Longitudinal Study of Parents and Children [ALSPAC]). METHODS Correlation between DHEAS and pubertal measurements was assessed by Spearman's correlation. DHEAS association with methylation at individual CpGs or regions was evaluated by linear regression, and nearby genes examined by enrichment analysis and intersection with known puberty-related genes. RESULTS Boys and girls with higher childhood DHEAS concentrations had more advanced pubic hair growth throughout puberty; girls also had advanced breast development, earlier menarche, and longer menstrual cycles. DHEAS concentration was associated with methylation at individual CpGs near several puberty-related genes. In boys, 14 genes near CpG islands with DHEAS-associated methylation were detected, and in girls, there were 9 which included LHCGR and SRD5A2; FGFR1 and FTO were detected in both sexes. CONCLUSIONS The association between DHEAS and pubertal development, as reported previously, suggests a physiological connection. Our novel findings showing that DHEAS concentration correlates negatively and linearly with DNA methylation levels at regulatory regions of key puberty-related genes, provide a mechanism for such a functional relationship.
Collapse
Affiliation(s)
- Maya Sudman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Gillian R Bentley
- Department of Anthropology, Durham University, Durham DH1 3LE, United Kingdom
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
2
|
Kadhem Z, Alkafeef S, Benov L. Singlet oxygen detection in vivo is hindered by nonspecific SOSG staining. Sci Rep 2024; 14:20669. [PMID: 39237763 PMCID: PMC11377423 DOI: 10.1038/s41598-024-71801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Singlet oxygen is considered an important cell damaging agent due to its propensity to react with organic compounds. This drives the interest in developing methods for determination of 1O2. Simplicity of application and high sensitivity makes fluorescent probes a popular choice for in vivo 1O2 detection. Despite its proclaimed cell-impermeability, the commercially available Singlet Oxygen Sensor Green (SOSG) is widely applied to support assertions of 1O2 involvement in cell and tissue damage. Our investigation, however, demonstrate that different microbial species and cancer cells become fluorescent when exposed to SOSG under conditions which exclude generation of 1O2. Cells, permeabilized with chlorhexidine or by heat exposure under anaerobic conditions, exhibited SOSG fluorescence. Permeabilized cells could be stained with SOSG even 24 h post-permeabilization. Since SOSG is cell impermeable, the main factor that led to fluorescent staining was plasma membrane damage. Spectral analyses of different batches of SOSG revealed that SOSG endoperoxide (SOSG-EP) did not increase even after prolonged storage under the recommended conditions. The commercial preparations of SOSG, however, were not SOSG-EP free, which can produce erroneous results when SOSG staining is used as a proof of singlet oxygen production in vivo.
Collapse
Affiliation(s)
- Zainab Kadhem
- Department of Biochemistry, Faculty of Medicine, Kuwait University, 13110, Kuwait, Kuwait
| | - Selma Alkafeef
- Department of Biochemistry, Faculty of Medicine, Kuwait University, 13110, Kuwait, Kuwait
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, 13110, Kuwait, Kuwait.
| |
Collapse
|
3
|
Srivastava A, Ahmad R, Yadav K, Siddiqui S, Trivedi A, Misra A, Mehrotra S, Ahmad B, Ali Khan M. An update on existing therapeutic options and status of novel anti-metastatic agents in breast cancer: Elucidating the molecular mechanisms underlying the pleiotropic action of Withania somnifera (Indian ginseng) in breast cancer attenuation. Int Immunopharmacol 2024; 136:112232. [PMID: 38815352 DOI: 10.1016/j.intimp.2024.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Major significant advancements in pharmacology and drug technology have been made to heighten the impact of cancer therapies, improving the life expectancy of subjects diagnosed with malignancy. Statistically, 99% of breast cancers occur in women while 0.5-1% occur in men, the female gender being the strongest breast cancer risk factor. Despite several breakthroughs, breast cancer continues to have a worldwide impact and is one of the leading causes of mortality. Additionally, resistance to therapy is a crucial factor enabling cancer cell persistence and resurgence. As a result, the search and discovery of novel modulatory agents and effective therapies capable of controlling tumor progression and cancer cell proliferation is critical. Withania somnifera (L.) Dunal (WS), commonly known as Indian ginseng, has long been used traditionally for the treatment of several ailments in the Indian context. Recently, WS and its phytoconstituents have shown promising anti-breast cancer properties and, as such, can be employed as prophylactic as well as therapeutic adjuncts to the main line of breast cancer treatment. The present review is an attempt to explore and provide experimental evidences in support of the prophylactic and therapeutic potential of WS in breast cancer, along with a deeper insight into the multiple molecular mechanisms and novel targets through which it acts against breast and other hormonally-induced cancers viz. ovarian, uterine and cervical. This exploration might prove crucial in providing better understanding of breast cancer progression and metastasis and its use as an adjunct in improving disease prognosis and therapeutic outcome.
Collapse
Affiliation(s)
- Aditi Srivastava
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Rumana Ahmad
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Kusum Yadav
- Dept. of Biochemistry, University of Lucknow, Lucknow 226007, UP., India.
| | - Sahabjada Siddiqui
- Dept. of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Anchal Trivedi
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Aparna Misra
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Sudhir Mehrotra
- Dept. of Biochemistry, University of Lucknow, Lucknow 226007, UP., India.
| | - Bilal Ahmad
- Research Cell, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Mohsin Ali Khan
- Dept. of Research & Development, Era University, Lucknow 226003, UP., India.
| |
Collapse
|
4
|
Sahoo S, Ramu S, Nair MG, Pillai M, San Juan BP, Milioli HZ, Mandal S, Naidu CM, Mavatkar AD, Subramaniam H, Neogi AG, Chaffer CL, Prabhu JS, Somarelli JA, Jolly MK. Increased prevalence of hybrid epithelial/mesenchymal state and enhanced phenotypic heterogeneity in basal breast cancer. iScience 2024; 27:110116. [PMID: 38974967 PMCID: PMC11225361 DOI: 10.1016/j.isci.2024.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/04/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
Intra-tumoral phenotypic heterogeneity promotes tumor relapse and therapeutic resistance and remains an unsolved clinical challenge. Decoding the interconnections among different biological axes of plasticity is crucial to understand the molecular origins of phenotypic heterogeneity. Here, we use multi-modal transcriptomic data-bulk, single-cell, and spatial transcriptomics-from breast cancer cell lines and primary tumor samples, to identify associations between epithelial-mesenchymal transition (EMT) and luminal-basal plasticity-two key processes that enable heterogeneity. We show that luminal breast cancer strongly associates with an epithelial cell state, but basal breast cancer is associated with hybrid epithelial/mesenchymal phenotype(s) and higher phenotypic heterogeneity. Mathematical modeling of core underlying gene regulatory networks representative of the crosstalk between the luminal-basal and epithelial-mesenchymal axes elucidate mechanistic underpinnings of the observed associations from transcriptomic data. Our systems-based approach integrating multi-modal data analysis with mechanism-based modeling offers a predictive framework to characterize intra-tumor heterogeneity and identify interventions to restrict it.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Soundharya Ramu
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Madhumathy G. Nair
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | | | | | - Susmita Mandal
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Chandrakala M. Naidu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560012, India
| | - Apoorva D. Mavatkar
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560012, India
| | - Harini Subramaniam
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Arpita G. Neogi
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Christine L. Chaffer
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- University of New South Wales, UNSW Medicine, Sydney, NSW 2010, Australia
| | - Jyothi S. Prabhu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560012, India
| | | | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
5
|
Cole J. Self-consistent signal transduction analysis for modeling context-specific signaling cascades and perturbations. NPJ Syst Biol Appl 2024; 10:78. [PMID: 39030258 PMCID: PMC11271576 DOI: 10.1038/s41540-024-00404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
Biological signal transduction networks are central to information processing and regulation of gene expression across all domains of life. Dysregulation is known to cause a wide array of diseases, including cancers. Here I introduce self-consistent signal transduction analysis, which utilizes genome-scale -omics data (specifically transcriptomics and/or proteomics) in order to predict the flow of information through these networks in an individualized manner. I apply the method to the study of endocrine therapy in breast cancer patients, and show that drugs that inhibit estrogen receptor α elicit a wide array of antitumoral effects, and that their most clinically-impactful ones are through the modulation of proliferative signals that control the genes GREB1, HK1, AKT1, MAPK1, AKT2, and NQO1. This method offers researchers a valuable tool in understanding how and why dysregulation occurs, and how perturbations to the network (such as targeted therapies) effect the network itself, and ultimately patient outcomes.
Collapse
|
6
|
Ma WQ, Miao MC, Ding PA, Tan BB, Liu WB, Guo S, Er LM, Zhang ZD, Zhao Q. CALD1 facilitates epithelial-mesenchymal transition progression in gastric cancer cells by modulating the PI3K-Akt pathway. World J Gastrointest Oncol 2024; 16:1029-1045. [PMID: 38577446 PMCID: PMC10989365 DOI: 10.4251/wjgo.v16.i3.1029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND CALD1 has been discovered to be abnormally expressed in a variety of malignant tumors, including gastric cancer (GC), and is associated with tumor progression and immune infiltration; however, the roles and mechanisms of CALD1 in epithelial-mesenchymal transition (EMT) in GC are unknown. AIM To investigate the role and mechanism of CALD1 in GC progression, invasion, and migration. METHODS In this study, the relationship between CALD1 and GC, as well as the possible network regulatory mechanisms of CALD1, was investigated by bioinformatics and validated by experiments. CALD1-siRNA was synthesized and used to transfect GC cells. Cell activity was measured using the CCK-8 method, cell migration and invasive ability were measured using wound healing assay and Transwell assay, and the expression levels of relevant genes and proteins in each group of cells were measured using qRT-PCR and Western blot. A GC cell xenograft model was established to verify the results of in vitro experiments. RESULTS Bioinformatics results showed that CALD1 was highly expressed in GC tissues, and CALD1 was significantly higher in EMT-type GC tissues than in tissues of other types of GC. The prognosis of patients with high expression of CALD1 was worse than that of patients with low expression, and a prognostic model was constructed and evaluated. The experimental results were consistent with the results of the bioinformatics analysis. The expression level of CALD1 in GC cell lines was all higher than that in gastric epithelial cell line GES-1, with the strongest expression found in AGS and MKN45 cells. Cell activity was significantly reduced after CALD1-siRNA transfection of AGS and MKN45 cells. The ability of AGS and MKN45 cells to migrate and invade was reduced after CALD1-siRNA transfection, and the related mRNA and protein expression was altered. According to bioinformatics findings in GC samples, the CALD1 gene was significantly associated with the expression of members of the PI3K-AKT-mTOR signaling pathway as well as the EMT signaling pathway, and was closely related to the PI3K-Akt signaling pathway. Experimental validation revealed that upregulation of CALD1 increased the expression of PI3K, p-AKT, and p-mTOR, members of the PI3K-Akt pathway,while decreasing the expression of PTEN; PI3K-Akt inhibitor treatment decreased the expression of PI3K, p-AKT, and p-mTOR in cells overexpressing CALD1 (still higher than that in the normal group), but increased the expression of PTEN (still lower than that in the normal group). CCK-8 results revealed that the effect of CALD1 on tumor cell activity was decreased by the addition of the inhibitor. Scratch and Transwell experiments showed that the effect of CALD1 on tumor cell migration and invasion was weakened by the addition of the PI3K-Akt inhibitor. The mRNA and protein levels of EMT-related genes in AGS and MKN45 cells were greatly altered by the overexpression of CALD1, whereas the effect of overexpression of CALD1 was significantly weakened by the addition of the PI3K-Akt inhibitor. Animal experiments showed that tumour growth was slow after inhibition of CALD1, and the expression of some PI3K-Akt and EMT pathway proteins was altered. CONCLUSION Increased expression of CALD1 is a key factor in the progression, invasion, and metastasis of GC, which may be associated with regulating the PI3K-Akt pathway to promote EMT.
Collapse
Affiliation(s)
- Wen-Qian Ma
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, Hebei Province, China
| | - Ming-Chang Miao
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Ping-An Ding
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, Hebei Province, China
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Bi-Bo Tan
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, Hebei Province, China
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Wen-Bo Liu
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, Hebei Province, China
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Shuo Guo
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, Hebei Province, China
| | - Li-Mian Er
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, Hebei Province, China
| | - Zhi-Dong Zhang
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, Hebei Province, China
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Qun Zhao
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, Hebei Province, China
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| |
Collapse
|
7
|
Creasy KT, Ren H, Jiang J, Peterson ML, Spear BT. Elongation of very long chain fatty acids-3 ( Elovl3) is activated by ZHX2 and is a regulator of cell cycle progression. Am J Physiol Gastrointest Liver Physiol 2023; 325:G582-G592. [PMID: 37847682 PMCID: PMC10894669 DOI: 10.1152/ajpgi.00235.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Zinc fingers and homeoboxes 2 (Zhx2) are transcriptional regulators of liver gene expression with key functions in embryonic development as well as tissue regeneration in response to damage and disease, presumably through its control of target genes. Previous microarray data suggested that elongation of very long chain fatty acids-3 (Elovl3), a member of the ELOVL family of enzymes that synthesize very long chain fatty acids (VLCFAs), is a putative Zhx2 target gene. VLCFAs are core component of ceramides and other bioactive sphingolipids that are often dysregulated in diseases and regulate key cellular processes including proliferation. Since several previously identified Zhx2 targets become dysregulated in liver damage, we investigated the relationship between Zhx2 and Elovl3 in liver development, damage, and regeneration. Here, using mouse and cell models, we demonstrate that Zhx2 positively regulates Elovl3 expression in the liver and that male-biased hepatic Elovl3 expression is established between 4 and 8 wk of age in mice. Elovl3 is dramatically repressed in mouse models of liver regeneration, and the reduced Elovl3 levels in the regenerating liver are associated with changes in hepatic VLCFAs. Human hepatoma cell lines with forced Elovl3 expression have lower rates of cell growth; analysis of synchronized cells indicates that this reduced proliferation correlates with cells stalling in S-phase and lower mRNA levels of cell cyclins. Taken together, these data indicate that Elovl3 expression helps regulate cellular proliferation during liver development and regeneration, possibly through control of VLCFAs.NEW & NOTEWORTHY Numerous targets of the transcription factor Zhx2 are dysregulated in liver disease. We show that the elongase Elovl3 is a novel Zhx2 target. Elovl3 and Zhx2 expression change during liver regeneration, which is associated with changes in very long chain fatty acids. Forced Elovl3 expression reduces cell growth and blocks cell cycle progression. This suggests that Elovl3 may account, at least in part, for the relationship between Zhx2 and proliferation during liver development and disease.
Collapse
Affiliation(s)
- Kate Townsend Creasy
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Hui Ren
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Jieyun Jiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Martha L Peterson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Brett T Spear
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| |
Collapse
|
8
|
Sahoo S, Ramu S, Nair MG, Pillai M, San Juan BP, Milioli HZ, Mandal S, Naidu CM, Mavatkar AD, Subramaniam H, Neogi AG, Chaffer CL, Prabhu JS, Somarelli JA, Jolly MK. Multi-modal transcriptomic analysis unravels enrichment of hybrid epithelial/mesenchymal state and enhanced phenotypic heterogeneity in basal breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.558960. [PMID: 37873432 PMCID: PMC10592858 DOI: 10.1101/2023.09.30.558960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Intra-tumoral phenotypic heterogeneity promotes tumor relapse and therapeutic resistance and remains an unsolved clinical challenge. It manifests along multiple phenotypic axes and decoding the interconnections among these different axes is crucial to understand its molecular origins and to develop novel therapeutic strategies to control it. Here, we use multi-modal transcriptomic data analysis - bulk, single-cell and spatial transcriptomics - from breast cancer cell lines and primary tumor samples, to identify associations between epithelial-mesenchymal transition (EMT) and luminal-basal plasticity - two key processes that enable heterogeneity. We show that luminal breast cancer strongly associates with an epithelial cell state, but basal breast cancer is associated with hybrid epithelial/mesenchymal phenotype(s) and higher phenotypic heterogeneity. These patterns were inherent in methylation profiles, suggesting an epigenetic crosstalk between EMT and lineage plasticity in breast cancer. Mathematical modelling of core underlying gene regulatory networks representative of the crosstalk between the luminal-basal and epithelial-mesenchymal axes recapitulate and thus elucidate mechanistic underpinnings of the observed associations from transcriptomic data. Our systems-based approach integrating multi-modal data analysis with mechanism-based modeling offers a predictive framework to characterize intra-tumor heterogeneity and to identify possible interventions to restrict it.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Soundharya Ramu
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
- Current affiliation: Feinberg School of Medicine, Northwestern University, Chicago, 60611, USA
| | - Beatriz P San Juan
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | | | - Susmita Mandal
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Chandrakala M Naidu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | - Apoorva D Mavatkar
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | - Harini Subramaniam
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Arpita G Neogi
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Christine L Chaffer
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- University of New South Wales, UNSW Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | | | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
9
|
Yang Y, Wang X, Yan P, Wang D, Luo T, Zhou Y, Chen S, Liu Q, Hou J, Wang P. Transmembrane protein 117 knockdown protects against angiotensin-II-induced cardiac hypertrophy. Hypertens Res 2023; 46:2326-2339. [PMID: 37488300 PMCID: PMC10550824 DOI: 10.1038/s41440-023-01377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023]
Abstract
Mitochondrial dysfunction plays a critical role in the pathogenesis of pathological cardiac hypertrophy. Transmembrane protein 117 modulate mitochondrial membrane potential that may be involved in the regulation of oxidative stress and mitochondrial function. However, its role in the development of angiotensin II (Ang-II)-induced cardiac hypertrophy is unclear. Cardiac-specific TMEM117-knockout and control mice were subjected to cardiac hypertrophy induced by Ang-II infusion. Small-interfering RNAs against TMEM117 or adenovirus-based plasmids encoding TMEM117 were delivered into left ventricles of mice or incubated with neonatal murine ventricular myocytes (NMVMs) before Ang-II stimulation. We found that TMEM117 was upregulated in hypertrophic hearts and cardiomyocytes and TMEM117 deficiency attenuated Ang-II-induced cardiac hypertrophy in vivo. Consistently, the in vitro data demonstrated that Ang-II-induced cardiomyocyte hypertrophy significantly alleviated by TMEM117 knockdown. Conversely, overexpression of TMEM117 exacerbated cardiac hypertrophy and dysfunction. An Ang II-induced increase in cardiac (cardiomyocyte) oxidative stress was alleviated by cardiac-specific knockout (knockdown) of TMEM117 and was worsened by TMEM117 supplementation (overexpression). In addition, TMEM117 knockout decreased endoplasmic reticulum stress induced by Ang-II, which was reversed by TMEM117 supplementation. Furthermore, TMEM117 deficiency mitigated mitochondrial injury in hypertrophic hearts and cardiomyocyte, which was abolished by TMEM117 supplementation (overexpression). Taken together, these findings suggest that upregulation of TMEM117 contributes to the development of cardiac hypertrophy and the downregulation of TMEM117 may be a new therapeutic strategy for the prevention and treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yi Yang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Xinquan Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Peng Yan
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Dan Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Tao Luo
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Yaqiong Zhou
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Shichao Chen
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Qiting Liu
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Jixin Hou
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Peijian Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
10
|
Li L, Zheng S, Chen M, Chi W, Xue J, Wu J. The Prognostic Values of Androgen Receptor in Breast Cancer. Arch Pathol Lab Med 2023; 147:1075-1085. [PMID: 36508355 DOI: 10.5858/arpa.2021-0590-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 09/01/2023]
Abstract
CONTEXT.— Whether androgen receptor (AR) expression can predict prognosis in breast cancer is under debate. OBJECTIVE.— To analyze, retrospectively, the prognostic and treatment-predictive ability of AR status in breast cancer. DESIGN.— A total of 5765 patients diagnosed with primary invasive breast cancer without distant metastasis in the adjuvant setting were analyzed. The propensity score-matching method was used to develop a new cohort of 3978 patients (1989 patients each) in which important prognostic factors were balanced. RESULTS.— Positive AR expression is an independent prognostic factor for disease-free survival and overall survival. Estrogen receptor (ER)+ and progesterone receptor (PR)+ AR+ breast cancer patients had the longest survival, whereas ER-PR-AR- breast cancer patients had the shortest survival. The ER/PR/AR combinations could not predict the treatment effects for adjuvant trastuzumab but could be used for adjuvant chemotherapy and endocrine therapy selection. The worst survival was found in ER+PR-AR- patients receiving toremifene, ER+PR-AR+ patients receiving exemestane, ER+PR+AR- patients receiving anthracycline, and ER-PR-AR+ patients receiving taxanes. ER+PR-AR-, ER-PR-AR+, and ER-PR-AR- patients were associated with the worst survival among those who received radiotherapy and anthracycline plus taxanes. CONCLUSIONS.— AR in combination with ER and PR could predict the prognosis and treatment effects of chemotherapy, endocrine therapy, and radiotherapy in the adjuvant setting.
Collapse
Affiliation(s)
- Lun Li
- From the Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Department of Breast Surgery, The Second Xiangya Hospital, Central South University, Changsha, China (Li)
| | - Shuyue Zheng
- From the Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
| | - Ming Chen
- From the Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
| | - Weiru Chi
- From the Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
| | - Jingyan Xue
- From the Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
| | - Jiong Wu
- From the Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Collaborative Innovation Center for Cancer Medicine, Shanghai, China (Wu)
| |
Collapse
|
11
|
Karimi Taheri M, Ghanbari S, Gholipour A, Givi T, Sadeghizadeh M. LINC01116 affects patient survival differently and is dissimilarly expressed in ER+ and ER- breast cancer samples. Cancer Rep (Hoboken) 2023; 6:e1848. [PMID: 37321964 PMCID: PMC10432450 DOI: 10.1002/cnr2.1848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Breast cancer is the most commonly detected cancer and one of the leading causes of cancer mortality. Emerging evidence supports that aberrant expression of lncRNAs is correlated with tumor progression and various aspects of tumor development. AIM This study aimed to evaluate the expression pattern of LINC01116 in breast cancer tissues and investigate the impact of LINC01116 on patients' survival. METHODS AND RESULTS Microarray and qRT-PCR data analysis were performed, and the KM-plotter database was used in this study. In addition, the gain of function approach was performed to examine the effect of LINC01116 on breast cancer cells in-vitro. The results exhibited that LINC01116 is meaningfully upregulated in the ER+ tumor specimens compared to the ER- ones. Also, relative to normal tissues, the expression of LINC01116 in ER+ and ER- tumor tissues significantly increased and decreased, respectively. ROC curve analysis revealed the power of LINC01116 in distinguishing ER+ from ER- samples. Additionally, the Kaplan-Meier survival analysis showed that the LINC01116 expression positively correlates with survival probability in all as well as ER+ patients. However, this correlation was negative in ER- patients. Furthermore, our results showed that the overexpression of LINC01116 induces TGF-β signaling in ER- cells (MDA-MB-231), and microarray data analysis revealed that LINC01116 is significantly upregulated in 17β-Estradiol treated MCF7 cells. CONCLUSION In conclusion, our results suggest that LINC01116 can be a potential biomarker in distinguishing ER+ and ER- tissues and has different effects on patients' survival based on ER status by affecting TGF-β and ER signaling.
Collapse
Affiliation(s)
| | - Sogol Ghanbari
- Molecular Genetics DepartmentBiological Sciences Faculty, Tarbiat Modares UniversityTehranIran
| | - Akram Gholipour
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Taraneh Givi
- Molecular Genetics DepartmentBiological Sciences Faculty, Tarbiat Modares UniversityTehranIran
| | - Majid Sadeghizadeh
- Molecular Genetics DepartmentBiological Sciences Faculty, Tarbiat Modares UniversityTehranIran
| |
Collapse
|
12
|
Bhasin S, Dusek C, Peacock JW, Cherkasov A, Wang Y, Gleave M, Ong CJ. Dependency of Tamoxifen Sensitive and Resistant ER + Breast Cancer Cells on Semaphorin 3C (SEMA3C) for Growth. Cells 2023; 12:1715. [PMID: 37443749 PMCID: PMC10341167 DOI: 10.3390/cells12131715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Estrogen receptor positive (ER+) breast cancer (BCa) accounts for the highest proportion of breast cancer-related deaths. While endocrine therapy is highly effective for this subpopulation, endocrine resistance remains a major challenge and the identification of novel targets is urgently needed. Previously, we have shown that Semaphorin 3C (SEMA3C) is an autocrine growth factor that drives the growth and treatment resistance of various cancers, but its role in breast cancer progression and endocrine resistance is poorly understood. Here, we report that SEMA3C plays a role in maintaining the growth of ER+ BCa cells and is a novel, tractable therapeutic target for the treatment of ER+ BCa patients. Analyses of publicly available clinical datasets indicate that ER+ BCa patients express significantly higher levels of SEMA3C mRNA than other subtypes. Furthermore, SEMA3C mRNA expression was positively correlated with ESR1 mRNA expression. ER+ BCa cell lines (MCF7 and T47D) expressed higher levels of SEMA3C mRNA and protein than a normal mammary epithelial MCF10A cell line. ER siRNA knockdown was suppressed, while dose-dependent beta-estradiol treatment induced SEMA3C expression in both MCF7 and T47D cells, suggesting that SEMA3C is an ER-regulated gene. The stimulation of ER+ BCa cells with recombinant SEMA3C activated MAPK and AKT signaling in a dose-dependent manner. Conversely, SEMA3C silencing inhibited Estrogen Receptor (ER) expression, MAPK and AKT signaling pathways while simultaneously inducing apoptosis, as monitored by flow cytometry and Western blot analyses. SEMA3C silencing significantly inhibited the growth of ER+ BCa cells, implicating a growth dependency of ER+ BCa cells on SEMA3C. Moreover, the analysis of tamoxifen resistant (TamR) cell models (TamC3 and TamR3) showed that SEMA3C levels remain high despite treatment with tamoxifen. Tamoxifen-resistant cells remained dependent on SEMA3C for growth and survival. Treatment with B1SP Fc fusion protein, a SEMA3C pathway inhibitor, attenuated SEMA3C-induced signaling and growth across a panel of tamoxifen sensitive and resistant ER+ breast cancer cells. Furthermore, SEMA3C silencing and B1SP treatment were associated with decreased EGFR signaling in TamR cells. Here, our study implicates SEMA3C in a functional role in ER+ breast cancer signaling and growth that suggests ER+ BCa patients may benefit from SEMA3C-targeted therapy.
Collapse
Affiliation(s)
- Satyam Bhasin
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (S.B.); (C.D.); (J.W.P.); (A.C.); (Y.W.); (M.G.)
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Christopher Dusek
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (S.B.); (C.D.); (J.W.P.); (A.C.); (Y.W.); (M.G.)
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - James W. Peacock
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (S.B.); (C.D.); (J.W.P.); (A.C.); (Y.W.); (M.G.)
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (S.B.); (C.D.); (J.W.P.); (A.C.); (Y.W.); (M.G.)
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (S.B.); (C.D.); (J.W.P.); (A.C.); (Y.W.); (M.G.)
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (S.B.); (C.D.); (J.W.P.); (A.C.); (Y.W.); (M.G.)
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Christopher J. Ong
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (S.B.); (C.D.); (J.W.P.); (A.C.); (Y.W.); (M.G.)
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
13
|
Liu M, Sui L, Fang Z, Jiang WG, Ye L. Aberrant expression of bone morphogenetic proteins in the disease progression and metastasis of breast cancer. Front Oncol 2023; 13:1166955. [PMID: 37333824 PMCID: PMC10272747 DOI: 10.3389/fonc.2023.1166955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Background Bone morphogenetic proteins (BMPs) play crucial roles in the tumorigenesis and metastasis of cancers. Controversy remains about the exact implications of BMPs and their antagonists in breast cancer (BC), due to their diverse and complex biological functions and signalling. A comprehensive study of the whole family and their signalling in breast cancer is provoked. Methods Aberrant expression of BMP, BMP receptors and antagonists in primary tumours in breast cancer were analysed by using TCGA-BRCA and E-MTAB-6703 cohorts. Related biomarkers including ER, HER, proliferation, invasion, angiogenesis, lymphangiogenesis and bone metastasis were involved to identify the relationship with BMPs in breast cancer. Results The present study showed BMP8B was significantly increased in breast tumours, while BMP6 and ACVRL1 were decreased in breast cancer tissues. The expressions of BMP2, BMP6, TGFBR1 and GREM1 were significantly correlated with BC patients' poor overall survival. Aberrant expression of BMPs, together with BMP receptors, were explored in different subtypes of breast cancer according to ER, PR and HER2 status. Furthermore, higher levels of BMP2, BMP6 and GDF5 were revealed in triple negative breast cancer (TNBC) whilst BMP4, GDF15, ACVR1B, ACVR2B and BMPR1B were relatively higher in Luminal type BC. ACVR1B and BMPR1B were positively correlated with ERα but were inversely correlated with ERβ. High expression of GDF15, BMP4 and ACVR1B were associated with poorer overall survival in HER2 positive BC. BMPs also play dual roles in tumour growth and metastasis of BC. Conclusion A shift pattern of BMPs was showed in different subtypes of breast cancer suggesting a subtype specific involvement. It provokes more research to shed light on the exact role of these BMPs and receptors in the disease progression and distant metastasis through a regulation of proliferation, invasion and EMT.
Collapse
Affiliation(s)
- Ming Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
- Department of Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Laijian Sui
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ziqian Fang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
14
|
Tundidor I, Seijo-Vila M, Blasco-Benito S, Rubert-Hernández M, Adámez S, Andradas C, Manzano S, Álvarez-López I, Sarasqueta C, Villa-Morales M, González-Lois C, Ramírez-Medina E, Almoguera B, Sánchez-López AJ, Bindila L, Hamann S, Arnold N, Röcken C, Heras-Murillo I, Sancho D, Moreno-Bueno G, Caffarel MM, Guzmán M, Sánchez C, Pérez-Gómez E. Identification of fatty acid amide hydrolase as a metastasis suppressor in breast cancer. Nat Commun 2023; 14:3130. [PMID: 37253733 DOI: 10.1038/s41467-023-38750-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
Clinical management of breast cancer (BC) metastasis remains an unmet need as it accounts for 90% of BC-associated mortality. Although the luminal subtype, which represents >70% of BC cases, is generally associated with a favorable outcome, it is susceptible to metastatic relapse as late as 15 years after treatment discontinuation. Seeking therapeutic approaches as well as screening tools to properly identify those patients with a higher risk of recurrence is therefore essential. Here, we report that the lipid-degrading enzyme fatty acid amide hydrolase (FAAH) is a predictor of long-term survival in patients with luminal BC, and that it blocks tumor progression and lung metastasis in cell and mouse models of BC. Together, our findings highlight the potential of FAAH as a biomarker with prognostic value in luminal BC and as a therapeutic target in metastatic disease.
Collapse
Affiliation(s)
- Isabel Tundidor
- Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Marta Seijo-Vila
- Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Sandra Blasco-Benito
- Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - María Rubert-Hernández
- Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Sandra Adámez
- Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain
| | - Clara Andradas
- Brain Tumor Research Program, Telethon Kids Institute, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Nedlands, WA, Australia
| | - Sara Manzano
- Breast Cancer Group, Oncology Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Isabel Álvarez-López
- Breast Cancer Group, Oncology Area, Biodonostia Health Research Institute, San Sebastián, Spain
- Gipuzkoa Cancer Unit, OSI Donostialdea-Onkologikoa Foundation, San Sebastián, Spain
| | - Cristina Sarasqueta
- Unit of Information and Healthcare Results, OSI Donostialdea, Biodonostia Health Research Institute, San Sebastián, Spain
- Methodological Support Unit, Biodonostia Health Research Institute, San Sebastián, Spain
| | - María Villa-Morales
- Centro de Biología Molecular Severo Ochoa (CBMSO) (CSIC-UAM), Madrid, Spain
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - Carmen González-Lois
- Department of Pathology, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Esther Ramírez-Medina
- Department of Obstetrics & Gynecology, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Belén Almoguera
- Department of Obstetrics & Gynecology, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Antonio J Sánchez-López
- Biobank Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Madrid, Spain
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Mainz, Germany
| | - Sigrid Hamann
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Norbert Arnold
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christoph Röcken
- Institute of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ignacio Heras-Murillo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Gema Moreno-Bueno
- MD Anderson International Foundation; Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM); Department of Biochemistry, Autonomous University of Madrid; Instituto de Investigación Hospital Universitario La Paz (IdiPaz); Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - María M Caffarel
- Breast Cancer Group, Oncology Area, Biodonostia Health Research Institute, San Sebastián, Spain
- Ikerbasque-Basque Foundation for Science, Bilbao, Spain
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria y Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain.
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain.
| | - Eduardo Pérez-Gómez
- Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain.
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain.
| |
Collapse
|
15
|
Abbas G, Alibrahim F, Kankouni R, Al-Belushi S, Al-Mutairi DA, Tovmasyan A, Batinic-Haberle I, Benov L. Effect of the nature of the chelated metal on the photodynamic activity of metalloporphyrins. Free Radic Res 2023; 57:487-499. [PMID: 38035627 DOI: 10.1080/10715762.2023.2288997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/04/2023] [Indexed: 12/02/2023]
Abstract
Coordination of metal ions by the tetrapyrrolic macrocyclic ring of porphyrin-based photosensitizers (PSs) affects their photophysical properties and consequently, their photodynamic activity. Diamagnetic metals increase the singlet oxygen quantum yield while paramagnetic metals have the opposite effect. Since singlet oxygen is considered the main cell-damaging species in photodynamic therapy (PDT), the nature of the chelated cation would directly affect PDT efficacy. This expectation, however, is not always supported by experimental results and numerous exceptions have been reported. Understanding the effect of the chelated metal is hindered because different chelators were used. The aim of this work was to investigate the effect of the nature of chelated cation on the photophysical and photodynamic properties of metalloporphyrins, using the same tetrapyrrole core as a chelator of Ag(II), Cu(II), Fe(III), In(III), Mn(III), or Zn(II). Results demonstrated that with the exception of Ag(II), all paramagnetic metalloporphyrins were inefficient as generators of singlet oxygen and did not act as PSs. In contrast, the coordination of diamagnetic ions produced highly efficient PSs. The unexpected photodynamic activity of the Ag(II)-containing porphyrin was attributed to reduction of the chelated Ag(II) to Ag(I) or to demetallation of the complex, caused by cellular reductants and/or by exposure to light. Our results indicate that in biological systems, where PSs localize to various organelles and are subjected to the action of enzymes, reactive metabolites, and reducing or oxidizing agents, their physicochemical and photosensitizing properties change. Consequently, the photophysical properties alone cannot predict the anticancer efficacy of a PS.
Collapse
Affiliation(s)
- Ghadeer Abbas
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Fatemah Alibrahim
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Rawan Kankouni
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Sara Al-Belushi
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Dalal A Al-Mutairi
- Department of Pathology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Artak Tovmasyan
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
16
|
Transcriptomic Profile of Canine Mammary Ductal Carcinoma. Int J Mol Sci 2023; 24:ijms24065212. [PMID: 36982287 PMCID: PMC10049542 DOI: 10.3390/ijms24065212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
Dogs can be excellent models for spontaneous studies about breast cancers, presenting similarities in clinical behavior and molecular pathways of the disease. Thus, analyses of the canine transcriptome can identify deregulated genes and pathways, contributing to the identification of biomarkers and new therapeutic targets, benefiting humans and animals. In this context, this study aimed to determine the transcriptional profile of canine mammary ductal carcinoma and contribute to the clarification of the importance of deregulated molecules in the molecular pathways involved in the disease. Therefore, we used mammary ductal carcinoma tissue samples and non-tumor mammary tissue from the radical mastectomy of six female dogs. Sequencing was performed on the NextSeq-500 System platform. A comparison of carcinoma tissue and normal tissue revealed 633 downregulated and 573 upregulated genes, which were able to differentiate the groups by principal component analysis. Gene ontology analysis indicated that inflammatory, cell differentiation and adhesion, and extracellular matrix maintenance pathways were mainly deregulated in this series. The main differentially expressed genes observed in this research can indicate greater disease aggressiveness and worse prognosis. Finally, the study of the canine transcriptome indicates that it is an excellent model to generate information relevant to oncology in both species.
Collapse
|
17
|
Muñoz JP, Araya-Osorio R, Mera-Adasme R, Calaf GM. Glyphosate mimics 17β-estradiol effects promoting estrogen receptor alpha activity in breast cancer cells. CHEMOSPHERE 2023; 313:137201. [PMID: 36379430 DOI: 10.1016/j.chemosphere.2022.137201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate, the active ingredient in several broad-spectrum herbicide formulations, has been validated and widely used throughout the world. Recent reports have questioned its safety, showing that glyphosate may act as an endocrine disruptor by promoting estrogenic activity. However, the molecular mechanism involved in this phenomenon remains unclear. Therefore, here we aimed to elucidate the mechanism by which glyphosate induces estrogenic activity using estrogen-sensitive breast cancer cell line models. Our results show that glyphosate mimics the cell effects of 17β-estradiol (E2), promoting estrogen receptor α (ERα) phosphorylation, its degradation, and transcriptional activity at high concentrations. The molecular mechanism seems involved in the ERα ligand-binding domain (LBD). Molecular simulations suggest a plausible interaction between glyphosate and the LBD through a coordinated complex involving divalent cations such as Zn (II). In addition, glyphosate exposure alters the level of Cyclin-dependent kinase 7 that contribute to ERα phosphorylation. Finally, glyphosate increases cell proliferation rate and levels of cell cycle regulators, accompanied by an increase in anchorage-independent growth capacity. These findings suggest that glyphosate at high concentrations, induces estrogen-like effects through an ERα ligand binding site-dependent mechanism, leading to cellular responses resulting from a complex interplay of genomic and non-genomic events.
Collapse
Affiliation(s)
- Juan P Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile.
| | - Rocío Araya-Osorio
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Chile.
| | - Raúl Mera-Adasme
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Chile.
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile.
| |
Collapse
|
18
|
Alnuaimi AR, Bottner J, Nair VA, Ali N, Alnakhli R, Dreyer E, Talaat IM, Busch H, Perner S, Kirfel J, Hamoudi R, Abdel-Rahman WM. Immunohistochemical Expression Analysis of Caldesmon Isoforms in Colorectal Carcinoma Reveals Interesting Correlations with Tumor Characteristics. Int J Mol Sci 2023; 24:ijms24032275. [PMID: 36768598 PMCID: PMC9916900 DOI: 10.3390/ijms24032275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Colorectal cancer is a notorious disease, with almost half of the patients succumbing to the disease. The prevalence and incidence rates of colorectal cancer are increasing in many parts of the world, highlighting the need to discover new biomarkers for diagnosis and therapy. Caldesmon (CaD), an actin-binding protein that plays a significant role in controlling cell motility, has emerged as a promising biomarker. The CALD1 gene encodes CaD as multiple transcripts that mainly encode two protein isoforms: High-molecular-weight (h-CaD), expressed in smooth muscle, and low-molecular-weight (l-CaD), expressed in nonsmooth muscle cells. Most studies have suggested an oncogenic role of CaD in colorectal cancer, but the exact subcellular localization of the two CaD isoforms in tumor cells and stroma have not been clarified yet. Here, we analyzed tissue samples from 262 colorectal cancer patients by immunohistochemistry analysis using specific antibodies for l-CaD and h-CaD. The results showed elevated cytoplasmic expression levels of l-Cad in 187/262 (71.4%) cases. l-Cad was expressed at low levels in the normal colon mucosa and was also consistently expressed in the cancer-associated stroma of all cases, suggesting that it could play a role in modulating the tumor microenvironment. l-CaD expression in cancer cells was associated with preinvasive stages of cancer. Survival analysis indicated that patients with high l-CaD expression in tumor cells could respond poorly to selective chemotherapeutic 5FU, but not combination chemotherapy. h-CaD was expressed in colonic and vascular smooth muscle cells as expected and to a lesser extent in the tumor-associated stroma, but it was not expressed in the cancer cells or normal colon mucosal epithelial cells. Collectively, these data clarify how the expression patterns of CaD isoforms in colorectal cancer can have applications in the management of colorectal cancer patients.
Collapse
Affiliation(s)
- Alya R. Alnuaimi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Justus Bottner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23560 Luebeck, Germany
| | - Vidhya A. Nair
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nival Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Razaz Alnakhli
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eva Dreyer
- Institute of Pathology, University Hospital Schleswig-Holstein, 23560 Luebeck, Germany
| | - Iman M. Talaat
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hauke Busch
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Luebeck Institute for Experimental Dermatology, University of Luebeck, 23562 Luebeck, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23560 Luebeck, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, 23560 Luebeck, Germany
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PS, UK
| | - Wael M. Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6-505-7556
| |
Collapse
|
19
|
Rezouki I, Zohair B, Ssi SA, Karkouri M, Razzouki I, Elkarroumi M, Badou A. High VISTA expression is linked to a potent epithelial-mesenchymal transition and is positively correlated with PD1 in breast cancer. Front Oncol 2023; 13:1154631. [PMID: 37152039 PMCID: PMC10157209 DOI: 10.3389/fonc.2023.1154631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Breast cancer is the most common type of tumor in women worldwide. Immune checkpoint inhibitors, particularly anti-PDL1, have shown promise as a therapeutic approach for managing this disease. However, this type of immunotherapy still fails to work for some patients, leading researchers to explore alternative immune checkpoint targets. The Ig suppressor of T cell activation domain V (VISTA) has emerged as a novel immune checkpoint that delivers inhibitory signals to T cells and has demonstrated encouraging results in various cancers. Our study investigated the association of VISTA expression with clinicopathological parameters in breast cancer patients, its involvement in the Epithelial-Mesenchymal-Transition (EMT) process, and its correlation with PD1 expression. Transcriptomic analysis revealed that VISTA was associated with lobular and metaplastic histological type, tumor size, lymph node status, ER and PR negative status, and the TNBC molecular subtype. Furthermore, VISTA expression was strongly associated with an immunosuppressive tumor microenvironment. Immunohistochemistry analysis corroborated the transcriptomic results, indicating that VISTA was expressed in most immune cells (94%) and was significantly expressed in breast cancer tumor cells compared to matched adjacent tissues. Our study also showed for the first time that VISTA overexpression in breast cancer cells could be associated with the EMT process. Additionally, we identified a positive correlation between VISTA and PD-1 expression. Together, these results highlight the immunosuppressive effect of VISTA in breast cancer patients and suggest that bi-specific targeting of VISTA and PD-1 in combination therapy could be beneficial for these patients.
Collapse
Affiliation(s)
- Ibtissam Rezouki
- Laboratory of Immunogenetics and Human Pathologies, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Basma Zohair
- Laboratory of Immunogenetics and Human Pathologies, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Saadia Ait Ssi
- Laboratory of Immunogenetics and Human Pathologies, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Mehdi Karkouri
- Laboratory of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd, Hassan II University, Casablanca, Morocco
| | - Ibtissam Razzouki
- Laboratory of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd, Hassan II University, Casablanca, Morocco
| | - Mohamed Elkarroumi
- Department of Obstetrics and Gynecology, University Hospital Center (CHU) Ibn Rochd, Casablanca, Morocco
| | - Abdallah Badou
- Laboratory of Immunogenetics and Human Pathologies, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco, and Mohammed VI University of Sciences and Health, Casablanca, Morocco
- *Correspondence: Abdallah Badou, ; ;
| |
Collapse
|
20
|
An Overview of Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Canine Tumors: How Far Have We Come? Vet Sci 2022; 10:vetsci10010019. [PMID: 36669020 PMCID: PMC9865109 DOI: 10.3390/vetsci10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Historically, pre-clinical and clinical studies in human medicine have provided new insights, pushing forward the contemporary knowledge. The new results represented a motivation for investigators in specific fields of veterinary medicine, who addressed the same research topics from different perspectives in studies based on experimental and spontaneous animal disease models. The study of different pheno-genotypic contexts contributes to the confirmation of translational models of pathologic mechanisms. This review provides an overview of EMT and MET processes in both human and canine species. While human medicine rapidly advances, having a large amount of information available, veterinary medicine is not at the same level. This situation should provide motivation for the veterinary medicine research field, to apply the knowledge on humans to research in pets. By merging the knowledge of these two disciplines, better and faster results can be achieved, thus improving human and canine health.
Collapse
|
21
|
Qureshi R, Picon-Ruiz M, Sho M, Van Booven D, Nunes de Paiva V, Diaz-Ruano AB, Ince TA, Slingerland J. Estrone, the major postmenopausal estrogen, binds ERa to induce SNAI2, epithelial-to-mesenchymal transition, and ER+ breast cancer metastasis. Cell Rep 2022; 41:111672. [PMID: 36384125 PMCID: PMC9798480 DOI: 10.1016/j.celrep.2022.111672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/22/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Recent work showed that the dominant post-menopausal estrogen, estrone, cooperates with nuclear factor κB (NF-κB) to stimulate inflammation, while pre-menopausal 17β-estradiol opposes NF-κB. Here, we show that post-menopausal estrone, but not 17β-estradiol, activates epithelial-to-mesenchymal transition (EMT) genes to stimulate breast cancer metastasis. HSD17B14, which converts 17β-estradiol to estrone, is higher in cancer than normal breast tissue and in metastatic than primary cancers and associates with earlier metastasis. Treatment with estrone, but not 17β-estradiol, and HSD17B14 overexpression both stimulate an EMT, matrigel invasion, and lung, bone, and liver metastasis in estrogen-receptor-positive (ER+) breast cancer models, while HSD17B14 knockdown reverses the EMT. Estrone:ERα recruits CBP/p300 to the SNAI2 promoter to induce SNAI2 and stimulate an EMT, while 17β-estradiol:ERα recruits co-repressors HDAC1 and NCOR1 to this site. Present work reveals novel differences in gene regulation by these estrogens and the importance of estrone to ER+ breast cancer progression. Upon loss of 17β-estradiol at menopause, estrone-liganded ERα would promote ER+ breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Rehana Qureshi
- Breast Cancer Program, Lombardi Comprehensive Cancer Centre, Department of Oncology, Georgetown University, Washington, DC 20007, USA; Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center University of Miami Miller School of Medicine, Miami, FL 33136, USA; John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Manuel Picon-Ruiz
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain; Biosanitary Institute of Granada (ibs. GRANADA), University of Granada, 18071 Granada, Spain
| | - Maiko Sho
- Breast Cancer Program, Lombardi Comprehensive Cancer Centre, Department of Oncology, Georgetown University, Washington, DC 20007, USA
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vanessa Nunes de Paiva
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anna B Diaz-Ruano
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Tan A Ince
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Joyce Slingerland
- Breast Cancer Program, Lombardi Comprehensive Cancer Centre, Department of Oncology, Georgetown University, Washington, DC 20007, USA; Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
22
|
Garan LAW, Xiao Y, Lin WC. 14-3-3τ drives estrogen receptor loss via ERα36 induction and GATA3 inhibition in breast cancer. Proc Natl Acad Sci U S A 2022; 119:e2209211119. [PMID: 36252018 PMCID: PMC9618134 DOI: 10.1073/pnas.2209211119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
About one-fourth of recurrent estrogen receptor-positive (ER+) breast cancers lose ER expression, leading to endocrine therapy failure. However, the mechanisms underlying ER loss remain to be fully explored. We now show that 14-3-3τ, up-regulated in ∼60% of breast cancer, drives the conversion of ER+ to ER- and epithelial-to-mesenchymal transition (EMT). We identify ERα36, an isoform of ERα66, as a downstream effector of 14-3-3τ. Overexpression of 14-3-3τ induces ERα36 in xenografts and tumor spheroids. The regulation is further supported by a positive correlation between ERα36 and 14-3-3τ expression in human breast cancers. ERα36 can antagonize ERα66 and inhibit ERα66 expression. Isoform-specific depletion of ERα36 blocks the ER conversion and EMT induced by 14-3-3τ overexpression in tumor spheroids, thus establishing ERα36 as a key mediator in 14-3-3τ-driven ER loss and EMT. ERα36 promoter is repressed by GATA3, which can be phosphorylated by AKT at consensus binding sites for 14-3-3. Upon AKT activation, 14-3-3τ binds phosphorylated GATA3 and facilitates the degradation of GATA3 causing GATA3 to lose transcriptional control over its target genes ERα66 and ERα36. We also demonstrate a role for the collaboration between 14-3-3τ and AKT in ERα36 induction and endocrine therapy resistance by three-dimensional spheroid and tamoxifen treatment models in MCF7 and T47D ER+ breast cancer cells. Thus, the 14-3-3τ-ERα36 regulation provides a previously unrecognized mechanism for ER loss and endocrine therapy failure.
Collapse
Affiliation(s)
- Lidija A. Wilhelms Garan
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | - Yang Xiao
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Weei-Chin Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
23
|
Song IH, Kim YA, Heo SH, Bang WS, Park HS, Choi YH, Lee H, Seo JH, Cho Y, Jung SW, Kim HJ, Ahn SH, Lee HJ, Gong G. The Association of Estrogen Receptor Activity, Interferon Signaling, and MHC Class I Expression in Breast Cancer. Cancer Res Treat 2022; 54:1111-1120. [PMID: 34942685 PMCID: PMC9582481 DOI: 10.4143/crt.2021.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The expression of major histocompatibility complex class I (MHC I) has previously been reported to be negatively associated with estrogen receptor (ER) expression. Furthermore, MHC I expression, level of tumor-infiltrating lymphocytes (TILs), and expression of interferon (IFN) mediator MxA are positively associated with one another in human breast cancers. This study aimed to investigate the mechanisms of association of MHC I with ER and IFN signaling. MATERIALS AND METHODS The human leukocyte antigen (HLA)-ABC protein expression was analyzed in breast cancer cell lines. The expressions of HLA-A and MxA mRNAs were analyzed in MCF-7 cells in Gene Expression Omnibus (GEO) data. ER and HLA-ABC expressions, Ki-67 labeling index and TIL levels in tumor tissue were also analyzed in ER+/ human epidermal growth factor receptor 2 (HER2)- breast cancer patients who randomly received either neoadjuvant chemotherapy or estrogen modulator treatment followed by resection. RESULTS HLA-ABC protein expression was decreased after β-estradiol treatment or hESR-GFP transfection and increased after fulvestrant or IFN-γ treatment in cell lines. In GEO data, HLA-A and MxA expression was increased after ESR1 shRNA transfection. In patients, ER Allred score was significantly lower and the HLA-ABC expression, TIL levels, and Ki-67 were significantly higher in the estrogen modulator treated group than the chemotherapy treated group. CONCLUSION MHC I expression and TIL levels might be affected by ER pathway modulation and IFN treatment. Further studies elucidating the mechanism of MHC I regulation could suggest a way to boost TIL influx in cancer in a clinical setting.
Collapse
Affiliation(s)
- In Hye Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | | | - Sun-Hee Heo
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Won Seon Bang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | | | | | | | | | - Youngjin Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Sung Wook Jung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Hee Jeong Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Sei Hyun Ahn
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
- NeogenTC Corp., Seoul,
Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| |
Collapse
|
24
|
Effects of Combined Pentadecanoic Acid and Tamoxifen Treatment on Tamoxifen Resistance in MCF−7/SC Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231911340. [PMID: 36232636 PMCID: PMC9570034 DOI: 10.3390/ijms231911340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Estrogen receptors are indicators of breast cancer adaptability to endocrine therapies, such as tamoxifen. Deficiency or absence of estrogen receptor α (ER−α) in breast cancer cells results in reduced efficacy of endocrine therapy. Here, we investigated the effect of combined tamoxifen and pentadecanoic acid therapy on ER−α−under−expressing breast cancer cells. Drug resistance gene expression patterns were determined by RNA sequencing analysis and in vitro experiments. For the first time, we demonstrate that the combined treatment of pentadecanoic acid, an odd−chain fatty acid, and tamoxifen synergistically suppresses the growth of human breast carcinoma MCF−7 stem cells (MCF−7/SCs), which were found to be tamoxifen−resistant and showed reduced ER−α expression compared with the parental MCF−7 cells. In addition, the combined treatment synergistically induced apoptosis and accumulation of sub−G1 cells and suppressed epithelial−to−mesenchymal transition (EMT). Exposure to this combination induces re−expression of ER−α at the transcriptional and protein levels, along with suppression of critical survival signal pathways, such as ERK1/2, MAPK, EGFR, and mTOR. Collectively, decreased ER−α expression was restored by pentadecanoic acid treatment, resulting in reversal of tamoxifen resistance. Overall, pentadecanoic acid exhibits the potential to enhance the efficacy of endocrine therapy in the treatment of ER−α−under−expressing breast cancer cells.
Collapse
|
25
|
Alnuaimi AR, Nair VA, Malhab LJB, Abu-Gharbieh E, Ranade AV, Pintus G, Hamad M, Busch H, Kirfel J, Hamoudi R, Abdel-Rahman WM. Emerging role of caldesmon in cancer: A potential biomarker for colorectal cancer and other cancers. World J Gastrointest Oncol 2022; 14:1637-1653. [PMID: 36187394 PMCID: PMC9516648 DOI: 10.4251/wjgo.v14.i9.1637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is a devastating disease, mainly because of metastasis. As a result, there is a need to better understand the molecular basis of invasion and metastasis and to identify new biomarkers and therapeutic targets to aid in managing these tumors. The actin cytoskeleton and actin-binding proteins are known to play an important role in the process of cancer metastasis because they control and execute essential steps in cell motility and contractility as well as cell division. Caldesmon (CaD) is an actin-binding protein encoded by the CALD1 gene as multiple transcripts that mainly encode two protein isoforms: High-molecular-weight CaD, expressed in smooth muscle, and low-molecular weight CaD (l-CaD), expressed in nonsmooth muscle cells. According to our comprehensive review of the literature, CaD, particularly l-CaD, plays a key role in the development, metastasis, and resistance to chemoradiotherapy in colorectal, breast, and urinary bladder cancers and gliomas, among other malignancies. CaD is involved in many aspects of the carcinogenic hallmarks, including epithelial mesenchymal transition via transforming growth factor-beta signaling, angiogenesis, resistance to hormonal therapy, and immune evasion. Recent data show that CaD is expressed in tumor cells as well as in stromal cells, such as cancer-associated fibroblasts, where it modulates the tumor microenvironment to favor the tumor. Interestingly, CaD undergoes selective tumor-specific splicing, and the resulting isoforms are generally not expressed in normal tissues, making these transcripts ideal targets for drug design. In this review, we will analyze these features of CaD with a focus on CRC and show how the currently available data qualify CaD as a potential candidate for targeted therapy in addition to its role in the diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Alya R Alnuaimi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Vidhya A Nair
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Lara J Bou Malhab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Anu Vinod Ranade
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Gianfranco Pintus
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| | - Mohamad Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hauke Busch
- University Cancer Center Schleswig-Holstein and Luebeck Institute for Experimental Dermatology, University of Luebeck, Luebeck 23560, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck 23560, Germany
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| | - Wael M Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
26
|
Khajah MA, Al-Ateyah A, Luqmani YA. MicroRNA expression profiling of endocrine sensitive and resistant breast cancer cell lines. Biochem Biophys Rep 2022; 31:101316. [PMID: 35879960 PMCID: PMC9307586 DOI: 10.1016/j.bbrep.2022.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background Methods Results Conclusions Around 50–60% of microRNAs were significantly differentially expressed between ER- and ER + breast cancer cell lines. Transfection of miR-200c-3p mimic into ER -ve cells induced MET and reduced cell motility. Transfecting of miR-449a inhibitor into ER -ve cells reduced cell invasion but did not induce EMT.
Collapse
|
27
|
Khajah MA, Khushaish S, Luqmani YA. Glucose deprivation reduces proliferation and motility, and enhances the anti-proliferative effects of paclitaxel and doxorubicin in breast cell lines in vitro. PLoS One 2022; 17:e0272449. [PMID: 35917304 PMCID: PMC9345370 DOI: 10.1371/journal.pone.0272449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
Background Breast cancer chemotherapy with high dose alkylating agents is severely limited by their collateral toxicity to crucial normal tissues such as immune and gut cells. Taking advantage of the selective dependence of cancer cells on high glucose and combining glucose deprivation with these agents could produce therapeutic synergy. Methods In this study we examined the effect of glucose as well as its deprivation, and antagonism using the non-metabolized analogue 2-deoxy glucose, on the proliferation of several breast cancer cell lines MCF7, MDA-MB-231, YS1.2 and pII and one normal breast cell line, using the MTT assay. Motility was quantitatively assessed using the wound healing assay. Lactate, as the end product of anaerobic glucose metabolism, secreted into culture medium was measured by a biochemical assay. The effect of paclitaxel and doxorubicin on cell proliferation was tested in the absence and presence of low concentrations of glucose using MTT assay. Results In all cell lines, glucose supplementation enhanced while glucose deprivation reduced both their proliferation and motility. Lactate added to the medium could substitute for glucose. The inhibitory effects of paclitaxel and doxorubicin were significantly enhanced when glucose concentration was decreased in the culture medium, requiring 1000-fold lesser concentration to achieve a similar degree of inhibition to that seen in glucose-containing medium. Conclusion Our data show that a synergy was obtained by combining paclitaxel and doxorubicin with glucose reduction to inhibit cancer cell growth, which in vivo, might be achieved by applying a carbohydrate-restricted diet during the limited phase of application of chemotherapy; this could permit a dose reduction of the cytotoxic agents, resulting in greater tolerance and lesser side effects.
Collapse
|
28
|
Smart E, Semina SE, Alejo LH, Kansara NS, Frasor J. Estrogen Receptor-Regulated Gene Signatures in Invasive Breast Cancer Cells and Aggressive Breast Tumors. Cancers (Basel) 2022; 14:cancers14122848. [PMID: 35740514 PMCID: PMC9221274 DOI: 10.3390/cancers14122848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Metastatic breast cancer remains a major clinical problem, contributing to significant patient mortality, which is partly due to a lack of understanding around the early changes within the primary tumor. Tumors frequently become more aggressive and less treatable due to the activation of other signaling pathways, and, in ER+ disease, one of these pathways is NFκB. The coactivation of ER and NFκB (via IKKβ) promotes invasion and metastasis, and, here, we identify the signatures that are associated with these phenotypes. These signatures improve our understanding of how ER can drive aggressive disease, and may lead to the identification of key drivers, which could potentially be targeted with future therapies. Abstract Most metastatic breast cancers arise from estrogen receptor α (ER)-positive disease, and yet the role of ER in promoting metastasis is unclear. Here, we used an ER+ breast cancer cell line that is highly invasive in an ER- and IKKβ-dependent manner. We defined two ER-regulated gene signatures that are specifically regulated in the subpopulations of invasive cells. The first consists of proliferation-associated genes, which is a known function of ER, which actually suppress rather than enhance invasion. The second signature consists of genes involved in essential biological processes, such as organelle assembly and vesicle trafficking. Importantly, the second subpopulation-specific signature is associated with aggressive disease and poor patient outcome, independently of proliferation. These findings indicate a complex interplay between ER-driven proliferation and invasion, and they define new ER-regulated gene signatures that are predictive of aggressive ER+ breast cancer.
Collapse
|
29
|
Retinoid orphan nuclear receptor alpha (RORα) suppresses the epithelial-mesenchymal transition (EMT) by directly repressing Snail transcription. J Biol Chem 2022; 298:102059. [PMID: 35605663 PMCID: PMC9218514 DOI: 10.1016/j.jbc.2022.102059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
Retinoid orphan nuclear receptor alpha (RORα) is a member of the orphan nuclear factor family and regulates gene expression by binding to ROR response elements (ROREs). RORα has been identified as a potential tumor suppressor; however, how downregulation of RORα promotes cancer progression is not fully understood. Here, we showed that protein levels of RORα were downregulated during the Snail-, Twist-, or transforming growth factor-β–induced epithelial–mesenchymal transition (EMT). We found that silencing of RORα induced expression of mesenchymal markers in MCF10A cells, accompanied by enhanced cell invasion, migration, and mammosphere formation. Furthermore, ectopic expression of RORα suppressed transforming growth factor-β–induced EMT processes in MCF10A and HMLE cells. These results indicate that downregulation of RORα is crucial for the induction of EMT in mammary epithelial cells. By analyzing gene expression profiles in control and RORα-expressing cells, we also identified Snail, a key regulator of EMT, as a potential target of RORα. We show that RORα expression significantly inhibits Snail transcription in breast cancer cells. Chromatin immunoprecipitation analysis demonstrated that RORα bound to the ROREs in promoter region of SNAI1 gene, and using the luciferase reporter assay, we showed that binding to the ROREs was critical for RORα to repress Snail transcription. Finally, rescue experiments substantiated that Snail mediates RORα function in suppressing EMT and mammosphere formation. These results reveal a novel function of RORα in suppressing EMT and identify Snail as a direct target of RORα in mammary epithelial cells.
Collapse
|
30
|
Mohammadi Ghahhari N, Sznurkowska MK, Hulo N, Bernasconi L, Aceto N, Picard D. Cooperative interaction between ERα and the EMT-inducer ZEB1 reprograms breast cancer cells for bone metastasis. Nat Commun 2022; 13:2104. [PMID: 35440541 PMCID: PMC9018728 DOI: 10.1038/s41467-022-29723-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) has been proposed to contribute to the metastatic spread of breast cancer cells. EMT-promoting transcription factors determine a continuum of different EMT states. In contrast, estrogen receptor α (ERα) helps to maintain the epithelial phenotype of breast cancer cells and its expression is crucial for effective endocrine therapies. Determining whether and how EMT-associated transcription factors such as ZEB1 modulate ERα signaling during early stages of EMT could promote the discovery of therapeutic approaches to suppress metastasis. Here we show that, shortly after induction of EMT and while cells are still epithelial, ZEB1 modulates ERα-mediated transcription induced by estrogen or cAMP signaling in breast cancer cells. Based on these findings and our ex vivo and xenograft results, we suggest that the functional interaction between ZEB1 and ERα may alter the tissue tropism of metastatic breast cancer cells towards bone. The epithelial mesenchymal transition (EMT) is important in the metastatic spread of cancer cells. Here, the authors show that the EMT transcription factor, ZEB1, can modify estrogen receptor α during EMT and facilitate the migration of breast cancer cells to the bone
Collapse
Affiliation(s)
| | - Magdalena K Sznurkowska
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zürich, Switzerland
| | - Nicolas Hulo
- Institute of Genetics and Genomics of Geneva, Université de Genève, 1211, Genève 4, Switzerland
| | - Lilia Bernasconi
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zürich, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland.
| |
Collapse
|
31
|
Das P, Gupta A, Desai KV. JMJD6 orchestrates a transcriptional program in favor of endocrine resistance in ER+ breast cancer cells. Front Endocrinol (Lausanne) 2022; 13:1028616. [PMID: 36419768 PMCID: PMC9678079 DOI: 10.3389/fendo.2022.1028616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
High expression of Jumonji domain containing protein 6 (JMJD6) is strongly associated with poor prognosis in estrogen receptor positive (ER+) breast cancer. We overexpressed JMJD6 in MCF7 cells (JOE cells) and performed RNA-seq analysis. 76% of differentially expressed genes (DEGs) overlapped with ER target genes. Pathway analysis revealed that JMJD6 upregulated a larger subset of genes related to cell proliferation as compared to ER. Interestingly, JOE cells showed a decrease in ER target gene expression prompting us to check ER levels. Indeed, JOE cells showed a significant decrease in both ESR1 and ER levels and JMJD6 siRNA transfection increased the expression of both. Additionally, JOE cells showed increased RET and ERK1 expression, events associated with resistance to endocrine therapy. Accordingly, JOE cells displayed lower sensitivity and survived better at higher doses of 4-hydroxy tamoxifen (Tam) as compared to parental MCF-7 cells. Conversely, LTED-I and TAM R that resist Tam induced death, showed high expression of JMJD6. Further, JMJD6 siRNA treatment decreased growth and improved Tam sensitivity in TAM R. Comparison of JOE DEGs with known Tam signature genes showed a substantial overlap. Overall, these data suggest that blocking ER alone in patients may not eradicate proliferation of JMJD6 expressing ER+ cells and JMJD6 may predispose and sustain endocrine therapy resistance. We propose that immunostaining for JMJD6 could be developed as a potential marker for predicting endocrine therapy resistance. Further, antagonizing JMJD6 action in women expressing higher amounts of this protein, may offer a greater clinical benefit than endocrine therapy.
Collapse
|
32
|
Khajah MA, Khushaish S, Luqmani YA. Lactate Dehydrogenase A or B Knockdown Reduces Lactate Production and Inhibits Breast Cancer Cell Motility in vitro. Front Pharmacol 2021; 12:747001. [PMID: 34744727 PMCID: PMC8564068 DOI: 10.3389/fphar.2021.747001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Lactate dehydrogenase (LDH) plays an important role in cancer pathogenesis and enhanced expression/activity of this enzyme has been correlated with poor prognosis. In this study we determined the expression profile of LDH-A and B in normal as well as in endocrine-resistant and -responsive breast cancer cells and the effect of their knockdown on LDH activity, lactate production, proliferation and cell motility. Methods: Knockdown experiments were performed using siRNA and shRNA. The expression profile of LDH and signaling molecules was determined using PCR and western blotting. Intracellular LDH activity and extracellular lactate levels were measured by a biochemical assay. Cell motility was determined using wound healing, while proliferation was determined using MTT assay. Results: LDH-A was expressed in all of the tested cell lines, while LDH-B was specifically expressed only in normal and endocrine-resistant breast cancer cells. This was correlated with significantly enhanced LDH activity and lactate production in endocrine resistant breast cancer cells when compared to normal or endocrine responsive cancer cells. LDH-A or -B knockdown significantly reduced LDH activity and lactate production, which led to reduced cell motility. Exogenous lactate supplementation enhanced cell motility co-incident with enhanced phosphorylation of ERK1/2 and reduced E-cadherin expression. Also, LDH-A or -B knockdown reduced ERK 1/2 phosphorylation. Conclusion: Enhanced cell motility in endocrine resistant breast cancer cells is at least in part mediated by enhanced extracellular lactate levels, and LDH inhibition might be a promising therapeutic target to inhibit cancer cell motility.
Collapse
|
33
|
Chantzara E, Xenidis N, Kallergi G, Georgoulias V, Kotsakis A. Circulating tumor cells as prognostic biomarkers in breast cancer: current status and future prospects. Expert Rev Mol Diagn 2021; 21:1037-1048. [PMID: 34328384 DOI: 10.1080/14737159.2021.1962710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction : Despite advances in diagnostic and therapeutic techniques breast cancer is still associated with significant morbidity and mortality. CTCs play a crucial role in the metastatic process, which is the main cause of death in BC patients.Areas covered : This review discusses the prognostic and predictive value of CTCs and their prospective in management of BC patients.Expert opinion : The analysis of CTCs through improved technologies offers a new insight into the metastatic cascade. Assessment of the number and molecular profile of CTCs holds great promises for disease monitoring and therapeutic decisions. However, more research is needed until they can be used in therapeutic decisions in clinical practice.
Collapse
Affiliation(s)
- Evagelia Chantzara
- Department of Medical Oncology, University General Hospital of Larissa, Larissa, Thessaly, Greece
| | - Nikolaos Xenidis
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Alexandroupolis, Thrace, Greece
| | - Galatea Kallergi
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Vassilis Georgoulias
- Department of Medical Oncology, Hellenic Oncology Research Group (HORG), Athens, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, Larissa, Thessaly, Greece.,Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Thessaly, Greece
| |
Collapse
|
34
|
Hafez HG, Mohareb RM, Salem SM, Matloub AA, Eskander EF, Ahmed HH. Molecular Mechanisms Underlying the Anti-Breast Cancer Stem Cell Activity of Pterocladia capillacea and Corallina officinalis Polysaccharides. Anticancer Agents Med Chem 2021; 22:1213-1225. [PMID: 34315394 DOI: 10.2174/1871520621666210727122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to appraise the activity of Pterocladia capillacea and Corallina officinalis polysaccharides against breast cancer stem cells (BCSCs). P. capillacea and C. officinalis polysaccharides were characterized to be sulfated polysaccharide-protein complexes. METHODS Cytotoxicity of the polysaccharides against MDA-MB-231 and MCF-7 cell lines along with their impact on CD44+/CD24- and aldehyde dehydrogenase 1(ALDH1) positive BCSC population were determined. Their effect on gene expression of CSC markers, Wnt/β-catenin and Notch signaling pathways was evaluated. RESULTS P. capillacea and C. officinalis polysaccharides inhibited the growth of breast cancer cells and reduced BCSC subpopulation. P. capillacea polysaccharides significantly down-regulated OCT4, SOX2, ALDH1A3 and vimentin in MDA-MB-231 as well as in MCF-7 cells except for vimentin that was up-regulated in MCF-7 cells. C. officinalis polysaccharides exhibited similar effects except for OCT4 that was up-regulated in MDA-MB-231 cells. Significant suppression of Cyclin D1 gene expression was noted in MDA-MB-231 and MCF-7 cells treated with P. capillacea or C. officinalis polysaccharides. β-catenin and c-Myc genes were significantly down-regulated in MDA-MB-231 cells treated with C. officinalis and P. capillacea polysaccharides, respectively, while being up-regulated in MCF-7 cells treated with either of them. Additionally, P. capillacea and C. officinalis polysaccharides significantly down-regulated Hes1 gene in MCF-7 cells despite increasing Notch1 gene expression level. However, significant down-regulation of Notch1 gene was observed in MDA-MB-231 cells treated with P. capillacea polysaccharides. CONCLUSION Collectively, this study provides evidence for the effectiveness of P. capillacea and C. officinalis polysaccharides in targeting BCSCs through interfering with substantial signaling pathways contributing to their functionality.
Collapse
Affiliation(s)
- Hebatallah G Hafez
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Rafat M Mohareb
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Sohair M Salem
- Molecular Genetics and Enzymology Department, National Research Centre, Dokki, Giza, Egypt
| | - Azza A Matloub
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Emad F Eskander
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
35
|
Sahoo S, Mishra A, Kaur H, Hari K, Muralidharan S, Mandal S, Jolly MK. A mechanistic model captures the emergence and implications of non-genetic heterogeneity and reversible drug resistance in ER+ breast cancer cells. NAR Cancer 2021; 3:zcab027. [PMID: 34316714 PMCID: PMC8271219 DOI: 10.1093/narcan/zcab027] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Resistance to anti-estrogen therapy is an unsolved clinical challenge in successfully treating ER+ breast cancer patients. Recent studies have demonstrated the role of non-genetic (i.e. phenotypic) adaptations in tolerating drug treatments; however, the mechanisms and dynamics of such non-genetic adaptation remain elusive. Here, we investigate coupled dynamics of epithelial–mesenchymal transition (EMT) in breast cancer cells and emergence of reversible drug resistance. Our mechanism-based model for underlying regulatory network reveals that these two axes can drive one another, thus enabling non-genetic heterogeneity in a cell population by allowing for six co-existing phenotypes: epithelial-sensitive, mesenchymal-resistant, hybrid E/M-sensitive, hybrid E/M-resistant, mesenchymal-sensitive and epithelial-resistant, with the first two ones being most dominant. Next, in a population dynamics framework, we exemplify the implications of phenotypic plasticity (both drug-induced and intrinsic stochastic switching) and/or non-genetic heterogeneity in promoting population survival in a mixture of sensitive and resistant cells, even in the absence of any cell–cell cooperation. Finally, we propose the potential therapeutic use of mesenchymal–epithelial transition inducers besides canonical anti-estrogen therapy to limit the emergence of reversible drug resistance. Our results offer mechanistic insights into empirical observations on EMT and drug resistance and illustrate how such dynamical insights can be exploited for better therapeutic designs.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ashutosh Mishra
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Harsimran Kaur
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Srinath Muralidharan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Susmita Mandal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
36
|
Slade E, Irvin MR, Xie K, Arnett DK, Claas SA, Kind T, Fardo DW, Graf GA. Age and sex are associated with the plasma lipidome: findings from the GOLDN study. Lipids Health Dis 2021; 20:30. [PMID: 33812378 PMCID: PMC8019182 DOI: 10.1186/s12944-021-01456-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Background Developing an understanding of the biochemistry of aging in both sexes is critical for managing disease throughout the lifespan. Lipidomic associations with age and sex have been reported, but prior studies are limited by measurements in serum rather than plasma or by participants taking lipid-lowering medications. Methods Our study included lipidomic data from 980 participants aged 18–87 years old from the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN). Participants were off lipid-lowering medications for at least 4 weeks, and signal intensities of 413 known lipid species were measured in plasma. We examined linear age and sex associations with signal intensity of (a) 413 lipid species; (b) 6 lipid classes (glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, fatty acids, and acylcarnitines); and (c) 15 lipid subclasses; as well as with the particle sizes of three lipoproteins. Results Significant age associations were identified in 4 classes, 11 subclasses, 147 species, and particle size of one lipoprotein while significant sex differences were identified in 5 classes, 12 subclasses, 248 species, and particle sizes of two lipoproteins. For many lipid species (n = 97), age-related associations were significantly different between males and females. Age*sex interaction effects were most prevalent among phosphatidylcholines, sphingomyelins, and triglycerides. Conclusion We identified several lipid species, subclasses, and classes that differ by age and sex; these lipid phenotypes may serve as useful biomarkers for lipid changes and associated cardiovascular risk with aging in the future. Future studies of age-related changes throughout the adult lifespan of both sexes are warranted. Trial registration ClinicalTrials.gov NCT00083369; May 21, 2004. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01456-2.
Collapse
Affiliation(s)
- Emily Slade
- Department of Biostatistics, University of Kentucky, 725 Rose St, Multidisciplinary Science Building, Suite 205, Lexington, KY, 40536, USA.
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin Xie
- Department of Biostatistics, University of Kentucky, 725 Rose St, Multidisciplinary Science Building, Suite 205, Lexington, KY, 40536, USA
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Steven A Claas
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Tobias Kind
- West Coast Metabolomics Center, University of California, Davis, CA, USA
| | - David W Fardo
- Department of Biostatistics, University of Kentucky, 725 Rose St, Multidisciplinary Science Building, Suite 205, Lexington, KY, 40536, USA
| | - Gregory A Graf
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
37
|
Sharma A, Upadhyay V, Sarkar M, Mishra M, Thacker G, Trivedi AK. Proteomic analysis of TGFβ-induced A549 secretome identifies putative regulators of epithelial-mesenchymal transition. Biotechnol Appl Biochem 2021; 69:442-450. [PMID: 33559923 DOI: 10.1002/bab.2121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/29/2021] [Indexed: 11/10/2022]
Abstract
Imparting epithelial to mesenchymal transition (EMT) during cellular transformation, a major driving force behind tumor progression, is one of the notorious oncogenic activities of transforming growth factor β (TGFβ); however, the secretary factors released during TGFβ-induced EMT that may have role in potentiating EMT and tumor progression are poorly known. This study was undertaken to identify such secreted protein factors from TGFβ-induced A549 cells cultured in serum-free chemically defined medium (FreestyleTM ) using Matrix Assisted Laser Desorption Ionization-Time of flight/Time of flight (MALDI-TOF/TOF) mass spectrometry. We identified some of the potential factors such as ESR, ANXA2, ALDH1A, TGFβ-induced protein ig-h3, and PAI-1 that were not only secreted but some were also elevated in TGFβ-induced A549 cells. Interestingly, these factors are widely reported to play crucial role in EMT induction and progression, which not only validates our findings but also opens avenues for further investigation, if upon secretion they act exogenously through certain receptors to potentiate cellular signaling involved in EMT induction and tumor progression.
Collapse
Affiliation(s)
- Akshay Sharma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, CDRI, Lucknow, UP, India
| | - Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, CDRI, Lucknow, UP, India
| | - Monika Sarkar
- Division of Cancer Biology, CSIR-Central Drug Research Institute, CDRI, Lucknow, UP, India
| | - Mukul Mishra
- Division of Cancer Biology, CSIR-Central Drug Research Institute, CDRI, Lucknow, UP, India
| | - Gatha Thacker
- Division of Cancer Biology, CSIR-Central Drug Research Institute, CDRI, Lucknow, UP, India
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, CDRI, Lucknow, UP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
38
|
Wan X, Hou J, Liu S, Zhang Y, Li W, Zhang Y, Ding Y. Estrogen Receptor α Mediates Doxorubicin Sensitivity in Breast Cancer Cells by Regulating E-Cadherin. Front Cell Dev Biol 2021; 9:583572. [PMID: 33614637 PMCID: PMC7889969 DOI: 10.3389/fcell.2021.583572] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022] Open
Abstract
Anthracyclines resistance is commonly seen in patients with estrogen receptor α (ERα) positive breast cancer. Epithelial-mesenchymal transition (EMT), which is characterized with the loss of epithelial cell polarity, cell adhesion and acquisition of new invasive property, is considered as one of the mechanisms of chemotherapy-induced drug resistance. In order to identify factors that associated with doxorubicin resistance, we performed in vitro and in vivo experiments using human and mouse breast cancer cell lines with different ERα status. Cell survival experiments revealed that ERα-positive cells (MCF-7 and MCF-7/ADR cell lines), were less sensitive to doxorubicin than ERα-negative (MDA-MB-231, MDA-MB-468) cells, and mouse mammary carcinoma cells (4T-1). The expression of E-cadherin reduced in low-invasive ERα-positive MCF-7 cells after treatment with doxorubicin, indicating epithelial mesenchymal transition. In contrast, the expression of E-cadherin was upregulated in high-invasive ERα-negative cells, showing mesenchymal-epithelial transition (MET). Moreover, it was found that the growth inhibition of 4T-1 cells by doxorubicin was positively correlated with the expression of E-cadherin. In a mouse breast cancer xenograft model, E-cadherin was overexpressed in the primary tumor tissues of the doxorubicin-treated mice. In ERα-positive MCF-7 cells, doxorubicin treatment upregulated the expression of EMT-related transcription factors Snail and Twist, that regulate the expression of E-cadherin. Following overexpression of ERα in ERα-negative cells (MDA-MB-231 and MDA-MB-468), doxorubicin enhanced the upregulation of Snail and Twist, decreased expression of E-cadherin, and decreased the sensitivity of cells to doxorubicin. In contrast, inhibition of ERα activity increased the sensitivity to doxorubicin in ERα-positive MCF-7 cells. These data suggest that the regulation of Snail and/or Twist varies depends on different ERα status. Therefore, doxorubicin combined with anti-estrogen receptor α therapy could improve the treatment efficacy of doxorubicin in ERα-positive breast cancer.
Collapse
Affiliation(s)
- Xiaoqing Wan
- Laboratory of Molecular Oncology, Weifang Medical University, Weifang, China.,Department of Pathophysiology, Weifang Medical University, Weifang, China
| | - Jiaxin Hou
- School of Physical Education & Sports Science, Qufu Normal University, Qufu, China
| | - Shurong Liu
- Laboratory of Molecular Oncology, Weifang Medical University, Weifang, China
| | - Yanli Zhang
- Department of Pathophysiology, Weifang Medical University, Weifang, China
| | - Wenqing Li
- Laboratory of Molecular Oncology, Weifang Medical University, Weifang, China
| | - Yanru Zhang
- Laboratory of Molecular Oncology, Weifang Medical University, Weifang, China
| | - Yi Ding
- Department of Pathophysiology, Weifang Medical University, Weifang, China.,Key Laboratory of Applied Pharmacology, Weifang Medical University, Weifang, China
| |
Collapse
|
39
|
Lin M, Wang YN, Ye Y, Xiong Z, Guo F, Chen H. DNAJC12 as a Mediator Between ESR1 and ERBB4 in Breast Carcinoma Cells. Front Oncol 2021; 11:582277. [PMID: 33718139 PMCID: PMC7943744 DOI: 10.3389/fonc.2021.582277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
Mutation of the DNAJC12 gene is typically associated with non-progressive Parkinsonism, but is also detectable in breast carcinoma where its contribution and mechanisms are unexplored. In breast carcinoma, ESR1 was positively correlated with DNAJC12 and ERBB4, and DNAJC12 was positively correlated with ERBB4. We used the GEO2R tool to compare differential gene expression of MCF-7 cells, following ESR1 knockdown (GEO database, E-GEOD-27473 array), and found decreased expression of DNAJC12 and ERBB4 in ESR1-silenced MCF-7 cells. The number of identical genes having correlativity with ESR1, DNAJC12, or ERBB4 was 12,165 (66.41%). These results suggest that ESR1 can promote the expression of DNAJC12 and ERBB4, and DNAJC12 can enhance the expression of ERBB4 in MCF-7 cells, implying that there may be a regulatory network among these three genes.
Collapse
Affiliation(s)
- Mianjie Lin
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Ya-Nan Wang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Yixin Ye
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Zhelei Xiong
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Fengbiao Guo
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Haibin Chen
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
- *Correspondence: Haibin Chen,
| |
Collapse
|
40
|
Tantengco OAG, Richardson LS, Menon R. Effects of a gestational level of estradiol on cellular transition, migration, and inflammation in cervical epithelial and stromal cells. Am J Reprod Immunol 2020; 85:e13370. [PMID: 33152143 DOI: 10.1111/aji.13370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Estrogen (E2) is one of the main steroid hormones associated with pregnancy and parturition. High levels of E2 increase uterine contractions, promote fetal membrane weakening, and induce degradation of the cervical extracellular matrix (ECM). Current evidence supports the role of E2 in epithelial-to-mesenchymal transition (EMT) and inflammation in different cell types; however, its effects on the cellular components of the cervix are still unknown. METHOD OF STUDY In this study, we assessed the effects of gestational levels of E2 in: (a) the cellular transition of endocervical epithelial cells (EEC) and cervical stromal cells (CSC) in vitro using immunocytochemical staining and Western blot analyses for EMT markers (cytokeratin-18, E-cadherin, N-cadherin, SNAIL, and vimentin); (b) cell migration using in vitro scratch assays; (c) inflammatory cytokine (interleukin 1β and TNF-α) and MMP9 production under untreated and lipopolysaccharide (LPS)-treated conditions using immunoassays. RESULTS E2 treatment and co-treatment with LPS as a proxy for infection maintained the metastate of EEC (expression of both cytokeratin and vimentin) and the mesenchymal state of CSC. E2 delayed wound healing, which mimics the tissue remodeling process, in EEC and CSC. E2 led to persistently elevated levels of vimentin throughout the EEC wound healing process. E2 did not affect inflammatory cytokine production by EEC and CSC but increased MMP9 production by EEC. CONCLUSION Collectively, these results show that third trimester levels of E2 may permit localized inflammation, increase MMP-9 production, and cause an EMT-mediated impairment of the remodeling process in the cervix in vitro. These data suggest a potential contribution of E2 in cervical ripening.
Collapse
Affiliation(s)
- Ourlad Alzeus G Tantengco
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
41
|
Cheng R, Qi L, Kong X, Wang Z, Fang Y, Wang J. Identification of the Significant Genes Regulated by Estrogen Receptor in Estrogen Receptor-Positive Breast Cancer and Their Expression Pattern Changes When Tamoxifen or Fulvestrant Resistance Occurs. Front Genet 2020; 11:538734. [PMID: 33133141 PMCID: PMC7550672 DOI: 10.3389/fgene.2020.538734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/27/2020] [Indexed: 01/21/2023] Open
Abstract
Breast cancer is the most frequent malignant tumor in women, and the estrogen receptor (ER) plays a vital role in the vast majority of breast cancers. The purpose of the present study was to identify the significant genes regulated by ER in ER-positive breast cancer and to explore their expression pattern changes when tamoxifen or fulvestrant resistance occurs. For this purpose, the gene expression profiles GSE11324, GSE27473, and GSE5840 from the Gene Expression Omnibus database were used, which contain gene expression data from MCF7 cells treated with estrogen, MCF7 cells with silencing of ER, and tamoxifen- and fulvestrant-resistant MCF7 cells treated with estrogen (17β-estradiol), respectively. Differentially expressed genes (DEGs) between the treatment group and negative control were identified and subjected to pathway enrichment and protein–protein interaction (PPI) analyses. There were 230 DEGs in common among the three datasets, including 160 genes positively regulated by ER and 70 genes negatively regulated by ER. DEGs mainly showed enrichment for pathways in cancer, progesterone-mediated oocyte maturation, RNA transport, glycerophospholipid metabolism, oocyte meiosis, platelet activation, and so on. PPI network and modular analysis selected three significant clusters containing 19 genes. A total of 44 genes were involved in Kyoto Encyclopedia of Gene and Genome pathway results or PPI modular analysis, and 16 of them were found to correlate with relapse-free survival in patients with ER+/human epidermal growth factor receptor 2-negative breast cancer who had undergone endocrine therapies only. Some of the genes’ expression patterns were different among wild-type, tamoxifen-resistant, and fulvestrant-resistant MCF7 cells such as DDX18, ANAPC7, MAD2L1, RSL1D1, and CALCR, etc., indicating different resistance mechanisms and potential prognostic markers or therapeutic targets for fulvestrant- or tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Ran Cheng
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liqiang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Estradiol Induces Epithelial to Mesenchymal Transition of Human Glioblastoma Cells. Cells 2020; 9:cells9091930. [PMID: 32825553 PMCID: PMC7564468 DOI: 10.3390/cells9091930] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/02/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
The mesenchymal phenotype of glioblastoma multiforme (GBM), the most frequent and malignant brain tumor, is associated with the worst prognosis. The epithelial–mesenchymal transition (EMT) is a cell plasticity mechanism involved in GBM malignancy. In this study, we determined 17β-estradiol (E2)-induced EMT by changes in cell morphology, expression of EMT markers, and cell migration and invasion assays in human GBM-derived cell lines. E2 (10 nM) modified the shape and size of GBM cells due to a reorganization of actin filaments. We evaluated EMT markers expression by RT-qPCR, Western blot, and immunofluorescence.We found that E2 upregulated the expression of the mesenchymal markers, vimentin, and N-cadherin. Scratch and transwell assays showed that E2 increased migration and invasion of GBM cells. The estrogen receptor-α (ER-α)-selective agonist 4,4’,4’’-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT, 10 nM) affected similarly to E2 in terms of the expression of EMT markers and cell migration, and the treatment with the ER-α antagonist methyl-piperidino-pyrazole (MPP, 1 μM) blocked E2 and PPT effects. ER-β-selective agonist diarylpropionitrile (DNP, 10 nM) and antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazole[1,5-a]pyrimidin-3-yl]phenol (PHTPP, 1 μM) showed no effects on EMT marker expression. These data suggest that E2 induces EMT activation through ER-α in human GBM-derived cells.
Collapse
|
43
|
Chen CH, Zheng R, Tokheim C, Dong X, Fan J, Wan C, Tang Q, Brown M, Liu JS, Meyer CA, Liu XS. Determinants of transcription factor regulatory range. Nat Commun 2020; 11:2472. [PMID: 32424124 PMCID: PMC7235260 DOI: 10.1038/s41467-020-16106-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/14/2020] [Indexed: 01/03/2023] Open
Abstract
Characterization of the genomic distances over which transcription factor (TF) binding influences gene expression is important for inferring target genes from TF chromatin immunoprecipitation followed by sequencing (ChIP-seq) data. Here we systematically examine the relationship between thousands of TF and histone modification ChIP-seq data sets with thousands of gene expression profiles. We develop a model for integrating these data, which reveals two classes of TFs with distinct ranges of regulatory influence, chromatin-binding preferences, and auto-regulatory properties. We find that the regulatory range of the same TF bound within different topologically associating domains (TADs) depend on intrinsic TAD properties such as local gene density and G/C content, but also on the TAD chromatin states. Our results suggest that considering TF type, binding distance to gene locus, as well as chromatin context is important in identifying implicated TFs from GWAS SNPs.
Collapse
Affiliation(s)
- Chen-Hao Chen
- Department of Data Sciences, Dana-Farber Cancer Institute. Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Biological and Biomedical Science Program, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rongbin Zheng
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Collin Tokheim
- Department of Data Sciences, Dana-Farber Cancer Institute. Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xin Dong
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jingyu Fan
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Changxin Wan
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qin Tang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jun S Liu
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - Clifford A Meyer
- Department of Data Sciences, Dana-Farber Cancer Institute. Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - X Shirley Liu
- Department of Data Sciences, Dana-Farber Cancer Institute. Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Statistics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
44
|
Li C, Zheng Y, Pu K, Zhao D, Wang Y, Guan Q, Zhou Y. A four-DNA methylation signature as a novel prognostic biomarker for survival of patients with gastric cancer. Cancer Cell Int 2020; 20:88. [PMID: 32206039 PMCID: PMC7085204 DOI: 10.1186/s12935-020-1156-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/26/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is the fifth most frequently diagnosed cancer and the third leading cause of cancer-related mortality. Lack of prognostic indicators for patient survival hinders GC treatment and survival. Methods and results Methylation profile data of patients with GC obtained from The Cancer Genome Atlas (TCGA) database were analyzed to identify methylation sites as biomarkers for GC prognosis. The cohort was divided into training and validation sets. Univariate Cox, LASSO regression,and multivariate Cox analyses revealed a close correlation of a four-DNA methylation signature as a risk score model with the overall survival of patients with GC. The survival between high-risk and low-risk score patients with GC was significantly different. Analyses of receiver operating characteristics revealed a high prognostic accuracy of the four-DNA methylation signature in patients with GC. The subgroup analysis indicated that the accuracy included that for anatomical region, histologic grade, TNM stage, pathological stage, and sex. The GC prognosis based on the four-DNA methylation signature was more precise than that based on known biomarkers. Conclusions The four-DNA methylation signature could serve as a novel independent prognostic factor that could be an important tool to predict the prognostic outcome of GC patients. This potential must be verified in a large-scale population cohort study and through basic research studies.
Collapse
Affiliation(s)
- Chunmei Li
- 1Key Laboratory for Gastrointestinal Diseases, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,2Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ya Zheng
- 1Key Laboratory for Gastrointestinal Diseases, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,3Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ke Pu
- 1Key Laboratory for Gastrointestinal Diseases, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,3Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Da Zhao
- 2Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- 1Key Laboratory for Gastrointestinal Diseases, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,3Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Quanlin Guan
- 4Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- 1Key Laboratory for Gastrointestinal Diseases, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,3Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
45
|
Loss of Estrogen Receptors is Associated with Increased Tumor Aggression in Laryngeal Squamous Cell Carcinoma. Sci Rep 2020; 10:4227. [PMID: 32144339 PMCID: PMC7060328 DOI: 10.1038/s41598-020-60675-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/20/2020] [Indexed: 01/27/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) responds to 17β-estradiol via estrogen-receptor (ER, transcribed from ESR1) dependent mechanisms, but is not recognized as a hormonally responsive cancer. 17β-estradiol production by LSCC cell lines UM-SCC-11A and UM-SCC-12 was examined. Wild type (WT) and ESR1-silenced LSCC cultures and xenografts were examined for 17β-estradiol responsiveness in vivo. 14 LSCC and surrounding epithelial samples at various pathological stages were obtained from patients; ERα and ERβ expression were verified using data from the total cancer genome atlas. UM-SCC-11A and UM-SCC-12 both produce 17β-estradiol, but only UM-SCC-12, not UM-SCC-11A, xenograft tumors grow larger in vivo in response to systemic 17β-estradiol treatments. ERα66 and ERα36 expression inversely correlated with clinical cancer stage and tumor burden. LSCC ERα66 expression was higher compared to surrounding epithelia in indolent samples but lower in aggressive LSCC. ERβ expression was highly variable. High ESR1 expression correlated with improved survival in LSCC. Loss of ERα66 expression inversely correlated with prognosis in LSCC. ERα66 may be a histopathological marker of aggression in LSCC.
Collapse
|
46
|
Inflammatory macrophage derived TNFα downregulates estrogen receptor α via FOXO3a inactivation in human breast cancer cells. Exp Cell Res 2020; 390:111932. [PMID: 32145253 DOI: 10.1016/j.yexcr.2020.111932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Patients with estrogen receptor α positive (ERα+) breast cancer can respond to endocrine therapy, but treatment resistance is common and associated with downregulation of ERα expression in the dormant residual cells. Here we show, using long-term NSG xenograft models of human breast cancer and primary human monocytes, in vitro primary cell cultures and tumors from breast cancer patients, that macrophage derived tumor necrosis factor alpha (TNFα) downregulates ERα in breast cancer cells via inactivation of the transcription factor Forkhead box O transcription factor 3a (FOXO3a). Moreover, presence of tumor associated macrophages in the primary tumor of breast cancer patients, was associated with ERα negativity, and with worse prognosis in patients with ERα+ tumors. We propose that pro-inflammatory macrophages, despite being tumoricidal, may have direct effects on tumor progression and endocrine resistance in breast cancer patients. Our findings suggest that TNFα antagonists should be evaluated for treatment of ERα+ breast cancer.
Collapse
|
47
|
Ahmad AE, Khajah MA, Khushaish S, Luqmani YA. Aquaporin expression in breast cancer and their involvement in bleb formation, cell motility and invasion in endocrine resistant variant cells. Int J Oncol 2020; 56:1014-1024. [PMID: 32319574 DOI: 10.3892/ijo.2020.4976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/16/2020] [Indexed: 11/05/2022] Open
Abstract
Estrogen receptor (ER)‑silenced breast cancer cell lines exhibit endocrine resistance and morphological changes from an epithelial to a mesenchymal phenotype. These cells also display increased motility and invasive properties that are further accentuated by exposure to an alkaline pH, exhibiting dynamic plasma membrane blebbing and cytoplasmic streaming. These latter morphological changes are hypothesized to involve substantial water movement across the plasma membrane, contributing to bleb formation; this may involve aquaporin channel proteins (AQPs). AQP 1, 3, 4 and 5 expression/localization was examined via reverse transcription‑quantitative PCR, western blotting and confocal microscopy in endocrine‑sensitive (YS1.2) and ‑resistant (pII and MDA‑MB‑231) breast cancer cells, as well as normal breast epithelial cells (MCF10A). The effects of osmotic changes on bleb formation were examined via live cell imaging. AQP3 protein expression was knocked down by small interfering RNA (siRNA) transfection, and the effect of its reduced expression on bleb formation, cell motility and invasion were determined via immunofluorescence, scratch and Cultrex assays, respectively. Expression of the four AQPs varied across the different cell lines, and exhibited nuclear, cytoplasmic and membranous localization. Osmotic changes affected the formation of blebs. In pII cells exposed to alkaline pH, AQP3 was observed to be redistributed from the nucleus into the newly formed blebs. siRNA‑mediated knockdown of AQP3 in pII cells significantly reduced cellular blebbing induced by alkaline pH, as well as motility and invasion. These data suggested that AQP3, and potentially other aquaporins, may participate in the processes leading to blebbing of endocrine‑resistant cells which is proposed to be a mechanism that drives tumor metastasis.
Collapse
Affiliation(s)
- Ayah E Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Maitham A Khajah
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Sarah Khushaish
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Yunus A Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| |
Collapse
|
48
|
Hypoxic environment may enhance migration/penetration of endocrine resistant MCF7- derived breast cancer cells through monolayers of other non-invasive cancer cells in vitro. Sci Rep 2020; 10:1127. [PMID: 31980706 PMCID: PMC6981140 DOI: 10.1038/s41598-020-58055-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
The response of cancer cells to hypoxic conditions found within the interior of a tumor mass is mediated through the hypoxia inducible factor (HIF) cascade and is thought to promote metastasis. However, given their distant proximity from blood vessels as compared to normoxic cells at the vascularised tumor periphery, it is uncertain if these cells can migrate through the tumor mass to gain access. Hypoxia was simulated by exposure to cobalt chloride or deferoxamine in normal (MCF10A) and cancerous [estrogen receptor (ER)−ve (pII), and ER +ve (YS1.2/ EII)] cells. In this report, HIF1α expression and localization was measured using western blotting, ELISA, and immunofluorescence, cell proliferation by MTT assay, motility and invasion by wound healing, live cell imaging, matrigel and co-culture in chambered slides. We found that the expression and nuclear translocation of HIF1α was significantly elevated by hypoxia, which inhibited cell proliferation, but significantly increased motility of pII cells and their penetration into and through a dense layer of adjacent EII cells, as well as their selective emergence out of a co-culture. These data suggest that endocrine resistant pII cancer cells, having undergone epithelial to mesenchymal transition are able to penetrate through other cell layers, with possible enhancement in response to hypoxia.
Collapse
|
49
|
Verma A, Schwartz N, Cohen DJ, Boyan BD, Schwartz Z. Estrogen signaling and estrogen receptors as prognostic indicators in laryngeal cancer. Steroids 2019; 152:108498. [PMID: 31539535 DOI: 10.1016/j.steroids.2019.108498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022]
Abstract
Laryngeal squamous cell carcinoma (LSCC) has been shown to respond to 17β-estradiol. However, the presence and characterization of estrogen receptors (ER) and other sex hormone receptors in LSCC are still being determined. Sex hormone receptors and the way sex hormones impact LSCC tumors are important for understanding which patients would benefit from hormone therapies, such as anti-estrogen therapies. This information also has prognostic value, as there may be a correlation between ER profiles and LSCC aggression. Recent work by our team and others has shown that the canonical ER, estrogen receptor α (ERα), and its splice variant ERα36, are important modulators of estrogen signaling in LSCC. This review describes some common 17β-estradiol signaling pathways, and explains how these signaling pathways might control LSCC tumor growth. We also show that loss of ERα, but not ERα36, imbues LSCC with enhanced aggression, a pattern which has previously only been observed in breast cancer. We make a case for using ERα as a tumorigenic modulator and pathogenic marker in LSCC on par with the use of ERα as a prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Anjali Verma
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Nofrat Schwartz
- Department of Otolaryngology, Meir Hospital, Kfar Saba, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Otolaryngology - Head and Neck Surgery and Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
50
|
Liu Z, Cao H, Shi Y, Yang R. KIAA1211 plays an oncogenic role in human non-small cell lung cancer. J Cancer 2019; 10:6747-6753. [PMID: 31777604 PMCID: PMC6856884 DOI: 10.7150/jca.35951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/31/2019] [Indexed: 12/31/2022] Open
Abstract
One of the main causes of cancer disease and death worldwide is lung cancer. Our study focused on the function of KIAA1211 in non-small cell lung cancer (NSCLC). According to the data about NSCLC patients that from the Cancer Genome Atlas (TCGA), we found that KIAA1211 in NSCLC (P=5.06E-06) was significantly higher than the adjacent normal. Lentivirus-mediated short hairpin RNA (shRNA) was used to knockdown BATF expression in the human A549 NSCLC cell line and assessed by RT-qPCR and Western blot. Cell proliferation was evaluated by MTT assay and Celigo imaging cytometry. Cell apoptosis were detected by Annexin V staining. The test results showed that KIAA1211-shRNA A549 and SPC-A-1 cells can inhibit cell proliferation, and the apoptosis rate of KIAA1211-shRNA group was significantly higher than that of the control group. Knockdown of KIAA1211 inhibited NSCLC progression in xenograft tumor model. In conclusion, KIAA1211 could regulate NSCLC cells proliferation and apoptosis in vitro and in vivo. KIAA1211 may serve as a potent target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zhengcheng Liu
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu, 210000, China
| | - Hui Cao
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu, 210000, China
| | - Ye Shi
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu, 210000, China
| | - Rusong Yang
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu, 210000, China
| |
Collapse
|