1
|
Derisoud E, Jiang H, Zhao A, Chavatte-Palmer P, Deng Q. Revealing the molecular landscape of human placenta: a systematic review and meta-analysis of single-cell RNA sequencing studies. Hum Reprod Update 2024; 30:410-441. [PMID: 38478759 PMCID: PMC11215163 DOI: 10.1093/humupd/dmae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/12/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND With increasing significance of developmental programming effects associated with placental dysfunction, more investigations are devoted to improving the characterization and understanding of placental signatures in health and disease. The placenta is a transitory but dynamic organ adapting to the shifting demands of fetal development and available resources of the maternal supply throughout pregnancy. Trophoblasts (cytotrophoblasts, syncytiotrophoblasts, and extravillous trophoblasts) are placental-specific cell types responsible for the main placental exchanges and adaptations. Transcriptomic studies with single-cell resolution have led to advances in understanding the placenta's role in health and disease. These studies, however, often show discrepancies in characterization of the different placental cell types. OBJECTIVE AND RATIONALE We aim to review the knowledge regarding placental structure and function gained from the use of single-cell RNA sequencing (scRNAseq), followed by comparing cell-type-specific genes, highlighting their similarities and differences. Moreover, we intend to identify consensus marker genes for the various trophoblast cell types across studies. Finally, we will discuss the contributions and potential applications of scRNAseq in studying pregnancy-related diseases. SEARCH METHODS We conducted a comprehensive systematic literature review to identify different cell types and their functions at the human maternal-fetal interface, focusing on all original scRNAseq studies on placentas published before March 2023 and published reviews (total of 28 studies identified) using PubMed search. Our approach involved curating cell types and subtypes that had previously been defined using scRNAseq and comparing the genes used as markers or identified as potential new markers. Next, we reanalyzed expression matrices from the six available scRNAseq raw datasets with cell annotations (four from first trimester and two at term), using Wilcoxon rank-sum tests to compare gene expression among studies and annotate trophoblast cell markers in both first trimester and term placentas. Furthermore, we integrated scRNAseq raw data available from 18 healthy first trimester and nine term placentas, and performed clustering and differential gene expression analysis. We further compared markers obtained with the analysis of annotated and raw datasets with the literature to obtain a common signature gene list for major placental cell types. OUTCOMES Variations in the sampling site, gestational age, fetal sex, and subsequent sequencing and analysis methods were observed between the studies. Although their proportions varied, the three trophoblast types were consistently identified across all scRNAseq studies, unlike other non-trophoblast cell types. Notably, no marker genes were shared by all studies for any of the investigated cell types. Moreover, most of the newly defined markers in one study were not observed in other studies. These discrepancies were confirmed by our analysis on trophoblast cell types, where hundreds of potential marker genes were identified in each study but with little overlap across studies. From 35 461 and 23 378 cells of high quality in the first trimester and term placentas, respectively, we obtained major placental cell types, including perivascular cells that previously had not been identified in the first trimester. Importantly, our meta-analysis provides marker genes for major placental cell types based on our extensive curation. WIDER IMPLICATIONS This review and meta-analysis emphasizes the need for establishing a consensus for annotating placental cell types from scRNAseq data. The marker genes identified here can be deployed for defining human placental cell types, thereby facilitating and improving the reproducibility of trophoblast cell annotation.
Collapse
Affiliation(s)
- Emilie Derisoud
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Hong Jiang
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Allan Zhao
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Pascale Chavatte-Palmer
- INRAE, BREED, Université Paris-Saclay, UVSQ, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
2
|
Sainova I, Kolyovska V, Ilieva I, Markova T, Dimitrova-Dikanarova D, Hadjiolova R. The Development of Methods for the Production of New Molecular Vaccines and Appropriate RNA Fragments to Counteract Unwanted Genes: A Pilot Study. Vaccines (Basel) 2023; 11:1226. [PMID: 37515042 PMCID: PMC10386085 DOI: 10.3390/vaccines11071226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The potential of viruses as appropriate vectors for the development of new therapeutic strategies, as well as for the design of molecular (DNA, RNA, and/or protein) vaccines via substitution of nucleotide sequences, has been proven. Among the most appropriate DNA and/or RNA fragments, members belonging to families Parvoviridae (particularly adeno-associated virus, AAV) and Poxviridae have frequently been suggested for this purpose. In previous studies, the vaccine avipoxvirus strains FK (fowl) and Dessau (pigeon) have been proven able to infect mammalian cells (as well as avian cells), and to replicate productively in a small number of them; thus, we may be able to adapt them using incubation, and in these conditions. Additionally, we have previously proved, based on AAV recombinant DNA vectors, that it is possible to transfer appropriate genes of interest via mouse embryonic stem cells (mESCs). In the current study, we develop methods for the application of the same vaccine avipoxviral strains, based on the AAV DNA genome recombinant constructs, to be used for gene transfer in cells, for the transfer of DNA and/or RNA fragments (for the suppression of unwanted viral and/or cellular genes), and for the production of molecular (DNA, RNA, and/or protein) anti-cancer and anti-viral vaccines. To this end, sub-populations of embryonic mammalian cells infected with the two forms of both vaccine avipoxviral strains were frozen in the presence of cryo-protector dimethylsulfoxide (DMSO), subsequently thawed, and re-incubated. In most cases, the titers of the intra-cellular forms of the two strains were higher than those of their extra-cellular forms. These data were explained by the probable existence of the intra-cellular forms as different sub-forms, including those integrated in the cellular genome proviruses at a given stage of the cellular infection, and suggest the possibility of transferring nucleotide (DNA and/or RNA) fragments between cellular and viral genomes; this is due to the influence of activated fusion processes on DMSO, as well as drastic temperature variations.
Collapse
Affiliation(s)
- Iskra Sainova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM) to Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Vera Kolyovska
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM) to Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Iliana Ilieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM) to Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Tzvetanka Markova
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | | | - Radka Hadjiolova
- Department of Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
3
|
Dietrich B, Kunihs V, Pollheimer J, Knöfler M, Haider S. 3D organoid formation and EVT differentiation of various trophoblastic cell lines. Placenta 2023; 133:19-22. [PMID: 36696785 DOI: 10.1016/j.placenta.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
3-dimensional trophoblast organoids (TB-ORG) represent a reliable model for studying extravillous trophoblast (EVT) lineage formation and differentiation. However, restricted access to first trimester placentae requires alternative cell sources for establishing placental organoids. Recently, we demonstrated EVT differentiation in JEG-3-derived organoids. Consequently, we herein tested whether other commonly used trophoblastic cell lines, ACH-3P, HTR-8/SVneo, and SWAN-71 were capable of self-organizing into organoids and subsequent EVT differentiation. Notably, only ACH-3P formed organoids under stemness conditions mimicking TB-ORG architectures, and induction of EVT differentiation provoked formation of HLA-Gpos areas. Hence ACH-3P-ORGs provide another organoid model for studying controlled EVT lineage formation and differentiation.
Collapse
Affiliation(s)
- Bianca Dietrich
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, Austria
| | - Victoria Kunihs
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Maternal-Fetal Immunology Group, Medical University of Vienna, Vienna, Austria
| | - Martin Knöfler
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, Austria
| | - Sandra Haider
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Kayashima Y, Townley-Tilson WHD, Vora NL, Boggess K, Homeister JW, Maeda-Smithies N, Li F. Insulin Elevates ID2 Expression in Trophoblasts and Aggravates Preeclampsia in Obese ASB4-Null Mice. Int J Mol Sci 2023; 24:ijms24032149. [PMID: 36768469 PMCID: PMC9917068 DOI: 10.3390/ijms24032149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Obesity is a risk factor for preeclampsia. We investigated how obesity influences preeclampsia in mice lacking ankyrin-repeat-and-SOCS-box-containing-protein 4 (ASB4), which promotes trophoblast differentiation via degrading the inhibitor of DNA-binding protein 2 (ID2). Asb4-/- mice on normal chow (NC) develop mild preeclampsia-like phenotypes during pregnancy, including hypertension, proteinuria, and reduced litter size. Wild-type (WT) and Asb4-/- females were placed on a high-fat diet (HFD) starting at weaning. At the age of 8-9 weeks, they were mated with WT or Asb4-/- males, and preeclamptic phenotypes were assessed. HFD-WT dams had no obvious adverse outcomes of pregnancy. In contrast, HFD-Asb4-/- dams had significantly more severe preeclampsia-like phenotypes compared to NC-Asb4-/- dams. The HFD increased white fat weights and plasma leptin and insulin levels in Asb4-/- females. In the HFD-Asb4-/- placenta, ID2 amounts doubled without changing the transcript levels, indicating that insulin likely increases ID2 at a level of post-transcription. In human first-trimester trophoblast HTR8/SVneo cells, exposure to insulin, but not to leptin, led to a significant increase in ID2. HFD-induced obesity markedly worsens the preeclampsia-like phenotypes in the absence of ASB4. Our data indicate that hyperinsulinemia perturbs the timely removal of ID2 and interferes with proper trophoblast differentiation, contributing to enhanced preeclampsia.
Collapse
Affiliation(s)
- Yukako Kayashima
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - W. H. Davin Townley-Tilson
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Neeta L. Vora
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kim Boggess
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathon W. Homeister
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nobuyo Maeda-Smithies
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Feng Li
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-966-6915; Fax: +1-919-966-8800
| |
Collapse
|
5
|
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol 2022; 10:995462. [PMID: 36263015 PMCID: PMC9575991 DOI: 10.3389/fcell.2022.995462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|
6
|
Balahmar RM, Ranganathan B, Ebegboni V, Alamir J, Rajakumar A, Deepak V, Sivasubramaniam S. Analyses of selected tumour-associated factors expression in normotensive and preeclamptic placenta. Pregnancy Hypertens 2022; 29:36-45. [PMID: 35717832 DOI: 10.1016/j.preghy.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Human placenta is often considered a controlled-tumour because of shared properties such as invasion and angiogenesis. We assessed the status of a few selected tumour-associated factors (TAFs) in late onset pre-eclamptic (PE) and normotensive (NT) placentae, to understand their involvement in trophoblast invasion. These molecules include aldehyde dehydrogenase (ALDH3A1), aurora kinases (AURK-A/C), platelet derived growth factor receptor-α (PDGFRα), jagged-1 (JAG1) and twist related protein-1 (TWIST1). METHODS The expression of TAF was compared in 13 NT and 11 PE (late onset) placentae using immunoblotting/immunohistochemistry. We then used a novel spheroidal cell model developed from transformed human first trimester trophoblast cell lines HTR8/SVneo and TEV-1 to determine the expression and localization of these six factors during invasion. We also compared the expression of these TAFs during migration and invasion. RESULTS Our results suggest that expressions of ALDH3A1, AURK-A, PDGFRα, and TWIST1 are significantly upregulated in PE placentae (p < 0.05) when compared to NT placentae, whereas AURK-C and JAG1 are down-regulated (p < 0.05). The protein expression pattern of all the six factors were found to be similar in spheroids in comparison to their parental counterparts. The invasive potential of the spheroids was also enhanced when compared with the parental cells. DISCUSSION Collectively, data from our present study suggests that these TAFs are involved in placental invasion and their altered expressions may be regarded as a compensatory mechanism against reduced invasion.
Collapse
Affiliation(s)
- Reham M Balahmar
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Bhuvaneshwari Ranganathan
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Vernon Ebegboni
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Jumanah Alamir
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Augustine Rajakumar
- Department of Gynecology & Obstetrics(3), Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Venkataraman Deepak
- School of Human Sciences, College of Life and Natural Sciences, University of Derby, Kedleston Road, Derby DE22 1GB, United Kingdom.
| | - Shiva Sivasubramaniam
- School of Human Sciences, College of Life and Natural Sciences, University of Derby, Kedleston Road, Derby DE22 1GB, United Kingdom.
| |
Collapse
|
7
|
Zou H, Mao Q. Circ_0037078 promotes trophoblast cell proliferation, migration, invasion and angiogenesis by miR-576-5p/IL1RAP axis. Am J Reprod Immunol 2021; 87:e13507. [PMID: 34724268 DOI: 10.1111/aji.13507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Preeclampsia (PE) is a common hypertensive disorder of pregnancy. Recent studies have suggested that circular RNAs (circRNAs) play a pathological role in PE. Herein, this study aimed to investigate the action and mechanism of circ_0037078 in PE process. METHODS The quantitative real-time PCR (qRT-PCR) and Western blot were used to determine the expression levels of RNAs and genes. Cell proliferation, migration, invasion and angiogenesis were evaluated by using cell counting kit-8 (CCK-8), colony formation, transwell, and tube formation assays, respectively. The target relation between miR-576-5p and IL1RAP (Interleukin-1 receptor accessory protein) and circ_0037078 was predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS Circ_0037078 expression was higher in placental tissues of patients with PE than that of normal control. Knockdown of circ_0037078 led to an enhancement of the proliferation, migration, invasion, and angiogenesis in trophoblast cells. Mechanistically, circ_0037078 acted as a sponge for miR-576-5p, thus elevating the expression of IL1RAP, which was targeted by IL1RAP. Further rescue experiments suggested that miR-576-5p inhibition reversed the effects of circ_0037078 knockdown on above behaviors of trophoblast cells. Moreover, miR-576-5p overexpression enhanced the proliferative, migratory, invasive, angiogenic phenotypes of trophoblast cells, which were attenuated by IL1RAP up-regulation. CONCLUSION Circ_0037078 knockdown promotes trophoblast cell proliferation, migration, invasion, and angiogenesis in vitro by miR-576-5p/IL1RAP axis, providing a novel insight into the etiology of PE.
Collapse
Affiliation(s)
- Hong Zou
- Department of Gynecology, Jingmen First People's Hospital, Jingmen, China
| | - Qinghua Mao
- Department of Obstetrics, Jingmen First People's Hospital, Jingmen, China
| |
Collapse
|
8
|
Vilsmaier T, Amann N, Löb S, Schmoeckel E, Kuhn C, Zati Zehni A, Meister S, Beyer S, Kolben TM, Becker J, Mumm JN, Mahner S, Jeschke U, Kolben T. The decidual expression of Interleukin-7 is upregulated in early pregnancy loss. Am J Reprod Immunol 2021; 86:e13437. [PMID: 33934432 DOI: 10.1111/aji.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Maternal immunological rejection of the semi-allogenic fetus is discussed as one of the significant factors involved in early pregnancy loss. An array of cytokines secreted by both maternal and fetal cells is involved in generating a delicate maternal immune tolerance. Interleukin-7 (IL-7) is discussed to play a key role in pro-inflammatory processes, but there is still limited insight into the pathophysiological input on placentation and embryonic development in early pregnancy loss. PATIENTS AND METHODS Cytokine level differences were identified with quantitative real-time PCR in placental tissue from spontaneous abortions (SA) (n = 18), recurrent spontaneous abortions (RSA) (n = 15), and healthy pregnancies (n = 15) at gestational weeks 7 to 14. Protein expression of IL-7 in the decidua was investigated by immunohistochemistry. IL-7-expressing cells were identified with double-immunofluorescence. RESULTS Decidua of women with RSA expressed almost 51-times higher values of IL-7 in gene expression analysis. Immunohistochemistry identified a significant upregulation of IL-7 in the decidua of RSA specimens (p = .013) and in the decidua of women with SA (p = .004). Double-immunofluorescence confirmed decidual stroma cells as IL-7-expressing cells. CONCLUSION Significantly elevated IL-7 values in the decidua of spontaneous and recurrent miscarriages imply a crucial role of the cytokine in the signaling at the feto-maternal interface of the placenta. An overexpression of IL-7 could result in early pregnancy loss by inducing a pro-inflammatory environment. Proven to be valuable in other autoimmune diseases, targeting IL-7 signaling therapeutically may prove to be a very beneficial treatment option for RSA patients.
Collapse
Affiliation(s)
- Theresa Vilsmaier
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Niklas Amann
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Sanja Löb
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany.,Department of Obstetrics and Gynecology, University Hospital, University of Wuerzburg, LMU Munich, Germany
| | - Elisa Schmoeckel
- Department of Pathology, University Hospital, LMU Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital Augsburg, LMU Munich, Germany
| | - Alaleh Zati Zehni
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Theresa M Kolben
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Johanna Becker
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Jan-Niclas Mumm
- Department of Urology, University Hospital, LMU Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany.,Department of Obstetrics and Gynecology, University Hospital Augsburg, LMU Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| |
Collapse
|
9
|
Yong HEJ, Chan SY. Current approaches and developments in transcript profiling of the human placenta. Hum Reprod Update 2021; 26:799-840. [PMID: 33043357 PMCID: PMC7600289 DOI: 10.1093/humupd/dmaa028] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The placenta is the active interface between mother and foetus, bearing the molecular marks of rapid development and exposures in utero. The placenta is routinely discarded at delivery, providing a valuable resource to explore maternal-offspring health and disease in pregnancy. Genome-wide profiling of the human placental transcriptome provides an unbiased approach to study normal maternal–placental–foetal physiology and pathologies. OBJECTIVE AND RATIONALE To date, many studies have examined the human placental transcriptome, but often within a narrow focus. This review aims to provide a comprehensive overview of human placental transcriptome studies, encompassing those from the cellular to tissue levels and contextualize current findings from a broader perspective. We have consolidated studies into overarching themes, summarized key research findings and addressed important considerations in study design, as a means to promote wider data sharing and support larger meta-analysis of already available data and greater collaboration between researchers in order to fully capitalize on the potential of transcript profiling in future studies. SEARCH METHODS The PubMed database, National Center for Biotechnology Information and European Bioinformatics Institute dataset repositories were searched, to identify all relevant human studies using ‘placenta’, ‘decidua’, ‘trophoblast’, ‘transcriptome’, ‘microarray’ and ‘RNA sequencing’ as search terms until May 2019. Additional studies were found from bibliographies of identified studies. OUTCOMES The 179 identified studies were classifiable into four broad themes: healthy placental development, pregnancy complications, exposures during pregnancy and in vitro placental cultures. The median sample size was 13 (interquartile range 8–29). Transcriptome studies prior to 2015 were predominantly performed using microarrays, while RNA sequencing became the preferred choice in more recent studies. Development of fluidics technology, combined with RNA sequencing, has enabled transcript profiles to be generated of single cells throughout pregnancy, in contrast to previous studies relying on isolated cells. There are several key study aspects, such as sample selection criteria, sample processing and data analysis methods that may represent pitfalls and limitations, which need to be carefully considered as they influence interpretation of findings and conclusions. Furthermore, several areas of growing importance, such as maternal mental health and maternal obesity are understudied and the profiling of placentas from these conditions should be prioritized. WIDER IMPLICATIONS Integrative analysis of placental transcriptomics with other ‘omics’ (methylome, proteome and metabolome) and linkage with future outcomes from longitudinal studies is crucial in enhancing knowledge of healthy placental development and function, and in enabling the underlying causal mechanisms of pregnancy complications to be identified. Such understanding could help in predicting risk of future adversity and in designing interventions that can improve the health outcomes of both mothers and their offspring. Wider collaboration and sharing of placental transcriptome data, overcoming the challenges in obtaining sufficient numbers of quality samples with well-defined clinical characteristics, and dedication of resources to understudied areas of pregnancy will undoubtedly help drive the field forward.
Collapse
Affiliation(s)
- Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Elkin ER, Bakulski KM, Colacino JA, Bridges D, Kilburn BA, Armant DR, Loch-Caruso R. Transcriptional profiling of the response to the trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine revealed activation of the eIF2α/ATF4 integrated stress response in two in vitro placental models. Arch Toxicol 2021; 95:1595-1619. [PMID: 33725128 PMCID: PMC7961173 DOI: 10.1007/s00204-021-03011-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Trichloroethylene (TCE) is an industrial solvent and widespread environmental contaminant. Although TCE exposure is prevalent, epidemiological studies of TCE exposure associations with adverse birth outcomes are inconclusive. Prior studies show that the TCE metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) exhibits toxicity in a placental cell line. In the current study, genome-wide gene expression and gene set enrichment analyses were used to identify novel genes and pathway alterations in the HTR-8/SVneo human trophoblast cell line and human placental villous explants treated with DCVC at concentrations relevant to human exposures. In the cells, concentration- and time-dependent effects were observed, as evidenced by the magnitude of altered gene expression after treatment with 20 µM DCVC versus 10 µM, and 12-h versus 6-h of treatment. Comparing the two models for the transcriptional response to 12-h 20 µM DCVC treatment, no differentially expressed genes reached significance in villous explants, whereas 301 differentially expressed genes were detected in HTR-8/SVneo cells compared with non-treated controls (FDR < 0.05 + LogFC > 0.35 [FC > 1.3]). GSEA revealed five upregulated enriched pathways in common between explants and cells (FDR < 0.05). Moreover, all 12-h DCVC treatment groups from both models contained upregulated pathways enriched for genes regulated by the ATF4 transcription factor. The overrepresentation of ATF4 regulation of differentially expressed genes indicated activation of the integrated stress response (ISR), a condition triggered by multiple stress stimuli, including the unfolded protein response. DCVC-induced ISR activation was confirmed by elevated eIF2α phosphorylation, ATF4 protein concentrations, and decreased global protein synthesis in HTR-8/SVneo cells. This study identifies a mechanism of DCVC-induced cytotoxicity by revealing the involvement of a specific stress signaling pathway.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Brian A Kilburn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - D Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA
| |
Collapse
|
11
|
Silver bionanoparticles toxicity in trophoblast is mediated by nitric oxide and glutathione pathways. Toxicology 2021; 454:152741. [PMID: 33662506 DOI: 10.1016/j.tox.2021.152741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/30/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Silver bionanoparticles (AgNPs) biosynthesized by Pseudomonas aeruginosa culture supernatant have an important antibacterial activity mediated by ROS increase; however their toxicity in human cells is not known. Due to the high susceptibility of the developing tissues to xenobiotics, the aim of this study was to investigate the AgNPs effect on first trimester human trophoblasts. The HTR8/SVneo cell line was treated with AgNPs (0.3-1.5 pM), for 6 and 24 h. Cell viability, reactive nitrogen and oxygen species (RNS and ROS) production, nitric oxide synthase expression, antioxidant defenses and biomolecule damage were evaluated. The exposure to AgNPs produced changes in HTR8/SVneo cell morphology and decreased cell viability. Alterations in redox balance were observed, with an increase in ROS and RNS levels, and NOS2 protein expression. Superoxide dismutase and catalase augmented their activity accompanied with a decreased in glutathione content and glutathione S-transferase activity. Protein oxidation and genotoxic damage were observed at concentrations greater than 0.6 pM. The pre-incubation with l-NMMA, NAC, mannitol and peroxidase demonstrated that AgNPs-induced cytotoxicity was not mediated by HO and H2O2, but nitric oxide and glutathione pathways were implicated in cell death. Since reported AgNPs microbicidal mechanism is mediated by increasing ROS (mainly HO and H2O2) without an increase in RNS, this work indicates an interesting difference in the reactive species and oxidative pathways involved in AgNPs toxicity in eukaryotic and prokaryotic cells. Highlighting the importance of toxicity evaluation to determine the safety of AgNPs with pharmaceutical potential uses.
Collapse
|
12
|
Katakura S, Takao T, Arase T, Yoshimasa Y, Tomisato S, Uchida S, Masuda H, Uchida H, Tanaka M, Maruyama T. UDP-glucose, a cellular danger signal, and nucleotide receptor P2Y14 enhance the invasion of human extravillous trophoblast cells. Placenta 2020; 101:194-203. [PMID: 33011563 DOI: 10.1016/j.placenta.2020.09.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/26/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022]
Abstract
INTRODUCTION P2Y14, one of the P2Y purinergic G-protein coupled receptors, is expressed in a variety of cells and tissues. Its ligand, UDP-glucose (UDPG), is released from damaged and stress-stimulated cells and acts as a danger signal via P2Y14. Thus, P2Y14 plays an important role in immunological defense systems. Here, we aimed to elucidate the expression, localization, and role of P2Y14 in human trophoblasts and the placenta. METHODS Human chorionic villus and placental tissues were subjected to immunostaining for P2Y14 protein and an extravillous trophoblast (EVT) marker, HLA-G. We examined the expression of P2Y14 and the effect of UDPG on cell proliferation and invasion in an EVT cell line, HTR-8/SVneo, using an MTS assay and a Transwell assay, respectively. We tested the effect of UDPG on cell invasion in P2Y14-underexpressing HTR-8/SVneo clones established by the lentiviral introduction of shRNA for P2RY14 mRNA. RESULTS Immunostaining revealed that P2Y14 was exclusively expressed by EVTs. P2RY14 mRNA and P2Y14 protein were expressed in HTR-8/SVneo cells. UDPG did not affect cell proliferation but it did enhance invasion. Inhibition of P2Y14 and decreasing the expression of P2Y14 suppressed UDPG-mediated invasive activity. CONCLUSIONS These results showed that EVT selectively expressed P2Y14 and that P2Y14 was positively involved in UDPG-enhanced EVT invasion. It suggests the possible existence of a danger signal-mediated physiological system at the fetomaternal interface where UDPG released from maternal tissues through destruction by EVT invasion may accelerate EVT invasion, allowing EVTs to undergo successful placentation and vascular remodeling.
Collapse
Affiliation(s)
- Satomi Katakura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoka Takao
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Toru Arase
- Department of Obstetrics and Gynecology, Keiyu Hospital, Yokohama, Japan
| | - Yushi Yoshimasa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Shoko Tomisato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Sayaka Uchida
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Uchida
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
13
|
Hypoxia-induced small extracellular vesicle proteins regulate proinflammatory cytokines and systemic blood pressure in pregnant rats. Clin Sci (Lond) 2020; 134:593-607. [PMID: 32129439 DOI: 10.1042/cs20191155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/18/2020] [Accepted: 03/04/2020] [Indexed: 12/19/2022]
Abstract
Small extracellular vesicles (sEVs) released from the extravillous trophoblast (EVT) are known to regulate uterine spiral artery remodeling during early pregnancy. The bioactivity and release of these sEVs differ under differing oxygen tensions and in aberrant pregnancy conditions. Whether the placental cell-derived sEVs released from the hypoxic placenta contribute to the pathophysiology of preeclampsia is not known. We hypothesize that, in response to low oxygen tension, the EVT packages a specific set of proteins in sEVs and that these released sEVs interact with endothelial cells to induce inflammation and increase maternal systemic blood pressure. Using a quantitative MS/MS approach, we identified 507 differentially abundant proteins within sEVs isolated from HTR-8/SVneo cells (a commonly used EVT model) cultured at 1% (hypoxia) compared with 8% (normoxia) oxygen. Among these differentially abundant proteins, 206 were up-regulated and 301 were down-regulated (P < 0.05), and they were mainly implicated in inflammation-related pathways. In vitro incubation of hypoxic sEVs with endothelial cells, significantly increased (P < 0.05) the release of GM-CSF, IL-6, IL-8, and VEGF, when compared with control (i.e. cells without sEVs) and normoxic sEVs. In vivo injection of hypoxic sEVs into pregnant rats significantly increased (P < 0.05) mean arterial pressure with increases in systolic and diastolic blood pressures. We propose that oxygen tension regulates the release and bioactivity of sEVs from EVT and that these sEVs regulate inflammation and maternal systemic blood pressure. This novel oxygen-responsive, sEVs signaling pathway, therefore, may contribute to the physiopathology of preeclampsia.
Collapse
|
14
|
Bailey-Hytholt CM, Shen TL, Nie B, Tripathi A, Shukla A. Placental Trophoblast-Inspired Lipid Bilayers for Cell-Free Investigation of Molecular Interactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31099-31111. [PMID: 32558532 DOI: 10.1021/acsami.0c06197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The placenta plays a key role in regulating the maternal-fetal transport but it is a difficult organ to study due to a lack of existing in vitro models. Lipid bilayers inspired by the placenta can provide a facile new in vitro tool with promise for screening molecular transport across this important organ. Here we developed lipid bilayers that mimic the composition of human placental trophoblast cells at different times during the course of pregnancy. Mass spectrometry identified five major lipid classes (phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and sphingomyelin) present at varying concentrations in trophoblasts representative of the first and third trimesters and full-term placenta. We successfully developed supported and suspended lipid bilayers mimicking these trophoblast lipid compositions and then demonstrated the utility of these synthetic placenta models for investigating molecular interactions. Specifically, we investigated the interactions with di(2-ethylhexyl) phthalate (DEHP), a common plasticizer and environmental toxicant, and amphotericin B, a common yet toxic, antifungal therapeutic. Overall, we observed that DEHP adsorbs and potentially embeds itself within all placental lipid bilayers, with varying levels of interaction. For both amphotericin B and a liposomal formulation of amphotericin B, AmBisome, we noted lower levels of permeation in transport studies with bilayers and trophoblast cells compared with DEHP, likely driven by differences in size. AmBisome interacted less with both the supported and suspended placental lipid bilayers in comparison to amphotericin B, suggesting that drug delivery carriers can vary the impact of a pharmaceutical agent on these lipid structures. We found that the apparent permeability observed in suspended bilayers was approximately an order of magnitude less than those observed for trophoblast monolayers, which is typical of lipid bilayers. Ultimately, these placenta mimetic lipid bilayers can serve as a platform for the rapid initial screening of molecular interactions with the maternal-fetal interface to better inform future testing.
Collapse
Affiliation(s)
- Christina M Bailey-Hytholt
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Tun-Li Shen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Bonnee Nie
- Department of Biochemistry and Molecular Biology, Brown University, Providence, Rhode Island 02912, United States
| | - Anubhav Tripathi
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
15
|
Elkin ER, Bridges D, Harris SM, Loch-Caruso RK. Exposure to Trichloroethylene Metabolite S-(1,2-Dichlorovinyl)-L-cysteine Causes Compensatory Changes to Macronutrient Utilization and Energy Metabolism in Placental HTR-8/SVneo Cells. Chem Res Toxicol 2020; 33:1339-1355. [PMID: 31951115 PMCID: PMC7299793 DOI: 10.1021/acs.chemrestox.9b00356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Trichloroethylene
(TCE) is a widespread environmental contaminant
following decades of use as an industrial solvent, improper disposal,
and remediation challenges. Consequently, TCE exposure continues to
constitute a risk to human health. Despite epidemiological evidence
associating exposure with adverse birth outcomes, the effects of TCE
and its metabolite S-(1, 2-dichlorovinyl)-L-cysteine
(DCVC) on the placenta remain undetermined. Flexible and efficient
macronutrient and energy metabolism pathway utilization is essential
for placental cell physiological adaptability. Because DCVC is known
to compromise cellular energy status and disrupt energy metabolism
in renal proximal tubular cells, this study investigated the effects
of DCVC on cellular energy status and energy metabolism pathways in
placental cells. Human extravillous trophoblast cells, HTR-8/SVneo,
were exposed to 5–20 μM DCVC for 6 or 12 h. After establishing
concentration and exposure duration thresholds for DCVC-induced cytotoxicity,
targeted metabolomics was used to evaluate overall energy status and
metabolite concentrations from energy metabolism pathways. The data
revealed glucose metabolism perturbations including a time-dependent
accumulation of glucose-6-phosphate+frutose-6-phosphate (G6P+F6P)
as well as independent shunting of glucose intermediates that diminished
with time, with modest energy status decline but in the absence of
significant changes in ATP concentrations. Furthermore, metabolic
profiling suggested that DCVC stimulated compensatory utilization
of glycerol, lipid, and amino acid metabolism to provide intermediate
substrates entering downstream in the glycolytic pathway or the tricarboxylic
acid cycle. Lastly, amino acid deprivation increased susceptibility
to DCVC-induced cytotoxicity. Taken together, these results suggest
that DCVC caused metabolic perturbations necessitating adaptations
in macronutrient and energy metabolism pathway utilization to maintain
adequate ATP levels.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109-2029, United States
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan 48109-2029, United States
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109-2029, United States
| | - Rita Karen Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109-2029, United States
| |
Collapse
|
16
|
Brkić J, Dunk C, Shan Y, O'Brien JA, Lye P, Qayyum S, Yang P, Matthews SG, Lye SJ, Peng C. Differential Role of Smad2 and Smad3 in the Acquisition of an Endovascular Trophoblast-Like Phenotype and Preeclampsia. Front Endocrinol (Lausanne) 2020; 11:436. [PMID: 32733385 PMCID: PMC7362585 DOI: 10.3389/fendo.2020.00436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
During placental development, cytotrophoblast progenitor cells differentiate into the syncytiotrophoblast and invasive extravillous trophoblasts (EVTs). Some EVTs further differentiate into endovascular trophoblasts (enEVTs) which exhibit endothelial-like properties. Abnormal placental development, including insufficient enEVT-mediated remodeling of the uterine spiral arteries, is thought to be a precipitating factor in the onset of preeclampsia (PE), a pregnancy-related hypertensive disorder. Several members of the transforming growth factor-β (TGF-β) superfamily, such as TGF-βs, Nodal, and Activin have been reported to either promote or inhibit the invasive EVT pathway. These ligands signal through serine/threonine receptor complexes to activate downstream signaling mediators, Smad2 and Smad3. In this study, we determined Smad2 and Smad3 expression pattern in placenta and their effects on trophoblast invasion and differentiation. Total Smad2/3 levels were relatively constant across gestation while the ratio of active phosphorylated forms to their total levels varied with gestational stages, with a higher pSmad2/total Smad2 in later gestation and a higher pSmad3/total Smad3 in early gestation. Immunofluorescent staining revealed that pSmad3 was localized in nuclei of EVTs in anchoring villi. On the other hand, pSmad2 was mostly absent in this invasive EVT population. In addition, pSmad3/total Smad3, but not pSmad2/total Smad2, was significantly lower in both early onset and late onset PE cases, as compared to gestational age-matched controls. Functional studies carried out using a first trimester trophoblast cell line, HTR-8/SVneo, and first trimester human placental explants showed that Smad2 and Smad3 had differential roles in the invasive pathway. Specifically, siRNA-mediated knockdown of Smad2 resulted in an increase in trophoblast invasion and an upregulation of mRNA levels of enEVT markers while the opposite was observed with Smad3 knockdown. In addition, Smad2 siRNA accelerated the EVT outgrowth in first trimester placental explants while the Smad3 siRNA reduced the outgrowth of EVTs when compared to the control. Furthermore, knockdown of Smad2 enhanced, whereas overexpression of Smad2 suppressed, the ability of trophoblasts to form endothelial-like networks. Conversely, Smad3 had opposite effects as Smad2 on network formation. These findings suggest that Smad2 and Smad3 have opposite functions in the acquisition of an enEVT-like phenotype and defects in Smad3 activation are associated with PE.
Collapse
Affiliation(s)
- Jelena Brkić
- Department of Biology, York University, Toronto, ON, Canada
| | - Caroline Dunk
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Phetcharawan Lye
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Sheza Qayyum
- Department of Biology, York University, Toronto, ON, Canada
| | - Peifeng Yang
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Stephen J. Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng
| |
Collapse
|
17
|
Abstract
The placenta is essential for normal in utero development in mammals. In humans, defective placental formation underpins common pregnancy disorders such as pre-eclampsia and fetal growth restriction. The great variation in placental types across mammals means that animal models have been of limited use in understanding human placental development. However, new tools for studying human placental development, including 3D organoids, stem cell culture systems and single cell RNA sequencing, have brought new insights into this field. Here, we review the morphological, molecular and functional aspects of human placental formation, with a focus on the defining cell of the placenta - the trophoblast.
Collapse
Affiliation(s)
- Margherita Y Turco
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ashley Moffett
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
18
|
Frontier Progress in the Establishment of Trophoblast Stem Cell and the Identification of New Cell Subtypes at the Maternal-Fetal Interface. MATERNAL-FETAL MEDICINE 2019. [DOI: 10.1097/fm9.0000000000000023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
19
|
Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci 2019; 76:3479-3496. [PMID: 31049600 PMCID: PMC6697717 DOI: 10.1007/s00018-019-03104-6] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Abnormal placentation is considered as an underlying cause of various pregnancy complications such as miscarriage, preeclampsia and intrauterine growth restriction, the latter increasing the risk for the development of severe disorders in later life such as cardiovascular disease and type 2 diabetes. Despite their importance, the molecular mechanisms governing human placental formation and trophoblast cell lineage specification and differentiation have been poorly unravelled, mostly due to the lack of appropriate cellular model systems. However, over the past few years major progress has been made by establishing self-renewing human trophoblast stem cells and 3-dimensional organoids from human blastocysts and early placental tissues opening the path for detailed molecular investigations. Herein, we summarize the present knowledge about human placental development, its stem cells, progenitors and differentiated cell types in the trophoblast epithelium and the villous core. Anatomy of the early placenta, current model systems, and critical key regulatory factors and signalling cascades governing placentation will be elucidated. In this context, we will discuss the role of the developmental pathways Wingless and Notch, controlling trophoblast stemness/differentiation and formation of invasive trophoblast progenitors, respectively.
Collapse
Affiliation(s)
- Martin Knöfler
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria.
| | - Sandra Haider
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Leila Saleh
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Jürgen Pollheimer
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Teena K J B Gamage
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Elkin ER, Bridges D, Loch-Caruso R. The trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine induces progressive mitochondrial dysfunction in HTR-8/SVneo trophoblasts. Toxicology 2019; 427:152283. [PMID: 31476333 DOI: 10.1016/j.tox.2019.152283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023]
Abstract
Trichloroethylene is an industrial solvent and common environmental pollutant. Despite efforts to ban trichloroethylene, its availability and usage persist globally, constituting a hazard to human health. Recent studies reported associations between maternal trichloroethylene exposure and increased risk for low birth weight. Despite these associations, the toxicological mechanism underlying trichloroethylene adverse effects on pregnancy remains largely unknown. The trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) induces mitochondrial-mediated apoptosis in a trophoblast cell line. To gain further understanding of mitochondrial-mediated DCVC placental toxicity, this study investigated the effects of DCVC exposure on mitochondrial function using non-cytolethal concentrations in placental cells. Human trophoblasts, HTR-8/SVneo, were exposed in vitro to a maximum of 20 μM DCVC for up to 12 h. Cell-based oxygen consumption and extracellular acidification assays were used to evaluate key aspects of mitochondrial function. Following 6 h of exposure to 20 μM DCVC, elevated oxygen consumption, mitochondrial proton leak and sustained energy coupling deficiency were observed. Similarly, 12 h of exposure to 20 μM DCVC decreased mitochondrial-dependent basal, ATP-linked and maximum oxygen consumption rates. Using the fluorochrome TMRE, dissipation of mitochondrial membrane potential was detected after a 12-h exposure to 20 μM DCVC, and (±)-α-tocopherol, a known suppressor of lipid peroxidation, attenuated DCVC-stimulated mitochondrial membrane depolarization but failed to rescue oxygen consumption perturbations. Together, these results suggest that DCVC caused progressive mitochondrial dysfunction, resulting in lipid peroxidation-associated mitochondrial membrane depolarization. Our findings contribute to the biological plausibility of DCVC-induced placental impairment and provide new insights into the role of the mitochondria in DCVC-induced toxicity.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
| |
Collapse
|
21
|
A Rapid Method for Label-Free Enrichment of Rare Trophoblast Cells from Cervical Samples. Sci Rep 2019; 9:12115. [PMID: 31431640 PMCID: PMC6702343 DOI: 10.1038/s41598-019-48346-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Extravillous trophoblasts (EVTs) have the potential to provide the entire fetal genome for prenatal testing. Previous studies have demonstrated the presence of EVTs in the cervical canal and the ability to retrieve a small quantity of these cells by cervical sampling. However, these small quantities of trophoblasts are far outnumbered by the population of cervical cells in the sample, making isolation of the trophoblasts challenging. We have developed a method to enrich trophoblast cells from a cervical sample using differential settling of the cells in polystyrene wells. We tested the addition of small quantities of JEG-3 trophoblast cell line cells into clinical samples from standard Pap tests taken at 5 to 20 weeks of gestation to determine the optimal work flow. We observed that a 4 min incubation in the capture wells led to a maximum in JEG-3 cell settling on the surface (71 ± 10% of the initial amount added) with the removal of 91 ± 3% of the cervical cell population, leading to a 700% enrichment in JEG-3 cells. We hypothesized that settling of mucus in the cervical sample affects the separation. Finally, we performed a proof-of-concept study using our work flow and CyteFinder cell picking to verify enrichment and pick individual JEG-3 and trophoblast cells free of cervical cells. Ultimately, this work provides a rapid, facile, and cost-effective method for enriching native trophoblasts from cervical samples for use in subsequent non-invasive prenatal testing using methods including single cell picking.
Collapse
|
22
|
Fry RC, Bangma J, Szilagyi J, Rager JE. Developing novel in vitro methods for the risk assessment of developmental and placental toxicants in the environment. Toxicol Appl Pharmacol 2019; 378:114635. [PMID: 31233757 DOI: 10.1016/j.taap.2019.114635] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/12/2023]
Abstract
During pregnancy, the placenta is critical for the regulation of maternal homeostasis and fetal growth and development. Exposures to environmental chemicals during pregnancy can be detrimental to the health of the placenta and therefore adversely impact maternal and fetal health. Though research on placental-derived developmental toxicity is expanding, testing is limited by the resources required for traditional test methods based on whole animal experimentation. Alternative strategies utilizing in vitro methods are well suited to contribute to more efficient screening of chemical toxicity and identification of biological mechanisms underlying toxicity outcomes. This review aims to summarize methods that can be used to evaluate toxicity resulting from exposures during the prenatal period, with a focus on newer in vitro methods centered on placental toxicity. The following key aspects are reviewed: (i) traditional test methods based on animal developmental toxicity testing, (ii) in vitro methods using monocultures and explant models, as well as more recently developed methods, including co-cultures, placenta-on-a-chip, and 3-dimensional (3D) cell models, (iii) endpoints that are commonly measured using in vitro designs, and (iv) the translation of in vitro methods into chemical evaluations and risk assessment applications. We conclude that findings from in vitro placental models can contribute to the screening of potentially hazardous chemicals, elucidation of chemical mechanism of action, incorporation into adverse outcome pathways, estimation of doses eliciting toxicity, derivation of extrapolation factors, and characterization of overall risk of adverse outcomes, representing key components of chemical regulation in the 21st century.
Collapse
Affiliation(s)
- Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacqueline Bangma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John Szilagyi
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Wong FT, Lin C, Cox BJ. Cellular systems biology identifies dynamic trophoblast populations in early human placentas. Placenta 2019; 76:10-18. [DOI: 10.1016/j.placenta.2018.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/03/2018] [Accepted: 12/31/2018] [Indexed: 01/02/2023]
|
24
|
Dunk CE, Pappas JJ, Lye P, Kibschull M, Javam M, Bloise E, Lye SJ, Szyf M, Matthews SG. P-Glycoprotein (P-gp)/ABCB1 plays a functional role in extravillous trophoblast (EVT) invasion and is decreased in the pre-eclamptic placenta. J Cell Mol Med 2018; 22:5378-5393. [PMID: 30256530 PMCID: PMC6201374 DOI: 10.1111/jcmm.13810] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/29/2018] [Indexed: 01/01/2023] Open
Abstract
Dysregulation of trophoblast differentiation is implicated in the placental pathologies of intrauterine growth restriction and pre‐eclampsia. P‐glycoprotein (P‐gp encoded by ABCB1) is an ATP‐binding cassette transporter present in the syncytiotrophoblast layer of the placenta where it acts as a molecular sieve. In this study, we show that P‐gp is also expressed in the proliferating cytotrophoblast (CT), the syncytiotrophoblast (ST) and the extravillous trophoblast (EVT), suggesting our hypothesis of a functional role for P‐gp in placental development. Silencing of ABCB1, via siRNA duplex, results in dramatically reduced invasion and migration, and increased tube formation and fusion in the EVT‐like HTR8/SVneo cell line. In both EVT and CT explant differentiation experiments, silencing of ABCB1 leads to induction of the fusion markers human hCG, ERVW‐1 and GJA1 and terminal differentiation of both trophoblast subtypes. Moreover, P‐gp protein levels are decreased in both the villous and the EVT of severe early‐onset pre‐eclamptic placentas. We conclude that, in addition to its role as a syncytial transporter, P‐gp is a key factor in the maintenance of both CT and EVT lineages and that its decrease in severe pre‐eclampsia may contribute to the syncytial and EVT placental pathologies associated with this disease.
Collapse
Affiliation(s)
- Caroline E Dunk
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Jane J Pappas
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Phetcharawan Lye
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Mark Kibschull
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Mohsen Javam
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, Canada.,Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen J Lye
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Departments of Obstetrics and Gynecology and Medicine, University of Toronto, Toronto, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Stephen G Matthews
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Departments of Obstetrics and Gynecology and Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
S100P enhances the motility and invasion of human trophoblast cell lines. Sci Rep 2018; 8:11488. [PMID: 30065265 PMCID: PMC6068119 DOI: 10.1038/s41598-018-29852-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/26/2018] [Indexed: 01/11/2023] Open
Abstract
S100P has been shown to be a marker for carcinogenesis where its expression in solid tumours correlates with metastasis and a poor patient prognosis. This protein's role in any physiological process is, however, unknown. Here we first show that S100P is expressed both in trophoblasts in vivo as well as in some corresponding cell lines in culture. We demonstrate that S100P is predominantly expressed during the early stage of placental formation with its highest expression levels occurring during the first trimester of gestation, particularly in the invading columns and anchoring villi. Using gain or loss of function studies through overexpression or knockdown of S100P expression respectively, our work shows that S100P stimulates both cell motility and cellular invasion in different trophoblastic and first trimester EVT cell lines. Interestingly, cell invasion was seen to be more dramatically affected than cell migration. Our results suggest that S100P may be acting as an important regulator of trophoblast invasion during placentation. This finding sheds new light on a hitherto uncharacterized molecular mechanism which may, in turn, lead to the identification of novel targets that may explain why significant numbers of confirmed human pregnancies suffer complications through poor placental implantation.
Collapse
|
26
|
Fitzgerald W, Gomez-Lopez N, Erez O, Romero R, Margolis L. Extracellular vesicles generated by placental tissues ex vivo: A transport system for immune mediators and growth factors. Am J Reprod Immunol 2018; 80:e12860. [PMID: 29726582 PMCID: PMC6021205 DOI: 10.1111/aji.12860] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022] Open
Abstract
PROBLEM To study the mechanisms of placenta function and the role of extracellular vesicles (EVs) in pregnancy, it is necessary to develop an ex vivo system that retains placental cytoarchitecture and the primary metabolic aspects, in particular the release of EVs and soluble factors. Here, we developed such a system and investigated the pattern of secretion of cytokines, growth factors, and extracellular vesicles by placental villous and amnion tissues ex vivo. METHODS OF STUDY Placental villous and amnion explants were cultured for 2 weeks at the air/liquid interface and their morphology and the released cytokines and EVs were analyzed. Cytokines were analyzed with multiplexed bead assays, and individual EVs were analyzed with recently developed techniques that involved EV capture with magnetic nanoparticles coupled to anti-EV antibodies and flow cytometry. RESULTS Ex vivo tissues (i) remained viable and preserved their cytoarchitecture; (ii) maintained secretion of cytokines and growth factors; (iii) released EVs of syncytiotrophoblast and amnion epithelial cell origins that contain cytokines and growth factors. CONCLUSION A system of ex vivo placental villous and amnion tissues can be used as an adequate model to study placenta metabolic activity in normal and complicated pregnancies, in particular to characterize EVs by their surface markers and by encapsulated proteins. Establishment and benchmarking the placenta ex vivo system may provide new insight in the functional status of this organ in various placental disorders, particularly regarding the release of EVs and cytokines. Such EVs may have a prognostic value for pregnancy complications.
Collapse
Affiliation(s)
- Wendy Fitzgerald
- Section of Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Leonid Margolis
- Section of Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| |
Collapse
|
27
|
Nandi P, Lim H, Torres-Garcia EJ, Lala PK. Human trophoblast stem cell self-renewal and differentiation: Role of decorin. Sci Rep 2018; 8:8977. [PMID: 29895842 PMCID: PMC5997742 DOI: 10.1038/s41598-018-27119-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
The origin and regulation of stem cells sustaining trophoblast renewal in the human placenta remain unclear. Decorin, a leucine-rich proteoglycan restrains trophoblast proliferation, migration/invasiveness and endovascular differentiation, and local decorin overproduction is associated with preeclampsia (PE). Here, we tested the role of decorin in human trophoblast stem cell self-renewal and differentiation, using two models: an immortalized first trimester trophoblast cell line HTR-8/SVneo (HTR) and freshly isolated primary trophoblast (p-trophoblast) from early first trimester (6-9 weeks) placentas. Self-renewal capacity was measured by spheroid forming ability of single cells on ultra-low attachment plates for multiple generations. Markers of embryonic stem (ES) cells, trophoblast stem (TS) cells and trophoblast were used to identify stem cell hierarchy. Differentiation markers for syncytial and extravillous (EVT) pathways were employed to identify differentiated cells. Bewo cells were additionally used to explore DCN effects on syncytialization. Results reveal that the incidence of spheroid forming stem-like cells was 13-15% in HTR and 0.1-0.4%, in early first trimester p-trophoblast, including a stem cell hierarchy of two populations of ES and TS-like cells. DCN restrained ES cell self-renewal, promoted ES to TS transition and maintenance of TS cell stem-ness, but inhibited TS cell differentiation into both syncytial and EVT pathways.
Collapse
Affiliation(s)
- Pinki Nandi
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Hyobin Lim
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Eloy Jose Torres-Garcia
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Peeyush K Lala
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
- Associate Scientist, Children's Health Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
28
|
Ohmaru-Nakanishi T, Asanoma K, Fujikawa M, Fujita Y, Yagi H, Onoyama I, Hidaka N, Sonoda K, Kato K. Fibrosis in Preeclamptic Placentas Is Associated with Stromal Fibroblasts Activated by the Transforming Growth Factor-β1 Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:683-695. [DOI: 10.1016/j.ajpath.2017.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/12/2017] [Accepted: 11/02/2017] [Indexed: 01/11/2023]
|
29
|
Elkin ER, Harris SM, Loch-Caruso R. Trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine induces lipid peroxidation-associated apoptosis via the intrinsic and extrinsic apoptosis pathways in a first-trimester placental cell line. Toxicol Appl Pharmacol 2018; 338:30-42. [PMID: 29129777 PMCID: PMC5741094 DOI: 10.1016/j.taap.2017.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022]
Abstract
Trichloroethylene (TCE), a prevalent environmental contaminant, is a potent renal and hepatic toxicant through metabolites such as S-(1, 2-dichlorovinyl)-l-cysteine (DCVC). However, effects of TCE on other target organs such as the placenta have been minimally explored. Because elevated apoptosis and lipid peroxidation in placenta have been observed in pregnancy morbidities involving poor placentation, we evaluated the effects of DCVC exposure on apoptosis and lipid peroxidation in a human extravillous trophoblast cell line, HTR-8/SVneo. We exposed the cells in vitro to 10-100μM DCVC for various time points up to 24h. Following exposure, we measured apoptosis using flow cytometry, caspase activity using luminescence assays, gene expression using qRT-PCR, and lipid peroxidation using a malondialdehyde quantification assay. DCVC significantly increased apoptosis in time- and concentration-dependent manners (p<0.05). DCVC also significantly stimulated caspase 3, 7, 8 and 9 activities after 12h (p<0.05), suggesting that DCVC stimulates the activation of both the intrinsic and extrinsic apoptotic signaling pathways simultaneously. Pre-treatment with the tBID inhibitor Bl-6C9 partially reduced DCVC-stimulated caspase 3 and 7 activity, signifying crosstalk between the two pathways. Additionally, DCVC treatment increased lipid peroxidation in a concentration-dependent manner. Co-treatment with the antioxidant peroxyl radical scavenger (±)-α-tocopherol attenuated caspase 3 and 7 activity, suggesting that lipid peroxidation mediates DCVC-induced apoptosis in extravillous trophoblasts. Our findings suggest that DCVC-induced apoptosis and lipid peroxidation in extravillous trophoblasts could contribute to poor placentation if similar effects occur in vivo in response to TCE exposure, indicating that further studies into this mechanism are warranted.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| |
Collapse
|
30
|
Wong F, Cox BJ. Cellular analysis of trophoblast and placenta. Placenta 2017; 59 Suppl 1:S2-S7. [DOI: 10.1016/j.placenta.2016.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 12/23/2022]
|
31
|
Benzo[a]pyrene-7,8-diol-9,10-epoxide suppresses the migration and invasion of human extravillous trophoblast HTR-8/SVneo cells by down-regulating MMP2 through inhibition of FAK/SRC/PI3K/AKT pathway. Toxicology 2017; 386:72-83. [DOI: 10.1016/j.tox.2017.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/18/2017] [Accepted: 05/16/2017] [Indexed: 12/14/2022]
|
32
|
Truong G, Guanzon D, Kinhal V, Elfeky O, Lai A, Longo S, Nuzhat Z, Palma C, Scholz-Romero K, Menon R, Mol BW, Rice GE, Salomon C. Oxygen tension regulates the miRNA profile and bioactivity of exosomes released from extravillous trophoblast cells - Liquid biopsies for monitoring complications of pregnancy. PLoS One 2017; 12:e0174514. [PMID: 28350871 PMCID: PMC5370130 DOI: 10.1371/journal.pone.0174514] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/10/2017] [Indexed: 12/21/2022] Open
Abstract
Our understanding of how cells communicate has undergone a paradigm shift since the recent recognition of the role of exosomes in intercellular signaling. In this study, we investigated whether oxygen tension alters the exosome release and miRNA profile from extravillous trophoblast (EVT) cells, modifying their bioactivity on endothelial cells (EC). Furthermore, we have established the exosomal miRNA profile at early gestation in women who develop pre-eclampsia (PE) and spontaneous preterm birth (SPTB). HTR-8/SVneo cells were used as an EVT model. The effect of oxygen tension (i.e. 8% and 1% oxygen) on exosome release was quantified using nanocrystals (Qdot®) coupled to CD63 by fluorescence NTA. A real-time, live-cell imaging system (Incucyte™) was used to establish the effect of exosomes on EC. Plasma samples were obtained at early gestation (<18 weeks) and classified according to pregnancy outcomes. An Illumina TrueSeq Small RNA kit was used to construct a small RNA library from exosomal RNA obtained from EVT and plasma samples. The number of exosomes was significantly higher in EVT cultured under 1% compared to 8% oxygen. In total, 741 miRNA were identified in exosomes from EVT. Bioinformatic analysis revealed that these miRNA were associated with cell migration and cytokine production. Interestingly, exosomes isolated from EVT cultured at 8% oxygen increased EC migration, whilst exosomes cultured at 1% oxygen decreased EC migration. These changes were inversely proportional to TNF-α released from EC. Finally, we have identified a set of unique miRNAs in exosomes from EVT cultured at 1% oxygen and exosomes isolated from the circulation of mothers at early gestation, who later developed PE and SPTB. We suggest that aberrant exosomal signalling by placental cells is a common aetiological factor in pregnancy complications characterised by incomplete SpA remodeling and is therefore a clinically relevant biomarker of pregnancy complications.
Collapse
Affiliation(s)
- Grace Truong
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Vyjayanthi Kinhal
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Omar Elfeky
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Sherri Longo
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, United States of America
| | - Zarin Nuzhat
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Carlos Palma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Katherin Scholz-Romero
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Ben W. Mol
- Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Medicine, University of Adelaide, North Adelaide, Australia
| | - Gregory E. Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, United States of America
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, United States of America
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| |
Collapse
|
33
|
Abou-Kheir W, Barrak J, Hadadeh O, Daoud G. HTR-8/SVneo cell line contains a mixed population of cells. Placenta 2016; 50:1-7. [PMID: 28161053 DOI: 10.1016/j.placenta.2016.12.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The placenta, a transient organ in humans, is essential for pregnancy maintenance and fetal development. Trophoblast and stromal cells are the main cell types present in human placenta. Trophoblast cells are derivatives of the trophectoderm layer and fulfill the endocrine, exchange, invasion and implantation processes of the placenta, whereas stromal cells are of extraembryonic mesenchymal origin and are important for villous formation and maintenance. Different cell lines were developed to study trophoblast functions including BeWo, JEG-3 and JAR from chorioncarcinoma while HTR-8/SVneo was developed using first trimester extravillous trophoblast infected with simian virus 40 large T antigen (SV40). These cell lines are largely used to study trophoblast functions including cell fusion, migration and invasion. Therefore, the purity of each cell lines is crucial in order to be able to use them as a model recapitulating trophoblast cells. METHODS HTR-8/SVneo, BeWo, JEG-3 and JAR were analyzed for epithelial and mesenchymal markers using immunofluorescence, real time PCR and Western blot. RESULTS Our results showed that HTR-8/SVneo cell line contains two populations of cells suggesting the presence of trophoblast and stromal/mesenchymal cells. While all cells in BeWo, JEG-3 and Jar are positive for the trophoblast/epithelial marker CK7, HTR-8/SVneo cells contained few clusters of CK7 positive cells. Interestingly, vimentin expression was detected in a subset of HTR-8/SVneo cells and was completely absent from all other tested placental cell lines. DISCUSSION Our results unveil the presence of a heterogeneous population of trophoblast and stromal cells within HTR-8/SVneo cell line. This mixed population of cells should be taken into consideration when using this cell line to study trophoblast functions.
Collapse
Affiliation(s)
- Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Joanna Barrak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Georges Daoud
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
34
|
Lee CQE, Gardner L, Turco M, Zhao N, Murray MJ, Coleman N, Rossant J, Hemberger M, Moffett A. What Is Trophoblast? A Combination of Criteria Define Human First-Trimester Trophoblast. Stem Cell Reports 2016; 6:257-72. [PMID: 26862703 PMCID: PMC4750161 DOI: 10.1016/j.stemcr.2016.01.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 12/15/2022] Open
Abstract
Controversy surrounds reports describing the derivation of human trophoblast cells from placentas and embryonic stem cells (ESC), partly due to the difficulty in identifying markers that define cells as belonging to the trophoblast lineage. We have selected criteria that are characteristic of primary first-trimester trophoblast: a set of protein markers, HLA class I profile, methylation of ELF5, and expression of microRNAs (miRNAs) from the chromosome 19 miRNA cluster (C19MC). We tested these criteria on cells previously reported to show some phenotypic characteristics of trophoblast: bone morphogenetic protein (BMP)-treated human ESC and 2102Ep, an embryonal carcinoma cell line. Both cell types only show some, but not all, of the four trophoblast criteria. Thus, BMP-treated human ESC have not fully differentiated to trophoblast. Our study identifies a robust panel, including both protein and non-protein-coding markers that, in combination, can be used to reliably define cells as characteristic of early trophoblast.
Collapse
Affiliation(s)
- Cheryl Q E Lee
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto M5G 0A4, Canada.
| | - Lucy Gardner
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Margherita Turco
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Nancy Zhao
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5G 0A4, Canada
| | - Myriam Hemberger
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
35
|
Gamage TK, Chamley LW, James JL. Stem cell insights into human trophoblast lineage differentiation. Hum Reprod Update 2016; 23:77-103. [PMID: 27591247 DOI: 10.1093/humupd/dmw026] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The human placenta is vital for fetal development, yet little is understood about how it forms successfully to ensure a healthy pregnancy or why this process is inadequate in 1 in 10 pregnancies, leading to miscarriage, intrauterine growth restriction or preeclampsia. Trophoblasts are placenta-specific epithelial cells that maximize nutrient exchange. All trophoblast lineages are thought to arise from a population of trophoblast stem cells (TSCs). However, whilst the isolation of murine TSC has led to an explosion in understanding murine placentation, the isolation of an analogous human TSC has proved more difficult. Consequently, alternative methods of studying human trophoblast lineage development have been employed, including human embryonic stem cells (hESCs), induced pluripotent stem cells (iPS) and transformed cell lines; but what do these proxy models tell us about what is happening during early placental development? OBJECTIVE AND RATIONALE In this systematic review, we evaluate current approaches to understanding human trophoblast lineage development in order to collate and refine these models and inform future approaches aimed at establishing human TSC lines. SEARCH METHODS To ensure all relevant articles were analysed, an unfiltered search of Pubmed, Embase, Scopus and Web of Science was conducted for 25 key terms on the 13th May 2016. In total, 47 313 articles were retrieved and manually filtered based on non-human, non-English, non-full text, non-original article and off-topic subject matter. This resulted in a total of 71 articles deemed relevant for review in this article. OUTCOMES Candidate human TSC populations have been identified in, and isolated from, both the chorionic membrane and villous tissue of the placenta, but further investigation is required to validate these as 'true' human TSCs. Isolating human TSCs from blastocyst trophectoderm has not been successful in humans as it was in mice, although recently the first reported TSC line (USFB6) was isolated from an eight-cell morula. In lieu of human TSC lines, trophoblast-like cells have been induced to differentiate from hESCs and iPS. However, differentiation in these model systems is difficult to control, culture conditions employed are highly variable, and the extent to which they accurately convey the biology of 'true' human TSCs remains unclear, particularly as a consensus has not been met among the scientific community regarding which characteristics a human TSC must possess. WIDER IMPLICATIONS Human TSC models have the potential to revolutionize our understanding of trophoblast differentiation, allowing us to make significant gains in understanding the underlying pathology of pregnancy disorders and to test potential therapeutic interventions on cell function in vitro. In order to do this, a collaborative effort is required to establish the criteria that define a human TSC to confirm the presence of human TSCs in both primary isolates and to determine how accurately trophoblast-like cells derived from current model systems reflect trophoblast from primary tissue. The in vitro systems currently used to model early trophoblast lineage formation have provided insights into early human placental formation but it is unclear whether these trophoblast-like cells are truly representative of primary human trophoblast. Consequently, continued refinement of current models, and standardization of culture protocols is essential to aid our ability to identify, isolate and propagate 'true' human TSCs from primary tissue.
Collapse
Affiliation(s)
- Teena Kjb Gamage
- Department of Obstetrics and Gynaecology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
36
|
Alteration of Pituitary Tumor Transforming Gene-1 Regulates Trophoblast Invasion via the Integrin/Rho-Family Signaling Pathway. PLoS One 2016; 11:e0149371. [PMID: 26900962 PMCID: PMC4764760 DOI: 10.1371/journal.pone.0149371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/01/2016] [Indexed: 11/23/2022] Open
Abstract
Trophoblast invasion ability is an important factor in early implantation and placental development. Recently, pituitary tumor transforming gene 1 (PTTG1) was shown to be involved in invasion and proliferation of cancer. However, the role of PTTG1 in trophoblast invasion remains unknown. Thus, in this study we analyzed PTTG1 expression in trophoblasts and its effect on trophoblast invasion activity and determined the mechanism through which PTTG1 regulates trophoblast invasion. Trophoblast proliferation and invasion abilities, regardless of PTTG1 expression, were analyzed by quantitative real-time polymerase chain reaction, fluorescence-activated cell sorting analysis, invasion assay, western blot, and zymography after treatment with small interfering RNA against PTTG1 (siPTTG1). Additionally, integrin/Rho-family signaling in trophoblasts by PTTG1 alteration was analyzed. Furthermore, the effect of PTTG1 on trophoblast invasion was evaluated by microRNA (miRNA) mimic and inhibitor treatment. Trophoblast invasion was significantly reduced through decreased matrix metalloproteinase (MMP)-2 and MMP-9 expression when PTTG1 expression was inhibited by siPTTG1 (p < 0.05). Furthermore, knockdown of PTTG1 increased expression of integrin alpha 4 (ITGA4), ITGA5, and integrin beta 1 (ITGB1); otherwise, RhoA expression was significantly decreased (p < 0.05). Treatment of miRNA-186-5p mimic and inhibitor controlled trophoblast invasion ability by altering PTTG1 and MMP expression. PTTG1 can control trophoblast invasion ability via regulation of MMP expression through integrin/Rho-family signaling. In addition, PTTG1 expression and its function were regulated by miRNA-186-5p. These results help in understanding the mechanism through which PTTG1 regulates trophoblast invasion and thereby implantation and placental development.
Collapse
|
37
|
Establishment and Characterization of a Telomerase-Immortalized Sheep Trophoblast Cell Line. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5808575. [PMID: 26998488 PMCID: PMC4779524 DOI: 10.1155/2016/5808575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/16/2015] [Accepted: 01/13/2016] [Indexed: 01/21/2023]
Abstract
The primary sheep trophoblast cells (STCs) have a finite lifespan in culture. This feature limits the scope for long-term in vitro studies with STCs. This study was an attempt to establish and characterize a telomerase-immortalized sheep trophoblast cell line. STCs were isolated and purified by using Percoll and specific immunoaffinity purification, respectively. The purified STCs were transfected with a plasmid carrying sequences of human telomerase reverse transcriptase (hTERT) to create immortalized sheep trophoblast cell line (hTERT-STCs). hTERT-STCs showed a stable expression of hTERT gene, serially passaged for a year, and showed active proliferation without signs of senescence. Cytokeratin 7 (CK-7), secreted human chorionic gonadotrophin subunit β (CG-β), placental lactogen (PL), and endogenous jaagsiekte sheep retrovirus (enJSRV) envelope genes were expressed in hTERT-STCs. Transwell cell invasion assay indicated that hTERT-STCs still possessed the same invasive characteristics as normal primary sheep trophoblast cells. hTERT-STCs could not grow in soft agar and did not develop into tumors in nude mice. In this study, we established a strain of immortalized sheep trophoblast cell line which could be gainfully employed in the future as an experimental model to study trophoblast cells with secretory function, invasive features, and probable biological function of enJSRV envelope genes.
Collapse
|
38
|
Sharma S, Godbole G, Modi D. Decidual Control of Trophoblast Invasion. Am J Reprod Immunol 2016; 75:341-50. [DOI: 10.1111/aji.12466] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022] Open
Affiliation(s)
- Shipra Sharma
- Molecular and Cellular Biology Laboratory; National Institute for Research in Reproductive Health; Mumbai India
| | - Geeta Godbole
- Molecular and Cellular Biology Laboratory; National Institute for Research in Reproductive Health; Mumbai India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory; National Institute for Research in Reproductive Health; Mumbai India
| |
Collapse
|
39
|
Effects of Human Umbilical Cord Mesenchymal Stem Cells on Human Trophoblast Cell Functions In Vitro. Stem Cells Int 2016; 2016:9156731. [PMID: 26949402 PMCID: PMC4753693 DOI: 10.1155/2016/9156731] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/23/2015] [Accepted: 10/08/2015] [Indexed: 12/19/2022] Open
Abstract
Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs) are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy.
Collapse
|
40
|
James JL, Hurley DG, Gamage TKJB, Zhang T, Vather R, Pantham P, Murthi P, Chamley LW. Isolation and characterisation of a novel trophoblast side-population from first trimester placentae. Reproduction 2015; 150:449-62. [DOI: 10.1530/rep-14-0646] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 08/06/2015] [Indexed: 12/18/2022]
Abstract
The placenta is responsible for all nutrient and gas exchange between mother and baby during pregnancy. The differentiation of specialised placental epithelial cells called trophoblasts is essential for placental function, but we understand little about how these populations arise. Mouse trophoblast stem cells have allowed us to understand many of the factors that regulate murine trophoblast lineage development, but the human placenta is anatomically very different from the mouse, and it is imperative to isolate a human trophoblast stem cell to understand human placental development. Here we have developed a novel methodology to isolate a Hoechst side-population of trophoblasts from early gestation placentae and compared their transcriptome to differentiated trophoblast populations (cytotrophoblasts and extravillous trophoblasts) using microarray technology. Side-population trophoblasts clustered as a transcriptomically distinct population but were more closely related to cytotrophoblasts than extravillous trophoblasts. Side-population trophoblasts up-regulated a number of genes characteristic of trophectoderm and murine trophoblast stem cells in comparison to cytotrophoblasts or extravillous trophoblasts and could be distinguished from both of these more mature populations by a unique set of 22 up-regulated genes, which were enriched for morphogenesis and organ development and the regulation of growth functions. Cells expressing two of these genes (LAMA2 and COL6A3) were distributed throughout the cytotrophoblast layer at the trophoblast/mesenchymal interface. Comparisons to previously published trophoblast progenitor populations suggest that the side-population trophoblasts isolated in this work are a novel human trophoblast population. Future work will determine whether these cells exhibit functional progenitor/stem cell attributes.
Collapse
|
41
|
Spagnoletti A, Paulesu L, Mannelli C, Ermini L, Romagnoli R, Cintorino M, Ietta F. Low concentrations of Bisphenol A and para-Nonylphenol affect extravillous pathway of human trophoblast cells. Mol Cell Endocrinol 2015; 412:56-64. [PMID: 26027920 DOI: 10.1016/j.mce.2015.05.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 01/27/2023]
Abstract
Bisphenol A (BPA) and para-Nonylphenol (p-NP) are chemicals of industrial origin which may influence human reproductive health. The effects of these substances in the prenatal life is an important topic that is receiving greater attention in the developed countries. In this study, human trophoblast cells HTR-8/SVneo were exposed to BPA and p-NP (1 × 10(-15), 1 × 10(-13), 1 × 10(-11), 1 × 10(-9) and 1 × 10(-7) M) and incubated for 24, 48 and/or 72 h then, examined for the main physiological processes which characterize the extravillous trophoblast. Cell proliferation showed no changes while the processes of cell migration and invasion were both reduced by BPA and p-NP. For each chemical, the activity was higher at lower concentrations with a maximum activity between 1 × 10(-13) and 1 × 10(-11) M (p < 0.05 for 1 × 10(-9) and p < 0.001 for 1 × 10(-11) M). Co-culture studies with human umbilical cord endothelial cells (HUVEC) revealed that trophoblast/endothelial interaction was significantly reduced by p-NP at 1 × 10(-11) M. Moreover, both chemicals were inducing differentiation of HTR-8/SVneo toward polyploidy by the process of endoreduplication. The estrogen-receptor antagonist ICI significantly reduced p-NP action, while it had no effect on BPA treated cells. In conclusion, p-NP and BPA act on trophoblast cells altering key physiological processes in placenta development. The exact mechanism of action of the chemicals in human trophoblast still needs to be clarified.
Collapse
Affiliation(s)
| | - Luana Paulesu
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | - Chiara Mannelli
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | - Roberta Romagnoli
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | - Marcella Cintorino
- Department of Medicine, Surgery and Neuroscience, Policlinico Santa Maria alle Scotte, Viale Mario Bracci, 53100 Siena, Italy
| | - Francesca Ietta
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy.
| |
Collapse
|
42
|
Kumar P, Thirkill TL, Ji J, Monte LH, Douglas GC. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation. PLoS One 2015; 10:e0135089. [PMID: 26266541 PMCID: PMC4533975 DOI: 10.1371/journal.pone.0135089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/16/2015] [Indexed: 12/21/2022] Open
Abstract
Trophoblast differentiation during early placental development is critical for successful pregnancy and aberrant differentiation causes preeclampsia and early pregnancy loss. During the first trimester, cytotrophoblasts are exposed to low oxygen tension (equivalent to~2%-3% O2) and differentiation proceeds along an extravillous pathway (giving rise to invasive extravillous cytotrophoblasts) and a villous pathway (giving rise to multinucleated syncytiotrophoblast). Interstitial extravillous cytotrophoblasts invade the decidua, while endovascular extravillous cytotrophoblasts are involved in re-modelling uterine spiral arteries. We tested the idea that sodium butyrate (an epigenetic modulator) induces trophoblast differentiation in early gestation rhesus monkey trophoblasts through activation of the Wnt/β-catenin pathway. The results show that syncytiotrophoblast formation was increased by butyrate, accompanied by nuclear accumulation of β-catenin, and increased expression of EnvV2 and galectin-1 (two factors thought to be involved in trophoblast fusion). Surprisingly, the expression of GCM1 and syncytin-2 was not affected by sodium butyrate. When trophoblasts were incubated with lithium chloride, a GSK3 inhibitor that mimics Wnt activation, nuclear accumulation of β-catenin also occurred but differentiation into syncytiotrophoblast was not observed. Instead the cells differentiated to mononucleated spindle-shaped cells and showed molecular and behavioral characteristics of endovascular trophoblasts. Another highly specific inhibitor of GSK3, CHIR99021, failed to induce endovascular trophoblast characteristics. These observations suggest that activation of the Wnt/β-catenin pathway correlates with both trophoblast differentiation pathways, but that additional factors determine specific cell fate decisions. Other experiments suggested that the differential effects of sodium butyrate and lithium chloride might be explained by their effects on TNFα production. The results provide valuable tools to manipulate trophoblast differentiation in vitro and to better understand the differentiation pathways that occur during early gestation.
Collapse
Affiliation(s)
- Priyadarsini Kumar
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Twanda L. Thirkill
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Jennifer Ji
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Louise H. Monte
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Gordon C. Douglas
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Up-regulation of lymphocyte antigen 6 complex expression in side-population cells derived from a human trophoblast cell line HTR-8/SVneo. Hum Cell 2015. [DOI: 10.1007/s13577-015-0121-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
Cheng JC, Chang HM, Fang L, Sun YP, Leung PCK. TGF-β1 up-regulates connexin43 expression: a potential mechanism for human trophoblast cell differentiation. J Cell Physiol 2015; 230:1558-66. [PMID: 25560303 DOI: 10.1002/jcp.24902] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/18/2014] [Indexed: 12/24/2022]
Abstract
Connexin43 (Cx43)-mediated gap junctional intercellular communication (GJIC) are required for human trophoblast differentiation. To date, whether Cx43 mediates TGF-β1-induced trophoblast differentiation has not been determined. We showed that treatment with TGF-β1 increased Cx43 expression and GJIC in HTR-8/SVneo human trophoblast cells. In addition, Smad and ERK1/2 signaling pathways were involved in TGF-β1-induced up-regulation of Cx43. Moreover, TGF-β1 increased the expression of the syncytiotrophoblast marker, β-hCG. Importantly, knockdown of Cx43 abolished the TGF-β1-induced up-regulation of β-hCG. Furthermore, overexpression of Cx43 up-regulated β-hCG expression. These results provide evidence that Cx43 and GJIC activity are up-regulated by TGF-β1 in human trophoblast cells, which subsequently contributes to TGF-β1-induced trophoblast differentiation.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
45
|
Soares MJ, Chakraborty D, Kubota K, Renaud SJ, Rumi MAK. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2015; 58:247-59. [PMID: 25023691 DOI: 10.1387/ijdb.140083ms] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Implantation of the embryo into the uterus triggers the initiation of hemochorial placentation. The hemochorial placenta facilitates the acquisition of maternal resources required for embryo/fetal growth. Uterine spiral arteries form the nutrient supply line for the placenta and fetus. This vascular conduit undergoes gestation stage-specific remodeling directed by maternal natural killer cells and embryo-derived invasive trophoblast lineages. The placentation site, including remodeling of the uterine spiral arteries, is shaped by environmental challenges. In this review, we discuss the cellular participants controlling pregnancy-dependent uterine spiral artery remodeling and mechanisms responsible for their development and function.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproductive Health and Regenerative Medicine, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | | | | | | | | |
Collapse
|
46
|
Isolation and culturing of trophoblasts from human terminal placenta. Bull Exp Biol Med 2015; 158:532-6. [PMID: 25705038 DOI: 10.1007/s10517-015-2802-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Indexed: 10/24/2022]
Abstract
Trophoblast culture was derived from the islets of cell migrating from the fragments of placental microvilli. The isolated cells retained their cytotrophoblast phenotype longer (until passage 2-3) and then gained characteristics of proliferating mesenchymal cells. We conclude that changes in the morphology and co-expression of epithelial (cytokeratin 7) and mesenchymal (vimentin) markers attest to epithelial mesenchymal transition.
Collapse
|
47
|
Preliminary analysis of stem cell-like cells in human neuroblastoma. World J Pediatr 2015; 11:54-60. [PMID: 25431041 DOI: 10.1007/s12519-014-0529-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 06/19/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Neuroblastoma is an embryonic neoplasm originating from the neural crest with cellular heterogeneity as one of its oncobiological characteristics. This study was undertaken to determine whether human neuroblastoma contains stem cell-like cells. METHODS Twenty patients with neuroblastoma who have been treated in our hospital since January 2005 were divided into pre-operative chemotherapy (10 patients) and non-chemotherapy (10) groups. Tumor specimens of the patients were taken and paraffin sections were made. The expressions of stem cell markers CD133, ABCG2, CD117 and nestin were immunohistochemically detected in the specimens. Neuroblastoma cells were stained with Hoechst 33342 and PI. The side population (SP) cells were analyzed by the fluorescence-activated cell sorter. The disparity drug resistance to cisplatin (DDP) of SP and non-SP cells was measured with MTT colorimetric assay. The oncogenicity of SP and non-SP cells was identified in nude mice. RESULTS There was no significant difference in the expression intensity of CD117 and nestin between the two groups of specimens (P>0.05). There was a significant difference between the two groups in terms of the expression intensity of CD133 and ABCG2 (P<0.05). The SP cells accounted for 0.2%-1.3% of the total human neuroblastoma cells and were decreased to 0.1%-0.5% after verapamil treatment. The SP and non-SP cells showed disparity in cell growth experiment and drug resistance to DDP. Oncogenicity experiment revealed that nude mice could erupt tumor by an injection of l×10(6) SHSY5Y and WIV SP cells. However, the nude mice could not form tumor by an injection of l×10(6) non-SP cells. CONCLUSION Neuroblastoma might contain cancer stem cell-like cells.
Collapse
|
48
|
Liao TL, Chen SC, Tzeng CR, Kao SH. TCDD induces the hypoxia-inducible factor (HIF)-1α regulatory pathway in human trophoblastic JAR cells. Int J Mol Sci 2014; 15:17733-50. [PMID: 25272228 PMCID: PMC4227186 DOI: 10.3390/ijms151017733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 02/06/2023] Open
Abstract
The exposure to dioxin can compromise pregnancy outcomes and increase the risk of preterm births. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been demonstrated to induce placental hypoxia at the end of pregnancy in a rat model, and hypoxia has been suggested to be the cause of abnormal trophoblast differentiation and placental insufficiency syndromes. In this study, we demonstrate that the non-hypoxic stimulation of human trophoblastic cells by TCDD strongly increased hypoxia inducible factor-1 alpha (HIF-1α) stabilization. TCDD exposure induced the generation of reactive oxygen species (ROS) and nitric oxide. TCDD-induced HIF-1α stabilization and Akt phosphorylation was inhibited by pretreatment with wortmannin (a phosphatidylinositol 3-kinase (PI3K) inhibitor) or N-acetylcysteine (a ROS scavenger). The augmented HIF-1α stabilization by TCDD occurred via the ROS-dependent activation of the PI3K/Akt pathway. Additionally, a significant increase in invasion and metallomatrix protease-9 activity was found in TCDD-treated cells. The gene expression of vascular endothelial growth factor and placental growth factor was induced upon TCDD stimulation, whereas the protein levels of peroxisome proliferator-activated receptor γ (PPARγ), PPARγ coactivator-1α, mitochondrial transcription factor, and uncoupling protein 2 were decreased. Our results indicate that an activated HIF-1α pathway, elicited oxidative stress, and induced metabolic stress contribute to TCDD-induced trophoblastic toxicity. These findings may provide molecular insight into the TCDD-induced impairment of trophoblast function and placental development.
Collapse
Affiliation(s)
- Tien-Ling Liao
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Su-Chee Chen
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 110, Taiwan.
| | - Chii-Reuy Tzeng
- Center for Reproductive Medicine & Sciences Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Shu-Huei Kao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
49
|
Sadeh-Mestechkin D, Epstein Shochet G, Pomeranz M, Fishman A, Drucker L, Biron-Shental T, Lishner M, Tartakover Matalon S. The effect of heat shock protein 27 on extravillous trophoblast differentiation and on eukaryotic translation initiation factor 4E expression. Mol Hum Reprod 2014; 20:422-32. [PMID: 24431103 DOI: 10.1093/molehr/gau002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heat shock protein (HSP27) is expressed in human placentae. Previously, we showed that HSP27 is expressed in the villous cell column of first trimester placental explants and in extravillous trophoblast (EVT) cells. EVT differentiation is accompanied by increased motility, matrix metalloproteinase (MMP) activity, decreased proliferation and expression of specific markers such as HLAG and CD9. HSP27 regulates cell apoptosis, migration, protein stability and the availability of eukaryotic translation initiation factors, such as eukaryotic translation initiation factor 4E (eIF4E). eIF4E supports trophoblast cell proliferation and survival. We wanted to explore the effect of HSP27 silencing on trophoblast cell phenotype, EVT markers and eIF4E expression and regulators [4E-binding protein (4E-BP1) and MAP kinase-interacting kinase (MNK1)]. This study evaluated the effect of HSP27 siRNA on placental explant and HTR-8/SVneo migration, MMP activity/mRNA, cell death, cell cycle, HLAG/CD9 levels, and eIF4E and its regulators' total and phosphorylated levels. Furthermore, we evaluated HSP27 levels in placentae exposed to ribavirin, which triggers EVT differentiation. We found that HSP27 silencing increased cell death in HTR-8/SVneo and placental explants. Furthermore, it reduced HTR-8/SVneo migration and EVT outgrowth from the explants (P < 0.05), MMP2 activity and expression of EVT markers HLAG and CD9 (in placental explants and HTR-8/SVneo, respectively, P < 0.05). Induction of EVT differentiation by ribavirin elevated HSP27 levels. Finally, HSP27 silencing in both HTR-8/SVneo and placental explants reduced eIF4E levels (33 and 28%, respectively, P < 0.05) and the levels of its regulators 4E-BP1 and MNK1 (37 and 32%, respectively, done on HTR-8/SVneo only), but not their phosphorylated forms. Altogether, our results suggest that HSP27 contributes to EVT cell differentiation.
Collapse
|
50
|
Takahashi H, Takizawa T, Matsubara S, Ohkuchi A, Kuwata T, Usui R, Matsumoto H, Sato Y, Fujiwara H, Okamoto A, Suzuki M, Takizawa T. Extravillous trophoblast cell invasion is promoted by the CD44-hyaluronic acid interaction. Placenta 2013; 35:163-70. [PMID: 24439029 DOI: 10.1016/j.placenta.2013.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Extravillous trophoblast (EVT) cell invasion plays a crucial role in establishment of successful pregnancy. CD44, a cell-surface receptor for hyaluronic acid (HA), plays a key role in HA-mediated remodeling and degradation that triggers cancer cell invasion. However, few studies have reported on the expression or functions of CD44 in human EVT cells. We hypothesized that CD44-HA interaction was involved in invasion by EVT cells. METHODS To test our hypothesis, we conducted in situ examinations of CD44 and HA expression in the human first-trimester placenta. We also assessed the methylation status of CD44 promoter and exon 1 regions in EVT cells. Finally, we conducted transwell cell invasion assays using EVT cell lines and EVT cells isolated from first-trimester human villous explant cultures. RESULTS AND DISCUSSION EVT cells, but not villous trophoblast cells, in the first-trimester placenta expressed CD44. HA was strongly expressed in adventitia surrounding the spiral uterine arterial walls of the decidua. The extent of demethylation of CD44 promoter and exon 1 CpG islands was increased in EVT cells compared to those of first-trimester chorionic villi (including villous trophoblast cells), suggesting that CD44 expression was, at least in part, associated with methylation status. Data from transwell cell invasion assay with siRNA knockdown of CD44 revealed that CD44 expression significantly promoted invasion by EVT cells in an HA-dependent manner. CONCLUSIONS The discovery of a CD44-HA interaction between EVT cells and the extracellular matrix contributes to our understanding of the mechanism underlying invasion by EVT cells.
Collapse
Affiliation(s)
- H Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan; Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan
| | - T Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan
| | - S Matsubara
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - A Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - T Kuwata
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - R Usui
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - H Matsumoto
- Department of Obstetrics and Gynecology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Y Sato
- Department of Obstetrics and Gynecology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - H Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medicine Science, Kanazawa University, Ishikawa 920-8641, Japan
| | - A Okamoto
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo 105-0003, Japan
| | - M Suzuki
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - T Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan.
| |
Collapse
|