1
|
Benoit SL, Maier RJ. d-aspartate, an amino-acid important for human health, supports anaerobic respiration in several Campylobacter species. Res Microbiol 2024; 175:104219. [PMID: 38945250 DOI: 10.1016/j.resmic.2024.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Despite being classified as microaerophilic microorganisms, most Campylobacter species can grow anaerobically, using formate or molecular hydrogen (H2) as electron donors, and various nitrogenous and sulfurous compounds as electron acceptors. Herein, we showed that both l-asparagine (l-Asn) and l-aspartic acid (l-Asp) bolster H2-driven anaerobic growth in several Campylobacter species, whereas the d-enantiomer form of both asparagine (d-Asn) and aspartic acid (d-Asp) only increased anaerobic growth in Campylobacter concisus strain 13826 and Campylobacter ureolyticus strain NCTC10941. A gene annotated as racD encoding for a putative d/l-Asp racemase was identified in the genome of both strains. Disruption of racD in Cc13826 resulted in the inability of the mutant strain to use either d-enantiomer during anaerobic growth. Hence, our results suggest that the racD gene is required for campylobacters to use either d-Asp or d-Asn. The use of d-Asp by various human opportunistic bacterial pathogens, including C. concisus, C. ureolyticus, and also possibly select strains of Campylobacter gracilis, Campylobacter rectus and Campylobacter showae, is significant, because d-Asp is an important signal molecule for both human nervous and neuroendocrine systems. To our knowledge, this is the first report of pathogens scavenging a d-amino acid essential for human health.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, GA, 30602, United States; Center for Metalloenzyme Studies, University of Georgia, Athens, GA, 30602, United States.
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, GA, 30602, United States; Center for Metalloenzyme Studies, University of Georgia, Athens, GA, 30602, United States
| |
Collapse
|
2
|
Cornelius AJ, Huq M, On SLW, French NP, Vandenberg O, Miller WG, Lastovica AJ, Istivan T, Biggs PJ. Genetic characterisation of Campylobacter concisus: Strategies for improved genomospecies discrimination. Syst Appl Microbiol 2021; 44:126187. [PMID: 33677170 DOI: 10.1016/j.syapm.2021.126187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
Although at least two genetically distinct groups, or genomospecies, have been well documented for Campylobacter concisus, no phenotype has yet been identified for their differentiation and thus formal description as separate species. C. concisus has been isolated from a variety of sites in the human body, including saliva and stool samples from both healthy and diarrhoeic individuals. We evaluated the ability of a range of whole genome-based tools to distinguish between the two C. concisus genomospecies (GS) using a collection of 190 C. concisus genomes. Nine genomes from related Campylobacter species were included in some analyses to provide context. Analyses incorporating sequence analysis of multiple ribosomal genes generated similar levels of C. concisus GS discrimination as genome-wide comparisons. The C. concisus genomes formed two groups; GS1 represented by ATCC 33237T and GS2 by CCUG 19995. The two C. concisus GS were separated from the nine genomes of related species. GS1 and GS2 also differed in G+C content with medians of 37.56% and 39.51%, respectively. The groups are consistent with previously established GS and are supported by DNA reassociation results. Average Nucleotide Identity using MUMmer (ANIm) and Genome BLAST Distance Phylogeny generated in silico DNA-DNA hybridisation (isDDH) (against ATCC 33237T and CCUG 19995), plus G+C content provides cluster-independent GS discrimination suitable for routine use. Pan-genomic analysis identified genes specific to GS1 and GS2. WGS data and genomic species identification methods support the existence of two GS within C. concisus. These data provide genome-level metrics for strain identification to genomospecies level.
Collapse
Affiliation(s)
- Angela J Cornelius
- Institute of Environmental Science and Research Ltd, P.O. Box 29181, Christchurch 8540, New Zealand.
| | - Mohsina Huq
- School of Science, RMIT University, G.P.O. Box 2476, Bundoora, Victoria 3001, Australia
| | - Stephen L W On
- Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand
| | - Nigel P French
- Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Olivier Vandenberg
- National Reference Centre for Campylobacter, Laboratoire Hospitalier Universitaire de Bruxelles, 322 rue Haute, 1000 Brussels, Belgium; School of Public Health, Campus Erasme - Bâtiment A, Route de Lennik 808 - CP591, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - William G Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA
| | - Albert J Lastovica
- University of Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Taghrid Istivan
- School of Science, RMIT University, G.P.O. Box 2476, Bundoora, Victoria 3001, Australia
| | - Patrick J Biggs
- Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
3
|
Abstract
Campylobacter is among the four main causes of gastroenteritis worldwide and has increased in both developed and developing countries over the last 10 years. The vast majority of reported Campylobacter infections are caused by Campylobacter jejuni and, to a lesser extent, C. coli; however, the increasing recognition of other emerging Campylobacter pathogens is urgently demanding a better understanding of how these underestimated species cause disease, transmit, and evolve. In parallel to the enhanced clinical awareness of campylobacteriosis due to improved diagnostic protocols, the application of high-throughput sequencing has increased the number of whole-genome sequences available to dozens of strains of many emerging campylobacters. This has allowed for comprehensive comparative pathogenomic analyses for several species, such as C. fetus and C. concisus These studies have started to reveal the evolutionary forces shaping their genomes and have brought to light many genomic features related to pathogenicity in these neglected species, promoting the development of new tools and approaches relevant for clinical microbiology. Despite the need for additional characterization of genomic diversity in emerging campylobacters, the increasing body of literature describing pathogenomic studies on these species deserves to be discussed from an integrative perspective. This review compiles the current knowledge and highlights future work toward deepening our understanding about genome dynamics and the mechanisms governing the evolution of pathogenicity in emerging Campylobacter species, which is urgently needed to develop strategies to prevent or control the spread of these pathogens.
Collapse
Affiliation(s)
- Daniela Costa
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gregorio Iraola
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Center for Integrative Biology, Universidad Mayor, Santiago de Chile, Chile
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
4
|
Clark CG, Chen CY, Berry C, Walker M, McCorrister SJ, Chong PM, Westmacott GR. Comparison of genomes and proteomes of four whole genome-sequenced Campylobacter jejuni from different phylogenetic backgrounds. PLoS One 2018; 13:e0190836. [PMID: 29293692 PMCID: PMC5749857 DOI: 10.1371/journal.pone.0190836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Whole genome sequencing (WGS) has been used to assess the phylogenetic relationships, virulence and metabolic differences, and the relationship between gene carriage and host or niche differentiation among populations of C. jejuni isolates. We previously characterized the presence and expression of CJIE4 prophage proteins in four C. jejuni isolates using WGS and comparative proteomics analysis, but the isolates were not assessed further. In this study we compare the closed, finished genome sequences of these isolates to the total proteome. Genomes of the four isolates differ in phage content and location, plasmid content, capsular polysaccharide biosynthesis loci, a type VI secretion system, orientation of the ~92 kb invertible element, and allelic differences. Proteins with 99% sequence identity can be differentiated using isobaric tags for relative and absolute quantification (iTRAQ) comparative proteomic methods. GO enrichment analysis and the type of artefacts produced in comparative proteomic analysis depend on whether proteins are encoded in only one isolate or common to all isolates, whether different isolates have different alleles of the proteins analyzed, whether conserved and variable regions are both present in the protein group analyzed, and on how the analysis is done. Several proteins encoded by genes with very high levels of sequence identity in all four isolates exhibited preferentially higher protein expression in only one of the four isolates, suggesting differential regulation among the isolates. It is possible to analyze comparative protein expression in more distantly related isolates in the context of WGS data, though the results are more complex to interpret than when isolates are clonal or very closely related. Comparative proteomic analysis produced log2 fold expression data suggestive of regulatory differences among isolates, indicating that it may be useful as a hypothesis generation exercise to identify regulated proteins and regulatory pathways for more detailed analysis.
Collapse
Affiliation(s)
- Clifford G. Clark
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- * E-mail:
| | - Chih-yu Chen
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Bioinformatics Core, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Chrystal Berry
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Matthew Walker
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Stuart J. McCorrister
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Patrick M. Chong
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Garrett R. Westmacott
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Miller WG, Yee E, Lopes BS, Chapman MH, Huynh S, Bono JL, Parker CT, Strachan NJC, Forbes KJ. Comparative Genomic Analysis Identifies a Campylobacter Clade Deficient in Selenium Metabolism. Genome Biol Evol 2017; 9:1843-1858. [PMID: 28854596 PMCID: PMC5570042 DOI: 10.1093/gbe/evx093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
The nonthermotolerant Campylobacter species C. fetus, C. hyointestinalis, C. iguaniorum, and C. lanienae form a distinct phylogenetic cluster within the genus. These species are primarily isolated from foraging (swine) or grazing (e.g., cattle, sheep) animals and cause sporadic and infrequent human illness. Previous typing studies identified three putative novel C. lanienae-related taxa, based on either MLST or atpA sequence data. To further characterize these putative novel taxa and the C. fetus group as a whole, 76 genomes were sequenced, either to completion or to draft level. These genomes represent 26 C. lanienae strains and 50 strains of the three novel taxa. C. fetus, C. hyointestinalis and C. iguaniorum genomes were previously sequenced to completion; therefore, a comparative genomic analysis across the entire C. fetus group was conducted (including average nucleotide identity analysis) that supports the initial identification of these three novel Campylobacter species. Furthermore, C. lanienae and the three putative novel species form a discrete clade within the C. fetus group, which we have termed the C. lanienae clade. This clade is distinguished from other members of the C. fetus group by a reduced genome size and distinct CRISPR/Cas systems. Moreover, there are two signature characteristics of the C. lanienae clade. C. lanienae clade genomes carry four to ten unlinked and similar, but nonidentical, flagellin genes. Additionally, all 76 C. lanienae clade genomes sequenced demonstrate a complete absence of genes related to selenium metabolism, including genes encoding the selenocysteine insertion machinery, selenoproteins, and the selenocysteinyl tRNA.
Collapse
Affiliation(s)
- William G Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA
| | - Emma Yee
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA
| | - Bruno S Lopes
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, United Kingdom
| | - Mary H Chapman
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA
| | - James L Bono
- Meat Safety and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE
| | - Craig T Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA
| | - Norval J C Strachan
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, United Kingdom
| | - Ken J Forbes
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, United Kingdom
| |
Collapse
|
6
|
Zhu Y, Engström PG, Tellgren-Roth C, Baudo CD, Kennell JC, Sun S, Billmyre RB, Schröder MS, Andersson A, Holm T, Sigurgeirsson B, Wu G, Sankaranarayanan SR, Siddharthan R, Sanyal K, Lundeberg J, Nystedt B, Boekhout T, Dawson TL, Heitman J, Scheynius A, Lehtiö J. Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly of Malassezia sympodialis. Nucleic Acids Res 2017; 45:2629-2643. [PMID: 28100699 PMCID: PMC5389616 DOI: 10.1093/nar/gkx006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/16/2017] [Indexed: 11/23/2022] Open
Abstract
Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene annotation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodialis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies.
Collapse
Affiliation(s)
- Yafeng Zhu
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121 Solna, Sweden
| | - Pär G Engström
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17121 Solna, Sweden
| | - Christian Tellgren-Roth
- National Genomics Infrastructure, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden
| | - Charles D Baudo
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - John C Kennell
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - R Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Markus S Schröder
- School of Biomedical and Biomolecular Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anna Andersson
- Department of Medicine Solna, Translational Immunology Unit, Karolinska Institutet and University Hospital, 17177 Stockholm, Sweden
| | - Tina Holm
- Department of Medicine Solna, Translational Immunology Unit, Karolinska Institutet and University Hospital, 17177 Stockholm, Sweden
| | - Benjamin Sigurgeirsson
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, 17121 Solna, Sweden
| | - Guangxi Wu
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 138672, Singapore
| | - Sundar Ram Sankaranarayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India
| | - Rahul Siddharthan
- The Institute of Mathematical Sciences/HBNI, Taramani, Chennai 600 113, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India
| | - Joakim Lundeberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, 17121 Solna, Sweden
| | - Björn Nystedt
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Teun Boekhout
- CBS-Fungal Biodiversity Centre, Utrecht, 3508, The Netherlands and Institute for Biodiversity and ecosystem Dynamics (IBED), University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Thomas L Dawson
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Annika Scheynius
- Science for Life Laboratory, Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden
| | - Janne Lehtiö
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121 Solna, Sweden
| |
Collapse
|
7
|
The ribosomal RNA operon ( rrn ) of Campylobacter concisus supports molecular typing to genomospecies level. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2016.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Nielsen HL, Nielsen H, Torpdahl M. Multilocus sequence typing of Campylobacter concisus from Danish diarrheic patients. Gut Pathog 2016; 8:44. [PMID: 27688814 PMCID: PMC5034547 DOI: 10.1186/s13099-016-0126-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
The emerging enteric pathogen Campylobacter concisus is associated with prolonged diarrhea and inflammatory bowel disease. Previous studies have shown that C. concisus strains are very genetically diverse. Nevertheless, C. concisus strains have been divided into two genomospecies, where GS1 strains have been isolated predominantly from healthy individuals, while the GS2 cluster consists of isolates primarily from diarrheic individuals. The aim of the present study was to determine the genetic diversity of C. concisus isolates from Danish diarrheic patients. Multilocus sequence typing using the loci aspA, atpA, glnA, gltA, glyA, ilvD and pgm, as well as genomospecies based on specific differences in the 23S rRNA, was used to characterize 67 isolates (63 fecal and 4 oral), from 49 patients with different clinical presentations (29 with diarrhea, eight with bloody diarrhea, seven with collagenous colitis and five with Crohn’s disease). MLST revealed a high diversity of C. concisus with 53 sequence types (STs), of which 52 were identified as ‘new’ STs. Allele sequences showed more than 90 % similarity between isolates, with only four outliers. Dendrogram profiles of each allele showed a division into two groups, which more or less correlated with genomospecies A and genomospecies B. However, in contrary to previous results, this subgrouping had no association to the clinical severity of disease.
Collapse
Affiliation(s)
- Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark ; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Mia Torpdahl
- Department of Microbiology and Infection Control, Statens Serum Institut (SSI), Copenhagen, Denmark
| |
Collapse
|
9
|
Kumar D, Mondal AK, Kutum R, Dash D. Proteogenomics of rare taxonomic phyla: A prospective treasure trove of protein coding genes. Proteomics 2015; 16:226-40. [PMID: 26773550 DOI: 10.1002/pmic.201500263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 01/04/2023]
Abstract
Sustainable innovations in sequencing technologies have resulted in a torrent of microbial genome sequencing projects. However, the prokaryotic genomes sequenced so far are unequally distributed along their phylogenetic tree; few phyla contain the majority, the rest only a few representatives. Accurate genome annotation lags far behind genome sequencing. While automated computational prediction, aided by comparative genomics, remains a popular choice for genome annotation, substantial fraction of these annotations are erroneous. Proteogenomics utilizes protein level experimental observations to annotate protein coding genes on a genome wide scale. Benefits of proteogenomics include discovery and correction of gene annotations regardless of their phylogenetic conservation. This not only allows detection of common, conserved proteins but also the discovery of protein products of rare genes that may be horizontally transferred or taxonomy specific. Chances of encountering such genes are more in rare phyla that comprise a small number of complete genome sequences. We collated all bacterial and archaeal proteogenomic studies carried out to date and reviewed them in the context of genome sequencing projects. Here, we present a comprehensive list of microbial proteogenomic studies, their taxonomic distribution, and also urge for targeted proteogenomics of underexplored taxa to build an extensive reference of protein coding genes.
Collapse
Affiliation(s)
- Dhirendra Kumar
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| | - Anupam Kumar Mondal
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| | - Rintu Kutum
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| | - Debasis Dash
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| |
Collapse
|
10
|
Pettersen VK, Steinsland H, Wiker HG. Improving genome annotation of enterotoxigenicEscherichia coliTW10598 by a label-free quantitative MS/MS approach. Proteomics 2015; 15:3826-34. [DOI: 10.1002/pmic.201500278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/18/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Veronika Kuchařová Pettersen
- The Gade Research Group for Infection and Immunity; Department of Clinical Science; University of Bergen; Bergen Norway
| | - Hans Steinsland
- Centre for International Health; Department of Global Public Health and Primary Care; University of Bergen; Bergen Norway
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - Harald G. Wiker
- The Gade Research Group for Infection and Immunity; Department of Clinical Science; University of Bergen; Bergen Norway
| |
Collapse
|
11
|
Hare NJ, Chan B, Chan E, Kaufman KL, Britton WJ, Saunders BM. Microparticles released from Mycobacterium tuberculosis-infected human macrophages contain increased levels of the type I interferon inducible proteins including ISG15. Proteomics 2015; 15:3020-9. [PMID: 26036210 DOI: 10.1002/pmic.201400610] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/26/2015] [Accepted: 05/30/2015] [Indexed: 01/18/2023]
Abstract
Microparticles (MPs) are small membranous particles (100-1000 nm) released under normal steady-state conditions and are thought to provide a communication network between host cells. Previous studies demonstrated that Mycobacterium tuberculosis (M. tb) infection of macrophages increased the release of MPs, and these MPs induced a proinflammatory response from uninfected macrophages in vitro and in vivo following their transfer into uninfected mice. To determine how M. tb infection modulates the protein composition of the MPs, and if this contributes to their proinflammatory properties, we compared the proteomes of MPs derived from M. tb-infected (TBinf-MP) and uninfected human THP-1 monocytic cells. MP proteins were analyzed by GeLC-MS/MS with spectral counting revealing 68 proteins with statistically significant differential abundances. The 42 proteins increased in abundance in TBinf-MPs included proteins associated with immune function (7), lysosomal/endosomal maturation (4), vesicular formation (12), nucleosome proteins (4), and antigen processing (9). Prominent among these were the type I interferon inducible proteins, ISG15, IFIT1, IFIT2, and IFIT3. Exposure of uninfected THP-1 cells to TBinf-MPs induced increased gene expression of isg15, ifit1, ifit2, and ifit3 and the release of proinflammatory cytokines. These proteins may regulate the proinflammatory potential of the MPs and provide candidate biomarkers for M. tb infection.
Collapse
Affiliation(s)
- Nathan J Hare
- Tuberculosis Research Program, Centenary Institute, Disciplines of Medicine, Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Newtown, NSW, Australia
| | - Brian Chan
- Tuberculosis Research Program, Centenary Institute, Disciplines of Medicine, Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Newtown, NSW, Australia
| | - Edwina Chan
- Tuberculosis Research Program, Centenary Institute, Disciplines of Medicine, Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Newtown, NSW, Australia
| | - Kimberley L Kaufman
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia
| | - Warwick J Britton
- Tuberculosis Research Program, Centenary Institute, Disciplines of Medicine, Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Newtown, NSW, Australia
| | - Bernadette M Saunders
- Tuberculosis Research Program, Centenary Institute, Disciplines of Medicine, Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Newtown, NSW, Australia.,School of Life Sciences, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
12
|
Wang P, Lv C, Zhu G. Novel type II and monomeric NAD+ specific isocitrate dehydrogenases: phylogenetic affinity, enzymatic characterization, and evolutionary implication. Sci Rep 2015; 5:9150. [PMID: 25775177 PMCID: PMC4360740 DOI: 10.1038/srep09150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/23/2015] [Indexed: 11/09/2022] Open
Abstract
NAD(+) use is an ancestral trait of isocitrate dehydrogenase (IDH), and the NADP(+) phenotype arose through evolution as an ancient adaptation event. However, no NAD(+)-specific IDHs have been found among type II IDHs and monomeric IDHs. In this study, novel type II homodimeric NAD-IDHs from Ostreococcus lucimarinus CCE9901 IDH (OlIDH) and Micromonas sp. RCC299 (MiIDH), and novel monomeric NAD-IDHs from Campylobacter sp. FOBRC14 IDH (CaIDH) and Campylobacter curvus (CcIDH) were reported for the first time. The homodimeric OlIDH and monomeric CaIDH were determined by size exclusion chromatography and MALDI-TOF/TOF mass spectrometry. All the four IDHs were demonstrated to be NAD(+)-specific, since OlIDH, MiIDH, CaIDH and CcIDH displayed 99-fold, 224-fold, 61-fold and 37-fold preferences for NAD(+) over NADP(+), respectively. The putative coenzyme discriminating amino acids (Asp326/Met327 in OlIDH, Leu584/Asp595 in CaIDH) were evaluated, and the coenzyme specificities of the two mutants, OlIDH R(326)H(327) and CaIDH H(584)R(595), were completely reversed from NAD(+) to NADP(+). The detailed biochemical properties, including optimal reaction pH and temperature, thermostability, and metal ion effects, of OlIDH and CaIDH were further investigated. The evolutionary connections among OlIDH, CaIDH, and all the other forms of IDHs were described and discussed thoroughly.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Changqi Lv
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| |
Collapse
|
13
|
McMullen L, T Leach S, A Lemberg D, S Day A. Current roles of specific bacteria in the pathogenesis of inflammatory bowel disease. AIMS Microbiol 2015. [DOI: 10.3934/microbiol.2015.1.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
14
|
Kucharova V, Wiker HG. Proteogenomics in microbiology: taking the right turn at the junction of genomics and proteomics. Proteomics 2014; 14:2360-675. [PMID: 25263021 DOI: 10.1002/pmic.201400168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/18/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022]
Abstract
High-accuracy and high-throughput proteomic methods have completely changed the way we can identify and characterize proteins. MS-based proteomics can now provide a unique supplement to genomic data and add a new level of information to the interpretation of genomic sequences. Proteomics-driven genome annotation has become especially relevant in microbiology where genomes are sequenced on a daily basis and limitations of an in silico driven annotation process are well recognized. In this review paper, we outline different strategies on how one can design a proteogenomic experiment, for example on genome-sequenced (synonymous proteogenomics) versus unsequenced organisms (ortho-proteogenomics) or with the aid of other "omic" data such as RNA-seq. We touch upon many challenges that are encountered during a typical proteogenomic study, mostly concerning bioinformatics methods and downstream data analysis, but also related to creation and use of sequence databases. A large list of proteogenomic case studies of different microorganisms is provided to illustrate the mapping of MS/MS-derived peptide spectra to genomic DNA sequences. These investigations have led to accurate determination of translational initiation sites, pointed out eventual read-throughs or programmed frameshifts, detected signal peptide processing or other protein maturation events, removed questionable annotation assignments, and provided evidence for predicted hypothetical proteins.
Collapse
Affiliation(s)
- Veronika Kucharova
- Department of Clinical Science, The Gade Research Group for Infection and Immunity, University of Bergen, Norway
| | | |
Collapse
|
15
|
Abstract
The gut microbiota is a central player in the etiology of inflammatory bowel diseases. As such, there is intense scientific interest in elucidating the specific group/s of bacteria responsible for driving barrier damage and perpetuating the chronic inflammation that results in disease. Because of their ability to colonize close to the surface of the host intestinal epithelium, mucosa-associated bacteria are considered key players in the initiation and development of both Crohn's disease and ulcerative colitis. The leading bacterial candidates include adherent and invasive Escherichia coli, Helicobacter, Fusobacteria, Mycobacteria, and Campylobacter species. Of these, a member of the Campylobacter genus, Campylobacter concisus, has recently emerged as a putative player in the pathogenesis of inflammatory bowel diseases. Current research indicates that this bacterium possesses extraordinarily diverse pathogenic capacities as well as unique genetic and functional signatures that are defined by their ability to adhere to and invade host cells, secrete toxins, and the presence of a virulence-associated restriction-modification system. These characteristics enable the potential classification of C. concisus into distinct pathotypes, which we have named adherent and invasive C. concisus and adherent and toxinogenic C. concisus. In this review, we evaluate evidence for the role of emerging Campylobacter species in the pathogenesis of inflammatory bowel diseases.
Collapse
|
16
|
Handtke S, Volland S, Methling K, Albrecht D, Becher D, Nehls J, Bongaerts J, Maurer KH, Lalk M, Liesegang H, Voigt B, Daniel R, Hecker M. Cell physiology of the biotechnological relevant bacterium Bacillus pumilus-an omics-based approach. J Biotechnol 2014; 192 Pt A:204-14. [PMID: 25281541 DOI: 10.1016/j.jbiotec.2014.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 12/18/2022]
Abstract
Members of the species Bacillus pumilus get more and more in focus of the biotechnological industry as potential new production strains. Based on exoproteome analysis, B. pumilus strain Jo2, possessing a high secretion capability, was chosen for an omics-based investigation. The proteome and metabolome of B. pumilus cells growing either in minimal or complex medium was analyzed. In total, 1542 proteins were identified in growing B. pumilus cells, among them 1182 cytosolic proteins, 297 membrane and lipoproteins and 63 secreted proteins. This accounts for about 43% of the 3616 proteins encoded in the B. pumilus Jo2 genome sequence. By using GC-MS, IP-LC/MS and H NMR methods numerous metabolites were analyzed and assigned to reconstructed metabolic pathways. In the genome sequence a functional secretion system including the components of the Sec- and Tat-secretion machinery was found. Analysis of the exoproteome revealed secretion of about 70 proteins with predicted secretion signals. In addition, selected production-relevant genome features such as restriction modification systems and NRPS clusters of B. pumilus Jo2 are discussed.
Collapse
Affiliation(s)
- Stefan Handtke
- Institute for Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Sonja Volland
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| | - Karen Methling
- Institute of Biochemistry, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Dirk Albrecht
- Institute for Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Jenny Nehls
- Institute of Biochemistry, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Johannes Bongaerts
- Department of Chemistry and Biotechnology, Aachen University of Applied Sciences, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany.
| | | | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| | - Birgit Voigt
- Institute for Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany.
| |
Collapse
|
17
|
O'Donovan D, Corcoran GD, Lucey B, Sleator RD. Campylobacter ureolyticus: a portrait of the pathogen. Virulence 2014; 5:498-506. [PMID: 24717836 PMCID: PMC4063811 DOI: 10.4161/viru.28776] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 01/29/2023] Open
Abstract
Herein, we provide a brief overview of the emerging bacterial pathogen Campylobacter ureolyticus. We describe the identification of the pathogen by molecular as opposed to classical culture based diagnostics and discuss candidate reservoirs of infection. We also review the available genomic data, outlining some of the major virulence factors, and discuss how these mechanisms likely contribute to pathogenesis of the organism.
Collapse
Affiliation(s)
- Dylan O'Donovan
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Gerard D Corcoran
- Department of Diagnostic Microbiology; Cork University Hospital; Wilton, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| |
Collapse
|
18
|
Abstract
Gastroenteritis persists as a worldwide problem, responsible for approximately 2 million deaths annually. Traditional diagnostic methods used in the clinical microbiology laboratory include a myriad of tests, such as culture, microscopy, and immunodiagnostics, which can be labor intensive and suffer from long turnaround times and, in some cases, poor sensitivity. [corrected]. This article reviews recent advances in genomic and proteomic technologies that have been applied to the detection and identification of gastrointestinal pathogens. These methods simplify and speed up the detection of pathogenic microorganisms, and their implementation in the clinical microbiology laboratory has potential to revolutionize the diagnosis of gastroenteritis.
Collapse
|
19
|
Armengaud J, Trapp J, Pible O, Geffard O, Chaumot A, Hartmann EM. Non-model organisms, a species endangered by proteogenomics. J Proteomics 2014; 105:5-18. [PMID: 24440519 DOI: 10.1016/j.jprot.2014.01.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/24/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Previously, large-scale proteomics was possible only for organisms whose genomes were sequenced, meaning the most common model organisms. The use of next-generation sequencers is now changing the deal. With "proteogenomics", the use of experimental proteomics data to refine genome annotations, a higher integration of omics data is gaining ground. By extension, combining genomic and proteomic data is becoming routine in many research projects. "Proteogenomic"-flavored approaches are currently expanding, enabling the molecular studies of non-model organisms at an unprecedented depth. Today draft genomes can be obtained using next-generation sequencers in a rather straightforward way and at a reasonable cost for any organism. Unfinished genome sequences can be used to interpret tandem mass spectrometry proteomics data without the need for time-consuming genome annotation, and the use of RNA-seq to establish nucleotide sequences that are directly translated into protein sequences appears promising. There are, however, certain drawbacks that deserve further attention for RNA-seq to become more efficient. Here, we discuss the opportunities of working with non-model organisms, the proteomic methods that have been used until now, and the dramatic improvements proffered by proteogenomics. These put the distinction between model and non-model organisms in great danger, at least in terms of proteomics! BIOLOGICAL SIGNIFICANCE Model organisms have been crucial for in-depth analysis of cellular and molecular processes of life. Focusing the efforts of thousands of researchers on the Escherichia coli bacterium, Saccharomyces cerevisiae yeast, Arabidopsis thaliana plant, Danio rerio fish and other models for which genetic manipulation was possible was certainly worthwhile in terms of fundamental and invaluable biological insights. Until recently, proteomics of non-model organisms was limited to tedious, homology-based techniques, but today draft genomes or RNA-seq data can be straightforwardly obtained using next-generation sequencers, allowing the establishment of a draft protein database for any organism. Thus, proteogenomics opens new perspectives for molecular studies of non-model organisms, although they are still difficult experimental organisms. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Jean Armengaud
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze F-30207, France.
| | - Judith Trapp
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze F-30207, France; Irstea, UR MALY, F-69626 Villeurbanne, France
| | - Olivier Pible
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze F-30207, France
| | | | | | - Erica M Hartmann
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze F-30207, France
| |
Collapse
|
20
|
Pang CNI, Tay AP, Aya C, Twine NA, Harkness L, Hart-Smith G, Chia SZ, Chen Z, Deshpande NP, Kaakoush NO, Mitchell HM, Kassem M, Wilkins MR. Tools to covisualize and coanalyze proteomic data with genomes and transcriptomes: validation of genes and alternative mRNA splicing. J Proteome Res 2013; 13:84-98. [PMID: 24152167 DOI: 10.1021/pr400820p] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Direct links between proteomic and genomic/transcriptomic data are not frequently made, partly because of lack of appropriate bioinformatics tools. To help address this, we have developed the PG Nexus pipeline. The PG Nexus allows users to covisualize peptides in the context of genomes or genomic contigs, along with RNA-seq reads. This is done in the Integrated Genome Viewer (IGV). A Results Analyzer reports the precise base position where LC-MS/MS-derived peptides cover genes or gene isoforms, on the chromosomes or contigs where this occurs. In prokaryotes, the PG Nexus pipeline facilitates the validation of genes, where annotation or gene prediction is available, or the discovery of genes using a "virtual protein"-based unbiased approach. We illustrate this with a comprehensive proteogenomics analysis of two strains of Campylobacter concisus . For higher eukaryotes, the PG Nexus facilitates gene validation and supports the identification of mRNA splice junction boundaries and splice variants that are protein-coding. This is illustrated with an analysis of splice junctions covered by human phosphopeptides, and other examples of relevance to the Chromosome-Centric Human Proteome Project. The PG Nexus is open-source and available from https://github.com/IntersectAustralia/ap11_Samifier. It has been integrated into Galaxy and made available in the Galaxy tool shed.
Collapse
Affiliation(s)
- Chi Nam Ignatius Pang
- Systems Biology Initiative, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bullman S, Lucid A, Corcoran D, Sleator RD, Lucey B. Genomic investigation into strain heterogeneity and pathogenic potential of the emerging gastrointestinal pathogen Campylobacter ureolyticus. PLoS One 2013; 8:e71515. [PMID: 24023611 PMCID: PMC3758288 DOI: 10.1371/journal.pone.0071515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/01/2013] [Indexed: 12/29/2022] Open
Abstract
The recent detection and isolation of C. ureolyticus from patients with diarrhoeal illness and inflammatory bowel diseases warrants further investigation into its role as an emerging pathogen of the human gastrointestinal tract. Regarding the pathogenic mechanisms employed by this species we provide the first whole genome analysis of two C. ureolyticus isolates including the type strain. Comparative analysis, subtractive hybridisation and gene ontology searches against other Campylobacter species identifies the high degree of heterogenicity between C. ureolyticus isolates, in addition to the identification of 106 putative virulence associated factors, 52 of which are predicted to be secreted. Such factors encompass each of the known virulence tactics of pathogenic Campylobacter spp. including adhesion and colonisation (CadF, PEB1, IcmF and FlpA), invasion (ciaB and 16 virB-virD4 genes) and toxin production (S-layer RTX and ZOT). Herein, we provide the first virulence catalogue for C. ureolyticus, the components of which theoretically provide this emerging species with sufficient arsenal to establish pathology.
Collapse
Affiliation(s)
- Susan Bullman
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Alan Lucid
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Daniel Corcoran
- Department of Medical Microbiology, Cork University Hospital, Cork, Ireland
| | - Roy D. Sleator
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
- * E-mail:
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
- Department of Medical Microbiology, Cork University Hospital, Cork, Ireland
| |
Collapse
|
22
|
Comparative genomics of Campylobacter concisus isolates reveals genetic diversity and provides insights into disease association. BMC Genomics 2013; 14:585. [PMID: 23984967 PMCID: PMC3765806 DOI: 10.1186/1471-2164-14-585] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/17/2013] [Indexed: 12/17/2022] Open
Abstract
Background In spite of its association with gastroenteritis and inflammatory bowel diseases, the isolation of Campylobacter concisus from both diseased and healthy individuals has led to controversy regarding its role as an intestinal pathogen. One proposed reason for this is the presence of high genetic diversity among the genomes of C. concisus strains. Results In this study the genomes of six C. concisus strains were sequenced, assembled and annotated including two strains isolated from Crohn’s disease patients (UNSW2 and UNSW3), three from gastroenteritis patients (UNSW1, UNSWCS and ATCC 51562) and one from a healthy individual (ATCC 51561). The genomes of C. concisus BAA-1457 and UNSWCD, available from NCBI, were included in subsequent comparative genomic analyses. The Pan and Core genomes for the sequenced C. concisus strains consisted of 3254 and 1556 protein coding genes, respectively. Conclusion Genes were identified with specific conservation in C. concisus strains grouped by phenotypes such as invasiveness, adherence, motility and diseased states. Phylogenetic trees based on ribosomal RNA sequences and concatenated host-related pathways for the eight C. concisus strains were generated using the neighbor-joining method, of which the 16S rRNA gene and peptidoglycan biosynthesis grouped the C. concisus strains according to their pathogenic phenotypes. Furthermore, 25 non-synonymous amino acid changes with 14 affecting functional domains, were identified within proteins of conserved host-related pathways, which had possible associations with the pathogenic potential of C. concisus strains. Finally, the genomes of the eight C. concisus strains were compared to the nine available genomes of the well-established pathogen Campylobacter jejuni, which identified several important differences in the respiration pathways of these two species. Our findings indicate that C. concisus strains are genetically diverse, and suggest the genomes of this bacterium contain respiration pathways and modifications in the peptidoglycan layer that may play an important role in its virulence.
Collapse
|
23
|
Nothaft H, Scott NE, Vinogradov E, Liu X, Hu R, Beadle B, Fodor C, Miller WG, Li J, Cordwell SJ, Szymanski CM. Diversity in the protein N-glycosylation pathways within the Campylobacter genus. Mol Cell Proteomics 2012; 11:1203-19. [PMID: 22859570 DOI: 10.1074/mcp.m112.021519] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The foodborne bacterial pathogen, Campylobacter jejuni, possesses an N-linked protein glycosylation (pgl) pathway involved in adding conserved heptasaccharides to asparagine-containing motifs of >60 proteins, and releasing the same glycan into its periplasm as free oligosaccharides. In this study, comparative genomics of all 30 fully sequenced Campylobacter taxa revealed conserved pgl gene clusters in all but one species. Structural, phylogenetic and immunological studies showed that the N-glycosylation systems can be divided into two major groups. Group I includes all thermotolerant taxa, capable of growth at the higher body temperatures of birds, and produce the C. jejuni-like glycans. Within group I, the niche-adapted C. lari subgroup contain the smallest genomes among the epsilonproteobacteria, and are unable to glucosylate their pgl pathway glycans potentially reminiscent of the glucosyltransferase regression observed in the O-glycosylation system of Neisseria species. The nonthermotolerant Campylobacters, which inhabit a variety of hosts and niches, comprise group II and produce an unexpected diversity of N-glycan structures varying in length and composition. This includes the human gut commensal, C. hominis, which produces at least four different N-glycan structures, akin to the surface carbohydrate diversity observed in the well-studied commensal, Bacteroides. Both group I and II glycans are immunogenic and cell surface exposed, making these structures attractive targets for vaccine design and diagnostics.
Collapse
Affiliation(s)
- Harald Nothaft
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Coonrod EM, Durtschi JD, Margraf RL, Voelkerding KV. Developing genome and exome sequencing for candidate gene identification in inherited disorders: an integrated technical and bioinformatics approach. Arch Pathol Lab Med 2012; 137:415-33. [PMID: 22770468 DOI: 10.5858/arpa.2012-0107-ra] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Advances in sequencing technology with the commercialization of next-generation sequencing (NGS) has substantially increased the feasibility of sequencing human genomes and exomes. Next-generation sequencing has been successfully applied to the discovery of disease-causing genes in rare, inherited disorders. By necessity, the advent of NGS has fostered the concurrent development of bioinformatics approaches to expeditiously analyze the large data sets generated. Next-generation sequencing has been used for important discoveries in the research setting and is now being implemented into the clinical diagnostic arena. OBJECTIVE To review the current literature on technical and bioinformatics approaches for exome and genome sequencing and highlight examples of successful disease gene discovery in inherited disorders. To discuss the challenges for implementing NGS in the clinical research and diagnostic arenas. DATA SOURCES Literature review and authors' experience. CONCLUSIONS Next-generation sequencing approaches are powerful and require an investment in infrastructure and personnel expertise for effective use; however, the potential for improvement of patient care through faster and more accurate molecular diagnoses is high.
Collapse
Affiliation(s)
- Emily M Coonrod
- Research and Development, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
25
|
Kaakoush NO, Mitchell HM. Campylobacter concisus - A new player in intestinal disease. Front Cell Infect Microbiol 2012; 2:4. [PMID: 22919596 PMCID: PMC3417403 DOI: 10.3389/fcimb.2012.00004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/17/2012] [Indexed: 12/12/2022] Open
Abstract
Over the last decade Campylobacter concisus, a highly fastidious member of the Campylobacter genus has been described as an emergent pathogen of the human intestinal tract. Historically, C. concisus was associated with the human oral cavity and has been linked with periodontal lesions, including gingivitis and periodontitis, although currently its role as an oral pathogen remains contentious. Evidence to support the role of C. concisus in acute intestinal disease has come from studies that have detected or isolated C. concisus as sole pathogen in fecal samples from diarrheic patients. C. concisus has also been associated with chronic intestinal disease, its prevalence being significantly higher in children with newly diagnosed Crohn’s disease (CD) and adults with ulcerative colitis than in controls. Further C. concisus has been isolated from biopsy specimens of patients with CD. While such studies support the role of C. concisus as an intestinal pathogen, its isolation from healthy individuals, and failure of some studies to show a significant difference in C. concisus prevalence in subjects with diarrhea and healthy controls has raised contention as to its role in intestinal disease. Such findings could argue against the role of C. concisus in intestinal disease, however, the fact that C. concisus strains are genetically diverse raises the possibility that differences exist in their pathogenic potential. Evidence to support this view comes from studies showing strain specific differences in the ability of C. concisus to attach to and invade cells and produce virulence factors, including toxins and hemolytic phospholipase A. Further, sequencing of the genome of a C. concisus strain isolated from a child with CD (UNSWCD) and comparison of this with the only other fully sequenced strain (BAA-1457) would suggest that major differences exist in the genetic make-up of this species which could explain different outcomes of C. concisus infection.
Collapse
Affiliation(s)
- Nadeem Omar Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| | | |
Collapse
|
26
|
Kaakoush NO, Deshpande NP, Wilkins MR, Tan CG, Burgos-Portugal JA, Raftery MJ, Day AS, Lemberg DA, Mitchell H. The pathogenic potential of Campylobacter concisus strains associated with chronic intestinal diseases. PLoS One 2011; 6:e29045. [PMID: 22194985 PMCID: PMC3237587 DOI: 10.1371/journal.pone.0029045] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/18/2011] [Indexed: 12/13/2022] Open
Abstract
Campylobacter concisus has garnered increasing attention due to its association with intestinal disease, thus, the pathogenic potential of strains isolated from different intestinal diseases was investigated. A method to isolate C. concisus was developed and the ability of eight strains from chronic and acute intestinal diseases to adhere to and invade intestinal epithelial cells was determined. Features associated with bacterial invasion were investigated using comparative genomic analyses and the effect of C. concisus on host protein expression was examined using proteomics. Our isolation method from intestinal biopsies resulted in the isolation of three C. concisus strains from children with Crohn's disease or chronic gastroenteritis. Four C. concisus strains from patients with chronic intestinal diseases can attach to and invade host cells using mechanisms such as chemoattraction to mucin, aggregation, flagellum-mediated attachment, "membrane ruffling", cell penetration and damage. C. concisus strains isolated from patients with chronic intestinal diseases have significantly higher invasive potential than those from acute intestinal diseases. Investigation of the cause of this increased pathogenic potential revealed a plasmid to be responsible. 78 and 47 proteins were upregulated and downregulated in cells infected with C. concisus, respectively. Functional analysis of these proteins showed that C. concisus infection regulated processes related to interleukin-12 production, proteasome activation and NF-κB activation. Infection with all eight C. concisus strains resulted in host cells producing high levels of interleukin-12, however, only strains capable of invading host cells resulted in interferon-γ production as confirmed by ELISA. These findings considerably support the emergence of C. concisus as an intestinal pathogen, but more significantly, provide novel insights into the host immune response and an explanation for the heterogeneity observed in the outcome of C. concisus infection. Moreover, response to infection with invasive strains has substantial similarities to that observed in the inflamed mucosa of Crohn's disease patients.
Collapse
Affiliation(s)
- Nadeem O. Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Nandan P. Deshpande
- Systems Biology Initiative, The University of New South Wales, Sydney, New South Wales, Australia
| | - Marc R. Wilkins
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Systems Biology Initiative, The University of New South Wales, Sydney, New South Wales, Australia
| | - Chew Gee Tan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Jose A. Burgos-Portugal
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J. Raftery
- Biological Mass Spectrometry Facility, The University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew S. Day
- Department of Paediatrics, University of Otago (Christchurch), Christchurch, New Zealand
- Department of Gastroenterology, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Daniel A. Lemberg
- Department of Gastroenterology, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Hazel Mitchell
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
27
|
Abstract
A growing number of Campylobacter species other than C. jejuni and C. coli have been recognized as emerging human and animal pathogens. Although C. jejuni continues to be the leading cause of bacterial gastroenteritis in humans worldwide, advances in molecular biology and development of innovative culture methodologies have led to the detection and isolation of a range of under-recognized and nutritionally fastidious Campylobacter spp., including C. concisus, C. upsaliensis and C. ureolyticus. These emerging Campylobacter spp. have been associated with a range of gastrointestinal diseases, particularly gastroenteritis, IBD and periodontitis. In some instances, infection of the gastrointestinal tract by these bacteria can progress to life-threatening extragastrointestinal diseases. Studies have shown that several emerging Campylobacter spp. have the ability to attach to and invade human intestinal epithelial cells and macrophages, damage intestinal barrier integrity, secrete toxins and strategically evade host immune responses. Members of the Campylobacter genus naturally colonize a wide range of hosts (including pets, farm animals and wild animals) and are frequently found in contaminated food products, which indicates that these bacteria are at risk of zoonotic transmission to humans. This Review presents the latest information on the role and clinical importance of emerging Campylobacter spp. in gastrointestinal health and disease.
Collapse
Affiliation(s)
- Si Ming Man
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| |
Collapse
|
28
|
Kaakoush NO, Deshpande NP, Wilkins MR, Raftery MJ, Janitz K, Mitchell H. Comparative analyses of Campylobacter concisus strains reveal the genome of the reference strain BAA-1457 is not representative of the species. Gut Pathog 2011; 3:15. [PMID: 21992484 PMCID: PMC3219677 DOI: 10.1186/1757-4749-3-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/13/2011] [Indexed: 12/25/2022] Open
Abstract
Background Several studies have shown that significant genotypic heterogeneity exists among Campylobacter concisus strains. Recently, the genome of C. concisus UNSWCD, isolated from a patient with Crohn's disease, was sequenced. Results In this study, comparative analyses were performed between strain UNSWCD and BAA-1457, isolated from a patient with acute gastroenteritis. Searches between C. concisus UNSWCD and BAA-1457 showed that 76% of genes were homologues, whereas those between C. jejuni strains showed 90-91% to be homologues, indicating substantial variation exists within these two C. concisus genomes. More specific bidirectional homology searches identified 1593 genes that are shared between these strains, and 115 and 281 genes unique to UNSWCD and BAA-1457, respectively. Significantly, differences in the type of flagellin glycosylation pathways between the two strains were identified and confirmed by PCR. The protein profiles of UNSWCD, BAA-1457 and a further six strains of C. concisus were compared and analyzed bioinformatically, and this differentiated the strains into four clades. BAA-1457 was found to be highly divergent (average similarity: 56.8%) from the other seven strains (mean average similarity ± standard deviation: 64.7 ± 1.7%). Furthermore, searches for homologues of the 1593 proteins found to be common between UNSWCD and BAA-1457 were conducted against all available bacterial genomes, and 18 proteins were found to be unique to C. concisus, of which 6 were predicted to be secreted, and may represent good markers for detection of this species. Conclusions This study has elucidated several features that may be responsible for the heterogeneity that exists among C. concisus strains, and has determined that the strain BAA-1457 is genetically atypical to other C. concisus strains and is not a good candidate reference strain.
Collapse
Affiliation(s)
- Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|