1
|
Lu S, Zeng H, Xiong F, Yao M, He S. Advances in environmental DNA monitoring: standardization, automation, and emerging technologies in aquatic ecosystems. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1368-1384. [PMID: 38512561 DOI: 10.1007/s11427-023-2493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 03/23/2024]
Abstract
Environmental DNA (eDNA) monitoring, a rapidly advancing technique for assessing biodiversity and ecosystem health, offers a noninvasive approach for detecting and quantifying species from various environmental samples. In this review, a comprehensive overview of current eDNA collection and detection technologies is provided, emphasizing the necessity for standardization and automation in aquatic ecological monitoring. Furthermore, the intricacies of water bodies, from streams to the deep sea, and the associated challenges they pose for eDNA capture and analysis are explored. The paper delineates three primary eDNA survey methods, namely, bringing back water, bringing back filters, and bringing back data, each with specific advantages and constraints in terms of labor, transport, and data acquisition. Additionally, innovations in eDNA sampling equipment, including autonomous drones, subsurface samplers, and in-situ filtration devices, and their applications in monitoring diverse taxa are discussed. Moreover, recent advancements in species-specific detection and eDNA metabarcoding are addressed, highlighting the integration of novel techniques such as CRISPR-Cas and nanopore sequencing that enable precise and rapid detection of biodiversity. The implications of environmental RNA and epigenetic modifications are considered for future applications in providing nuanced ecological data. Lastly, the review stresses the critical role of standardization and automation in enhancing data consistency and comparability for robust long-term biomonitoring. We propose that the amalgamation of these technologies represents a paradigm shift in ecological monitoring, aligning with the urgent call for biodiversity conservation and sustainable management of aquatic ecosystems.
Collapse
Affiliation(s)
- Suxiang Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fan Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
- School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
2
|
Kadja T, Sun Y, Chodavarapu VP. Low-Cost, Real-Time Polymerase Chain Reaction System with Integrated RNA Extraction. SENSORS (BASEL, SWITZERLAND) 2023; 23:4604. [PMID: 37430517 DOI: 10.3390/s23104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 07/12/2023]
Abstract
Rapid, easy-to-use, and low-cost systems for biological sample testing are important for point-of-care diagnostics and various other health applications. The recent pandemic of Coronavirus Disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) showed an urgent need to rapidly and accurately identify the genetic material of SARS-CoV-2, an enveloped ribonucleic acid (RNA) virus, in upper respiratory specimens from people. In general, sensitive testing methods require genetic material extraction from the specimen. Unfortunately, current commercially available extraction kits are expensive and involve time-consuming and laborious extraction procedures. To overcome the difficulties associated with common extraction methods, we propose a simple enzymatic assay for the nucleic acid extraction step using heat mediation to improve the polymerase chain reaction (PCR) reaction sensitivity. Our protocol was tested on Human Coronavirus 229E (HCoV-229E) as an example, which comes from the large coronaviridae family of viruses that affect birds, amphibians, and mammals, of which SARS-CoV-2 is a member. The proposed assay was performed using a low-cost, custom-made, real-time PCR system that incorporates thermal cycling and fluorescence detection. It had fully customizable reaction settings to allow versatile biological sample testing for various applications, including point-of-care medical diagnosis, food and water quality testing, and emergency health situations. Our results show that heat-mediated RNA extraction is a viable extraction method when compared to commercial extraction kits. Further, our study showed that extraction has a direct impact on purified laboratory samples of HCoV-229E, but no direct impact on infected human cells. This is clinically relevant, as it allows us to circumvent the extraction step on clinical samples when using PCR.
Collapse
Affiliation(s)
- Tchamie Kadja
- Department of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Yvonne Sun
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Vamsy P Chodavarapu
- Department of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| |
Collapse
|
3
|
Krolicka A, Mæland Nilsen M, Klitgaard Hansen B, Wulf Jacobsen M, Provan F, Baussant T. Sea lice (Lepeophtherius salmonis) detection and quantification around aquaculture installations using environmental DNA. PLoS One 2022; 17:e0274736. [PMID: 36129924 PMCID: PMC9491551 DOI: 10.1371/journal.pone.0274736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
The naturally occurring ectoparasite salmon lice (Lepeophtherirus salmonis) poses a great challenge for the salmon farming industry, as well as for wild salmonids in the Northern hemisphere. To better control the infestation pressure and protect the production, there is a need to provide fish farmers with sensitive and efficient tools for rapid early detection and monitoring of the parasitic load. This can be achieved by targeting L. salmonis DNA in environmental samples. Here, we developed and tested a new L. salmonis specific DNA-based assay (qPCR assay) for detection and quantification from seawater samples using an analytical pipeline compatible with the Environmental Sample Processor (ESP) for autonomous water sample analysis of gene targets. Specificity of the L. salmonis qPCR assay was demonstrated through in-silico DNA analyses covering sequences of different L. salmonis isolates. Seawater was spiked with known numbers of nauplii and copepodite free-swimming (planktonic) stages of L. salmonis to investigate the relationship with the number of marker gene copies (MGC). Finally, field samples collected at different times of the year in the vicinity of a salmon production farm in Western Norway were analyzed for L. salmonis detection and quantification. The assay specificity was high and a high correlation between MGC and planktonic stages of L. salmonis was established in the laboratory conditions. In the field, L. salmonis DNA was consequently detected, but with MGC number below that expected for one copepodite or nauplii. We concluded that only L. salmonis tissue or eDNA residues were detected. This novel study opens for a fully automatized L. salmonis DNA quantification using ESP robotic to monitor the parasitic load, but challenges remain to exactly transfer information about eDNA quantities to decisions by the farmers and possible interventions.
Collapse
Affiliation(s)
| | | | | | - Magnus Wulf Jacobsen
- Danish Technical University, Section for Marine Living Resources, Silkeborg, Denmark
| | - Fiona Provan
- Norwegian Research Centre AS (NORCE), Stavanger, Norway
| | - Thierry Baussant
- Norwegian Research Centre AS (NORCE), Stavanger, Norway
- * E-mail:
| |
Collapse
|
4
|
Kadja T, Liu C, Sun Y, Chodavarapu VP. Low-Cost, Real-Time Polymerase Chain Reaction System for Point-of-Care Medical Diagnosis. SENSORS 2022; 22:s22062320. [PMID: 35336490 PMCID: PMC8955482 DOI: 10.3390/s22062320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023]
Abstract
Global health crises due to the prevailing Coronavirus Disease 2019 (COVID-19) pandemic have placed significant strain on health care facilities such as hospitals and clinics around the world. Further, foodborne and waterborne diseases are not only spreading faster, but also appear to be emerging more rapidly than ever before and are able to circumvent conventional control measures. The Polymerase Chain Reaction (PCR) system is a well-known diagnostic tool for many applications in medical diagnostics, environmental monitoring, and food and water quality assessment. Here, we describe the design, development, and testing of a portable, low-cost, and real-time PCR system that can be used in emergency health crises and resource-poor situations. The described PCR system incorporates real-time reaction monitoring using fluorescence as an alternative to gel electrophoresis for reaction analysis, further decreasing the need of multiple reagents, reducing sample testing cost, and reducing sample analysis time. The bill of materials cost of the described system is approximately $340. The described PCR system utilizes a novel progressive selective proportional–integral–derivative controller that helps in reducing sample analysis time. In addition, the system employs a novel primer-based approach to quantify the initial target amplicon concentration, making it well-suited for food and water quality assessment. The developed PCR system performed DNA amplification at a level and speed comparable to larger and more expensive commercial table-top systems. The fluorescence detection sensitivity was also tested to be at the same level as commercially available multi-mode optical readers, thus making the PCR system an attractive solution for medical point-of-care and food and water quality assessment.
Collapse
Affiliation(s)
- Tchamie Kadja
- Department of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45469, USA; (T.K.); (C.L.)
| | - Chengkun Liu
- Department of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45469, USA; (T.K.); (C.L.)
| | - Yvonne Sun
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA;
| | - Vamsy P. Chodavarapu
- Department of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45469, USA; (T.K.); (C.L.)
- Correspondence: ; Tel.: +1-(937)-229-2780
| |
Collapse
|
5
|
Bagi A, Knapik K, Baussant T. Abundance and diversity of n-alkane and PAH-degrading bacteria and their functional genes - Potential for use in detection of marine oil pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152238. [PMID: 34896501 DOI: 10.1016/j.scitotenv.2021.152238] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Monitoring environmental status through molecular investigation of microorganisms in the marine environment is suggested as a potentially very effective method for biomonitoring, with great potential for automation. There are several hurdles to that approach with regards to primer design, variability across geographical locations, seasons, and type of environmental pollution. Here, qPCR analysis of genes involved in the initial activation of aliphatic and aromatic hydrocarbons were used in a laboratory setup mimicking realistic oil leakage at sea. Seawater incubation experiments were carried out under two different seasons with two different oil types. Degenerate primers targeting initial oxygenases (alkane 1-monooxygenase; alkB and aromatic-ring hydroxylating dioxygenase; ARHD) were employed in qPCR assays to quantify the abundance of genes essential for oil degradation. Shotgun metagenomics was used to map the overall community dynamics and the diversity of alkB and ARHD genes represented in the microbial community. The amplicons generated through the qPCR assays were sequenced to reveal the diversity of oil-degradation related genes captured by the degenerate primers. We identified a major mismatch between the taxonomic diversity of alkB and ARHD genes amplified by the degenerate primers and those identified through shotgun metagenomics. More specifically, the designed primers did not amplify the alkB genes of the two most abundant alkane degraders that bloomed in the experiments, Oceanobacter and Oleispira. The relative abundance of alkB sequences from shotgun metagenomics and 16S rRNA-based Oleispira-specific qPCR assay were better signals for oil in water than the tested qPCR alkB assay. The ARHD assay showed a good agreement with PAHs degradation despite covering only 25% of the top 100 ARHD genes and missing several abundant Cycloclasticus sequences that were present in the metagenome. We conclude that further improvement of the degenerate primer approach is needed to rely on the use of oxygenase-related qPCR assays for oil leakage detection.
Collapse
Affiliation(s)
- Andrea Bagi
- NORCE Norwegian Research Centre, Bergen, Norway.
| | | | | |
Collapse
|
6
|
Feist SM, Lance RF. Genetic detection of freshwater harmful algal blooms: A review focused on the use of environmental DNA (eDNA) in Microcystis aeruginosa and Prymnesium parvum. HARMFUL ALGAE 2021; 110:102124. [PMID: 34887004 DOI: 10.1016/j.hal.2021.102124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Recurrence and severity of harmful algal blooms (HABs) are increasing due to a number of factors, including human practices and climate change. Sensitive and robust methods that allow for early and expedited HAB detection across large landscape scales are needed. Among the suite of HAB detection tools available, a powerful option exists in genetics-based approaches utilizing environmental sampling, also termed environmental DNA (eDNA). Here we provide a detailed methodological review of three HAB eDNA approaches (quantitative PCR, high throughput sequencing, and isothermal amplification). We then summarize and synthesize recently published eDNA applications covering a variety of HAB surveillance and research objectives, all with a specific emphasis in the detection of two widely problematic freshwater species, Microcystis aeruginosa and Prymnesium parvum. In our summary and conclusion we build on this literature by discussing ways in which eDNA methods could be advanced to improve HAB detection. We also discuss ways in which eDNA data could be used to potentially provide novel insight into the ecology, mitigation, and prediction of HABs.
Collapse
Affiliation(s)
- Sheena M Feist
- Environmental Lab, United States Army Corps of Engineers Research and Development Center, Vicksburg, MS, 39180, United States.
| | - Richard F Lance
- Environmental Lab, United States Army Corps of Engineers Research and Development Center, Vicksburg, MS, 39180, United States
| |
Collapse
|
7
|
Caron K, Craw P, Richardson MB, Bodrossy L, Voelcker NH, Thissen H, Sutherland TD. The Requirement of Genetic Diagnostic Technologies for Environmental Surveillance of Antimicrobial Resistance. SENSORS 2021; 21:s21196625. [PMID: 34640944 PMCID: PMC8513014 DOI: 10.3390/s21196625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Antimicrobial resistance (AMR) is threatening modern medicine. While the primary cost of AMR is paid in the healthcare domain, the agricultural and environmental domains are also reservoirs of resistant microorganisms and hence perpetual sources of AMR infections in humans. Consequently, the World Health Organisation and other international agencies are calling for surveillance of AMR in all three domains to guide intervention and risk reduction strategies. Technologies for detecting AMR that have been developed for healthcare settings are not immediately transferable to environmental and agricultural settings, and limited dialogue between the domains has hampered opportunities for cross-fertilisation to develop modified or new technologies. In this feature, we discuss the limitations of currently available AMR sensing technologies used in the clinic for sensing in other environments, and what is required to overcome these limitations.
Collapse
Affiliation(s)
- Karine Caron
- CSIRO Health & Biosecurity, Canberra, ACT 2602, Australia;
| | - Pascal Craw
- CSIRO Oceans & Atmosphere, Hobart, TAS 7004, Australia; (P.C.); (L.B.)
| | - Mark B. Richardson
- CSIRO Manufacturing, Clayton, VIC 3168, Australia; (M.B.R.); (N.H.V.); (H.T.)
| | - Levente Bodrossy
- CSIRO Oceans & Atmosphere, Hobart, TAS 7004, Australia; (P.C.); (L.B.)
| | - Nicolas H. Voelcker
- CSIRO Manufacturing, Clayton, VIC 3168, Australia; (M.B.R.); (N.H.V.); (H.T.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Clayton, VIC 3168, Australia; (M.B.R.); (N.H.V.); (H.T.)
| | - Tara D. Sutherland
- CSIRO Health & Biosecurity, Canberra, ACT 2602, Australia;
- Correspondence:
| |
Collapse
|
8
|
Yasar SA, Mills TJT, Uluturk ZI, Ruszczyk JMS, LeBard RJ, Neilan BA. Quantitative detection of human- and canine-associated Bacteroides genetic markers from an urban coastal lagoon. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1732-1744. [PMID: 34662309 DOI: 10.2166/wst.2021.341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The contamination of water catchments by nonpoint source faecal pollution is a major issue affecting the microbial quality of receiving waters and is associated with the occurrence of a range of enteric illnesses in humans. The potential sources of faecal pollution in surface waters are diverse, including urban sewage leaks, surface runoff and wildlife contamination originating from a range of hosts. The major contributing hosts require identification to allow targeted management of this public health concern. In this study, two high-performing Microbial Source Tracking (MST) assays, HF183/Bac242 and BacCan-UCDmodif, were used for their ability to detect host-specific Bacteroides 16Sr RNA markers for faecal pollution in a 12-month study on an urban coastal lagoon in Sydney, Australia. The lagoon was found to contain year-round high numbers of human and canine faecal markers, as well as faecal indicator bacteria counts, suggesting considerable human and animal faecal pollution. The high sensitivity and specificity of the HF183/Bac242 and BacCan-UCDmodif assays, together with the manageable levels of PCR inhibition and high level DNA extraction efficiency obtained from lagoon water samples make these markers candidates for inclusion in an MST 'toolbox' for investigating host origins of faecal pollution in urban surface waters.
Collapse
Affiliation(s)
- Serhat A Yasar
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Toby J T Mills
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia E-mail:
| | - Zehra I Uluturk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | | - Rebecca J LeBard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia E-mail:
| |
Collapse
|
9
|
Simultaneous Absorbance and Fluorescence Measurements Using an Inlaid Microfluidic Approach. SENSORS 2021; 21:s21186250. [PMID: 34577456 PMCID: PMC8473408 DOI: 10.3390/s21186250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
A novel microfluidic optical cell is presented that enables simultaneous measurement of both light absorbance and fluorescence on microlitre volumes of fluid. The chip design is based on an inlaid fabrication technique using clear and opaque poly(methyl methacrylate) or PMMA to create a 20.2 mm long optical cell. The inlaid approach allows fluid interrogation with minimal interference from external light over centimeter long path lengths. The performance of the optical cell is evaluated using a stable fluorescent dye: rhodamine B. Excellent linear relationships (R2 > 0.99) are found for both absorbance and fluorescence over a 0.1-10 µM concentration range. Furthermore, the molar attenuation spectrum is accurately measured over the range 460-550 nm. The approach presented here is applicable to numerous colorimetric- or fluorescence-based assays and presents an important step in the development of multipurpose lab-on-chip sensors.
Collapse
|
10
|
Pearson LA, D'Agostino PM, Neilan BA. Recent developments in quantitative PCR for monitoring harmful marine microalgae. HARMFUL ALGAE 2021; 108:102096. [PMID: 34588118 DOI: 10.1016/j.hal.2021.102096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Marine microalgae produce a variety of specialised metabolites that have toxic effects on humans, farmed fish, and marine wildlife. Alarmingly, many of these compounds bioaccumulate in the tissues of shellfish and higher trophic organisms, including species consumed by humans. Molecular methods are emerging as a potential alternative and complement to the conventional microscopic diagnosis of toxic or otherwise harmful microalgal species. Quantitative PCR (qPCR) in particular, has gained popularity over the past decade as a sensitive, rapid, and cost-effective method for monitoring harmful microalgae. Assays targeting taxonomic marker genes provide the opportunity to identify and quantify (or semi-quantify) microalgal species and importantly to pre-empt bloom events. Moreover, the discovery of paralytic shellfish toxin biosynthesis genes in dinoflagellates has enabled researchers to directly monitor toxigenic species in coastal waters and fisheries. This review summarises the recent developments in qPCR detection methods for harmful microalgae, with emphasis on emerging toxin gene monitoring technologies.
Collapse
Affiliation(s)
- Leanne A Pearson
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Paul M D'Agostino
- Chair of Technical Biochemistry, Technical University of Dresden, Dresden, Germany
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
11
|
An Autonomous Platform for Near Real-Time Surveillance of Harmful Algae and Their Toxins in Dynamic Coastal Shelf Environments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9030336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Efforts to identify in situ the mechanisms underpinning the response of harmful algae to climate change demand frequent observations in dynamic and often difficult to access marine and freshwater environments. Increasingly, resource managers and researchers are looking to fill this data gap using unmanned systems. In this study we integrated the Environmental Sample Processor (ESP) into an autonomous platform to provide near real-time surveillance of harmful algae and the toxin domoic acid on the Washington State continental shelf over a three-year period (2016–2018). The ESP mooring design accommodated the necessary subsystems to sustain ESP operations, supporting deployment durations of up to 7.5 weeks. The combination of ESP observations and a suite of contextual measurements from the ESP mooring and a nearby surface buoy permitted an investigation into toxic Pseudo-nitzschia spp. bloom dynamics. Preliminary findings suggest a connection between bloom formation and nutrient availability that is modulated by wind-forced coastal-trapped waves. In addition, high concentrations of Pseudo-nitzschia spp. and elevated levels of domoic acid observed at the ESP mooring location were not necessarily associated with the advection of water from known bloom initiation sites. Such insights, made possible by this autonomous technology, enable the formulation of testable hypotheses on climate-driven changes in HAB dynamics that can be investigated during future deployments.
Collapse
|
12
|
Wang S, Yan Z, Hänfling B, Zheng X, Wang P, Fan J, Li J. Methodology of fish eDNA and its applications in ecology and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142622. [PMID: 33059148 DOI: 10.1016/j.scitotenv.2020.142622] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Fish environmental DNA (eDNA) studies have made substantial progress during the past decade, and significant advances in monitoring fishes have been gained by taking advantage of this technology. Although a number of reviews concerning eDNA are available and some recent fish eDNA reviews focused on fisheries or standard method have been published, a systematic review of methodology of fish eDNA and its applications in ecology and environment has not yet been published. To our knowledge, this is the first review of fish eDNA for solving ecological and environmental issues. First, the most comprehensive literature analysis of fish eDNA was presented and analyzed. Then, we systematically discuss the relevant experiments and analyses of fish eDNA, and infers that standard workflow is on the way to consensus. We additionally provide reference sequence databases and the primers used to amplify the reference sequences or detecting fish eDNA. The abiotic and biotic conditions affecting fish eDNA persistence are also summarized in a schematic diagram. Subsequently, we focus on the major achievements of fish eDNA in ecology and environment. We additionally highlight the exciting new tools, including in situ autonomous monitoring devices, CRISPR nucleic acid detection technology, and meta-omics technology for fish eDNA detection in future. Ultimately, methodology of fish eDNA will provide a wholly new paradigm for conservation actions of fishes, ecological and environmental management at a global scale.
Collapse
Affiliation(s)
- Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Bernd Hänfling
- School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Pengyuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianlong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
13
|
Fukuba T, Fujii T. Lab-on-a-chip technology for in situ combined observations in oceanography. LAB ON A CHIP 2021; 21:55-74. [PMID: 33300537 DOI: 10.1039/d0lc00871k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The oceans sustain the global environment and diverse ecosystems through a variety of biogeochemical processes and their complex interactions. In order to understand the dynamism of the local or global marine environments, multimodal combined observations must be carried out in situ. On the other hand, instrumentation of in situ measurement techniques enabling biological and/or biochemical combined observations is challenging in aquatic environments, including the ocean, because biochemical flow analyses require a more complex configuration than physicochemical electrode sensors. Despite this technical hurdle, in situ analyzers have been developed to measure the concentrations of seawater contents such as nutrients, trace metals, and biological components. These technologies have been used for cutting-edge ocean observations to elucidate the biogeochemical properties of water mass with a high spatiotemporal resolution. In this context, the contribution of lab-on-a-chip (LoC) technology toward the miniaturization and functional integration of in situ analyzers has been gaining momentum. Due to their mountability, in situ LoC technologies provide ideal instrumentation for underwater analyzers, especially for miniaturized underwater observation platforms. Consequently, the appropriate combination of reliable LoC and underwater technologies is essential to realize practical in situ LoC analyzers suitable for underwater environments, including the deep sea. Moreover, the development of fundamental LoC technologies for underwater analyzers, which operate stably in extreme environments, should also contribute to in situ measurements for public or industrial purposes in harsh environments as well as the exploration of the extraterrestrial frontier.
Collapse
Affiliation(s)
- Tatsuhiro Fukuba
- Institute for Marine-Earth Exploration and Engineering, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho 2-15, Yokosuka, Kanagawa 237-0061, Japan.
| | | |
Collapse
|
14
|
Sepulveda AJ, Birch JM, Barnhart EP, Merkes CM, Yamahara KM, Marin R, Kinsey SM, Wright PR, Schmidt C. Robotic environmental DNA bio-surveillance of freshwater health. Sci Rep 2020; 10:14389. [PMID: 32873867 PMCID: PMC7462992 DOI: 10.1038/s41598-020-71304-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/14/2020] [Indexed: 11/15/2022] Open
Abstract
Autonomous water sampling technologies may help to overcome the human resource challenges of monitoring biological threats to rivers over long time periods and across large geographic areas. The Monterey Bay Aquarium Research Institute has pioneered a robotic Environmental Sample Processor (ESP) that overcomes some of the constraints associated with traditional sampling since it can automate water sample filtration and preservation of the captured material. The ESP was originally developed for marine environment applications. Here we evaluated whether the ESP can provide reliable, timely information on environmental (e)DNA detections of human and fish pathogens and introduced fishes at U.S. Geological Survey streamgage sites in freshwater rivers. We compared eDNA collected via ESP at high frequency (e.g., every 3 h) with manual eDNA collections collected at lower frequency (e.g., weekly). We found that water samples filtered and preserved by ESPs successfully detected the DNA of human pathogens, fish pathogens and introduced fishes. Both ESP and manually collected samples provided similar information about target DNA presence. We suggest that the greatest current benefit of the ESP is the cost savings of high frequency, bio-surveillance at remote or hard to access sites. The full potential of robotic technologies like the ESP will be realized when they can more easily execute in situ analyses of water samples and rapidly transmit results to decision-makers.
Collapse
Affiliation(s)
- Adam J Sepulveda
- U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way Suite 2, Bozeman, MT, 59715, USA.
| | - James M Birch
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | - Christopher M Merkes
- U.S. Geological Survey, Upper Midwest Environmental Science Center, La Crosse, WI, USA
| | | | - Roman Marin
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Stacy M Kinsey
- U.S. Geological Survey, 3162 Bozeman Ave, Helena, MT, USA
| | - Peter R Wright
- U.S. Geological Survey, 3162 Bozeman Ave, Helena, MT, USA
| | | |
Collapse
|
15
|
Remote, autonomous real-time monitoring of environmental DNA from commercial fish. Sci Rep 2020; 10:13272. [PMID: 32764624 PMCID: PMC7413362 DOI: 10.1038/s41598-020-70206-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/21/2020] [Indexed: 12/04/2022] Open
Abstract
Environmental DNA (eDNA) is increasingly used for monitoring marine organisms; however, offshore sampling and time lag from sampling to results remain problematic. In order to overcome these challenges a robotic sampler, a 2nd generation Environmental Sample Processor (ESP), was tested for autonomous analysis of eDNA from four commercial fish species in a 4.5 million liter mesocosm. The ESP enabled in situ analysis, consisting of water collection, filtration, DNA extraction and qPCR analysis, which allowed for real-time remote reporting and archival sample collection, consisting of water collection, filtration and chemical preservation followed by post-deployment laboratory analysis. The results demonstrate that the 2G ESP was able to consistently detect and quantify target molecules from the most abundant species (Atlantic mackerel) both in real-time and from the archived samples. In contrast, detection of low abundant species was challenged by both biological and technical aspects coupled to the ecology of eDNA and the 2G ESP instrumentation. Comparison of the in situ analysis and archival samples demonstrated variance, which potentially was linked to diel migration patterns of the Atlantic mackerel. The study demonstrates strong potential for remote autonomous in situ monitoring which open new possibilities for the field of eDNA and marine monitoring.
Collapse
|
16
|
Cunha M, Génio L, Pradillon F, Clavel Henry M, Beaulieu S, Birch J, Campuzano F, Carretón M, De Leo F, Gula J, Laming S, Lindsay D, Matos F, Metaxas A, Meyer-Kaiser K, Mills S, Queiroga H, Rodrigues C, Sarrazin J, Watanabe H, Young R, Young C. Foresight Workshop on Advances in Ocean Biological Observations: a sustained system for deep-ocean meroplankton. RESEARCH IDEAS AND OUTCOMES 2020. [DOI: 10.3897/rio.6.e54284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent advances in technology have enabled an unprecedented development of underwater research, extending from near shore to the deepest regions of the globe. However, monitoring of biodiversity is not fully implemented in political agendas and biological observations in the deep ocean have been even more limited in space and time.
The Foresight Workshop on Advances in Ocean Biological Observations: a sustained system for deep-ocean meroplankton was convened to to foster advances in the knowledge on deep-ocean invertebrate larval distributions and improve our understanding of fundamental deep-ocean ecological processes such as connectivity and resilience of benthic communities to natural and human-induced disturbance. This Meroplankton Observations Workshop had two specific goals: 1) review the state-of-the-art instrumentation available for meroplankton observations; 2) develop a strategy to implement technological innovations for in-situ meroplankton observation. Presentations and discussions are summarised in this report covering: i) key challenges and priorities for advancing the knowledge of deep-sea larval diversity and distribution: ii) recent developments in technology and future needs for plankton observation, iii) data integration and oceanographic modelling; iv) synergies and added value of a sustained observation system for meroplankton; v) steps for developing a sustained observation system for deep-ocean meroplankton and plans to maximise collaborative opportunities.
Collapse
|
17
|
Knapik K, Bagi A, Krolicka A, Baussant T. Metatranscriptomic Analysis of Oil-Exposed Seawater Bacterial Communities Archived by an Environmental Sample Processor (ESP). Microorganisms 2020; 8:E744. [PMID: 32429288 PMCID: PMC7284936 DOI: 10.3390/microorganisms8050744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022] Open
Abstract
The use of natural marine bacteria as "oil sensors" for the detection of pollution events can be suggested as a novel way of monitoring oil occurrence at sea. Nucleic acid-based devices generically called genosensors are emerging as potentially promising tools for in situ detection of specific microbial marker genes suited for that purpose. Functional marker genes are particularly interesting as targets for oil-related genosensing but their identification remains a challenge. Here, seawater samples, collected in tanks with oil addition mimicking a realistic oil spill scenario, were filtered and archived by the Environmental Sample Processor (ESP), a fully robotized genosensor, and the samples were then used for post-retrieval metatranscriptomic analysis. After extraction, RNA from ESP-archived samples at start, Day 4 and Day 7 of the experiment was used for sequencing. Metatranscriptomics revealed that several KEGG pathways were significantly enriched in samples exposed to oil. However, these pathways were highly expressed also in the non-oil-exposed water samples, most likely as a result of the release of natural organic matter from decaying phytoplankton. Temporary peaks of aliphatic alcohol and aldehyde dehydrogenases and monoaromatic ring-degrading enzymes (e.g., ben, box, and dmp clusters) were observed on Day 4 in both control and oil-exposed and non-exposed tanks. Few alkane 1-monooxygenase genes were upregulated on oil, mostly transcribed by families Porticoccaceae and Rhodobacteraceae, together with aromatic ring-hydroxylating dioxygenases, mostly transcribed by Rhodobacteraceae. Few transcripts from obligate hydrocarbonoclastic genera of Alcanivorax, Oleispira and Cycloclasticus were significantly enriched in the oil-treated exposed tank in comparison to control the non-exposed tank, and these were mostly transporters and genes involved in nitrogen and phosphorous acquisition. This study highlights the importance of seasonality, i.e., phytoplankton occurrence and senescence leading to organic compound release which can be used preferentially by bacteria over oil compounds, delaying the latter process. As a result, such seasonal effect can reduce the sensitivity of genosensing tools employing bacterial functional genes to sense oil. A better understanding of the use of natural organic matter by bacteria involved in oil-biodegradation is needed to develop an array of functional markers enabling the rapid and specific in situ detection of anthropogenic pollution.
Collapse
Affiliation(s)
| | | | | | - Thierry Baussant
- NORCE Environment, NORCE Norwegian Research Centre AS, 4070 Randaberg, Norway; (K.K.); (A.B.); (A.K.)
| |
Collapse
|
18
|
Krolicka A, Boccadoro C, Nilsen MM, Demir-Hilton E, Birch J, Preston C, Scholin C, Baussant T. Identification of microbial key-indicators of oil contamination at sea through tracking of oil biotransformation: An Arctic field and laboratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133715. [PMID: 31470316 DOI: 10.1016/j.scitotenv.2019.133715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a molecular analytical approach for detecting hydrocarbonoclastic bacteria in water is suggested as a proxy measurement for tracking petroleum discharges in industrialized or pristine aquatic environments. This approach is tested for general application in cold marine regions (freezing to 5 °C). We used amplicon sequencing and qPCR to quantify 16S rRNA and GyrB genes from oleophilic bacteria in seawater samples from two different crude oil enrichments. The first experiment was conducted in a controlled environment using laboratory conditions and natural North Sea fjord seawater (NSC) at a constant temperature of 5 °C. The second was performed in the field with natural Arctic seawater (ARC) and outdoor temperature conditions from -7 °C to around 4 °C. Although the experimental conditions for NSC and ARC differed, the temporal changes in bacterial communities were comparable and reflected oil biotransformation processes. The common bacterial OTUs for NSC and ARC had the highest identity to Colwellia rossensis and Oleispira antarctica rRNA sequences and were enriched within a few days in both conditions. Other typical oil degrading bacteria such as Alcanivorax (n-alkane degrader) and Cycloclasticus (polycyclic aromatic hydrocarbons degrader) were rapidly enriched only in NSC conditions. Both the strong correlation between Oleispira SSU gene copies and oil concentration, and the specificity of the Oleispira assay suggest that this organism is a robust bioindicator for seawater contaminated by petroleum in cold water environments. Further optimization for automation of the Oleispira assay for in situ analysis with a genosensing device is underway. The assay for Colwellia quantification requires more specificity to fewer Colwellia OTUs and a well-established dose-response relationship before those taxa are used for oil tracking purposes.
Collapse
Affiliation(s)
- Adriana Krolicka
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway.
| | - Catherine Boccadoro
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| | - Mari Mæland Nilsen
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| | - Elif Demir-Hilton
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Jim Birch
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Christina Preston
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Chris Scholin
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Thierry Baussant
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| |
Collapse
|
19
|
Ribeiro H, Martins A, Gonçalves M, Guedes M, Tomasino MP, Dias N, Dias A, Mucha AP, Carvalho MF, Almeida CMR, Ramos S, Almeida JM, Silva E, Magalhães C. Development of an autonomous biosampler to capture in situ aquatic microbiomes. PLoS One 2019; 14:e0216882. [PMID: 31091277 PMCID: PMC6519839 DOI: 10.1371/journal.pone.0216882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/30/2019] [Indexed: 11/18/2022] Open
Abstract
The importance of planktonic microbial communities is well acknowledged, since they are fundamental for several natural processes of aquatic ecosystems. Microorganisms naturally control the flux of nutrients, and also degrade and recycle anthropogenic organic and inorganic contaminants. Nevertheless, climate change effects and/or the runoff of nutrients/pollutants can affect the equilibrium of natural microbial communities influencing the occurrence of microbial pathogens and/or microbial toxin producers, which can compromise ecosystem environmental status. Therefore, improved microbial plankton monitoring is essential to better understand how these communities respond to environmental shifts. The study of marine microbial communities typically involves highly cost and time-consuming sampling procedures, which can limit the frequency of sampling and data availability. In this context, we developed and validated an in situ autonomous biosampler (IS-ABS) able to collect/concentrate in situ planktonic communities of different size fractions (targeting prokaryotes and unicellular eukaryotes) for posterior genomic, metagenomic, and/or transcriptomic analysis at a home laboratory. The IS-ABS field prototype is a small size and compact system able to operate up to 150 m depth. Water is pumped by a micropump (TCS MG2000) through a hydraulic circuit that allows in situ filtration of environmental water in one or more Sterivex filters placed in a filter cartridge. The IS-ABS also includes an application to program sampling definitions, allowing pre-setting configuration of the sampling. The efficiency of the IS-ABS was tested against traditional laboratory filtration standardized protocols. Results showed a good performance in terms of DNA recovery, as well as prokaryotic (16S rDNA) and eukaryotic (18S rDNA) community diversity analysis, using either methodologies. The IS-ABS automates the process of collecting environmental DNA, and is suitable for integration in water observation systems, what will contribute to substantially increase biological surveillances. Also, the use of highly sensitive genomic approaches allows a further study of the diversity and functions of whole or specific microbial communities.
Collapse
Affiliation(s)
- Hugo Ribeiro
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS-UP), University of Porto, Porto, Portugal
- * E-mail:
| | - Alfredo Martins
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | | | | | - Maria Paola Tomasino
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Nuno Dias
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - André Dias
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Ana Paula Mucha
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Maria F. Carvalho
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - C. Marisa R. Almeida
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Sandra Ramos
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
- Institute of Estuarine and Coastal Studies, University of Hull, Hull, United Kingdom
| | - José Miguel Almeida
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Eduardo Silva
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Catarina Magalhães
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
- FCUP–Faculty of Sciences of University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Devane ML, Weaver L, Singh SK, Gilpin BJ. Fecal source tracking methods to elucidate critical sources of pathogens and contaminant microbial transport through New Zealand agricultural watersheds - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:293-303. [PMID: 29860123 DOI: 10.1016/j.jenvman.2018.05.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
In New Zealand, there is substantial potential for microbial contaminants from agricultural fecal sources to be transported into waterways. The flow and transport pathways for fecal contaminants vary at a range of scales and is dependent on chemical, physical and biological attributes of pathways, soils, microorganisms and landscape characteristics. Understanding contaminant transport pathways from catchment to stream can aid water management strategies. It is not practical, however to conduct direct field measurement for all catchments on the fate and transport of fecal pathogens due to constraints on time, personnel, and material resources. To overcome this problem, fecal source tracking can be utilised to link catchment characteristics to fecal signatures identifying critical sources. In this article, we have reviewed approaches to identifying critical sources and pathways for fecal microorganisms from agricultural sources, and make recommendations for the appropriate use of these fecal source tracking (FST) tools.
Collapse
Affiliation(s)
- Megan L Devane
- Institute of Environmental Science and Research Ltd. (ESR), P.O. Box 29181, Christchurch, New Zealand.
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd. (ESR), P.O. Box 29181, Christchurch, New Zealand
| | - Shailesh K Singh
- National Institute of Water and Atmospheric Research, 10 Kyle St, Riccarton Christchurch, 8011, New Zealand
| | - Brent J Gilpin
- Institute of Environmental Science and Research Ltd. (ESR), P.O. Box 29181, Christchurch, New Zealand
| |
Collapse
|
21
|
Birch J. Collecting and processing samples in remote and dangerous places: the Environmental Sample Processor as a case study. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2018-0201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Collecting water samples in remote or dangerous places can help identify chemical spills, discover clandestine weapons production, or determine if there has been natural or human-caused biological contamination of waterways. These collections can be expensive or put humans at risk due to the nature of the locale or the detection target. Such sample collection challenges are similar to those faced in oceanography, where accessibility and the physical realities of remoteness, corrosiveness, and pressure, place severe requirements on instrumentation, especially for unattended operations over long periods of time. The Monterey Bay Aquarium Research Institute (MBARI) has been at the forefront of developments that push forward sample collection and processing capabilities in the ocean. Specifically, the development of the environmental sample processor (ESP), a microbiology laboratory-in-a-can, has allowed extended presence with high frequency sampling. When deployed, the ESP filters water to collect particles, then either preserves those particles, or creates a homogenate for molecular analysis. Originally designed for detecting harmful algae blooms and the toxins they produce, the ESP now has expanded analytical capabilities. A newer version of the ESP is now being tested on an autonomous underwater vehicle, providing never-before-seen mobility and unprecedented access to the top 300 m of the ocean.
Collapse
Affiliation(s)
- James Birch
- Director, SURF Center: Sensors, Underwater Research of the Future, Monterey Bay Aquarium Research Institute , Moss Landing, CA , USA
| |
Collapse
|
22
|
Krolicka A, Boccadoro C, Nilsen MM, Baussant T. Capturing Early Changes in the Marine Bacterial Community as a Result of Crude Oil Pollution in a Mesocosm Experiment. Microbes Environ 2017; 32:358-366. [PMID: 29187706 PMCID: PMC5745021 DOI: 10.1264/jsme2.me17082] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The results of marine bacterial community succession from a short-term study of seawater incubations at 4°C to North Sea crude oil are presented herein. Oil was used alone (O) or in combination with a dispersant (OD). Marine bacterial communities resulting from these incubations were characterized by a fingerprinting analysis and pyrosequencing of the 16S rRNA gene with the aim of 1) revealing differences in bacterial communities between the control, O treatment, and OD treatment and 2) identifying the operational taxonomic units (OTUs) of early responders in order to define the bacterial gene markers of oil pollution for in situ monitoring. After an incubation for 1 d, the distribution of the individual ribotypes of bacterial communities in control and oil-treated (O and OD) tanks differed. Differences related to the structures of bacterial communities were observed at later stages of the incubation. Among the early responders identified (Pseudoalteromonas, Sulfitobacter, Vibrio, Pseudomonas, Glaciecola, Neptunomonas, Methylophaga, and Pseudofulvibacter), genera that utilize a disintegrated biomass or hydrocarbons as well as biosurfactant producers were detected. None of these genera included obligate hydrocarbonoclastic bacteria (OHCB). After an incubation for 1 d, the abundances of Glaciecola and Pseudofulvibacter were approximately 30-fold higher in the OD and O tanks than in the control tank. OTUs assigned to the Glaciecola genus were represented more in the OD tank, while those of Pseudofulvibacter were represented more in the O tank. We also found that 2 to 3% of the structural community shift originated from the bacterial community in the oil itself, with Polaribacter being a dominant bacterium.
Collapse
Affiliation(s)
- Adriana Krolicka
- International Research Institute of Stavanger (IRIS), Environment department
| | - Catherine Boccadoro
- International Research Institute of Stavanger (IRIS), Environment department
| | - Mari Mæland Nilsen
- International Research Institute of Stavanger (IRIS), Environment department
| | - Thierry Baussant
- International Research Institute of Stavanger (IRIS), Environment department
| |
Collapse
|
23
|
McQuillan JS, Robidart JC. Molecular-biological sensing in aquatic environments: recent developments and emerging capabilities. Curr Opin Biotechnol 2017; 45:43-50. [DOI: 10.1016/j.copbio.2016.11.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/16/2016] [Accepted: 11/25/2016] [Indexed: 11/16/2022]
|
24
|
Molecular Techniques for the Detection of Organisms in Aquatic Environments, with Emphasis on Harmful Algal Bloom Species. SENSORS 2017; 17:s17051184. [PMID: 28531156 PMCID: PMC5470929 DOI: 10.3390/s17051184] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/18/2017] [Accepted: 05/20/2017] [Indexed: 02/08/2023]
Abstract
Molecular techniques to detect organisms in aquatic ecosystems are being gradually considered as an attractive alternative to standard laboratory methods. They offer faster and more accurate means of detecting and monitoring species, with respect to their traditional homologues based on culture and microscopic counting. Molecular techniques are particularly attractive when multiple species need to be detected and/or are in very low abundance. This paper reviews molecular techniques based on whole cells, such as microscope-based enumeration and Fluorescence In-Situ Hybridization (FISH) and molecular cell-free formats, such as sandwich hybridization assay (SHA), biosensors, microarrays, quantitative polymerase chain reaction (qPCR) and real time PCR (RT-PCR). Those that combine one or several laboratory functions into a single integrated system (lab-on-a-chip) and techniques that generate a much higher throughput data, such as next-generation systems (NGS), were also reviewed. We also included some other approaches that enhance the performance of molecular techniques. For instance, nano-bioengineered probes and platforms, pre-concentration and magnetic separation systems, and solid-phase hybridization offer highly pre-concentration capabilities. Isothermal amplification and hybridization chain reaction (HCR) improve hybridization and amplification techniques. Finally, we presented a study case of field remote sensing of harmful algal blooms (HABs), the only example of real time monitoring, and close the discussion with future directions and concluding remarks.
Collapse
|
25
|
Doucette GJ, Kudela RM. In Situ and Real-Time Identification of Toxins and Toxin-Producing Microorganisms in the Environment. RECENT ADVANCES IN THE ANALYSIS OF MARINE TOXINS 2017. [DOI: 10.1016/bs.coac.2017.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Ottesen EA. Probing the living ocean with ecogenomic sensors. Curr Opin Microbiol 2016; 31:132-139. [PMID: 27060777 DOI: 10.1016/j.mib.2016.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 01/30/2023]
Abstract
This review discusses the role of ecogenomic sensors in biological oceanography. Ecogenomic sensors are instruments that can autonomously collect biological samples and perform molecular analyses. This technology reduces logistical constraints on the length and duration of biological data collection. Autonomous, robotic performance of molecular assays shows particular promise in the field of public health. Recent applications include simultaneous detection of harmful algal species and fecal markers paired with same-day remote reporting of test results. Ecogenomic instruments are also showing promise for molecular ecological studies. Autonomous collection and preservation of biological samples is facilitating high-resolution ecological studies that are expanding our understanding of marine microbial ecology and dynamics. This review discusses recent applications of these instruments and makes recommendations for future developments.
Collapse
Affiliation(s)
- Elizabeth A Ottesen
- University of Georgia Department of Microbiology, Rm. 550 Biological Sciences, Athens, GA 30602, United States.
| |
Collapse
|
27
|
Archaeal community structure in the tropical coastal waters of Peninsular Malaysia. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
28
|
Outbreak of coral-eating Crown-of-Thorns creates continuous cloud of larvae over 320 km of the Great Barrier Reef. Sci Rep 2015; 5:16885. [PMID: 26592431 PMCID: PMC4655354 DOI: 10.1038/srep16885] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/21/2015] [Indexed: 01/11/2023] Open
Abstract
Coral reefs are in decline worldwide due to a combination of local and global causes. Over 40% of the recent coral loss on Australia's Great Barrier Reef (GBR) has been attributed to outbreaks of the coral-eating Crown-of-Thorns Seastar (CoTS). Testing of the hypotheses explaining these outbreaks is hampered by an inability to investigate the spatio-temporal distribution of larvae because they resemble other planktotrophic echinoderm larvae. We developed a genetic marker and tested it on 48 plankton samples collected during the 2014 spawning season in the northern GBR, and verified the method by PCR amplification of single larva. Surprisingly, most samples collected contained CoTS larvae. Larvae were detected 100 km south of current outbreaks of adult seastars, highlighting the potential for rapid expansion of the outbreak. A minimum estimate suggested that larvae numbers in the outbreak area (>10(10)) are about 4 orders of magnitude higher than adults (~10(6)) in the same area, implying that attempts to halt outbreaks by removing adults may be futile.
Collapse
|
29
|
Wells ML, Trainer VL, Smayda TJ, Karlson BSO, Trick CG, Kudela RM, Ishikawa A, Bernard S, Wulff A, Anderson DM, Cochlan WP. Harmful algal blooms and climate change: Learning from the past and present to forecast the future. HARMFUL ALGAE 2015; 49:68-93. [PMID: 27011761 PMCID: PMC4800334 DOI: 10.1016/j.hal.2015.07.009] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Climate change pressures will influence marine planktonic systems globally, and it is conceivable that harmful algal blooms may increase in frequency and severity. These pressures will be manifest as alterations in temperature, stratification, light, ocean acidification, precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the mechanisms driving harmful algal blooms frustrates most hope of forecasting their future prevalence. Summarized here is the consensus of a recent workshop held to address what currently is known and not known about the environmental conditions that favor initiation and maintenance of harmful algal blooms. There is expectation that harmful algal bloom (HAB) geographical domains should expand in some cases, as will seasonal windows of opportunity for harmful algal blooms at higher latitudes. Nonetheless there is only basic information to speculate upon which regions or habitats HAB species may be the most resilient or susceptible. Moreover, current research strategies are not well suited to inform these fundamental linkages. There is a critical absence of tenable hypotheses for how climate pressures mechanistically affect HAB species, and the lack of uniform experimental protocols limits the quantitative cross-investigation comparisons essential to advancement. A HAB "best practices" manual would help foster more uniform research strategies and protocols, and selection of a small target list of model HAB species or isolates for study would greatly promote the accumulation of knowledge. Despite the need to focus on keystone species, more studies need to address strain variability within species, their responses under multifactorial conditions, and the retrospective analyses of long-term plankton and cyst core data; research topics that are departures from the norm. Examples of some fundamental unknowns include how larger and more frequent extreme weather events may break down natural biogeographic barriers, how stratification may enhance or diminish HAB events, how trace nutrients (metals, vitamins) influence cell toxicity, and how grazing pressures may leverage, or mitigate HAB development. There is an absence of high quality time-series data in most regions currently experiencing HAB outbreaks, and little if any data from regions expected to develop HAB events in the future. A subset of observer sites is recommended to help develop stronger linkages among global, national, and regional climate change and HAB observation programs, providing fundamental datasets for investigating global changes in the prevalence of harmful algal blooms. Forecasting changes in HAB patterns over the next few decades will depend critically upon considering harmful algal blooms within the competitive context of plankton communities, and linking these insights to ecosystem, oceanographic and climate models. From a broader perspective, the nexus of HAB science and the social sciences of harmful algal blooms is inadequate and prevents quantitative assessment of impacts of future HAB changes on human well-being. These and other fundamental changes in HAB research will be necessary if HAB science is to obtain compelling evidence that climate change has caused alterations in HAB distributions, prevalence or character, and to develop the theoretical, experimental, and empirical evidence explaining the mechanisms underpinning these ecological shifts.
Collapse
Affiliation(s)
- Mark L Wells
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - Vera L Trainer
- Marine Biotoxins Program, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Theodore J Smayda
- Graduate School of Oceanography, University of Rhode Island, Kingston, RI 02881, USA
| | - Bengt S O Karlson
- SMHI Research & Development, Oceanography, Sven Källfelts gata 15, 426 71 Västra Frölunda, Sweden
| | - Charles G Trick
- Department of Biology, Western University, London, ON, Canada N6A 5B7
| | - Raphael M Kudela
- Ocean Sciences, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Akira Ishikawa
- Laboratory of Biological Oceanography, Graduate School of Bioresources, Mie University, 1577 Kurima-machiya-cho, Tsu-shi, Mie-ken 514-8507, Japan
| | - Stewart Bernard
- Earth Systems Earth Observation, CSIR-NRE Centre for High Performance Computing, 15 Lower Hope Street, Rosebank, Cape Town 7700, South Africa
| | - Angela Wulff
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE405 30 Göteborg, Sweden
| | | | - William P Cochlan
- Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3152 Paradise Drive, Tiburon, CA 94920-1205, USA
| |
Collapse
|
30
|
|
31
|
Yamahara K, Demir-Hilton E, Preston C, Marin R, Pargett D, Roman B, Jensen S, Birch J, Boehm A, Scholin C. Simultaneous monitoring of faecal indicators and harmful algae using an in-situ
autonomous sensor. Lett Appl Microbiol 2015; 61:130-8. [DOI: 10.1111/lam.12432] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 11/29/2022]
Affiliation(s)
- K.M. Yamahara
- Center for Ocean Solutions; Stanford University; Stanford CA USA
- Monterey Bay Aquarium Research Institute; Moss Landing CA USA
| | - E. Demir-Hilton
- Monterey Bay Aquarium Research Institute; Moss Landing CA USA
| | - C.M. Preston
- Monterey Bay Aquarium Research Institute; Moss Landing CA USA
| | - R. Marin
- Monterey Bay Aquarium Research Institute; Moss Landing CA USA
| | - D. Pargett
- Monterey Bay Aquarium Research Institute; Moss Landing CA USA
| | - B. Roman
- Monterey Bay Aquarium Research Institute; Moss Landing CA USA
| | - S. Jensen
- Monterey Bay Aquarium Research Institute; Moss Landing CA USA
| | - J.M. Birch
- Monterey Bay Aquarium Research Institute; Moss Landing CA USA
| | - A.B. Boehm
- Environment and Water Studies; Stanford University; Stanford CA USA
| | - C.A. Scholin
- Monterey Bay Aquarium Research Institute; Moss Landing CA USA
| |
Collapse
|
32
|
Single-taxon field measurements of bacterial gene regulation controlling DMSP fate. ISME JOURNAL 2015; 9:1677-86. [PMID: 25700338 DOI: 10.1038/ismej.2015.23] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/05/2014] [Accepted: 01/08/2015] [Indexed: 11/08/2022]
Abstract
The 'bacterial switch' is a proposed regulatory point in the global sulfur cycle that routes dimethylsulfoniopropionate (DMSP) to two fundamentally different fates in seawater through genes encoding either the cleavage or demethylation pathway, and affects the flux of volatile sulfur from ocean surface waters to the atmosphere. Yet which ecological or physiological factors might control the bacterial switch remains a topic of considerable debate. Here we report the first field observations of dynamic changes in expression of DMSP pathway genes by a single marine bacterial species in its natural environment. Detection of taxon-specific gene expression in Roseobacter species HTCC2255 during a month-long deployment of an autonomous ocean sensor in Monterey Bay, CA captured in situ regulation of the first gene in each DMSP pathway (dddP and dmdA) that corresponded with shifts in the taxonomy of the phytoplankton community. Expression of the demethylation pathway was relatively greater during a high-DMSP-producing dinoflagellate bloom, and expression of the cleavage pathway was greater in the presence of a mixed diatom and dinoflagellate community [corrected].These field data fit the prevailing hypothesis for bacterial DMSP gene regulation based on bacterial sulfur demand, but also suggest a modification involving oxidative stress response, evidenced as upregulation of catalase via katG, when DMSP is demethylated.
Collapse
|
33
|
Ottesen EA, Young CR, Gifford SM, Eppley JM, Marin R, Schuster SC, Scholin CA, DeLong EF. Ocean microbes. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 2014; 345:207-12. [PMID: 25013074 DOI: 10.1126/science.1252476] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Oscillating diurnal rhythms of gene transcription, metabolic activity, and behavior are found in all three domains of life. However, diel cycles in naturally occurring heterotrophic bacteria and archaea have rarely been observed. Here, we report time-resolved whole-genome transcriptome profiles of multiple, naturally occurring oceanic bacterial populations sampled in situ over 3 days. As anticipated, the cyanobacterial transcriptome exhibited pronounced diel periodicity. Unexpectedly, several different heterotrophic bacterioplankton groups also displayed diel cycling in many of their gene transcripts. Furthermore, diel oscillations in different heterotrophic bacterial groups suggested population-specific timing of peak transcript expression in a variety of metabolic gene suites. These staggered multispecies waves of diel gene transcription may influence both the tempo and the mode of matter and energy transformation in the sea.
Collapse
Affiliation(s)
- Elizabeth A Ottesen
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI 96822, USA. Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Curtis R Young
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI 96822, USA
| | - Scott M Gifford
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI 96822, USA
| | - John M Eppley
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI 96822, USA
| | - Roman Marin
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Stephan C Schuster
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 637551 Singapore
| | | | - Edward F DeLong
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI 96822, USA. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters. ISME JOURNAL 2014; 8:1704-14. [PMID: 24553472 DOI: 10.1038/ismej.2014.11] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/21/2013] [Accepted: 01/06/2014] [Indexed: 11/09/2022]
Abstract
The occurrence of nitrification in the oceanic water column has implications extending from local effects on the structure and activity of phytoplankton communities to broader impacts on the speciation of nitrogenous nutrients and production of nitrous oxide. The ammonia-oxidizing archaea, responsible for carrying out the majority of nitrification in the sea, are present in the marine water column as two taxonomically distinct groups. Water column group A (WCA) organisms are detected at all depths, whereas Water column group B (WCB) are present primarily below the photic zone. An open question in marine biogeochemistry is whether the taxonomic definition of WCA and WCB organisms and their observed distributions correspond to distinct ecological and biogeochemical niches. We used the natural gradients in physicochemical and biological properties that upwelling establishes in surface waters to study their roles in nitrification, and how their activity--ascertained from quantification of ecotype-specific ammonia monooxygenase (amoA) genes and transcripts--varies in response to environmental fluctuations. Our results indicate a role for both ecotypes in nitrification in Monterey Bay surface waters. However, their respective contributions vary, due to their different sensitivities to surface water conditions. WCA organisms exhibited a remarkably consistent level of activity and their contribution to nitrification appears to be related to community size. WCB activity was less consistent and primarily constrained to colder, high nutrient and low chlorophyll waters. Overall, the results of our characterization yielded a strong, potentially predictive, relationship between archaeal amoA gene abundance and the rate of nitrification.
Collapse
|
35
|
Robidart JC, Church MJ, Ryan JP, Ascani F, Wilson ST, Bombar D, Marin R, Richards KJ, Karl DM, Scholin CA, Zehr JP. Ecogenomic sensor reveals controls on N2-fixing microorganisms in the North Pacific Ocean. ISME JOURNAL 2014; 8:1175-85. [PMID: 24477197 DOI: 10.1038/ismej.2013.244] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 11/09/2022]
Abstract
Nitrogen-fixing microorganisms (diazotrophs) are keystone species that reduce atmospheric dinitrogen (N2) gas to fixed nitrogen (N), thereby accounting for much of N-based new production annually in the oligotrophic North Pacific. However, current approaches to study N2 fixation provide relatively limited spatiotemporal sampling resolution; hence, little is known about the ecological controls on these microorganisms or the scales over which they change. In the present study, we used a drifting robotic gene sensor to obtain high-resolution data on the distributions and abundances of N2-fixing populations over small spatiotemporal scales. The resulting measurements demonstrate that concentrations of N2 fixers can be highly variable, changing in abundance by nearly three orders of magnitude in less than 2 days and 30 km. Concurrent shipboard measurements and long-term time-series sampling uncovered a striking and previously unrecognized correlation between phosphate, which is undergoing long-term change in the region, and N2-fixing cyanobacterial abundances. These results underscore the value of high-resolution sampling and its applications for modeling the effects of global change.
Collapse
Affiliation(s)
- Julie C Robidart
- 1] Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA [2] Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA [3] Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA
| | - Matthew J Church
- 1] Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA [2] Department of Oceanography, University of Hawaii, Honolulu, HI, USA
| | - John P Ryan
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - François Ascani
- 1] Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA [2] Department of Oceanography, University of Hawaii, Honolulu, HI, USA
| | - Samuel T Wilson
- 1] Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA [2] Department of Oceanography, University of Hawaii, Honolulu, HI, USA
| | - Deniz Bombar
- 1] Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA [2] Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA
| | - Roman Marin
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Kelvin J Richards
- 1] Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA [2] Department of Oceanography, University of Hawaii, Honolulu, HI, USA
| | - David M Karl
- 1] Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA [2] Department of Oceanography, University of Hawaii, Honolulu, HI, USA
| | - Christopher A Scholin
- 1] Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA [2] Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA
| | - Jonathan P Zehr
- 1] Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA [2] Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
36
|
Ussler W, Preston C, Tavormina P, Pargett D, Jensen S, Roman B, Marin R, Shah SR, Girguis PR, Birch JM, Orphan V, Scholin C. Autonomous application of quantitative PCR in the deep sea: in situ surveys of aerobic methanotrophs using the deep-sea environmental sample processor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9339-9346. [PMID: 23883184 DOI: 10.1021/es4023199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recent advances in ocean observing systems and genomic technologies have led to the development of the deep-sea environmental sample processor (D-ESP). The D-ESP filters particulates from seawater at depths up to 4000 m and applies a variety of molecular assays to the particulates, including quantitative PCR (qPCR), to identify particular organisms and genes in situ. Preserved samples enable laboratory-based validation of in situ results and expanded studies of genomic diversity and gene expression. Tests of the D-ESP at a methane-rich mound in the Santa Monica Basin centered on detection of 16S rRNA and particulate methane monooxygenase (pmoA) genes for two putative aerobic methanotrophs. Comparison of in situ qPCR results with laboratory-based assays of preserved samples demonstrates the D-ESP generated high-quality qPCR data while operating autonomously on the seafloor. Levels of 16S rRNA and pmoA cDNA detected in preserved samples are consistent with an active community of aerobic methanotrophs near the methane-rich mound. These findings are substantiated at low methane sites off Point Conception and in Monterey Bay where target genes are at or below detection limits. Successful deployment of the D-ESP is a major step toward developing autonomous systems to facilitate a wide range of marine microbiological investigations.
Collapse
Affiliation(s)
- William Ussler
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, California 95039, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cox AM, Goodwin KD. Sample preparation methods for quantitative detection of DNA by molecular assays and marine biosensors. MARINE POLLUTION BULLETIN 2013; 73:47-56. [PMID: 23790450 DOI: 10.1016/j.marpolbul.2013.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 05/26/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
The need for quantitative molecular methods is growing in environmental, food, and medical fields but is hindered by low and variable DNA extraction and by co-extraction of PCR inhibitors. DNA extracts from Enterococcus faecium, seawater, and seawater spiked with E. faecium and Vibrio parahaemolyticus were tested by qPCR for target recovery and inhibition. Conventional and novel methods were tested, including Synchronous Coefficient of Drag Alteration (SCODA) and lysis and purification systems used on an automated genetic sensor (the Environmental Sample Processor, ESP). Variable qPCR target recovery and inhibition were measured, significantly affecting target quantification. An aggressive lysis method that utilized chemical, enzymatic, and mechanical disruption enhanced target recovery compared to commercial kit protocols. SCODA purification did not show marked improvement over commercial spin columns. Overall, data suggested a general need to improve sample preparation and to accurately assess and account for DNA recovery and inhibition in qPCR applications.
Collapse
Affiliation(s)
- Annie M Cox
- National Oceanic & Atmospheric Administration (NOAA), Northwest Fisheries Science Center, La Jolla, CA 92037, USA
| | | |
Collapse
|
38
|
Robidart J, Callister SJ, Song P, Nicora CD, Wheat CG, Girguis PR. Characterizing microbial community and geochemical dynamics at hydrothermal vents using osmotically driven continuous fluid samplers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4399-4407. [PMID: 23495803 DOI: 10.1021/es3037302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Microbes play a key role in mediating aquatic biogeochemical cycles. However, our understanding of the relationships between microbial phylogenetic/physiological diversity and habitat physicochemical characteristics is restrained by our limited capacity to concurrently collect microbial and geochemical samples at appropriate spatial and temporal scales. Accordingly, we have developed a low-cost, continuous fluid sampling system (the Biological OsmoSampling System, or BOSS) to address this limitation. The BOSS does not use electricity, can be deployed in harsh/remote environments, and collects/preserves samples with daily resolution for >1 year. Here, we present data on the efficacy of DNA and protein preservation during a 1.5 year laboratory study as well as the results of two field deployments at deep-sea hydrothermal vents, wherein we examined changes in microbial diversity, protein expression, and geochemistry over time. Our data reveal marked changes in microbial composition co-occurring with changes in hydrothermal fluid composition as well as the temporal dynamics of an enigmatic sulfide-oxidizing symbiont in its free-living state. We also present the first data on in situ protein preservation and expression dynamics highlighting the BOSS's potential utility in meta-proteomic studies. These data illustrate the value of using BOSS to study relationships among microbial and geochemical phenomena and environmental conditions.
Collapse
Affiliation(s)
- Julie Robidart
- Harvard University, Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
39
|
Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Natl Acad Sci U S A 2013; 110:E488-97. [PMID: 23345438 DOI: 10.1073/pnas.1222099110] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Planktonic marine microbes live in dynamic habitats that demand rapid sensing and response to periodic as well as stochastic environmental change. The kinetics, regularity, and specificity of microbial responses in situ, however, are not well-described. We report here simultaneous multitaxon genome-wide transcriptome profiling in a naturally occurring picoplankton community. An in situ robotic sampler using a Lagrangian sampling strategy enabled continuous tracking and repeated sampling of coherent microbial populations over 2 d. Subsequent RNA sequencing analyses yielded genome-wide transcriptome profiles of eukaryotic (Ostreococcus) and bacterial (Synechococcus) photosynthetic picoplankton as well as proteorhodopsin-containing heterotrophs, including Pelagibacter, SAR86-cluster Gammaproteobacteria, and marine Euryarchaea. The photosynthetic picoplankton exhibited strong diel rhythms over thousands of gene transcripts that were remarkably consistent with diel cycling observed in laboratory pure cultures. In contrast, the heterotrophs did not cycle diurnally. Instead, heterotrophic picoplankton populations exhibited cross-species synchronous, tightly regulated, temporally variable patterns of gene expression for many genes, particularly those genes associated with growth and nutrient acquisition. This multitaxon, population-wide gene regulation seemed to reflect sporadic, short-term, reversible responses to high-frequency environmental variability. Although the timing of the environmental responses among different heterotrophic species seemed synchronous, the specific metabolic genes that were expressed varied from taxon to taxon. In aggregate, these results provide insights into the kinetics, diversity, and functional patterns of microbial community response to environmental change. Our results also suggest a means by which complex multispecies metabolic processes could be coordinated, facilitating the regulation of matter and energy processing in a dynamically changing environment.
Collapse
|
40
|
Lever MA. Functional gene surveys from ocean drilling expeditions - a review and perspective. FEMS Microbiol Ecol 2013; 84:1-23. [PMID: 23228016 DOI: 10.1111/1574-6941.12051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/18/2012] [Accepted: 11/29/2012] [Indexed: 12/18/2022] Open
Abstract
The vast majority of microbes inhabiting the subseafloor remain uncultivated and their energy sources unknown. Thus, a focus of ocean drilling expeditions over the past decade has been to characterize the distribution of microbes associated with specific metabolic reactions. An important question has been whether microbes involved in key microbial processes, such as sulfate reduction and methanogenesis, differ fundamentally from their counterparts in surface environments. To this end, functional genes of anaerobic methane cycling (mcrA), sulfate reduction (dsrAB), acetogenesis (fhs), and dehalorespiration (rdhA) have been examined. A compilation of existing functional gene data suggests that subseafloor microbes involved in anaerobic methane cycling, sulfate reduction, acetogenesis, and dehalorespiration are not fundamentally different from their counterparts in the surface world. Moreover, quantifications of mcrA and dsrAB suggest that, unless the majority of subseafloor microbes involved in methane cycling and sulfate reduction are too genetically divergent to be detected with conventional methods, these processes only support a small fraction (< 1%) of total microbial biomass in the deep biosphere. Ecological explanations for the observed trends, target processes and methods for future investigations, and strategies for tackling the unresolved issue of microbial contamination in samples obtained by ocean drilling are discussed.
Collapse
Affiliation(s)
- Mark A Lever
- Center for Geomicrobiology, Institute of BioScience, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
41
|
Abstract
Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.
Collapse
|
42
|
Seasonal Synechococcus and Thaumarchaeal population dynamics examined with high resolution with remote in situ instrumentation. ISME JOURNAL 2011; 6:513-23. [PMID: 21975596 DOI: 10.1038/ismej.2011.127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Monterey Bay, CA is an Eastern boundary upwelling system that is nitrogen limited much of the year. In order to resolve population dynamics of microorganisms important for nutrient cycling in this region, we deployed the Environmental Sample Processor with quantitative PCR assays targeting both ribosomal RNA genes and functional genes for subclades of cyanobacteria (Synechococcus) and ammonia-oxidizing Archaea (Thaumarchaeota) populations. Results showed a strong correlation between Thaumarchaea abundances and nitrate during the spring upwelling but not the fall sampling period. In relatively stratified fall waters, the Thaumarchaeota community reached higher numbers than in the spring, and an unexpected positive correlation with chlorophyll concentration was observed. Further, we detected drops in Synechococcus abundance that occurred on short (that is, daily) time scales. Upwelling intensity and blooms of eukaryotic phytoplankton strongly influenced Synechococcus distributions in the spring and fall, revealing what appear to be the environmental limitations of Synechococcus populations in this region. Each of these findings has implications for Monterey Bay biogeochemistry. High-resolution sampling provides a better-resolved framework within which to observe changes in the plankton community. We conclude that controls on these ecosystems change on smaller scales than are routinely assessed, and that more predictable trends will be uncovered if they are evaluated within seasonal (monthly), rather than on annual or interannual scales.
Collapse
|