1
|
Song L, Xie H, Fan H, Zhang Y, Cheng Z, Chen J, Guo Y, Zhang S, Zhou X, Li Z, Liao H, Han J, Huang J, Zhou J, Fang D, Liu T. Dynamic control of RNA-DNA hybrid formation orchestrates DNA2 activation at stalled forks by RNAPII and DDX39A. Mol Cell 2024:S1097-2765(24)00989-4. [PMID: 39706186 DOI: 10.1016/j.molcel.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/17/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Stalled replication forks, susceptible to nucleolytic threats, necessitate protective mechanisms involving pivotal factors such as the tumor suppressors BRCA1 and BRCA2. Here, we demonstrate that, upon replication stress, RNA polymerase II (RNAPII) is recruited to stalled forks, actively promoting the transient formation of RNA-DNA hybrids. These hybrids act as safeguards, preventing premature engagement by the DNA2 nuclease and uncontrolled DNA2-mediated degradation of nascent DNA. Furthermore, we provide evidence that DExD box polypeptide 39A (DDX39A), serving as an RNA-DNA resolver, unwinds these structures and facilitates regulated DNA2 access to stalled forks. This orchestrated process enables controlled DNA2-dependent stalled fork processing and restart. Finally, we reveal that loss of DDX39A enhances stalled fork protection in BRCA1/2-deficient cells, consequently conferring chemoresistance. Our results suggest that the dynamic regulation of RNA-DNA hybrid formation at stalled forks by RNAPII and DDX39A precisely governs the timing of DNA2 activation, contributing to stalled fork protection, processing, and restart, ultimately promoting genome stability.
Collapse
Affiliation(s)
- Lizhi Song
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China; MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Haihua Xie
- Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Haonan Fan
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Yanjun Zhang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000 Yiwu, China
| | - Zixiu Cheng
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Junliang Chen
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000 Shaoxing, China
| | - Yuzun Guo
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000 Shaoxing, China
| | - Shudi Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Xinyu Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Zhaoshuang Li
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Haoxiang Liao
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Jinhua Han
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310030 Hangzhou, China
| | - Jun Huang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000 Shaoxing, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Dong Fang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Ting Liu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China.
| |
Collapse
|
2
|
Tapescu I, Cherry S. DDX RNA helicases: key players in cellular homeostasis and innate antiviral immunity. J Virol 2024; 98:e0004024. [PMID: 39212449 PMCID: PMC11494928 DOI: 10.1128/jvi.00040-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
RNA helicases are integral in RNA metabolism, performing important roles in cellular homeostasis and stress responses. In particular, the DExD/H-box (DDX) helicase family possesses a conserved catalytic core that binds structural features rather than specific sequences in RNA targets. DDXs have critical roles in all aspects of RNA metabolism including ribosome biogenesis, translation, RNA export, and RNA stability. Importantly, functional specialization within this family arises from divergent N and C termini and is driven at least in part by gene duplications with 18 of the 42 human helicases having paralogs. In addition to their key roles in the homeostatic control of cellular RNA, these factors have critical roles in RNA virus infection. The canonical RIG-I-like receptors (RLRs) play pivotal roles in cytoplasmic sensing of viral RNA structures, inducing antiviral gene expression. Additional RNA helicases function as viral sensors or regulators, further diversifying the innate immune defense arsenal. Moreover, some of these helicases have been coopted by viruses to facilitate their replication. Altogether, DDX helicases exhibit functional specificity, playing intricate roles in RNA metabolism and host defense. This review will discuss the mechanisms by which these RNA helicases recognize diverse RNA structures in cellular and viral RNAs, and how this impacts RNA processing and innate immune responses.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Yellamaty R, Sharma S. Critical Cellular Functions and Mechanisms of Action of the RNA Helicase UAP56. J Mol Biol 2024; 436:168604. [PMID: 38729260 PMCID: PMC11168752 DOI: 10.1016/j.jmb.2024.168604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Posttranscriptional maturation and export from the nucleus to the cytoplasm are essential steps in the normal processing of many cellular RNAs. The RNA helicase UAP56 (U2AF associated protein 56; also known as DDX39B) has emerged as a critical player in facilitating and co-transcriptionally linking these steps. Originally identified as a helicase involved in pre-mRNA splicing, UAP56 has been shown to facilitate formation of the A complex during spliceosome assembly. Additionally, it has been found to be critical for interactions between components of the exon junction and transcription and export complexes to promote the loading of export receptors. Although it appears to be structurally similar to other helicase superfamily 2 members, UAP56's ability to interact with multiple different protein partners allows it to perform its various cellular functions. Herein, we describe the structure-activity relationship studies that identified protein interactions of UAP56 and its human paralog URH49 (UAP56-related helicase 49; also known as DDX39A) and are beginning to reveal molecular mechanisms by which interacting proteins and substrate RNAs may regulate these helicases. We also provide an overview of reports that have demonstrated less well-characterized roles for UAP56, including R-loop resolution and telomere maintenance. Finally, we discuss studies that indicate a potential pathogenic effect of UAP56 in the development of autoimmune diseases and cancer, and identify the association of somatic and genetic mutations in UAP56 with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ryan Yellamaty
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| |
Collapse
|
4
|
Tapescu I, Taschuk F, Pokharel SM, Zginnyk O, Ferretti M, Bailer PF, Whig K, Madden EA, Heise MT, Schultz DC, Cherry S. The RNA helicase DDX39A binds a conserved structure in chikungunya virus RNA to control infection. Mol Cell 2023; 83:4174-4189.e7. [PMID: 37949067 PMCID: PMC10722560 DOI: 10.1016/j.molcel.2023.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/25/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Alphaviruses are a large group of re-emerging arthropod-borne RNA viruses. The compact viral RNA genomes harbor diverse structures that facilitate replication. These structures can be recognized by antiviral cellular RNA-binding proteins, including DExD-box (DDX) helicases, that bind viral RNAs to control infection. The full spectrum of antiviral DDXs and the structures that are recognized remain unclear. Genetic screening identified DDX39A as antiviral against the alphavirus chikungunya virus (CHIKV) and other medically relevant alphaviruses. Upon infection, the predominantly nuclear DDX39A accumulates in the cytoplasm inhibiting alphavirus replication, independent of the canonical interferon pathway. Biochemically, DDX39A binds to CHIKV genomic RNA, interacting with the 5' conserved sequence element (5'CSE), which is essential for the antiviral activity of DDX39A. Altogether, DDX39A relocalization and binding to a conserved structural element in the alphavirus genomic RNA attenuates infection, revealing a previously unknown layer to the cellular control of infection.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Frances Taschuk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Swechha M Pokharel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oleksandr Zginnyk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter F Bailer
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanupryia Whig
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily A Madden
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - David C Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Zheng B, Chen X, Ling Q, Cheng Q, Ye S. Role and therapeutic potential of DEAD-box RNA helicase family in colorectal cancer. Front Oncol 2023; 13:1278282. [PMID: 38023215 PMCID: PMC10654640 DOI: 10.3389/fonc.2023.1278282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed and the second cancer-related death worldwide, leading to more than 0.9 million deaths every year. Unfortunately, this disease is changing rapidly to a younger age, and in a more advanced stage when diagnosed. The DEAD-box RNA helicase proteins are the largest family of RNA helicases so far. They regulate almost every aspect of RNA physiological processes, including RNA transcription, editing, splicing and transport. Aberrant expression and critical roles of the DEAD-box RNA helicase proteins have been found in CRC. In this review, we first summarize the protein structure, cellular distribution, and diverse biological functions of DEAD-box RNA helicases. Then, we discuss the distinct roles of DEAD-box RNA helicase family in CRC and describe the cellular mechanism of actions based on recent studies, with an aim to provide future strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Bichun Zheng
- Department of Anorectal Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | | | | | | | | |
Collapse
|
6
|
Casares L, Moreno R, Ali KX, Higgins M, Dayalan Naidu S, Neill G, Cassin L, Kiib AE, Svenningsen EB, Minassi A, Honda T, Poulsen TB, Wiel C, Sayin VI, Dinkova-Kostova AT, Olagnier D, de la Vega L. The synthetic triterpenoids CDDO-TFEA and CDDO-Me, but not CDDO, promote nuclear exclusion of BACH1 impairing its activity. Redox Biol 2022; 51:102291. [PMID: 35313207 PMCID: PMC8938334 DOI: 10.1016/j.redox.2022.102291] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
The transcription factor BACH1 is a potential therapeutic target for a variety of chronic conditions linked to oxidative stress and inflammation, as well as cancer metastasis. However, only a few BACH1 degraders/inhibitors have been described. BACH1 is a transcriptional repressor of heme oxygenase 1 (HMOX1), which is positively regulated by transcription factor NRF2 and is highly inducible by derivatives of the synthetic oleanane triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO). Most of the therapeutic activities of these compounds are due to their anti-inflammatory and antioxidant properties, which are widely attributed to their ability to activate NRF2. However, with such a broad range of action, these compounds have other molecular targets that have not been fully identified and could also be of importance for their therapeutic profile. Herein we identified BACH1 as a target of two CDDO-derivatives (CDDO-Me and CDDO-TFEA), but not of CDDO. While both CDDO and CDDO-derivatives activate NRF2 similarly, only CDDO-Me and CDDO-TFEA inhibit BACH1, which explains the much higher potency of these CDDO-derivatives as HMOX1 inducers compared with unmodified CDDO. Notably, we demonstrate that CDDO-Me and CDDO-TFEA inhibit BACH1 via a novel mechanism that reduces BACH1 nuclear levels while accumulating its cytoplasmic form. In an in vitro model, both CDDO-derivatives impaired lung cancer cell invasion in a BACH1-dependent and NRF2-independent manner, while CDDO was inactive. Altogether, our study identifies CDDO-Me and CDDO-TFEA as dual KEAP1/BACH1 inhibitors, providing a rationale for further therapeutic uses of these drugs.
Collapse
Affiliation(s)
- Laura Casares
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Rita Moreno
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Kevin X Ali
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Graham Neill
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Lena Cassin
- Department of Biomedicine, Health, Aarhus University, 8000, Denmark
| | | | | | - Alberto Minassi
- Department of Drug Science, University of Piemonte Orientale, Novara, Italy
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | | | - Clotilde Wiel
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Volkan I Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - David Olagnier
- Department of Biomedicine, Health, Aarhus University, 8000, Denmark
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK.
| |
Collapse
|
7
|
The Mammalian Ecdysoneless Protein Interacts with RNA Helicase DDX39A To Regulate Nuclear mRNA Export. Mol Cell Biol 2021; 41:e0010321. [PMID: 33941617 PMCID: PMC8224239 DOI: 10.1128/mcb.00103-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mammalian orthologue of ecdysoneless (ECD) protein is required for embryogenesis, cell cycle progression, and mitigation of endoplasmic reticulum stress. Here, we identified key components of the mRNA export complexes as binding partners of ECD and characterized the functional interaction of ECD with key mRNA export-related DEAD BOX protein helicase DDX39A. We find that ECD is involved in RNA export through its interaction with DDX39A. ECD knockdown (KD) blocks mRNA export from the nucleus to the cytoplasm, which is rescued by expression of full-length ECD but not an ECD mutant that is defective in interaction with DDX39A. We have previously shown that ECD protein is overexpressed in ErbB2+ breast cancers (BC). In this study, we extended the analyses to two publicly available BC mRNA The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data sets. In both data sets, ECD mRNA overexpression correlated with short patient survival, specifically ErbB2+ BC. In the METABRIC data set, ECD overexpression also correlated with poor patient survival in triple-negative breast cancer (TNBC). Furthermore, ECD KD in ErbB2+ BC cells led to a decrease in ErbB2 mRNA level due to a block in its nuclear export and was associated with impairment of oncogenic traits. These findings provide novel mechanistic insight into the physiological and pathological functions of ECD.
Collapse
|
8
|
Nánási P, Imre L, Firouzi Niaki E, Bosire R, Mocsár G, Türk-Mázló A, Ausio J, Szabó G. Doxorubicin induces large-scale and differential H2A and H2B redistribution in live cells. PLoS One 2020; 15:e0231223. [PMID: 32298286 PMCID: PMC7162453 DOI: 10.1371/journal.pone.0231223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
We observed prominent effects of doxorubicin (Dox), an anthracycline widely used in anti-cancer therapy, on the aggregation and intracellular distribution of both partners of the H2A-H2B dimer, with marked differences between the two histones. Histone aggregation, assessed by Laser Scanning Cytometry via the retention of the aggregates in isolated nuclei, was observed in the case of H2A. The dominant effect of the anthracycline on H2B was its massive accumulation in the cytoplasm of the Jurkat leukemia cells concomitant with its disappearance from the nuclei, detected by confocal microscopy and mass spectrometry. A similar effect of the anthracycline was observed in primary human lymphoid cells, and also in monocyte-derived dendritic cells that harbor an unusually high amount of H2B in their cytoplasm even in the absence of Dox treatment. The nucleo-cytoplasmic translocation of H2B was not affected by inhibitors of major biochemical pathways or the nuclear export inhibitor leptomycin B, but it was completely diminished by PYR-41, an inhibitor with pleiotropic effects on protein degradation pathways. Dox and PYR-41 acted synergistically according to isobologram analyses of cytotoxicity. These large-scale effects were detected already at Dox concentrations that may be reached in the typical clinical settings, therefore they can contribute both to the anti-cancer mechanism and to the side-effects of this anthracycline.
Collapse
Affiliation(s)
- Péter Nánási
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Cell and Immune Biology, Debrecen, Hungary
| | - László Imre
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Cell and Immune Biology, Debrecen, Hungary
| | - Erfaneh Firouzi Niaki
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Cell and Immune Biology, Debrecen, Hungary
| | - Rosevalentine Bosire
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Cell and Immune Biology, Debrecen, Hungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Cell and Immune Biology, Debrecen, Hungary
| | - Anett Türk-Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Juan Ausio
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Cell and Immune Biology, Debrecen, Hungary
- * E-mail:
| |
Collapse
|
9
|
Szymura SJ, Bernal GM, Wu L, Zhang Z, Crawley CD, Voce DJ, Campbell PA, Ranoa DE, Weichselbaum RR, Yamini B. DDX39B interacts with the pattern recognition receptor pathway to inhibit NF-κB and sensitize to alkylating chemotherapy. BMC Biol 2020; 18:32. [PMID: 32209106 PMCID: PMC7093963 DOI: 10.1186/s12915-020-0764-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Nuclear factor-κB (NF-κB) plays a prominent role in promoting inflammation and resistance to DNA damaging therapy. We searched for proteins that modulate the NF-κB response as a prerequisite to identifying novel factors that affect sensitivity to DNA damaging chemotherapy. Results Using streptavidin-agarose pull-down, we identified the DExD/H-box RNA helicase, DDX39B, as a factor that differentially interacts with κB DNA probes. Subsequently, using both RNA interference and CRISPR/Cas9 technology, we demonstrated that DDX39B inhibits NF-κB activity by a general mechanism involving inhibition of p65 phosphorylation. Mechanistically, DDX39B mediates this effect by interacting with the pattern recognition receptor (PRR), LGP2, a pathway that required the cellular response to cytoplasmic double-stranded RNA (dsRNA). From a functional standpoint, loss of DDX39B promoted resistance to alkylating chemotherapy in glioblastoma cells. Further examination of DDX39B demonstrated that its protein abundance was regulated by site-specific sumoylation that promoted its poly-ubiquitination and degradation. These post-translational modifications required the presence of the SUMO E3 ligase, PIASx-β. Finally, genome-wide analysis demonstrated that despite the link to the PRR system, DDX39B did not generally inhibit interferon-stimulated gene expression, but rather acted to attenuate expression of factors associated with the extracellular matrix, cellular migration, and angiogenesis. Conclusions These results identify DDX39B, a factor with known functions in mRNA splicing and nuclear export, as an RNA-binding protein that blocks a subset of the inflammatory response. While these findings identify a pathway by which DDX39B promotes sensitization to DNA damaging therapy, the data also reveal a mechanism by which this helicase may act to mitigate autoimmune disease.
Collapse
Affiliation(s)
- Szymon J Szymura
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Giovanna M Bernal
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Longtao Wu
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Zhongqin Zhang
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Clayton D Crawley
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - David J Voce
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Paige-Ashley Campbell
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Diana E Ranoa
- Department of Radiation and Cellular Oncology, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Bakhtiar Yamini
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
10
|
Azevedo J, Picart C, Dureau L, Pontier D, Jaquinod-Kieffer S, Hakimi MA, Lagrange T. UAP56 associates with DRM2 and is localized to chromatin in Arabidopsis. FEBS Open Bio 2019; 9:973-985. [PMID: 30951268 PMCID: PMC6487834 DOI: 10.1002/2211-5463.12627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 11/17/2022] Open
Abstract
Repeated sequence expression and transposable element mobilization are tightly controlled by multilayer processes, which include DNA 5′‐cytosine methylation. The RNA‐directed DNA methylation (RdDM) pathway, which uses siRNAs to guide sequence‐specific directed DNA methylation, emerged specifically in plants. RdDM ensures DNA methylation maintenance on asymmetric CHH sites and specifically initiates de novo methylation in all cytosine sequence contexts through the action of DRM DNA methyltransferases, of which DRM2 is the most prominent. The RdDM pathway has been well described, but how DRM2 is recruited onto DNA targets and associates with other RdDM factors remains unknown. To address these questions, we developed biochemical approaches to allow the identification of factors that may escape genetic screens, such as proteins encoded by multigenic families. Through both conventional and affinity purification of DRM2, we identified DEAD box RNA helicases U2AF56 Associated Protein 56 (UAP56a/b), which are widespread among eukaryotes, as new DRM2 partners. We have shown that, similar to DRM2 and other RdDM actors, UAP56 has chromatin‐associated protein properties. We confirmed this association both in vitro and in vivo in reproductive tissues. In addition, our experiments also suggest that UAP56 may exhibit differential distribution in cells depending on plant organ. While originally identified for its role in splicing, our study suggests that UAP56 may also have other roles, and our findings allow us to initiate discussion about its potential role in the RdDM pathway.
Collapse
Affiliation(s)
- Jacinthe Azevedo
- LGDP-UMR5096, CNRS, Perpignan, France.,LGDP-UMR5096, Université de Perpignan Via Domitia, France
| | - Claire Picart
- LGDP-UMR5096, CNRS, Perpignan, France.,LGDP-UMR5096, Université de Perpignan Via Domitia, France
| | - Laurent Dureau
- LGDP-UMR5096, CNRS, Perpignan, France.,LGDP-UMR5096, Université de Perpignan Via Domitia, France
| | - Dominique Pontier
- LGDP-UMR5096, CNRS, Perpignan, France.,LGDP-UMR5096, Université de Perpignan Via Domitia, France
| | - Sylvie Jaquinod-Kieffer
- Laboratoire Biologie Grande Echelle, Institut de Biosciences et Biotechnologies de Grenoble, UMR_S 1038, CEA, INSERM, Université Grenoble Alpes, France
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, France
| | - Thierry Lagrange
- LGDP-UMR5096, CNRS, Perpignan, France.,LGDP-UMR5096, Université de Perpignan Via Domitia, France
| |
Collapse
|
11
|
Huang C, Liang D, Tatomer DC, Wilusz JE. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev 2018; 32:639-644. [PMID: 29773557 PMCID: PMC6004072 DOI: 10.1101/gad.314856.118] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/24/2018] [Indexed: 11/26/2022]
Abstract
Here, Huang et al. investigated how circRNA localization or nuclear export is controlled and, using RNAi screening, found that depletion of the Drosophila DExH/D-box helicase Hel25E results in nuclear accumulation of long (>800-nt), but not short, circRNAs. Their findings suggest that the lengths of mature circRNAs are measured to dictate the mode of nuclear export. Circular RNAs (circRNAs) are generated from many protein-coding genes. Most accumulate in the cytoplasm, but how circRNA localization or nuclear export is controlled remains unclear. Using RNAi screening, we found that depletion of the Drosophila DExH/D-box helicase Hel25E results in nuclear accumulation of long (>800-nucleotide), but not short, circRNAs. The human homologs of Hel25E similarly regulate circRNA localization, as depletion of UAP56 (DDX39B) or URH49 (DDX39A) causes long and short circRNAs, respectively, to become enriched in the nucleus. These data suggest that the lengths of mature circRNAs are measured to dictate the mode of nuclear export.
Collapse
Affiliation(s)
- Chuan Huang
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Dongming Liang
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Deirdre C Tatomer
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
12
|
Nakata D, Nakao S, Nakayama K, Araki S, Nakayama Y, Aparicio S, Hara T, Nakanishi A. The RNA helicase DDX39B and its paralog DDX39A regulate androgen receptor splice variant AR-V7 generation. Biochem Biophys Res Commun 2016; 483:271-276. [PMID: 28025139 DOI: 10.1016/j.bbrc.2016.12.153] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022]
Abstract
Mounting evidence suggests that constitutively active androgen receptor (AR) splice variants, typified by AR-V7, are associated with poor prognosis and resistance to androgen deprivation therapy in prostate cancer patients. However, mechanisms governing the generation of AR splice variants are not fully understood. In this study, we aimed to investigate the dynamics of AR splice variant generation using the JDCaP prostate cancer model that expresses AR splice variants under androgen depletion. Microarray analysis of JDCaP xenografts before and after expression of AR splice variants suggested that dysregulation of RNA processing pathways is likely involved in AR splice variant generation. To explore factors contributing to generation of AR-V7 mRNA, we conducted a focused RNA interference screen in AR-V7-positive JDCaP-hr cells using an shRNA library targeting spliceosome-related genes. This screen identified DDX39B as a regulator of AR-V7 mRNA expression. Simultaneous knockdown of DDX39B and its paralog DDX39A drastically and selectively downregulated AR-V7 mRNA expression in multiple AR-V7-positive prostate cancer cell lines. DDX39B was upregulated in relapsed JDCaP xenografts expressing AR splice variants, suggesting its role in expression of AR splice variants. Taken together, our findings offer insight into the mechanisms of AR splice variant generation and identify DDX39 as a potential drug target for the treatment of AR splice variant-positive prostate cancer.
Collapse
Affiliation(s)
- Daisuke Nakata
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Shoichi Nakao
- Shonan Incubation Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan; Integrated Technology Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kazuhide Nakayama
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Shinsuke Araki
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan; Shonan Incubation Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yusuke Nakayama
- Shonan Incubation Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan; Integrated Technology Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Samuel Aparicio
- Shonan Incubation Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan; BC Cancer Agency, Department of Molecular Oncology, Vancouver, BC, V5Z 1L3, Canada; University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, BC, V6T 2B5, Canada
| | - Takahito Hara
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Atsushi Nakanishi
- Shonan Incubation Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan; Integrated Technology Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
13
|
Jun YW, Lee SH, Shim J, Lee JA, Lim CS, Kaang BK, Jang DJ. Dual roles of the N-terminal coiled-coil domain of anAplysiasec7 protein: homodimer formation and nuclear export. J Neurochem 2016; 139:1102-1112. [DOI: 10.1111/jnc.13875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/13/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Yong-Woo Jun
- Department of Ecological Science; College of Ecology and Environment; Kyungpook National University; Sangju-si Gyeongsangbuk-do Korea
| | - Seung-Hee Lee
- Department of Biological Sciences; Korea Institute of Science and Technology (KAIST); Daejeon Korea
| | - Jaehoon Shim
- Department of Biological Sciences; College of Natural Sciences; Seoul National University; Gwanak-gu Seoul Korea
| | - Jin-A Lee
- Department of Biotechnology and Biological Science; College of Life Science and Nano Technology; Hannam University; Yuseong-daero; Yuseong-gu Daejeon Korea
| | - Chae-Seok Lim
- Department of Biological Sciences; College of Natural Sciences; Seoul National University; Gwanak-gu Seoul Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences; College of Natural Sciences; Seoul National University; Gwanak-gu Seoul Korea
| | - Deok-Jin Jang
- Department of Ecological Science; College of Ecology and Environment; Kyungpook National University; Sangju-si Gyeongsangbuk-do Korea
| |
Collapse
|
14
|
Huang HC, Lee CP, Liu HK, Chang MF, Lai YH, Lee YC, Huang C. Cellular Nuclear Export Factors TAP and Aly Are Required for HDAg-L-mediated Assembly of Hepatitis Delta Virus. J Biol Chem 2016; 291:26226-26238. [PMID: 27807029 DOI: 10.1074/jbc.m116.754853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/01/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is a satellite virus of hepatitis B virus (HBV). HDV genome encodes two forms of hepatitis delta antigen (HDAg), small HDAg (HDAg-S), which is required for viral replication, and large HDAg (HDAg-L), which is essential for viral assembly. HDAg-L is identical to HDAg-S except that it bears a 19-amino acid extension at the C terminus. Both HDAgs contain a nuclear localization signal (NLS), but only HDAg-L contains a CRM1-independent nuclear export signal at its C terminus. The nuclear export activity of HDAg-L is important for HDV particle formation. However, the mechanisms of HDAg-L-mediated nuclear export of HDV ribonucleoprotein are not clear. In this study, the host cellular RNA export complex TAP-Aly was found to form a complex with HDAg-L, but not with an export-defective HDAg-L mutant, in which Pro205 was replaced by Ala. HDAg-L was found to colocalize with TAP and Aly in the nucleus. The C-terminal domain of HDAg-L was shown to directly interact with the N terminus of TAP, whereas an HDAg-L mutant lacking the NLS failed to interact with full-length TAP. In addition, small hairpin RNA-mediated down-regulation of TAP or Aly reduced nuclear export of HDAg-L and assembly of HDV virions. Furthermore, a peptide, TAT-HDAg-L(198-210), containing the 10-amino acid TAT peptide and HDAg-L(198-210), inhibited the interaction between HDAg-L and TAP and blocked HDV virion assembly and secretion. These data demonstrate that formation and release of HDV particles are mediated by TAP and Aly.
Collapse
Affiliation(s)
- Hsiu-Chen Huang
- From the Department of Applied Science, National Hsinchu University of Education, Hsinchu 30014
| | - Chung-Pei Lee
- the School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 11219
| | - Hui-Kang Liu
- the National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221.,the Ph.D Program for Clinical Drug Discovery from Botanical Herbs, Taipei Medical University, Taipei 11031
| | - Ming-Fu Chang
- the Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 10051
| | - Yu-Heng Lai
- the Department of Chemistry, Chinese Culture University, Taipei 11114
| | - Yu-Ching Lee
- the Center of Translational Medicine, Taipei Medical University, Taipei 11031.,the Ph.D. Program for Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, and
| | - Cheng Huang
- the National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, .,the Department of Earth and Life Sciences, University of Taipei, Taipei 10048, Taiwan
| |
Collapse
|
15
|
Tuteja N, Tarique M, Trivedi DK, Sahoo RK, Tuteja R. Stress-induced Oryza sativa BAT1 dual helicase exhibits unique bipolar translocation. PROTOPLASMA 2015; 252:1563-1574. [PMID: 25772680 DOI: 10.1007/s00709-015-0791-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
HLA-B associated transcript 1 (BAT1) protein, also named as spliceosome RNA helicase UAP56, is a member of the DExD/H-box family of helicases. However, regulation under stress, biochemical properties, and functions of plant homologue of BAT1 are poorly understood. Here, we report the purification and detailed biochemical characterization of the Oryza sativa homologue of BAT1 (OsBAT1/UAP56) protein (52 kDa) and regulation of its transcript under abiotic stress. OsBAT1 transcript levels are enhanced in rice seedlings in response to abiotic stress including salt stress and abscisic acid. Purified OsBAT1 protein exhibits the DNA- and RNA-dependent ATPase, RNA helicase, and DNA- and RNA-binding activities. Interestingly OsBAT1 also exhibits unique DNA helicase activity, which has not been reported so far in any BAT1 homologue. Moreover, OsBAT1 translocates in both the 3' to 5' and 5' to 3' directions, which is also a unique property. The K m value for OsBAT1 DNA helicase is 0.9753 nM and for RNA helicase is 1.7536 nM, respectively. This study demonstrates several unique characteristics of OsBAT1 especially its ability to unwind both DNA and RNA duplexes; bipolar translocation and its transcript upregulation under abiotic stresses indicate that it is a multifunctional protein. Overall, this study represents significant contribution in advancing our knowledge regarding functions of OsBAT1 in RNA and DNA metabolism and its putative role in abiotic stress signaling in plants.
Collapse
Affiliation(s)
- Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Mohammed Tarique
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Dipesh Kumar Trivedi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ranjan Kumar Sahoo
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
16
|
Sun L, Hartson SD, Matts RL. Identification of proteins associated with Aha1 in HeLa cells by quantitative proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:365-80. [PMID: 25614414 DOI: 10.1016/j.bbapap.2015.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/20/2014] [Accepted: 01/09/2015] [Indexed: 01/17/2023]
Abstract
The identification of the activator of heat shock protein 90 (Hsp90) ATPase's (Aha1) protein-protein interaction (PPI) network will provide critical insights into the relationship of Aha1 with multi-molecular complexes and shed light onto Aha1's interconnections with Hsp90-regulated biological functions. Flag-tagged Aha1 was over-expressed in HeLa cells and isolated by anti-Flag affinity pull downs, followed by trypsin digestion and identification co-adsorbing proteins by liquid chromatography-tandem mass spectroscopy (LC-MS/MS). A probability-based identification of Aha1 PPIs was generated from the LC-MS/MS analysis by using a relative quantification strategy, spectral counting (SC). By comparing the SC-based protein levels between Aha1 pull-down samples and negative controls, 164 Aha1-interacting proteins were identified that were quantitatively enriched in the pull-down samples over the controls. The identified Aha1-interacting proteins are involved in a wide number of intracellular bioprocesses, including DNA maintenance, chromatin structure, RNA processing, translation, nucleocytoplasmic and vesicle transport, among others. The interactions of 33 of the identified proteins with Aha1 were further confirmed by Western blotting, demonstrating the reliability of our affinity-purification-coupled quantitative SC-MS strategy. Our proteomic data suggests that Aha1 may participate in diverse biological pathways to facilitate Hsp90 chaperone functions in response to stress.
Collapse
Affiliation(s)
- Liang Sun
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Robert L Matts
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
17
|
Thomas M, Zielke B, Reuter N, Stamminger T. Methods to study the nucleocytoplasmic transport of macromolecules with respect to their impact on the regulation of human cytomegalovirus gene expression. Methods Mol Biol 2014; 1119:197-216. [PMID: 24639225 DOI: 10.1007/978-1-62703-788-4_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
One defining feature of eukaryotic cells is their compartmentalization into nucleus and cytoplasm which provides sophisticated opportunities for the regulation of gene expression. Accurate subcellular localization is crucial for the effective function of most viral macromolecules, and nuclear translocation is central to the function of herpesviral proteins that are involved in processes such as transcription or DNA replication. Human cytomegalovirus (HCMV) encodes several transactivator proteins which stimulate viral gene expression either on the transcriptional or posttranscriptional level. In this chapter, we focus on nucleocytoplasmic transport mechanisms of either proteins or RNA that are utilized during HCMV infection. We describe commonly used assays to determine the subcellular localization of a protein, its nucleocytoplasmic shuttling activity, its capacity to export unspliced RNA from the nucleus, and its association with RNA in vivo.
Collapse
Affiliation(s)
- Marco Thomas
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | |
Collapse
|
18
|
Akef A, Zhang H, Masuda S, Palazzo AF. Trafficking of mRNAs containing ALREX-promoting elements through nuclear speckles. Nucleus 2013; 4:326-40. [PMID: 23934081 PMCID: PMC3810340 DOI: 10.4161/nucl.26052] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In vertebrates, the majority of mRNAs that encode secreted, membrane-bound or mitochondrial proteins contain RNA elements that activate an alternative mRNA nuclear export (ALREX) pathway. Here we demonstrate that mRNAs containing ALREX-promoting elements are trafficked through nuclear speckles. Although ALREX-promoting elements enhance nuclear speckle localization, additional features within the mRNA largely drive this process. Depletion of two TREX-associated RNA helicases, UAP56 and its paralog URH49, or inhibition of the TREX-associated nuclear transport factor, TAP, not only inhibits ALREX, but also appears to trap these mRNAs in nuclear speckles. mRNAs that contain ALREX-promoting elements associate with UAP56 in vivo. Finally, we demonstrate that mRNAs lacking a poly(A)-tail are not efficiently exported by the ALREX pathway and show enhanced association with nuclear speckles. Our data suggest that within the speckle, ALREX-promoting elements, in conjunction with the poly(A)-tail, likely stimulate UAP56/URH49 and TAP dependent steps that lead to the eventual egress of the export-competent mRNP from these structures.
Collapse
Affiliation(s)
- Abdalla Akef
- Department of Biochemistry; University of Toronto; Toronto, ON Canada; Division of Integrated Life Science; Graduate School of Biostudies; Kyoto University; Kyoto, Japan
| | | | | | | |
Collapse
|
19
|
Kammel C, Thomaier M, Sørensen BB, Schubert T, Längst G, Grasser M, Grasser KD. Arabidopsis DEAD-box RNA helicase UAP56 interacts with both RNA and DNA as well as with mRNA export factors. PLoS One 2013; 8:e60644. [PMID: 23555998 PMCID: PMC3608606 DOI: 10.1371/journal.pone.0060644] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/01/2013] [Indexed: 01/30/2023] Open
Abstract
The DEAD-box protein UAP56 (U2AF65-associcated protein) is an RNA helicase that in yeast and metazoa is critically involved in mRNA splicing and export. In Arabidopsis, two adjacent genes code for an identical UAP56 protein, and both genes are expressed. In case one of the genes is inactivated by a T-DNA insertion, wild type transcript level is maintained by the other intact gene. In contrast to other organisms that are severely affected by elevated UAP56 levels, Arabidopsis plants that overexpress UAP56 have wild type appearance. UAP56 localises predominantly to euchromatic regions of Arabidopsis nuclei, and associates with genes transcribed by RNA polymerase II independently from the presence of introns, while it is not detected at non-transcribed loci. Biochemical characterisation revealed that in addition to ssRNA and dsRNA, UAP56 interacts with dsDNA, but not with ssDNA. Moreover, the enzyme displays ATPase activity that is stimulated by RNA and dsDNA and it has ATP-dependent RNA helicase activity unwinding dsRNA, whereas it does not unwind dsDNA. Protein interaction studies showed that UAP56 directly interacts with the mRNA export factors ALY2 and MOS11, suggesting that it is involved in mRNA export from plant cell nuclei.
Collapse
Affiliation(s)
- Christine Kammel
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Maren Thomaier
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Brian B. Sørensen
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Thomas Schubert
- Institute for Biochemistry III, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Gernot Längst
- Institute for Biochemistry III, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Marion Grasser
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
- * E-mail: (MG); (KDG)
| | - Klaus D. Grasser
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
- * E-mail: (MG); (KDG)
| |
Collapse
|
20
|
Nuclear export as a key arbiter of "mRNA identity" in eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:566-77. [PMID: 22248619 DOI: 10.1016/j.bbagrm.2011.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/23/2011] [Accepted: 12/29/2011] [Indexed: 01/15/2023]
Abstract
Over the past decade, various studies have indicated that most of the eukaryotic genome is transcribed at some level. The pervasiveness of transcription might seem surprising when one considers that only a quarter of the human genome comprises genes (including exons and introns) and less than 2% codes for protein. This conundrum is partially explained by the unique evolutionary pressures that are imposed on species with small population sizes, such as eukaryotes. These conditions promote the expansion of introns and non-functional intergenic DNA, and the accumulation of cryptic transcriptional start sites. As a result, the eukaryotic gene expression machinery must effectively evaluate whether or not a transcript has all the hallmarks of a protein-coding mRNA. If a transcript contains these features, then positive feedback loops are activated to further stimulate its transcription, processing, nuclear export and ultimately, translation. However if a transcript lacks features associated with "mRNA identity", then the RNA is degraded and/or used to inhibit further transcription and translation of the gene. Here we discuss how mRNA identity is assessed by the nuclear export machinery in order to extract meaningful information from the eukaryotic genome. In the process, we provide an explanation of why certain sequences that are enriched in protein-coding genes, such as the signal sequence coding region, promote mRNA nuclear export in vertebrates. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
|
21
|
Wisskirchen C, Ludersdorfer TH, Müller DA, Moritz E, Pavlovic J. Interferon-induced antiviral protein MxA interacts with the cellular RNA helicases UAP56 and URH49. J Biol Chem 2011; 286:34743-51. [PMID: 21859714 DOI: 10.1074/jbc.m111.251843] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mx proteins are a family of large GTPases that are induced exclusively by interferon-α/β and have a broad antiviral activity against several viruses, including influenza A virus (IAV). Although the antiviral activities of mouse Mx1 and human MxA have been studied extensively, the molecular mechanism of action remains largely unsolved. Because no direct interaction between Mx proteins and IAV proteins or RNA had been demonstrated so far, we addressed the question of whether Mx protein would interact with cellular proteins required for efficient replication of IAV. Immunoprecipitation of MxA revealed its association with two closely related RNA helicases, UAP56 and URH49. UAP56 and its paralog URH49 play an important role in IAV replication and are involved in nuclear export of IAV mRNAs and prevention of dsRNA accumulation in infected cells. In vitro binding assays with purified recombinant proteins revealed that MxA formed a direct complex with the RNA helicases. In addition, recombinant mouse Mx1 was also able to bind to UAP56 or URH49. Furthermore, the complex formation between cytoplasmic MxA and UAP56 or URH49 occurred in the perinuclear region, whereas nuclear Mx1 interacted with UAP56 or URH49 in distinct dots in the nucleus. Taken together, our data reveal that Mx proteins exerting antiviral activity can directly bind to the two cellular DExD/H box RNA helicases UAP56 and URH49. Moreover, the observed subcellular localization of the Mx-RNA helicase complexes coincides with the subcellular localization, where human MxA and mouse Mx1 proteins act antivirally. On the basis of these data, we propose that Mx proteins exert their antiviral activity against IAV by interfering with the function of the RNA helicases UAP56 and URH49.
Collapse
|