1
|
Kim H, Yi J, Yu J, Park J, Jang SK. A Simple and Effective Method to Concentrate Hepatitis C Virus: Aqueous Two-Phase System Allows Highly Efficient Enrichment of Enveloped Viruses. Viruses 2022; 14:v14091987. [PMID: 36146792 PMCID: PMC9503063 DOI: 10.3390/v14091987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
To investigate the proliferation cycle of a virus, virus-host interaction, and pathogenesis of a virus, virion particles must be concentrated from the media of virus cell culture or the sera of virus-infected patients. Ultracentrifugation of the culture media is a standard method for concentrating virion particles. However, this method is time-consuming and requires special equipment (ultracentrifuge). Moreover, a large number of infectious viruses are lost during enrichment. We developed a new method of hepatitis C virus (HCV) concentration to overcome the issues associated with traditional methods of virus concentration. We used an aqueous two-phase system (ATPS) to concentrate the virus. HCV, which causes various liver diseases, such as liver fibrosis, cirrhosis, and hepatocellular carcinoma, was used as a model virus to test the efficacy and reliability of the ATPS. The efficiency of HCV concentration by the ATPS was approximately three times higher than that by ultracentrifugation. Moreover, the infectivity of the concentrated HCV, which is a labile virus, remained the same after concentration of the virus by the ATPS. Considering the simplicity and effectiveness of the ATPS, it is the method of choice for concentrating viruses.
Collapse
Affiliation(s)
- Heesun Kim
- Molecular Virology Laboratory, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Johan Yi
- Nanoparticle and Vesicle Laboratory, Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jinbae Yu
- Molecular Virology Laboratory, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jaesung Park
- Nanoparticle and Vesicle Laboratory, Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Nanoparticle and Vesicle Laboratory, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Correspondence: (J.P.); (S.K.J.)
| | - Sung Key Jang
- Molecular Virology Laboratory, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673, Korea
- Molecular Virology Laboratory, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
- Correspondence: (J.P.); (S.K.J.)
| |
Collapse
|
2
|
Lee JS, Tabata K, Twu WI, Rahman MS, Kim HS, Yu JB, Jee MH, Bartenschlager R, Jang SK. RACK1 mediates rewiring of intracellular networks induced by hepatitis C virus infection. PLoS Pathog 2019; 15:e1008021. [PMID: 31525236 PMCID: PMC6762199 DOI: 10.1371/journal.ppat.1008021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/26/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a positive-strand RNA virus replicating in a membranous replication organelle composed primarily of double-membrane vesicles (DMVs) having morphological resemblance to autophagosomes. To define the mechanism of DMV formation and the possible link to autophagy, we conducted a yeast two-hybrid screening revealing 32 cellular proteins potentially interacting with HCV proteins. Among these was the Receptor for Activated Protein C Kinase 1 (RACK1), a scaffolding protein involved in many cellular processes, including autophagy. Depletion of RACK1 strongly inhibits HCV RNA replication without affecting HCV internal ribosome entry site (IRES) activity. RACK1 is required for the rewiring of subcellular membranous structures and for the induction of autophagy. RACK1 binds to HCV nonstructural protein 5A (NS5A), which induces DMV formation. NS5A interacts with ATG14L in a RACK1 dependent manner, and with the ATG14L-Beclin1-Vps34-Vps15 complex that is required for autophagosome formation. Both RACK1 and ATG14L are required for HCV DMV formation and viral RNA replication. These results indicate that NS5A participates in the formation of the HCV replication organelle through interactions with RACK1 and ATG14L. All positive-strand RNA viruses replicate their genomes in distinct membrane-associated compartments designated replication organelles. The compartmentalization of viral replication machinery allows the enrichment and coordination of cellular and viral factors required for RNA replication and the evasion from innate host defense systems. Hepatitis C virus (HCV), a prototype member of the Flaviviridae family, rearranges intracellular membranes to construct replication organelles composed primarily of double-membrane vesicles (DMVs) which are morphologically similar to autophagosomes. Nonstructural protein 5A (NS5A), which is essential for HCV replication, induces DMV formation. Here, we report that NS5A triggers DMV formation through interactions with RACK1 and components of the vesicle nucleation complex acting at the early stage of autophagy. These results illustrate how a virus skews cellular machineries to utilize them for its replication by hijacking cellular proteins through protein-protein interactions. This research sheds light on the molecular basis of replication organelle formation by HCV and possibly other viruses employing organelles with DMV morphology.
Collapse
Affiliation(s)
- Jae Seung Lee
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Woan-Ing Twu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Md Shafiqur Rahman
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Hee Sun Kim
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Jin Bae Yu
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Min Hyeok Jee
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Sung Key Jang
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
- * E-mail:
| |
Collapse
|
3
|
You Y, Kim HS, Park JW, Keum G, Jang SK, Kim BM. Sulfur(vi) fluoride exchange as a key reaction for synthesizing biaryl sulfate core derivatives as potent hepatitis C virus NS5A inhibitors and their structure-activity relationship studies. RSC Adv 2018; 8:31803-31821. [PMID: 35548241 PMCID: PMC9085918 DOI: 10.1039/c8ra05471a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
Extremely potent, new hepatitis C virus (HCV) nonstructural 5A (NS5A) featuring substituted biaryl sulfate core structures was designed and synthesized. Based on the previously reported novel HCV NS5A inhibitors featuring biaryl sulfate core structures which exhibit two-digit picomolar half-maximal effective concentration (EC50) values against HCV genotype 1b and 2a, the new inhibitors equipped with the sulfate core structures containing diversely substituted aryl groups were explored. In this study, highly efficient, chemoselective coupling reactions between an arylsulfonyl fluoride and an aryl silyl ether, known as the sulfur(vi) fluoride exchange (SuFEx) reaction, were utilized. Among the inhibitors prepared based on the SuFEx chemistry, compounds 14, 15 and 29 exhibited two-digit picomolar EC50 values against GT-1b and single digit or sub nanomolar activities against the HCV GT-2a strain. Nonsymmetrical inhibitors containing an imidazole and amide moieties on each side of the sulfate core structures were also synthesized. In addition, a biotinylated probe targeting NS5A protein was prepared for labeling using the same synthetic methodology.
Collapse
Affiliation(s)
- Youngsu You
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 South Korea
| | - Hee Sun Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology Pohang 37673 South Korea
| | - Jung Woo Park
- Supercomputing Modeling & Simulation Center, Division of Data Analysis, Korea Institute of Science and Technology Information (KISTI) 245 Daehak-ro, Yuseong-gu Daejeon 34141 South Korea
| | - Gyochang Keum
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST) Hwarangno 14-gil 5, Seongbuk-gu Seoul 02455 South Korea
| | - Sung Key Jang
- Department of Life Sciences, Pohang University of Science and Technology Pohang 37673 South Korea
| | - B Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 South Korea
| |
Collapse
|
4
|
Shirasago Y, Fukazawa H, Aizaki H, Suzuki T, Suzuki T, Sugiyama K, Wakita T, Hanada K, Abe R, Fukasawa M. Thermostable hepatitis C virus JFH1-derived variant isolated by adaptation to Huh7.5.1 cells. J Gen Virol 2018; 99:1407-1417. [PMID: 30045785 DOI: 10.1099/jgv.0.001117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) infection and propagation in cultured cells have mainly been investigated using the infectious clinical clone JFH1. However, its infectivity is not high enough for infection to be detected easily. In this study, we attempted to isolate HCV-JFH1 variants adapted to human hepatoma Huh7.5.1 cells. By performing serial passages of the wild-type HCV-JFH1 in Huh7.5.1 cells, we obtained a variant that was capable of inducing severe cytopathic effects and showed approximately 700-fold higher infectivity than the wild-type HCV-JFH1. Further, when highly permissive Huh7.5.1-8 cells were infected with this variant, viral particles were produced at >1011 copies ml-1, making this variant one of the most efficient HCV production systems. Two adaptive mutations were noted in the variant genome: a1994c (K74T) in the core protein region and t3014c (I414T) in the E2 protein region. Both mutations contributed to enhanced infectivity and their combination showed synergistic effects in this regard. An examination of recombinant viruses carrying K74T, I414T and K74T/I414T mutations revealed that none of the mutations had an effect on the steps after viral entry (genome replication, particle assembly and egress), but led to the viral infection becoming less dependent on scavenger receptor class B type I, changes of the infectious particles to a broader and lower range of densities, and enhanced thermal stability of the infectious viruses. Thus, this Huh7.5.1-adapted HCV-JFH1 variant with higher and stable infectivity should be a valuable tool for studying the molecular mechanisms behind the life cycle of HCV and for antiviral screening.
Collapse
Affiliation(s)
- Yoshitaka Shirasago
- 1Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hidesuke Fukazawa
- 2Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hideki Aizaki
- 3Department of Virology II, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tetsuro Suzuki
- 4Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takeru Suzuki
- 1Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,5Department of Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | | | - Takaji Wakita
- 3Department of Virology II, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kentaro Hanada
- 1Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Ryo Abe
- 7Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Masayoshi Fukasawa
- 1Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
5
|
Wang Q, Li Y, Liu SA, Xie W, Cheng J. Cell culture-adaptive mutations in hepatitis C virus promote viral production by enhancing viral replication and release. World J Gastroenterol 2018; 24:1299-1311. [PMID: 29599605 PMCID: PMC5871825 DOI: 10.3748/wjg.v24.i12.1299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/04/2018] [Accepted: 01/18/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To explore hepatitis C virus (HCV) adaptive mutations or combinations thereof responsible for enhanced viral production and investigate the underlying mechanisms.
METHODS A series of plasmids with adaptive mutations were constructed. After the plasmids were transfected into Huh7.5 cells, we determined the infectious HCV particle titers by NS5A immunofluorescence assays, and detected HCV RNA replication by real-time PCR and protein expression by Western blot. Then we carried out immunoblotting of supernatants and cell lysates with anti-NS3 to analyze the virus release level. In addition, co-localization of lipid droplets (LDs) with NS5A was measured using confocal laser scanning microscopy. The ratio between the p56 and p58 phosphoforms of NS5A was analyzed further.
RESULTS The plasmids named JFH1-mE2, JFH1-mp7, JFH1-mNS4B, JFH1-mNS5A, JFH1-mE2/NS5A, JFH1-mp7/NS5A, JFH1-mNS4B/NS5A, JFH1-mE2/p7/NS5A, and mJFH1 were constructed successfully. This study generated infectious HCV particles with a robust titer of 1.61 × 106 focus-forming units (FFUs)/mL. All of the six adaptive mutations increased the HCV particle production at varying levels. The NS5A (C2274R, I2340T, and V2440L) and p7 (H781Y) were critical adaptive mutations. The effect of NS5A (C2274R, I2340T, and V2440L), p7 (H781Y), and NS4B (N1931S) on infectious HCV titers was investigated by measuring the HCV RNA replication, protein expression, and virion release. However, the six adaptive mutations were not required for the LD localization of NS5A proteins or the phosphorylation of NS5A.
CONCLUSION In this study, we generated infectious HCV particles with a robust titer of 1.61 × 106 FFUs/mL, and found that the viral replication and release levels could be enhanced by some of the adaptive mutations.
Collapse
Affiliation(s)
- Qi Wang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Yue Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shun-Ai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jun Cheng
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| |
Collapse
|
6
|
A Library of Infectious Hepatitis C Viruses with Engineered Mutations in the E2 Gene Reveals Growth-Adaptive Mutations That Modulate Interactions with Scavenger Receptor Class B Type I. J Virol 2016; 90:10499-10512. [PMID: 27630236 DOI: 10.1128/jvi.01011-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023] Open
Abstract
While natural hepatitis C virus (HCV) infection results in highly diverse quasispecies of related viruses over time, mutations accumulate more slowly in tissue culture, in part because of the inefficiency of replication in cells. To create a highly diverse population of HCV particles in cell culture and identify novel growth-enhancing mutations, we engineered a library of infectious HCV with all codons represented at most positions in the ectodomain of the E2 gene. We identified many putative growth-adaptive mutations and selected nine highly represented E2 mutants for further study: Q412R, T416R, S449P, T563V, A579R, L619T, V626S, K632T, and L644I. We evaluated these mutants for changes in particle-to-infectious-unit ratio, sensitivity to neutralizing antibody or CD81 large extracellular loop (CD81-LEL) inhibition, entry factor usage, and buoyant density profiles. Q412R, T416R, S449P, T563V, and L619T were neutralized more efficiently by anti-E2 antibodies and T416R, T563V, and L619T by CD81-LEL. Remarkably, all nine variants showed reduced dependence on scavenger receptor class B type I (SR-BI) for infection. This shift from SR-BI usage did not correlate with a change in the buoyant density profiles of the variants, suggesting an altered E2-SR-BI interaction rather than changes in the virus-associated lipoprotein-E2 interaction. Our results demonstrate that residues influencing SR-BI usage are distributed across E2 and support the development of large-scale mutagenesis studies to identify viral variants with unique functional properties. IMPORTANCE Characterizing variant viruses can reveal new information about the life cycle of HCV and the roles played by different viral genes. However, it is difficult to recapitulate high levels of diversity in the laboratory because of limitations in the HCV culture system. To overcome this limitation, we engineered a library of mutations into the E2 gene in the context of an infectious clone of the virus. We used this library of viruses to identify nine mutations that enhance the growth rate of HCV. These growth-enhancing mutations reduced the dependence on a key entry receptor, SR-BI. By generating a highly diverse library of infectious HCV, we mapped regions of the E2 protein that influence a key virus-host interaction and provide proof of principle for the generation of large-scale mutant libraries for the study of pathogens with great sequence variability.
Collapse
|
7
|
You Y, Kim HS, Bae IH, Lee SG, Jee MH, Keum G, Jang SK, Kim BM. New potent biaryl sulfate-based hepatitis C virus inhibitors. Eur J Med Chem 2016; 125:87-100. [PMID: 27657807 DOI: 10.1016/j.ejmech.2016.09.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
The discovery of a new series of potent hepatitis C virus (HCV) NS5A inhibitors containing biaryl sulfone or sulfate cores is reported. Structure-activity relationship (SAR) studies on inhibitors containing various substitution patterns of the sulfate or sulfone core structure established that m-,m'- substituted biaryl sulfate core-based inhibitors containing an amide moiety (compound 20) or an imidazole moiety (compound 24) showed extremely high potency. Compound 20 demonstrated double-digit pM potencies against both genotype 1b (GT-1b) and 2a (GT-2a). Compound 24 also exhibited double-digit pM potencies against GT-1b and sub nM potencies against GT-2a. Furthermore, compounds 20 and 24 exhibited no cardiotoxicity in an hERG ligand binding assay and showed acceptable plasma stability and no mutagenic potential in the Ames test. In addition, these compounds showed distinctive additive effects in combination treatment with the NS5B targeting drug sofosbuvir (Sovaldi®). The results of this study showed that the compounds 20 and 24 could be effective HCV inhibitors.
Collapse
Affiliation(s)
- Youngsu You
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, South Korea
| | - Hee Sun Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Il Hak Bae
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, South Korea
| | - Seung Gi Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Min Hyeok Jee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Gyochang Keum
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, South Korea
| | - Sung Key Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea.
| | - B Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, South Korea.
| |
Collapse
|
8
|
Cooperation between the Hepatitis C Virus p7 and NS5B Proteins Enhances Virion Infectivity. J Virol 2015; 89:11523-33. [PMID: 26355084 DOI: 10.1128/jvi.01185-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The molecular mechanisms that govern hepatitis C virus (HCV) assembly, release, and infectivity are still not yet fully understood. In the present study, we sequenced a genotype 2A strain of HCV (JFH-1) that had been cell culture adapted in Huh-7.5 cells to produce nearly 100-fold-higher viral titers than the parental strain. Sequence analysis identified nine mutations in the genome, present within both the structural and nonstructural genes. The infectious clone of this virus containing all nine culture-adapted mutations had 10-fold-higher levels of RNA replication and RNA release into the supernatant but had nearly 1,000-fold-higher viral titers, resulting in an increased specific infectivity compared to wild-type JFH-1. Two mutations, identified in the p7 polypeptide and NS5B RNA-dependent RNA polymerase, were sufficient to increase the specific infectivity of JFH-1. We found that the culture-adapted mutation in p7 promoted an increase in the size of cellular lipid droplets following transfection of viral RNA. In addition, we found that the culture-adaptive mutations in p7 and NS5B acted synergistically to enhance the specific viral infectivity of JFH-1 by decreasing the level of sphingomyelin in the virion. Overall, these results reveal a genetic interaction between p7 and NS5B that contributes to virion specific infectivity. Furthermore, our results demonstrate a novel role for the RNA-dependent RNA polymerase NS5B in HCV assembly. IMPORTANCE Hepatitis C virus assembly and release depend on viral interactions with host lipid metabolic pathways. Here, we demonstrate that the viral p7 and NS5B proteins cooperate to promote virion infectivity by decreasing sphingomyelin content in the virion. Our data uncover a new role for the viral RNA-dependent RNA polymerase NS5B and p7 proteins in contributing to virion morphogenesis. Overall, these findings are significant because they reveal a genetic interaction between p7 and NS5B, as well as an interaction with sphingomyelin that regulates virion infectivity. Our data provide new strategies for targeting host lipid-virus interactions as potential targets for therapies against HCV infection.
Collapse
|
9
|
Novel benzidine and diaminofluorene prolinamide derivatives as potent hepatitis C virus NS5A inhibitors. Eur J Med Chem 2015; 101:163-78. [PMID: 26134551 DOI: 10.1016/j.ejmech.2015.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 12/21/2022]
Abstract
Our study describes the discovery of a series of highly potent hepatitis C virus (HCV) NS5A inhibitors based on symmetrical prolinamide derivatives of benzidine and diaminofluorene. Through modification of benzidine, l-proline, and diaminofluorene derivatives, we developed novel inhibitor structures, which allowed us to establish a library of potent HCV NS5A inhibitors. After optimizing the benzidine prolinamide backbone, we identified inhibitors embedding meta-substituted benzidine core structures that exhibited the most potent anti-HCV activities. Furthermore, through a battery of studies including hERG ligand binding assay, CYP450 binding assay, rat plasma stability test, human liver microsomal stability test, and pharmacokinetic studies, the identified compounds 24, 26, 27, 42, and 43 are found to be nontoxic, and are expected to be effective therapeutic anti-HCV agents.
Collapse
|
10
|
Identification of luteolin as enterovirus 71 and coxsackievirus A16 inhibitors through reporter viruses and cell viability-based screening. Viruses 2014; 6:2778-95. [PMID: 25036464 PMCID: PMC4113793 DOI: 10.3390/v6072778] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/28/2014] [Accepted: 07/07/2014] [Indexed: 12/11/2022] Open
Abstract
Hand, foot and mouth disease (HFMD) is a common pediatric illness mainly caused by infection with enterovirus 71 (EV71) and coxsackievirus A16 (CA16). The frequent HFMD outbreaks have become a serious public health problem. Currently, no vaccine or antiviral drug for EV71/CA16 infections has been approved. In this study, a two-step screening platform consisting of reporter virus-based assays and cell viability‑based assays was developed to identify potential inhibitors of EV71/CA16 infection. Two types of reporter viruses, a pseudovirus containing luciferase-encoding RNA replicons encapsidated by viral capsid proteins and a full-length reporter virus containing enhanced green fluorescent protein, were used for primary screening of 400 highly purified natural compounds. Thereafter, a cell viability-based secondary screen was performed for the identified hits to confirm their antiviral activities. Three compounds (luteolin, galangin, and quercetin) were identified, among which luteolin exhibited the most potent inhibition of viral infection. In the cell viability assay and plaque reduction assay, luteolin showed similar 50% effective concentration (EC50) values of about 10 μM. Luteolin targeted the post-attachment stage of EV71 and CA16 infection by inhibiting viral RNA replication. This study suggests that luteolin may serve as a lead compound to develop potent anti-EV71 and CA16 drugs.
Collapse
|
11
|
Bae IH, Choi JK, Chough C, Keum SJ, Kim H, Jang SK, Kim BM. Potent Hepatitis C Virus NS5A Inhibitors Containing a Benzidine Core. ACS Med Chem Lett 2014; 5:255-8. [PMID: 24900814 DOI: 10.1021/ml4003293] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022] Open
Abstract
Here we report the discovery of a series of potent hepatitis C virus (HCV) NS5A inhibitors based on the benzidine prolinamide backbone. Taking a simple synthetic route, we developed a novel inhibitor structure, which allows easy modification, and through optimization of the capping group, we identified compound 6 with highly potent anti-HCV activity. Compound 6 is nontoxic and is anticipated to be an effective HCV drug candidate.
Collapse
Affiliation(s)
- Il Hak Bae
- Department
of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, South Korea
| | - Jin Kyu Choi
- Department
of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, South Korea
| | - Chieyeon Chough
- Department
of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, South Korea
| | - Sun Ju Keum
- Department
of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Heesun Kim
- Department
of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Sung Key Jang
- Department
of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - B. Moon Kim
- Department
of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, South Korea
| |
Collapse
|
12
|
Jeon G, Jee M, Yang SY, Lee BY, Jang SK, Kim JK. Hierarchically self-organized monolithic nanoporous membrane for excellent virus enrichment. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1200-1206. [PMID: 24354273 DOI: 10.1021/am4049404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Enrichment of viruses is essential for making high dose viral stocks for vaccines and virus-related research. Since the widely used ultracentrifugation for concentrating viral stock requires ultra-high speed rotation, it easily destroys the activity of some viruses, for instance, hepatitis c virus (HCV), which has a fragile structure and low virus titer. We introduce a novel method to concentrate HCV virus in stock by using a hierarchically self-organized monolithic nanoporous membrane made by stepwise anodization. The pores at the top part of the membrane have very regular sizes that are suitable for the perfect filtration of the virus particles in the stock. On the other hand, the remaining part has large pores that maintain high flux and mechanical strength of the membrane under the high pressure (up to 10 bar). The enrichment efficiency of HCV in crude stocks by using the membrane became over 91%, which is four times higher than that (∼22%) obtained by conventionally used centrifugation. A very high efficiency results from the perfect filtration and no damage to the virion particles during the enrichment process, whereas significant damage to the HCV occurs during centrifugation. The hierarchically self-organized monolithic nanoporous membrane could be effectively employed for concentrating various fragile viruses in stocks, for instance, rabies virus and human immunodeficiency virus in addition to HCV virus.
Collapse
Affiliation(s)
- Gumhye Jeon
- National Creative Research Center for Smart Block Copolymers, Department of Chemical Engineering, §Molecular Virology Laboratory, POSTECH Biotech Center, Department of Life Science, Pohang University of Science and Technology , Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Liu S, Chen R, Hagedorn CH. Direct visualization of hepatitis C virus-infected Huh7.5 cells with a high titre of infectious chimeric JFH1-EGFP reporter virus in three-dimensional Matrigel cell cultures. J Gen Virol 2013; 95:423-433. [PMID: 24243732 DOI: 10.1099/vir.0.055772-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Identification of the hepatitis C virus (HCV) JFH1 isolate enabled the development of infectious HCV cell culture systems. However, the relatively low virus titres and instability of some chimeric JFH1 reporter viruses restricts some uses of this system. We describe a higher-titre JFH1-EGFP reporter virus where the NS5A V3 region was replaced with the EGFP gene and adapted by serial passage in Huh7.5 cells. Six adaptive mutants were identified: one each in E2, P7 and NS4B, plus three in the NS5A region. These adaptive mutants increased the reporter virus titres to 1×10(6) immunofluorescent focus-forming units ml(-1), which is the highest titre of JFH1-EGFP reporter virus reported to our knowledge. This chimeric virus did not lose EGFP expression following 40 days of passage and it can be used to test the activity of HCV antivirals by measuring EGFP fluorescence in 96-well plates. Moreover, this reporter virus allows living infected Huh7.5 cells in Matrigel three-dimensional (3D) cultures to be visualized and produces infectious viral particles in these 3D cultures. The chimeric NS5A-EGFP infectious JFH1 reporter virus described should enable new studies of the HCV life cycle in 3D cell cultures and will be useful in identifying antivirals that interfere with HCV release or entry.
Collapse
Affiliation(s)
- Shuanghu Liu
- Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Ren Chen
- Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Curt H Hagedorn
- Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
14
|
Response of hepatitis C virus to long-term passage in the presence of alpha interferon: multiple mutations and a common phenotype. J Virol 2013; 87:7593-607. [PMID: 23637397 DOI: 10.1128/jvi.02824-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell culture-produced hepatitis C virus (HCV) has been subjected to up to 100 serial passages in human hepatoma cells in the absence or presence of different doses of alpha interferon (IFN-α). Virus survival, genetic changes, fitness levels, and phenotypic traits have been examined. While high initial IFN-α doses (increasing from 1 to 4 IU/ml) did not allow HCV survival beyond passage 40, a gradual exposure (from 0.25 to 10 IU/ml) allowed the virus to survive for at least 100 passages. The virus passaged in the presence of IFN-α acquired IFN-α resistance as evidenced by enhanced progeny production and viral protein expression in an IFN-α environment. A partial IFN-α resistance was also noted in populations passaged in the absence of IFN-α. All lineages acquired adaptative mutations, and multiple, nonsynonymous mutations scattered throughout the genome were present in IFN-α-selected populations. Comparison of consensus sequences indicates a dominance of synonymous versus nonsynonymous substitutions. IFN-α-resistant populations displayed decreased sensitivity to a combination of IFN-α and ribavirin. A phenotypic trait common to all assayed viral populations is the ability to increase shutoff host cell protein synthesis, accentuated in infections with IFN-α-selected populations carried out in the presence of IFN-α. The trait was associated with enhanced phosphorylation of protein kinase R (PKR) and eIF2α, although other contributing factors are likely. The results suggest that multiple, independent mutational pathways can confer IFN-α resistance to HCV and might explain why no unified picture has been obtained regarding IFN-α resistance in vivo.
Collapse
|
15
|
Park JH, Park S, Yang JS, Kwon OS, Kim S, Jang SK. Discovery of cellular proteins required for the early steps of HCV infection using integrative genomics. PLoS One 2013; 8:e60333. [PMID: 23593195 PMCID: PMC3625227 DOI: 10.1371/journal.pone.0060333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/25/2013] [Indexed: 02/06/2023] Open
Abstract
Successful viral infection requires intimate communication between virus and host cell, a process that absolutely requires various host proteins. However, current efforts to discover novel host proteins as therapeutic targets for viral infection are difficult. Here, we developed an integrative-genomics approach to predict human genes involved in the early steps of hepatitis C virus (HCV) infection. By integrating HCV and human protein associations, co-expression data, and tight junction-tetraspanin web specific networks, we identified host proteins required for the early steps in HCV infection. Moreover, we validated the roles of newly identified proteins in HCV infection by knocking down their expression using small interfering RNAs. Specifically, a novel host factor CD63 was shown to directly interact with HCV E2 protein. We further demonstrated that an antibody against CD63 blocked HCV infection, indicating that CD63 may serve as a new therapeutic target for HCV-related diseases. The candidate gene list provides a source for identification of new therapeutic targets.
Collapse
Affiliation(s)
- Ji Hoon Park
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Solip Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
| | - Jae-Seong Yang
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Oh Sung Kwon
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Sanguk Kim
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
- Division of IT Convergence Engineering, Pohang University of Science and Technology, Pohang, Korea
- * E-mail: (SK); (SKJ)
| | - Sung Key Jang
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
- Biotechnology Research Center, Pohang University of Science and Technology, Pohang, Korea
- * E-mail: (SK); (SKJ)
| |
Collapse
|
16
|
Aweya JJ, Mak TM, Lim SG, Tan YJ. The p7 protein of the hepatitis C virus induces cell death differently from the influenza A virus viroporin M2. Virus Res 2012; 172:24-34. [PMID: 23246447 PMCID: PMC7114515 DOI: 10.1016/j.virusres.2012.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 02/07/2023]
Abstract
Most viruses encode proteins that modulate cell-death signaling by the host. For hepatitis C virus (HCV) infection, apoptosis and other forms of cell-death have been observed in vitro and in vivo but the detailed understanding of this intricate viral-host interplay is unclear. This study examined the role played by the HCV p7 protein in the induction of cell-death. By measuring caspase-3/7 activation and cleavage of endogenous PARP, two hallmarks of apoptosis, the overexpression of p7 protein was shown to induce apoptosis in Huh7.5 cells. Furthermore, p7-induced apoptosis is caspase-dependent and involves both the intrinsic and extrinsic pathways. Similar to the M2 protein of influenza A virus, p7-induced apoptosis is independent of its ion channel activity. Coimmunoprecipitation experiments further showed that both M2 and p7 interact with the essential autophagy protein Beclin-1. However, only the M2 protein could cause an increase in the level of LC3-II, which is an indicator of autophagic activity. Thus, although the p7 protein is functionally similar to the well-characterized M2 protein, they differ in their activation of autophagic cell-death. Taken together, these results shed more light on the relationship between the HCV p7 ion channel protein and cell-death induction in host cells.
Collapse
Affiliation(s)
- Jude Juventus Aweya
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | | | | | | |
Collapse
|
17
|
Keum SJ, Park SM, Park JH, Jung JH, Shin EJ, Jang SK. The specific infectivity of hepatitis C virus changes through its life cycle. Virology 2012; 433:462-70. [PMID: 22999258 DOI: 10.1016/j.virol.2012.08.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/06/2012] [Accepted: 08/29/2012] [Indexed: 11/28/2022]
Abstract
Hepatitis C virus (HCV) causes liver diseases, such as hepatitis, liver cirrhosis, steatosis, and hepatocellular carcinoma. To understand the life cycle and pathogenesis of HCV, the one-step growth of HCV in a cell culture system was analyzed using a highly infectious variant of the JFH1 clone. The observed profiles of HCV RNA replication indicated that the synthesis of negative-strand RNAs occurred at 6 h (h) after infection, followed by the active synthesis of positive-strand RNAs. Our measurements of infectious virus production showed that the latent period of HCV was about 12 h. The specific infectivity of HCV particles (focus-forming unit per viral RNA molecule) secreted to the extracellular milieu early in infection was about 30-fold higher than that secreted later during infection. The buoyant densities of the infectious virion particles differed with the duration of infection, indicating changes in the compositions of the virion particles.
Collapse
Affiliation(s)
- Sun Ju Keum
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, South Korea
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
19
|
Sabo MC, Luca VC, Ray SC, Bukh J, Fremont DH, Diamond MS. Hepatitis C virus epitope exposure and neutralization by antibodies is affected by time and temperature. Virology 2011; 422:174-84. [PMID: 22078164 DOI: 10.1016/j.virol.2011.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/14/2011] [Accepted: 10/22/2011] [Indexed: 01/22/2023]
Abstract
A recent study with flaviviruses suggested that structural dynamics of the virion impact antibody neutralization via exposure of ostensibly cryptic epitopes. To determine whether this holds true for the distantly related hepatitis C virus (HCV), whose neutralizing epitopes may be obscured by a glycan shield, apolipoprotein interactions, and the hypervariable region on the E2 envelope protein, we assessed how time and temperature of pre-incubation altered monoclonal antibody (MAb) neutralization of HCV. Notably, several MAbs showed increased inhibitory activity when pre-binding was performed at 37°C or after longer pre-incubation periods, and a corresponding loss-of-neutralization was observed when pre-binding was performed at 4°C. A similar profile of changes was observed with acute and chronic phase sera from HCV-infected patients. Our data suggest that time and temperature of incubation modulate epitope exposure on the conformational ensembles of HCV virions and thus, alter the potency of antibody neutralization.
Collapse
Affiliation(s)
- Michelle C Sabo
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|