1
|
Sun XN, Wang Q, Wang YF, Tao Y, Zheng CL, Wang MH, Che MY, Cui ZH, Li XL, Zhang Q, Xu MX, Wang S, Nie P, Sun YL. Isolation and identification of vapA-absent Aeromonas salmonicida in diseased snakehead Channa argus in China. Int Microbiol 2024; 27:1137-1150. [PMID: 38062211 DOI: 10.1007/s10123-023-00455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 08/06/2024]
Abstract
Aeromonas salmonicida is the typical pathogen causing furunculosis, reported widely in salmonids. Because of multiple serotypes, the control of A. salmonicida-caused disease has increasingly received much attention. Recently, A. salmonicida infection was reported in non-salmonid fish species. Here, a pathogenic A. salmonicida, named as As-s, was isolated from cultured snakehead (Channa argus) in a local fish farm in Shandong, China. As-s displayed clear hemolysis, amylase, and positive catalase activities, and grew at a wide range of temperatures (10-37 °C) and pH values (5.5-8.5). As-s was highly sensitive to cefuroxime sodium, ceftriaxone, ceftazidime, piperacillin, and cefoperazone and also apparently sensitive to chloramphenicol, erythromycin, and 25% cinnamaldehyde. The Virulence array protein gene cloning' results suggested that As-s has this gene compared with the other two vapA-containing strains, despite a close relationship of these strains via phylogenetic analysis. Severe ulcers on skin, muscle, and abnormal liver, and hemorrhage in pectoral/ventral fins and anal region were observed, and exophthalmos were also noticed in infected juvenile snakehead, as well as necrosis and infiltration of blood cells emerged in the internal organs using pathological section. In addition, As-s caused high mortality in snakehead, consistently with its immune gene response. This study reports the first isolation of vapA-absent A. salmonicida in snakehead.
Collapse
Affiliation(s)
- Xin Na Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Qing Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Ying Fei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Ye Tao
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Chao Li Zheng
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Ming Hao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Ming Yue Che
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Zhen Hao Cui
- School of Marine Sciences, Ningbo University, 315832, Ningbo, Zhejiang, China
| | - Xin Long Li
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Qian Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Meng Xi Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Su Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Pin Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Yan Ling Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Li X, Lin Y, Li W, Cheng Y, Zhang J, Qiu J, Fu Y. Comparative Analysis of mRNA, microRNA of Transcriptome, and Proteomics on CIK Cells Responses to GCRV and Aeromonas hydrophila. Int J Mol Sci 2024; 25:6438. [PMID: 38928143 PMCID: PMC11204273 DOI: 10.3390/ijms25126438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Grass Carp Reovirus (GCRV) and Aeromonas hydrophila (Ah) are the causative agents of haemorrhagic disease in grass carp. This study aimed to investigate the molecular mechanisms and immune responses at the miRNA, mRNA, and protein levels in grass carp kidney cells (CIK) infected by Grass Carp Reovirus (GCRV, NV) and Aeromonas hydrophilus (Bacteria, NB) to gain insight into their pathogenesis. Within 48 h of infection with Grass Carp Reovirus (GCRV), 99 differentially expressed microRNA (DEMs), 2132 differentially expressed genes (DEGs), and 627 differentially expressed proteins (DEPs) were identified by sequencing; a total of 92 DEMs, 3162 DEGs, and 712 DEPs were identified within 48 h of infection with Aeromonas hydrophila. It is worth noting that most of the DEGs in the NV group were primarily involved in cellular processes, while most of the DEGs in the NB group were associated with metabolic pathways based on KEGG enrichment analysis. This study revealed that the mechanism of a grass carp haemorrhage caused by GCRV infection differs from that caused by the Aeromonas hydrophila infection. An important miRNA-mRNA-protein regulatory network was established based on comprehensive transcriptome and proteome analysis. Furthermore, 14 DEGs and 6 DEMs were randomly selected for the verification of RNA/small RNA-seq data by RT-qPCR. Our study not only contributes to the understanding of the pathogenesis of grass carp CIK cells infected with GCRV and Aeromonas hydrophila, but also serves as a significant reference value for other aquatic animal haemorrhagic diseases.
Collapse
Affiliation(s)
- Xike Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.L.); (W.L.); (Y.C.); (J.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yue Lin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.L.); (W.L.); (Y.C.); (J.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjuan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.L.); (W.L.); (Y.C.); (J.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuejuan Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.L.); (W.L.); (Y.C.); (J.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Junling Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.L.); (W.L.); (Y.C.); (J.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Junqiang Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.L.); (W.L.); (Y.C.); (J.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.L.); (W.L.); (Y.C.); (J.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Xie X, Wang Y, Ma F, Ma R, Du L, Chen X. High-Temperature-Induced Differential Expression of miRNA Mediates Liver Inflammatory Response in Tsinling Lenok Trout (Brachymystax lenok tsinlingensis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:526-538. [PMID: 38647909 DOI: 10.1007/s10126-024-10315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
High-temperature stress poses a significant environmental challenge for aquatic organisms, including tsinling lenok trout (Brachymystax lenok tsinlingensis). This study aimed to investigate the role of microRNAs (miRNAs) in inducing liver inflammation in tsinling lenok trout under high-temperature stress. Tsinling lenok trout were exposed to high-temperature conditions (24 °C) for 8 h, and liver samples were collected for analysis. Through small RNA sequencing, we identified differentially expressed miRNAs in the liver of high-temperature-stressed tsinling lenok trout compared to the control group (maintained at 16 °C). Several miRNAs, including novel-m0105-5p and miR-8159-x, showed significant changes in expression levels. Additionally, we conducted bioinformatics analysis to explore the potential target genes of these differentially expressed miRNAs. Our findings revealed that these miRNA target genes are involved in inflammatory response pathways, such as NFKB1 and MAP3K5. The downregulation of novel-m0105-5p and miR-8159-x in the liver of high-temperature-stressed tsinling lenok trout suggests their role in regulating liver inflammatory responses. To validate this, we performed a dual-luciferase reporter assay to confirm the regulatory relationship between miRNAs and target genes. Our results demonstrated that novel-m0105-5p and miR-8159-x enhance the inflammatory response of hepatocytes by promoting the expression of NFKB1 and MAP3K5, respectively. In conclusion, our study provides evidence that high-temperature stress induces liver inflammation in tsinling lenok trout through dysregulation of miRNAs. Understanding the molecular mechanisms underlying the inflammatory response in tsinling lenok trout under high-temperature stress is crucial for developing strategies to mitigate the negative impacts of environmental stressors on fish health and aquaculture production.
Collapse
Affiliation(s)
- Xiaobin Xie
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, People's Republic of China
| | - Yibo Wang
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, People's Republic of China
| | - Fang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, People's Republic of China.
| | - Ruilin Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, People's Republic of China
| | - Leqiang Du
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, People's Republic of China
| | - Xin Chen
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, People's Republic of China
| |
Collapse
|
4
|
Fang Y, Jin S, Xu XY, Shen Y, Wang Q, Li J. miR-130a targets CiGadd45bb to modulate the inflammatory response to bacterial infection in Ctenopharyngodon idella kidney (CIK) cells. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108633. [PMID: 36822380 DOI: 10.1016/j.fsi.2023.108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Septicemia is a systemic inflammatory response to bacterial infection that results in a hyper-inflammatory state, which could lead to septic shock and death in grass carp (Ctenopharyngodon idella). The aim of this study was to determine the underlying mechanism of microRNA (miR-130a) in bacteria-infected grass carp. Expression levels of miR-130a against Aeromonas hydrophila (A. hydrophila) infection in Ctenopharyngodon idella kidney cells (CIK) were analyzed. Luciferase reporter assay, quantitative reverse transcription-polymerase chain reaction were performed to explore whether Ctenopharyngodon idella growth arrest and DNA damage-inducible 45 (CiGadd45bb) was a target of miR-130a. MiR-130a mimic, inhibitor and miR-control were transfected to CIK respectively. After transfection, the expression levels of proinflammatory genes were determined. Here we show that CiGadd45bb as a target of miR-130a. We also confirmed that miR-130a levels were significantly higher after being stimulated for 4 h and lower after 12 h (P < 0.01). Overexpressing miR-130a strikingly inhibited p38, JNK, ERK and TNF-a genes (P < 0.01) and silencing miR-130a activated p38, JNK, ERK, TNF-a, IFN and IL-8 (P < 0.01). Our results provide a theoretical basis for studying the molecular mechanism underlying the regulation of inflammation by miR-130a in grass carp.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Aquatic Science and Technology, Jiangsu Agri-animal Husbandry and Veterinary College, Taizhou, Jiangsu, 225300, China; College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
| | - Shengzhen Jin
- College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Xiao-Yan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Quan Wang
- Department of Aquatic Science and Technology, Jiangsu Agri-animal Husbandry and Veterinary College, Taizhou, Jiangsu, 225300, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
5
|
Chakraborty S, Woldemariam NT, Visnovska T, Rise ML, Boyce D, Santander J, Andreassen R. Characterization of miRNAs in Embryonic, Larval, and Adult Lumpfish Provides a Reference miRNAome for Cyclopterus lumpus. BIOLOGY 2022; 11:biology11010130. [PMID: 35053128 PMCID: PMC8773022 DOI: 10.3390/biology11010130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/28/2022]
Abstract
Simple Summary Lumpfish (Cyclopterus lumpus) is an emergent aquaculture species, and its miRNA repertoire is still unknown. miRNAs are critical post-transcriptional modulators of teleost gene expression. Therefore, a lumpfish reference miRNAome was characterized by small RNA sequencing and miRDeep analysis of samples from different organs and developmental stages. The resulting miRNAome, an essential reference for future expression analyses, consists of 443 unique mature miRNAs from 391 conserved and eight novel miRNA genes. Enrichment of specific miRNAs in particular organs and developmental stages indicates that some conserved lumpfish miRNAs regulate organ and developmental stage-specific functions reported in other teleosts. Abstract MicroRNAs (miRNAs) are endogenous small RNA molecules involved in the post-transcriptional regulation of protein expression by binding to the mRNA of target genes. They are key regulators in teleost development, maintenance of tissue-specific functions, and immune responses. Lumpfish (Cyclopterus lumpus) is becoming an emergent aquaculture species as it has been utilized as a cleaner fish to biocontrol sea lice (e.g., Lepeophtheirus salmonis) infestation in the Atlantic Salmon (Salmo salar) aquaculture. The lumpfish miRNAs repertoire is unknown. This study identified and characterized miRNA encoding genes in lumpfish from three developmental stages (adult, embryos, and larvae). A total of 16 samples from six different adult lumpfish organs (spleen, liver, head kidney, brain, muscle, and gill), embryos, and larvae were individually small RNA sequenced. Altogether, 391 conserved miRNA precursor sequences (discovered in the majority of teleost fish species reported in miRbase), eight novel miRNA precursor sequences (so far only discovered in lumpfish), and 443 unique mature miRNAs were identified. Transcriptomics analysis suggested organ-specific and age-specific expression of miRNAs (e.g., miR-122-1-5p specific of the liver). Most of the miRNAs found in lumpfish are conserved in teleost and higher vertebrates, suggesting an essential and common role across teleost and higher vertebrates. This study is the first miRNA characterization of lumpfish that provides the reference miRNAome for future functional studies.
Collapse
Affiliation(s)
- Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Nardos T. Woldemariam
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, Pilestredet 50, N-0130 Oslo, Norway;
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway;
| | - Matthew L. Rise
- Department of Ocean Sciences, Faculty of Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Danny Boyce
- Dr. Joe Brown Aquatic Research Building (JBARB), Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
- Correspondence: (J.S.); (R.A.)
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, Pilestredet 50, N-0130 Oslo, Norway;
- Correspondence: (J.S.); (R.A.)
| |
Collapse
|
6
|
Chu Q, Han J, Sun L, Cui J, Xu T. Characterization of MDA5 and microRNA-203 negatively regulates the RLR signaling pathway via targeting MDA5 in miiuy croaker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104259. [PMID: 34536468 DOI: 10.1016/j.dci.2021.104259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
MDA5 is a member of retinoic acid-inducible gene I (RIG-I)-like receptors (RLR receptors), which may play a crucial role in the immune regulation process. Recently, microRNAs (miRNAs) have been shown to act as an important regulator in the RLRs signaling pathway. Additionally, the MDA5 gene, as a significant cytosolic pathogen recognition receptor (PRR), its characteristics and functions have been extensively investigated, while less research has been done on the mechanisms of MDA5-miRNA mediated gene regulation. In this study, the evolution and functional characterization of MDA5 from miiuy croaker (mmiMDA5) were characterized. Comparative genomic analysis demonstrated that the ascidiacea and superclass do not have the MDA5 gene in the process of evolution. MDA5 contains four structural domains: CARD, ResIII, Helicase C, and RIG-I C-RD. The MDA5 was ubiquitously expressed in all tested miiuy croaker tissues. Moreover, the expressions were significantly up-regulated after stimulation with poly (I: C), which indicated that MDA5 might be involved in the antiviral immune response. The bioinformatics predicted programs have indicated that miR-203 has a direct negative regulatory effect on MDA5 in miiuy croaker. Furthermore, the dual-luciferase reporter assay have showed that miR-203 was the direct negative regulator of MDA5 in miiuy croaker. This study is the first to demonstrate that miRNA can suppress cytokines by regulating the RLR signaling pathway in teleost fish, providing some new ideas for studying miRNA-mediated regulation of immune responses in mammals.
Collapse
Affiliation(s)
- Qing Chu
- School of Agriculture, Ludong University, Yantai, China.
| | - Jingjing Han
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Lingping Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
7
|
Huang JS, Li HJ, Guo ZX, Zhang JD, Wang WZ, Wang ZL, Amenyogbe E, Chen G. Identification and expression analysis of cobia (Rachycentron canadum) liver-related miRNAs under hypoxia stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1951-1967. [PMID: 34633578 DOI: 10.1007/s10695-021-01017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
At present, due to the influence of global warming, seasonal change, diurnal variation, and eutrophication of the water body, hypoxia has become one of the major factors limiting the stable development of cobia (Rachycentron canadum) culture. In this study, the miRNAs involved in hypoxia stress were screened, and the target genes of miRNAs were annotated and analyzed. The results showed that a total of 184 conservative microRNA (miRNA) and 121 newly predicted miRNA were obtained by sequencing the liver of control (C) and hypoxic (dissolved oxygen, DO (2.64 ± 0.25) mg/L; 3 h) (S) groups. The pathways involved in energy metabolism included starch and sucrose metabolism (ko00500), glycosaminoglycan degradation (ko00531), and galactose metabolism (ko00052). The results indicate that the body maintains physiological activities by regulating some important pathways at the transcriptional level under hypoxia stress, such as the conversion of aerobic metabolism and anaerobic metabolism, the reduction of energy consumption, and the promotion of red blood cell proliferation to maintain the homeostasis of the body.
Collapse
Affiliation(s)
- Jian-Sheng Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524025, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Hong-Juan Li
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhi-Xiong Guo
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Jian-Dong Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524025, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Wei-Zheng Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhong-Liang Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Eric Amenyogbe
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China.
| | - Gang Chen
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524025, China.
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China.
| |
Collapse
|
8
|
Zhou W, Xie Y, Li Y, Xie M, Zhang Z, Yang Y, Zhou Z, Duan M, Ran C. Research progress on the regulation of nutrition and immunity by microRNAs in fish. FISH & SHELLFISH IMMUNOLOGY 2021; 113:1-8. [PMID: 33766547 DOI: 10.1016/j.fsi.2021.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/17/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are a class of highly conserved, endogenous non-coding single-stranded small RNA molecules with a length of 18-25 nucleotides. MiRNAs can negatively regulate the target gene through complementary pairing with the mRNA. It has been more than 20 years since the discovery of miRNA molecules, and many achievements have been made in fish research. This paper reviews the research progress in the regulation of fish nutrition and immunity by miRNAs in recent years. MiRNAs regulate the synthesis of long-chain polyunsaturated fatty acids, and are involved in the metabolism of glucose, lipids, as well as cholesterol in fish. Moreover, miRNAs play various roles in antibacterial and antiviral immunity of fish. They can promote the immune response of fish, but may also participate in the immune escape mechanism of bacteria or viruses. One important aspect of miRNAs regulation on fish immunity is mediated by targeting pattern recognition receptors and downstream signaling factors. Together, current results indicate that miRNAs are widely involved in the complex regulatory network of fish. Further studies on fish miRNAs may deepen our understanding of the regulatory network of fish nutrition and immunity, and have the potential to promote the development of microRNA-based products and detection reagents that can be applied in aquaculture industry.
Collapse
Affiliation(s)
- Wei Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Yadong Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Yu Li
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Mingxu Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
9
|
Megalocytivirus Induces Complicated Fish Immune Response at Multiple RNA Levels Involving mRNA, miRNA, and circRNA. Int J Mol Sci 2021; 22:ijms22063156. [PMID: 33808870 PMCID: PMC8003733 DOI: 10.3390/ijms22063156] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
Megalocytivirus is an important viral pathogen to many farmed fishes, including Japanese flounder (Paralichthys olivaceus). In this study, we examined megalocytivirus-induced RNA responses in the spleen of flounder by high-throughput sequencing and integrative analysis of various RNA-seq data. A total of 1327 microRNAs (miRNAs), including 368 novel miRNAs, were identified, among which, 171 (named DEmiRs) exhibited significantly differential expressions during viral infection in a time-dependent manner. For these DEmiRs, 805 differentially expressed target mRNAs (DETmRs) were predicted, whose expressions not only significantly changed after megalocytivirus infection but were also negatively correlated with their paired DEmiRs. Integrative analysis of immune-related DETmRs and their target DEmiRs identified 12 hub DEmiRs, which, together with their corresponding DETmRs, formed an interaction network containing 84 pairs of DEmiR and DETmR. In addition to DETmRs, 19 DEmiRs were also found to regulate six key immune genes (mRNAs) differentially expressed during megalocytivirus infection, and together they formed a network consisting of 21 interactive miRNA-messenger RNA (mRNA) pairs. Further analysis identified 9434 circular RNAs (circRNAs), 169 of which (named DEcircRs) showed time-specific and significantly altered expressions during megalocytivirus infection. Integrated analysis of the DETmR-DEmiR and DEcircR-DEmiR interactions led to the identification of a group of competing endogenous RNAs (ceRNAs) constituted by interacting triplets of circRNA, miRNA, and mRNA involved in antiviral immunity. Together these results indicate that complicated regulatory networks of different types of non-coding RNAs and coding RNAs are involved in megalocytivirus infection.
Collapse
|
10
|
Sun YL, Li XP, Sun L. Pol-miR-150 regulates anti-bacterial and viral infection in Japanese flounder (Paralichthys olivaceus) via the lysosomal protein LMP2L. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110578. [PMID: 33609809 DOI: 10.1016/j.cbpb.2021.110578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
MiR-150 is a microRNA (miRNA) present in a number of teleost species, but its target and regulation mechanism are unknown. Similarly, lysosome membrane protein 2-like (LMP2L) is a gene identified in fish but with unknown function. In this study, we examined the regulation mechanism and function of flounder miR-150 (named pol-miR-150) and its target gene LMP2L (named PoLMP2L) in association with bacterial and viral infection. We found that pol-miR-150 expression was not only modulated by the bacterial pathogen Streptococcus iniae but also by the viral pathogen megalocytivirus. Pol-miR-150 targeted PoLMP2L by binding to the 3'-untranslated region (3'-UTR) of PoLMP2L and inhibited PoLMP2L expression in vitro and in vivo. PoLMP2L is a member of the CD36 superfamily of scavenger receptors and homologous to but phylogenetically distinct from lysosomal integral membrane protein type 2 (LIMP2). PoLMP2L was localized mainly in the lysosomes and expressed in multiple organs of flounder. In vivo knockdown and overexpression of PoLMP2L enhanced and suppressed, respectively, S. iniae dissemination in flounder tissues, whereas in vivo knockdown and overexpression of pol-miR-150 produced the opposite effects on S. iniae dissemination. In addition, pol-miR-150 knockdown also significantly inhibited the replication of megalocytivirus. The results of this study revealed the regulation mechanism and immune functions of fish miR-150 and LMP2L, and indicated that LMP2L and miR-150 play an important role in the antimicrobial immunity of fish.
Collapse
Affiliation(s)
- Yan-Ling Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Koganti P, Yao J, Cleveland BM. Molecular Mechanisms Regulating Muscle Plasticity in Fish. Animals (Basel) 2020; 11:ani11010061. [PMID: 33396941 PMCID: PMC7824542 DOI: 10.3390/ani11010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Growth rates in fish are largely dependent on genetic and environmental factors, of which the latter can be highly variable throughout development. For this reason, muscle growth in fish is particularly dynamic as muscle structure and function can be altered by environmental conditions, a concept referred to as muscle plasticity. Myogenic regulatory factors (MRFs) like Myogenin, MyoD, and Pax7 control the myogenic mechanisms regulating quiescent muscle cell maintenance, proliferation, and differentiation, critical processes central for muscle plasticity. This review focuses on recent advancements in molecular mechanisms involving microRNAs (miRNAs) and DNA methylation that regulate the expression and activity of MRFs in fish. Findings provide overwhelming support that these mechanisms are significant regulators of muscle plasticity, particularly in response to environmental factors like temperature and nutritional challenges. Genetic variation in DNA methylation and miRNA expression also correlate with variation in body weight and growth, suggesting that genetic markers related to these mechanisms may be useful for genomic selection strategies. Collectively, this knowledge improves the understanding of mechanisms regulating muscle plasticity and can contribute to the development of husbandry and breeding strategies that improve growth performance and the ability of the fish to respond to environmental challenges.
Collapse
Affiliation(s)
- Prasanthi Koganti
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506-6108, USA; (P.K.); (J.Y.)
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506-6108, USA; (P.K.); (J.Y.)
| | - Beth M. Cleveland
- USDA ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
- Correspondence: ; Tel.: +1-304-724-8340 (ext. 2133)
| |
Collapse
|
12
|
Wu S, Zhang J, Liu B, Huang Y, Li S, Wen H, Zhang M, Li J, Li Y, He F. Identification and Characterization of lncRNAs Related to the Muscle Growth and Development of Japanese Flounder ( Paralichthys olivaceus). Front Genet 2020; 11:1034. [PMID: 33033494 PMCID: PMC7510837 DOI: 10.3389/fgene.2020.01034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/11/2020] [Indexed: 01/28/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play an important role in many life activities, but the expression pattern and function of lncRNAs in Japanese flounder skeletal muscle are unclear. In this study, 751 lncRNAs were selected from skeletal muscle in different development stages of the Japanese flounder [stage A: larval 7 days post hatching (dph); stage B: juvenile about 90 dph; stage C (female) and stage D (male): adult about 24 months] using coding potential analysis methods. In total, 232, 211, 194, 28, 29, and 14 differentially expressed lncRNAs and 9549, 8673, 9181, 1821, 1080, and 557 differentially expressed mRNAs were identified in comparisons of A versus B, A versus C, A versus D, B versus C, B versus D, and C versus D, respectively. We identified the cis- and trans-regulatory target genes of differentially expressed lncRNAs, and lncRNA-gene interaction networks were constructed using the Cytoscape program. In total, there were 200, 200, 200, 93, 47, and 11 cis-regulation relationships, and 29, 19, 24, 38, 8, and 47 trans-regulation relationships in the comparisons between A versus B, A versus C, A versus D, B versus C, B versus D, and C versus D, respectively. These results indicate that lncRNA may participate in the development of Japanese flounder skeletal muscle through cis- or trans-acting mechanisms, thus providing a scientific basis for further study of the biological function of lncRNA in Japanese flounder skeletal muscle. Based on these relationships, functional annotation of the related lncRNAs was performed by gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Differentially expressed genes associated with muscle development were enriched in multiple pairs of comparisons (e.g., differentially expressed genes LOC109640370, LOC109634180, LOC109643555, rusc1, and LOC109626999 were enriched in the actin-binding term, and differentially expressed genes LOC109640370, was, LOC109644970, LOC109643555, and itga9 were enriched in the regulation of the actin cytoskeleton pathway in the KEGG pathway analysis in the comparison of stages C and D). We predicted lncRNA-mRNA, miRNA-mRNA, and lncRNA-miRNA regulatory relationships and constructed interactive networks using Cytoscape software. Co-expression networks show that most lncRNAs interact with one or two predicted miRNAs involved in muscle growth and development. These results provide a basis for further study of the function of lncRNAs on skeletal muscle in different developmental stages of Japanese flounder.
Collapse
Affiliation(s)
- Shuxian Wu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Jingru Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Binghua Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Yajuan Huang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Siping Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Haishen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Meizhao Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Jifang Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Yun Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Feng He
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| |
Collapse
|
13
|
Wang X, Song X, Bhandari RK. Distinct expression patterns of seven crucial microRNAs during early embryonic development in medaka (Oryzias latipes). Gene Expr Patterns 2020; 37:119133. [PMID: 32800847 DOI: 10.1016/j.gep.2020.119133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/18/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (i.e. miRNAs) are small non-coding RNAs that play essential modulation roles in embryonic development in vertebrates. Paternal and maternal miRNAs contribute to the development of post-fertilization embryo and zygotic genome activation. The pattern of expression and their roles in embryonic development of medaka are not clearly understood. The present study, therefore, examined a temporal expression of seven miRNAs, ola-let-7a, ola-miR-202-3p, ola-miR-126-3p, ola-miR-122, ola-miR-92a, ola-miR-125a-3p and ola-miR-430a in sperm, oocytes, and embryos during early developmental stages. Three unique expression patterns of miRNAs were observed. ola-let7a, ola-miR-202-3p and ola-miR-126-3p showed both paternal and maternal expression, and ola-miR-122, ola-miR-92a, ola-miR-125a-3p showed maternal expression only. The expression of six out of seven miRNAs significantly decreased after maternal-zygotic transition (MZT), whereas ola-miR-430a expression initiated only after MZT. The temporal dynamic expression of these miRNAs suggests their potential roles in early embryogenesis and genome-zygotic activation in medaka.
Collapse
Affiliation(s)
- Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Xiaohong Song
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA.
| |
Collapse
|
14
|
Fu Y, Xu Z, Wen B, Gao J, Chen Z. Gonad-Specific Transcriptomes Reveal Differential Expression of Gene and miRNA Between Male and Female of the Discus Fish ( Symphysodon aequifasciatus). Front Physiol 2020; 11:754. [PMID: 32848810 PMCID: PMC7431700 DOI: 10.3389/fphys.2020.00754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/11/2020] [Indexed: 01/15/2023] Open
Abstract
The discus fish (Symphysodon aequifasciatus) is an ornamental fish that is well-known around the world. In artificial reproduction, they must be matched by one male and one female, whereas phenotype investigation indicated that there are no significant differences in appearance between males and females, which causes great difficulties in the mating during artificial reproduction. So, it is of great importance to establish artificial sex identification methods for the discus fish. The molecular mechanism of the sexual dimorphism of the discus fish was previously unknown. In this study, we constructed six cDNA libraries from three adult testes and three adult ovaries and performed RNA sequencing for identifying sex-biased candidate genes and microRNAs (miRNAs). A total of 50,082 non-redundant genes (unigenes) were identified, of which 18,570 unigenes were significantly overexpressed in testes, and 11,182 unigenes were significantly overexpressed in ovaries. A total of 551 miRNAs were identified, of which 47 miRNAs were differentially expressed between testes and ovaries. Eight differentially expressed unigenes, seven differentially expressed miRNAs and one non-differential miRNA were validated by quantitative real-time polymerase chain reaction. Twenty-four of these differentially expressed miRNAs and their 15 predicted target genes constituted 41 miRNA–mRNA interaction pairs, and some of vital sex-related metabolic pathways were also identified. These results revealed these differentially expressed genes and miRNAs between ovary and testis might be involved in regulating gonadal development, sex determination, gametogenesis, and physiological function maintenance, and there are complex regulatory networks between genes and miRNAs. It can help us understand the molecular mechanism of the sexual dimorphism and obtain a high-efficiency sex identification method in the artificial reproduction process of the discus fish.
Collapse
Affiliation(s)
- Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Zhe Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Jianzhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Zaizhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
15
|
Fang Y, Xu XY, Shen Y, Li J. miR-148 targets CiGadd45ba and CiGadd45bb to modulate the inflammatory response to bacterial infection in grass carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103611. [PMID: 31953153 DOI: 10.1016/j.dci.2020.103611] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
In grass carp (Ctenopharyngodon idella), septicemia is a systemic inflammatory response to bacterial infection. Once infected bacteria, a hyper-inflammatory state that could lead to septic shock and death. There is increasing evidence that microRNAs are involved in the regulation of the inflammatory response. Ctenopharyngodon idella growth arrest and DNA damage-inducible 45 ba and bb (CiGadd45ba and CiGadd45bb) are two subtypes of Gadd45b. In the present study, miR-148 was confirmed to be involved in the inflammatory response after infection with Aeromonas hydrophila. Dual-luciferase reporter assays and miRNA expression profiling confirmed that miR-148 targeted both CiGadd45ba and CiGadd45bb. Transfection with miR148 mimics and inhibitors altered the expression levels of proinflammatory genes, suggesting that miRNAs regulate the immune response in grass carp. Our results provide a theoretical basis for studying the molecular mechanism underlying the regulation of inflammation by miR-148 in grass carp.
Collapse
Affiliation(s)
- Yuan Fang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China
| | - Xiao-Yan Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
16
|
Yang F, Qi J. miR-430a regulates the development of left-right asymmetry by targeting sqt in the teleost. Gene 2020; 745:144628. [PMID: 32224271 DOI: 10.1016/j.gene.2020.144628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
microRNAs (miRNAs) are short, endogenous non-coding RNAs that contain approximately 18-22 nucleotides. miRNAs are involved in gene regulation by recognizing and binding the 3'UTR of target gene. In our previous data, miR-430 family showed significant differential expression modes through metamorphosis in Japanese flounder. It was speculated that miR-430a plays a key role in left-right patterning. We predicted the targets of miR-430a and gene ontology (GO) was performed. We speculated miR-430a is involved in the basal molecular function and organ development. In Japanese flounder, sqt as a target of miR-430a was enriched into heart development term. Sqt has been reported to participate in mesendoderm formation and organ development. Cardiac morphogenesis is the first asymmetric development process, which breaks left-right symmetry in bilateria. It was used as a marker to detect L-R asymmetric effects of miR-430a. Overexpression and suppression of miR-430a resulted in abnormal KV (Kupffer's vesicles) development and disordered in nodal-related expression with consequent cardiac laterality. Squint mRNA of Japanese flounder (Posqt) as a target of miR-430a was overexpressed and caused similar phenotype with miR-430a suppression group, such as longer cilia in KV and high range of clmc2 and spaw ectopic expression. Moreover, rescue experiments were performed and suggested that cardiac and KV defections, induced by overexpressing miR-430a, could be rescued by injecting Posqt mRNA. These results suggested that miR-430a regulates the development of left-right asymmetry by targeting sqt in the teleost.
Collapse
Affiliation(s)
- Fan Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| |
Collapse
|
17
|
Liu S, Ning XH, Guan XL, Li XP, Sun L. Characterization of Streptococcus iniae-induced microRNA profiles in Paralichthys olivaceus and identification of pol-3p-10740_175 as a regulator of antibacterial immune response. FISH & SHELLFISH IMMUNOLOGY 2020; 98:860-867. [PMID: 31756455 DOI: 10.1016/j.fsi.2019.11.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are involved in many biological activities including immune defense against pathogens. In this study, we applied high-throughput sequencing technology to examine miRNAs in Japanese flounder (Paralichthys olivaceus) infected with Streptococcus iniae at different times. A total of 1038 miRNAs were identified, of which, 249 were novel miRNAs, and 81 showed differential expression (named DEmiRNAs) after S. iniae infection. Of the 81 DEmiRNAs identified, 34 and 58 occurred at 6 h and 24 h post-infection, respectively; most DEmiRNAs were strongly time-specific, and only 13.6% of the DEmiRNAs were shared between the two time points. A total of 9582 target genes were predicted for the 81 DEmiRNAs. The putative target genes were enriched in various GO and KEGG pathways of biological processes and molecular/cellular functions, in particular endocytosis, regulation of transcription, lysososme, and the signaling pathways of MAPK, ErbB, and AMPK. One of the DEmiRNAs, pol-3p-10740_175, was found to target dual specificity phosphatase 6 (Dusp6) and repress the expression of the latter. Transfection of flounder FG cells with pol-3p-10740_175 caused a significant inhibition on S. iniae invasion. The results of this study provided the first S. iniae-induced miRNA profile in Japanese flounder and indicated that flounder miRNAs play an important role in antibacterial immunity.
Collapse
Affiliation(s)
- Shuang Liu
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xian-Hui Ning
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Lu Guan
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
18
|
Li X, Hu H, Li R, Wang Z, Qi J, Wang Z. The role of miR-92 in regulating early development and metamorphosis of Japanese flounder Paralichthys olivaceus. Genes Genet Syst 2019; 95:1-10. [PMID: 31839648 DOI: 10.1266/ggs.18-00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs are a class of short non-coding RNAs that contain approximately 22 nucleotides and play a regulatory role in RNA silencing and translational repression. miR-92 belongs to the miR-17-92 family and has a regulatory effect on cell proliferation, apoptosis, and expression of proto-oncogenes and tumor suppressor genes. However, its function in flatfish is unclear. In this study, we used farmed Japanese flounder, Paralichthys olivaceus, and showed that gata5 is a target gene of miR-92. Experiments on miR-92 overexpression indicated that gata5 and sox17 were downregulated, while the transcription level of ntl increased. By contrast, depletion of miR-92 resulted in increased gata5 and sox17 levels and reduced ntl level. Moreover, thiourea treatment indicated that miR-92 may inhibit the metamorphic development of Japanese flounder. Our study suggests that miR-92 regulates the fate of endoderm and mesoderm by controlling gata5.
Collapse
Affiliation(s)
- Xuemei Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Hongshuang Hu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Rui Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Zhenwei Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| |
Collapse
|
19
|
Im J, Kim HS. Genetic features of Haliotis discus hannai by infection of vibrio and virus. Genes Genomics 2019; 42:117-125. [PMID: 31776802 DOI: 10.1007/s13258-019-00892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/14/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Haliotis discus hannai more commonly referred to as the Pacific Abalone is of significant commercial and economical value in South Korea, with it being the second largest producer in the world. Despite this significance there is a lack of genetic studies with regards to the species. Most existing studies focused mainly on environmental factors. OBJECTIVE To provide a comprehensive review describing the genetic feature of Haliotis discus hannai by infection of vibrio and virus. METHODS This review summarized the immune response in the Haliotis spp. with regards to immunological genes such as Cathepsin B, C-type lectin and Toll-like receptors. Genetic studies with regards to transposable elements and miRNAs are few and far between. A study identified LTR retrotransposon Ty3/gypsy in the species. As to miRNA, a single study identified numerous miRNAs in the Haliotis discus hannai. CONCLUSION This paper sought to provide an overview of genetic perspective with regards to immune response genes, transposable elements and miRNAs.
Collapse
Affiliation(s)
- Jennifer Im
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea. .,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
20
|
Tao L, Xu X, Fang Y, Wang A, Zhou F, Shen Y, Li J. miR-21 targets jnk and ccr7 to modulate the inflammatory response of grass carp following bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2019; 94:258-263. [PMID: 31513913 DOI: 10.1016/j.fsi.2019.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Grass carp septicemia is a systemic inflammatory response that develops following a bacterial infection. The hyperinflammatory state develops could lead to septic shock and lethality. There is increasing evidence that microRNAs are involved in the regulation of the inflammatory response. In the present study, miR-21 was confirmed to be involved in the inflammatory response following infection with Aeromonas hydrophila and LPS stimulation. Both jnk and ccr7 were identified as target gene of miR-21 by overexpression, inhibition, and dual luciferase reporter assays experiments. Meanwhile, miR-21 targets the jnk and ccr7 to modulate downstream pro-inflammatory factors tnf-α, il-1β, il-6, and il-12. Our results provide a theoretical basis for exploring the molecular mechanism of grass carp miR-21 regulating inflammation.
Collapse
Affiliation(s)
- Lizhu Tao
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yuan Fang
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Anqi Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Fenglin Zhou
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
21
|
Li WR, Hu YH, Jiang S, Sun L. Global profiling and characterization of Japanese flounder (Paralichthys olivaceus) kidney microRNAs regulated by Edwardsiella tarda infection in a time-dependent fashion. FISH & SHELLFISH IMMUNOLOGY 2019; 93:766-780. [PMID: 31421241 DOI: 10.1016/j.fsi.2019.07.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Japanese flounder (Paralichthys olivaceus) is an important economic fish species farmed in China and other countries. It is susceptible to infection by Edwardsiella tarda, a severe fish pathogen with a broad host range. In this study, we employed high-throughput deep sequencing technology to identify, in a global scale, flounder kidney microRNAs (miRNAs) induced by E. tarda at different stages of infection. Differentially expressed miRNAs (DEmiRNAs) and mRNAs (DEmRNAs) exhibiting significantly altered expression levels before and after E. tarda infection were examined. A total of 96 DEmiRNAs were identified, for which 2779 target genes were predicted. Eighty-seven miRNA-mRNA pairs, involving 29 DEmiRNAs and 86 DEmRNAs, showed negative correlations in their expression patterns. GO and KEGG enrichment analysis revealed that the putative target genes of the DEmiRNAs were associated with diverse biological processes, cellular components, and molecular functions. One of the DEmiRNAs, pol-miR-182-5p, was demonstrated to regulate sphingosine-1-phosphate receptor 1 (PoS1PR1) negatively in a manner that depended on the specific interaction between the seed sequence of pol-miR-182-5p and the 3'-UTR of PoS1PR1. Overexpression of pol-miR-182-5p in flounder cells promoted apoptosis and inhibited cellular viability. Knockdown of PoS1PR1 in flounder enhanced E. tarda invasion and dissemination in fish tissues. These results provide new insights into miRNA-mediated anti-bacterial immunity in flounder.
Collapse
Affiliation(s)
- Wen-Rui Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China; University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Hua Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shuai Jiang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
22
|
Lan T, Chen YL, Gul Y, Zhao BW, Gao ZX. Comparative expression analysis of let-7 microRNAs during ovary development in Megalobrama amblycephala. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1101-1115. [PMID: 30835012 DOI: 10.1007/s10695-019-00624-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
As a critical regulator of gene expression, let-7 family miRNAs have been reported to be involved in multiple physiological processes. In this study, in order to elucidate the putative regulatory effect of let-7 miRNAs during fish gonadal development and to identify which member is crucial for this regulation, the expression of ten members including let-7a/b/c/d/e/f/g/h/i/j were quantified in ovary, pituitary, and brain tissues during the different ovarian developmental stages of blunt snout bream Megalobrama amblycephala. According to the data from analysis of expression patterns, let-7a showed the highest expression value in almost all the tested ovaries, pituitaries, and brains, with let-7b and let-7d moderately expressed, following by other let-7 miRNAs. In terms of the differential expression levels of ten let-7 miRNAs at each developmental stage, the results showed that let-7a/b/d/f/h expression gradually increased during the ovary development from stage I to V and dropped significantly at the phase VI in ovary tissues. However, the expression of let-7a/b/e/f in pituitary increased during the ovary development from stage I to IV and declined at stage V. Among all the let-7 miRNAs, let-7a/b/d had the highest expression and their expression patterns were consistent with the gonad development of M. amblycephala. Furthermore, the mostly predicted target genes of let-7 miRNAs are significantly enriched in signaling pathways closely related to gonadal development through KEGG enrichment analysis. These results indicate that let-7 miRNA members, especially let-7a/b/d, may play important roles in the regulation of ovary development in M. amblycephala through negatively regulating expression of their target genes.
Collapse
Affiliation(s)
- Tian Lan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Yu-Long Chen
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Yasmeen Gul
- Department of Zoology, Government College Women University, Faisalabad, 38860, Pakistan
| | - Bo-Wen Zhao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
23
|
Yang F, Guan J, Li R, Li X, Niu J, Shang R, Qi J, Wang X. miR-1388 regulates the expression of nectin2l in Paralichthys olivaceus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:9-16. [DOI: 10.1016/j.cbd.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/10/2023]
|
24
|
Huang Y, Gong WB. Identification and Characterization of MicroRNAs in Skin of Chinese Giant Salamander (Andrias davidianus) by the Deep Sequencing Approach. BIOCHEMISTRY (MOSCOW) 2018; 83:766-777. [PMID: 30195333 DOI: 10.1134/s0006297918060147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNA) play a pivotal role in regulating a broad range of biological processes, acting by cleaving mRNAs or by translational repression. However, the miRNAs from skin of Andrias davidianus have not been reported. In this study, a small-RNA cDNA library was constructed and sequenced from skin of A. davidianus. A total of 513 conserved miRNAs belonging to 174 families were identified. The remaining 108 miRNAs we identified were novel and likely to be skin tissue-specific but were expressed at low levels. The presence of randomly selected 15 miRNAs identified and their expression in eight different tissues from A. davidianus were validated by stem-loop qRT-PCR. For better understanding the functions of miRNAs, 129,791 predicated target genes were analyzed by GO and their pathways illustrated by KEGG pathway analyses. The results show that these identified miRNAs from A. davidianus skin are involved in a broad range of physiological functions including metabolism, growth, development, and immune responses. This study exhaustively identifies miRNAs and their target genes, which will ultimately pave the way for understanding their role in skin of A. davidianus and other amphibians. Further studies are necessary to better understand miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Wang Bao Gong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
25
|
Gong W, Huang Y, Xie J, Wang G, Yu D, Sun X, Zhang K, Li Z, Ermeng Y, Tian J, Zhu Y. Identification and expression analysis of miRNA in hybrid snakehead by deep sequencing approach and their targets prediction. Genomics 2018; 111:1315-1324. [PMID: 30196078 DOI: 10.1016/j.ygeno.2018.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/04/2018] [Accepted: 08/15/2018] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) play important regulatory roles in numerous biological processes, but there is no report on miRNAs of hybrid snakehead. In this study, four independent small RNA libraries were constructed from the spleen, liver kidney and muscle of hybrid snakehead. These libraries were sequenced using deep sequencing technology, as result, a total of 1,067,172, 1,152,002, 1,653,941 and 970,866 clean reads from these four libraries were obtained. 252 known miRNAs and 63 putative novel miRNAs in these small RNA dataset were identified. The stem-loop RT-qPCR analysis indicated that eight known miRNAs and two novel miRNAs show different expression in eight different kinds of tissues. For better understanding the functions of miRNAs, 95,947 predicated target genes were analyzed by GO and their pathways, the results indicated that these targets of the identified miRNAs are involved in a broad range of physiological functions.
Collapse
Affiliation(s)
- Wangbao Gong
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Jun Xie
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Guangjun Wang
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Deguang Yu
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xihong Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Kai Zhang
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhifei Li
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yu Ermeng
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jingjing Tian
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yun Zhu
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
26
|
Sun Y, Han J, Chu Q, Liu X, Xu T. microRNA-210 participates in regulating RIG-I signaling pathway via targeting DUBA in miiuy croaker after poly(I:C) stimulation. FISH & SHELLFISH IMMUNOLOGY 2018; 77:1-7. [PMID: 29408541 DOI: 10.1016/j.fsi.2018.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that participate in the regulation of various biological processes. A series of microRNAs have been shown to be important regulators of both innate and adaptive immune responses, including RIG-I signaling pathway. In this study, we evaluated the regulation role of miR-210 in the RLRs signaling pathway of miiuy croaker. Upon poly(I:C) stimulation, the expression of miR-210 in both miiuy croaker spleen tissues and macrophages were significantly upregulated. By means of the dual luciferase reporter assay, a direct interaction between miR-210 and the 3-untranslated region (UTR) of Deubiquitinating enzyme A (DUBA) was confirmed, and we found that miR-210 could reduce the luciferase levels of wild-type DUBA 3'UTR, whereas mutant-type led to a complete abrogation of the negative effect. Furthermore, the negative regulatory effects of pre-miR-210 on DUBA have been indicated in a dose- and time-dependent manners. As DUBA is an important regulator involved in the RLRs signaling pathway and could bind with and regulate TRAF3, we also examined the expression patterns of DUBA and TRAF3 in vivo and in vitro. We found that the expression of both DUBA and TRAF3 were significantly changed upon poly(I:C) stimulation in miiuy croaker. The expression patterns between miR-210 and DUBA showed a negative correlation, which indicated that miR-210 can target and downregulate the expression of DUBA. Overall, these results will enrich the knowledge of immune response related miRNAs in miiuy croaker, which will be useful for better understanding the complicated regulatory networks in fish species.
Collapse
Affiliation(s)
- Yuena Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jingjing Han
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qing Chu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuezhu Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
27
|
Jia X, Zhou M, Zou Z, Lin P, Wang Y, Zhang Z. Identification and comparative analysis of the ovary and testis microRNAome of mud crab Scylla paramamosain. Mol Reprod Dev 2018; 85:519-531. [DOI: 10.1002/mrd.22989] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Xiwei Jia
- Fisheries College; Jimei University; Xiamen China
| | - Mingcan Zhou
- Fisheries College; Jimei University; Xiamen China
| | - Zhihua Zou
- Fisheries College; Jimei University; Xiamen China
| | - Peng Lin
- Fisheries College; Jimei University; Xiamen China
| | - Yilei Wang
- Fisheries College; Jimei University; Xiamen China
| | - Ziping Zhang
- College of Animal Science; Fujian Agriculture and Forestry University; Fuzhou China
| |
Collapse
|
28
|
Huang Y, Wen H, Zhang M, Hu N, Si Y, Li S, He F. The DNA methylation status of MyoD and IGF-I genes are correlated with muscle growth during different developmental stages of Japanese flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2018; 219-220:33-43. [PMID: 29486246 DOI: 10.1016/j.cbpb.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 01/15/2023]
Abstract
Many genes related to muscle growth modulate myoblast proliferation and differentiation and promote muscle hypertrophy. MyoD is a myogenic determinant that contributes to myoblast determination, and insulin-like growth factor 1 (IGF-I) interacts with MyoD to regulate muscle hypertrophy and muscle mass. In this study, we aimed to assess DNA methylation and mRNA expression patterns of MyoD and IGF-I during different developmental stages of Japanese flounder, and to examine the relationship between MyoD and IGF-I gene. DNA and RNA were extracted from muscles, and DNA methylation of MyoD and IGF-I promoter and exons was detected by bisulfite sequencing. The relative expression of MyoD and IGF-I was measured by quantitative polymerase chain reaction. IGF-I was measured by radioimmunoassay. Interestingly, the lowest expression of MyoD and IGF-I emerged at larva stage, and the mRNA expression was negatively associated with methylation. We hypothesized that many skeletal muscle were required to complete metamorphosis; thus, the expression levels of MyoD and IGF-I genes increased from larva stage and then decreased. The relative expression levels of MyoD and IGF-I exhibited similar patterns, suggesting that MyoD and IGF-I regulated muscle growth through combined effects. Changes in the concentrations of IGF-I hormone were similar to those of IGF-I gene expression. Our results the mechanism through which MyoD and IGF-I regulate muscle development and demonstrated that MyoD interacted with IGF-I to regulate muscle growth during different developmental stages.
Collapse
Affiliation(s)
- Yajuan Huang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Haishen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Meizhao Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Nan Hu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yufeng Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Siping Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Feng He
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
29
|
Huang Y, Gong W, Xiong J, Gao XC, Ren HT. Discovery and characterization of conserved and novel microRNAs from blunt snout bream (Megalobrama amblycephala) by deep sequencing. Gene 2018; 654:57-63. [PMID: 29466763 DOI: 10.1016/j.gene.2018.02.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/27/2018] [Accepted: 02/15/2018] [Indexed: 10/18/2022]
Abstract
MicroRNAs (miRNAs) are short, single stranded RNA molecules with approximately 22 nts in length, which regulate the stability and translation of messenger RNAs in several organisms. To increase the repertoire of miRNAs characterized in M. amblycephala, we used the deep sequencing technology to sequence a small RNA library using pooled RNA sample isolated from the 4 different tissues of M. amblycephala. A total of 309 conserved miRNAs that originated from 131 miRNA families were detected. 15 novel candidates miRNA were identified. Randomly selected 6 miRNAs were analyzed by stem-loop qRT-PCR and differential expression patterns were observed in 6 different tissues of M. amblycephala. Furthermore, the potential targets were predicted. GO analysis showed that most of the targets were involved in a broad range of physiological functions including fish growth, development, metabolism, stress responses and so on. Overall, our results significantly increased the number of novel miRNAs in M. amblycephala, which should be useful for further investigation into the role of miRNAs in regulating diverse biological processes.
Collapse
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.
| | - Wangbao Gong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jianli Xiong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiao Chan Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Hong Tao Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
30
|
Han J, Chu Q, Huo R, Xu T. Inducible microRNA-122 modulates RIG-I signaling pathway via targeting DAK in miiuy croaker after poly(I:C) stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:52-60. [PMID: 28923593 DOI: 10.1016/j.dci.2017.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
MicroRNA-122 (miR-122) was originally identified in mouse and then lots of researches on miR-122 had been performed in mammals. However, the functional study of miR-122 were restricted in fish. In miiuy croaker, miR-122 is sensitive to poly(I:C) stimulation. In this study, a combination of bioinformatics and experimental techniques were used to investigate the functions of miR-122. DAK is a putative target gene of miR-122 which was predicted by bioinformatics, and further the luciferase reporter assays were used to confirm the target sites in DAK 3'untranslated region. The inhibiting effect of miR-122 mimics or pre-miR-122 on DAK presented the dose and time dependent manners, and the pre-miR-122 showed stronger inhibiting effect on DAK than the miR-122 mimics. Therefore, the miR-122 participate in regulating RIG-I-like receptors signaling pathway via inhibiting DAK which is the inhibitors of MDA5. The expression of miR-122 and DAK showed negative relationship in both miiuy croaker spleen and macrophages, which imply that miR-122 may regulate DAK at the post-transcriptional level. These results will enhance our understanding about the regulation of miRNAs on immune response in fish.
Collapse
Affiliation(s)
- Jingjing Han
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qing Chu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ruixuan Huo
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
31
|
Qiang J, Bao JW, Li HX, Chen DJ, He J, Tao YF, Xu P. miR-1338-5p Modulates Growth Hormone Secretion and Glucose Utilization by Regulating ghitm in Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus). Front Physiol 2017; 8:998. [PMID: 29270127 PMCID: PMC5723647 DOI: 10.3389/fphys.2017.00998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding small RNA molecules about 22 nt in length, which could regulate the expressions of target genes and participate in growth and development of organisms. Genetically improved farmed tilapia (GIFT, Oreochromis niloticus) is an important economic freshwater species in China and the growth performance is one of the main breeding indicators. Growth hormone inducible transmembrane protein (ghitm) plays an important role in growth and development of both mammals and invertebrates; however, little studies have been reported on fish. Our previous experiments indicated that miR-1338-5p expression may be negatively correlated with ghitm expression. In this study, we firstly used qRT-PCR and northern blot to verify the expression of miR-1338-5p and ghitm, and determined the binding site of miR-1338-5p in the ghitm 3'-untranslated region (UTR) by luciferase reporter assay. Secondly, juveniles GIFT injected with miR-1338-5p antagomir were used to analyze the regulatory function of the miR-1338-5p-ghitm pair in vivo. The results showed that the ghitm 3'-UTR was complementary to the 5' 2-8-nt site of miR-1338-5p. Inhibition of miR-1338-5p promoted ghitm expression in the pituitary and liver of GIFT. ghitm could interfere in the growth hormone (Gh)-growth hormone receptor (Ghr)-insulin-like growth factor (Igf) signaling pathway by competing with the ghr1 for combination with Gh, and then reduce the growth of GIFT. Moreover, the reduction of Gh in serum may regulate insulin secretion and result in the increasing sugar and fat storage in serum and liver. Our results suggest that miR-1338-5p participates in the growth and development of GIFT through the regulation of ghitm, which provides theoretical support for the study of the fish growth mechanism.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jing Wen Bao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Hong Xia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - De Ju Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yi Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
32
|
Andreassen R, Høyheim B. miRNAs associated with immune response in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:77-85. [PMID: 28254620 DOI: 10.1016/j.dci.2017.02.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/25/2017] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) have been identified as important post transcriptional regulators of gene expression. In higher vertebrates, a subset of miRNAs has been identified as important regulators of a number of key genes in immune system gene networks, and this paper review recent studies on miRNAs associated with immune response in teleost fish. Challenge studies conducted in several species have identified differently expressed miRNAs associated with viral or bacterial infection. The results from these studies point out several miRNAs that are likely to have evolutionary conserved functions that are related to immune response in teleost fish. Changed expression levels of mature miRNAs from the five miRNA genes miRNA-462, miRNA-731, miRNA-146, miRNA-181 and miRNA-223 are observed following viral as well as bacterial infection in several teleost fish. Furthermore, significant changes in expression of mature miRNAs from the five genes miRNA-21, miRNA-155, miRNA-1388, miRNA-99 and miRNA-100 are observed in multiple studies of virus infected fish while changes in expression of mature miRNA from the three genes miRNA-122, miRNA-192 and miRNA-451 are observed in several studies of fish with bacterial infections. Interestingly, some of these genes are not present in higher vertebrates. The function of the evolutionary conserved miRNAs responding to infection depends on the target gene(s) they regulate. A few target genes have been identified while a large number of target genes have been predicted by in silico analysis. The results suggest that many of the targets are genes from the host's immune response gene networks. We propose a model with expected temporal changes in miRNA expression if they target immune response activators/effector genes or immune response inhibitors, respectively. The best way to understand the function of a miRNA is to identify its target gene(s), but as the amount of genome resources for teleost fish is limited, with less well characterized genomes and transcriptomes, identifying the true target genes of the miRNAs associated with the immune response is a challenge. Identifying such target genes by applying new methods and approaches will likely be the next important step to understand the function of the miRNAs associated with immune response in teleost fish.
Collapse
Affiliation(s)
- Rune Andreassen
- Department of Pharmacy and Biomedical and Laboratory Sciences, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Pilestredet 50, N-0130 Oslo, Norway.
| | - Bjørn Høyheim
- Department of Basic Sciences and Aquatic Medicine, School of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway.
| |
Collapse
|
33
|
Huang Y, Gao XC, Ren HT, Xiong JL, Sun XH. Characterization of conserved and novel miRNAs using deep sequencing and prediction of miRNA targets in Crucian carp (Carassius auratus). Gene 2017; 635:61-68. [PMID: 28890379 DOI: 10.1016/j.gene.2017.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs of -22 nucleotides that can base pair with their target mRNAs, which represses their translation or induces their degradation in various biological processes. However, little is known about identification of miRNAs and their target genes in C. auratus. In the present study, a small RNA library from pooled tissue of C. auratus was constructed and sequenced using the deep sequencing. A total of 320 conserved miRNAs (belonging to 105 families) as well as 11 potentially novel miRNAs were identified. Stem-loop qRT-PCR analysis confirmed that both conserved and novel miRNAs were expressed in C. auratus, and some of them were preferentially expressed in certain tissues. Subsequently, a total of 1668 potential target genes were predicted for these identified miRNAs and GO analysis showed that most of the targets were involved in lots of physiological actions. This study represents a first large-scale identification and characterization of C. auratus miRNAs and their potential target genes. Taken together, our results add new information to existing data on C. auratus miRNAs and should be useful for investigating the biological functions of miRNAs in fishes and other aquatic species.
Collapse
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.
| | - Xiao Chan Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Hong Tao Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jian Li Xiong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xi Hong Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
34
|
Wang N, Wang R, Wang R, Tian Y, Shao C, Jia X, Chen S. The integrated analysis of RNA-seq and microRNA-seq depicts miRNA-mRNA networks involved in Japanese flounder (Paralichthys olivaceus) albinism. PLoS One 2017; 12:e0181761. [PMID: 28777813 PMCID: PMC5544202 DOI: 10.1371/journal.pone.0181761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/06/2017] [Indexed: 02/02/2023] Open
Abstract
Albinism, a phenomenon characterized by pigmentation deficiency on the ocular side of Japanese flounder (Paralichthys olivaceus), has caused significant damage. Limited mRNA and microRNA (miRNA) information is available on fish pigmentation deficiency. In this study, a high-throughput sequencing strategy was employed to identify the mRNA and miRNAs involved in P. olivaceus albinism. Based on P. olivaceus genome, RNA-seq identified 21,787 know genes and 711 new genes by transcripts assembly. Of those, 235 genes exhibited significantly different expression pattern (fold change ≥2 or ≤0.5 and q-value≤0.05), including 194 down-regulated genes and 41 up-regulated genes in albino versus normally pigmented individuals. These genes were enriched to 81 GO terms and 9 KEGG pathways (p≤0.05). Among those, the pigmentation related pathways-Melanogenesis and tyrosine metabolism were contained. High-throughput miRNA sequencing identified a total of 475 miRNAs, including 64 novel miRNAs. Furthermore, 33 differentially expressed miRNAs containing 13 up-regulated and 20 down-regulated miRNAs were identified in albino versus normally pigmented individuals (fold change ≥1.5 or ≤0.67 and p≤0.05). The next target prediction discovered a variety of putative target genes, of which, 134 genes including Tyrosinase (TYR), Tyrosinase-related protein 1 (TYRP1), Microphthalmia-associated transcription factor (MITF) were overlapped with differentially expressed genes derived from RNA-seq. These target genes were significantly enriched to 254 GO terms and 103 KEGG pathways (p<0.001). Of those, tyrosine metabolism, lysosomes, phototransduction pathways, etc., attracted considerable attention due to their involvement in regulating skin pigmentation. Expression patterns of differentially expressed mRNA and miRNAs were validated in 10 mRNA and 10 miRNAs by qRT-PCR. With high-throughput mRNA and miRNA sequencing and analysis, a series of interested mRNA and miRNAs involved in fish pigmentation are identified. And the miRNA-mRNA regulatory network also provides a solid starting point for further elucidation of fish pigmentation deficiency.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail: (NW); (SLC)
| | - Ruoqing Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Renkai Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yongsheng Tian
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Changwei Shao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Beijing Institute of Genomics, Chinese Academy of Sciences & Liaocheng People’s Hospital, Liaocheng, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail: (NW); (SLC)
| |
Collapse
|
35
|
Identification of the conserved and novel microRNAs by deep sequencing and prediction of their targets in Topmouth culter. Gene 2017; 626:298-304. [DOI: 10.1016/j.gene.2017.05.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 05/21/2017] [Accepted: 05/24/2017] [Indexed: 01/28/2023]
|
36
|
Jo A, Im J, Lee HE, Jang D, Nam GH, Mishra A, Kim WJ, Kim W, Cha HJ, Kim HS. Evolutionary conservation and expression of miR-10a-3p in olive flounder and rock bream. Gene 2017; 628:16-23. [PMID: 28698161 DOI: 10.1016/j.gene.2017.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/01/2017] [Accepted: 07/07/2017] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that mainly bind to the seed sequences located within the 3' untranslated region (3' UTR) of target genes. They perform an important biological function as regulators of gene expression. Different genes can be regulated by the same miRNA, whilst different miRNAs can be regulated by the same genes. Here, the evolutionary conservation and expression pattern of miR-10a-3p in olive flounder and rock bream was examined. Binding sites (AAAUUC) to seed region of the 3' UTR of target genes were highly conserved in various species. The expression pattern of miR-10a-3p was ubiquitous in the examined tissues, whilst its expression level was decreased in gill tissues infected by viral hemorrhagic septicemia virus (VHSV) compared to the normal control. In the case of rock bream, the spleen, kidney, and liver tissues showed dominant expression levels of miR-10a-3p. Only the liver tissues in the rock bream samples infected by the iridovirus indicated a dominant miR-10a-3p expression. The gene ontology (GO) analysis of predicted target genes for miR-10a-3p revealed that multiple genes are related to binding activity, catalytic activity, cell components as well as cellular and metabolic process. Overall the results imply that the miR-10a-3p could be used as a biomarker to detect VHSV infection in olive flounder and iridovirus infection in rock bream. In addition, the data provides fundamental information for further study of the complex interaction between miR-10a-3p and gene expression.
Collapse
Affiliation(s)
- Ara Jo
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Genetic Engineering Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jennifer Im
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Genetic Engineering Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Dongmin Jang
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Gyu-Hwi Nam
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Genetic Engineering Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Anshuman Mishra
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Genetic Engineering Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Woo-Jin Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Republic of Korea
| | - Won Kim
- School of Biological Sciences, Seoul National University, Seoul 08824, Republic of Korea
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49267, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Genetic Engineering Institute, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
37
|
Tu J, Tian C, Zhao P, Sun J, Wang M, Fan Q, Yuan Y. Identification and profiling of growth-related microRNAs in Chinese perch (Siniperca chuatsi). BMC Genomics 2017; 18:489. [PMID: 28659132 PMCID: PMC5490230 DOI: 10.1186/s12864-017-3851-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/07/2017] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play important roles in the regulation of diverse biological processes in eukaryotes. Chinese perch (Siniperca chuatsi) is one of the most economically important fish species widely cultured in China. Growth is an extremely important characteristic in fish. Individual differences in body size are common in Siniperca chuatsi, which significantly influence the aquaculture production of Siniperca chuatsi. However, the underline growth-related regulatory factors, such as miRNAs, are still unknown. Results To investigate the growth-related miRNAs in Siniperca chuatsi, two RNA libraries from four growth-related tissues (brain, pituitary, liver, and muscle) of Siniperca chuatsi at 6-month stage with relatively high or low growth rates (big-size group or small-size group) were obtained and sequenced using Solexa sequencing. A total of 252 known miRNAs and 12 novel miRNAs were identified. The expression patterns of these miRNAs in big-size group and small-size group were compared, and the results showed that 31 known and 5 novel miRNAs were differently expressed (DE). Furthermore, to verify the Solexa sequencing, five DE miRNAs were randomly selected and quantified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The results showed that their expression patterns were consistent with those of Solexa sequencing. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of target genes of DE miRNAs was performed. It showed that the target genes were involved in multiple biological processes including metabolic process, suggesting that metabolic process played an important role in growth of fish. Conclusions Siniperca chuatsi is a popular and economically important species in aquaculture. In this study, miRNAs in Siniperca chuatsi with different growth rates were identified, and their expression profiles were compared. The data provides the first large-scale miRNA profiles related to growth of Siniperca chuatsi, which is expected to contribute to a better understanding of the role of miRNAs in regulating the biological processes of growth and possibly useful for Siniperca chuatsi breeding. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3851-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiagang Tu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Changxu Tian
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Peiqi Zhao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Junxiao Sun
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Min Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qixue Fan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongchao Yuan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei, 430070, China.
| |
Collapse
|
38
|
Genome-wide identification and characterization of conserved and novel microRNAs in grass carp ( Ctenopharyngodon idella ) by deep sequencing. Comput Biol Chem 2017; 68:92-100. [DOI: 10.1016/j.compbiolchem.2017.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/14/2017] [Accepted: 02/26/2017] [Indexed: 12/20/2022]
|
39
|
Miao LH, Lin Y, Pan WJ, Huang X, Ge XP, Ren MC, Zhou QL, Liu B. Identification of Differentially Expressed Micrornas Associate with Glucose Metabolism in Different Organs of Blunt Snout Bream (Megalobrama amblycephala). Int J Mol Sci 2017; 18:ijms18061161. [PMID: 28561770 PMCID: PMC5485985 DOI: 10.3390/ijms18061161] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Abstract
Blunt snout bream (Megalobrama amblycephala) is a widely favored herbivorous fish species and is a frequentlyused fish model for studying the metabolism physiology. This study aimed to provide a comprehensive illustration of the mechanisms of a high-starch diet (HSD) induced lipid metabolic disorder by identifying microRNAs (miRNAs) controlled pathways in glucose and lipid metabolism in fish using high-throughput sequencing technologies. Small RNA libraries derived from intestines, livers, and brains of HSD and normal-starch diet (NSD) treated M. amblycephala were sequenced and 79, 124 and 77 differentially expressed miRNAs (DEMs) in intestines, livers, and brains of HSD treated fish were identified, respectively. Bioinformatics analyses showed that these DEMs targeted hundreds of predicted genes were enriched into metabolic pathways and biosynthetic processes, including peroxisome proliferator-activated receptor (PPAR), glycolysis/gluconeogenesis, and insulin signaling pathway. These analyses confirmed that miRNAs play crucial roles in glucose and lipid metabolism related to high wheat starch treatment. These results provide information on further investigation of a DEM-related mechanism dysregulated by a high carbohydrate diet.
Collapse
Affiliation(s)
- Ling-Hong Miao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yan Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Wen-Jing Pan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Xin Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Xian-Ping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Ming-Chun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Qun-Lan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
40
|
Evolution of Fish Let-7 MicroRNAs and Their Expression Correlated to Growth Development in Blunt Snout Bream. Int J Mol Sci 2017; 18:ijms18030646. [PMID: 28300776 PMCID: PMC5372658 DOI: 10.3390/ijms18030646] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 12/12/2022] Open
Abstract
The lethal-7 (let-7) miRNA, known as one of the first founding miRNAs, is present in multiple copies in a genome and has diverse functions in animals. In this study, comparative genomic analysis of let-7 miRNAs members in fish species indicated that let-7 miRNA is a sequence conserved family in fish, while different species have the variable gene copy numbers. Among the ten members including let-7a/b/c/d/e/f/g/h/i/j, the let-7a precursor sequence was more similar to ancestral sequences, whereas other let-7 miRNA members were separate from the late differentiation of let-7a. The mostly predicted target genes of let-7 miRNAs are involved in biological process, especially developmental process and growth through Gene Ontology (GO) enrichment analysis. In order to identify the possible different functions of these ten miRNAs in fish growth development, their expression levels were quantified in adult males and females of Megalobrama amblycephala, as well as in 3-, 6-, and 12-months-old individuals with relatively slow- and fast-growth rates. These ten miRNAs had similar tissue expression patterns between males and females, with higher expression levels in the brain and pituitary than that in other tissues (p < 0.05). Among these miRNAs, the relative expression level of let-7a was the highest among almost all the tested tissues, followed by let-7b, let-7d and let-7c/e/f/g/h/i/j. As to the groups with different growth rates, the expression levels of let-7 miRNAs in pituitary and brain from the slow-growth group were always significantly higher than that in the fast-growth group (p < 0.05). These results suggest that let-7 miRNA members could play an important role in the regulation of growth development in M. amblycephala through negatively regulating expression of their target genes.
Collapse
|
41
|
Han J, Sun Y, Song W, Xu T. microRNA-145 regulates the RLR signaling pathway in miiuy croaker after poly(I:C) stimulation via targeting MDA5. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:79-86. [PMID: 27894672 DOI: 10.1016/j.dci.2016.11.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/19/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that participate in diverse biological processes via degrading the target mRNAs or repressing translation. In this study, the regulation of miRNA to the RLR (RIG-I-like receptor) signaling pathway by degrading the target mRNAs was researched in miiuy croaker. MDA5, a microRNA-145-5p (miR-145-5p) putative target gene, was predicted by bioinformatics, and the target sites from the 3'untranslated region of MDA5 transcripts were confirmed using luciferase reporter assays. Pre-miR-145 was more effective in inhibiting MDA5 than miR-145-5p mimic, and the effect was dose- and time-dependent. The expression patterns of miR-145-5p and MDA5 were analyzed in liver and kidney from miiuy croaker. Results implied that miR-145-5p may function via degrading the MDA5 mRNAs, thereby regulating the RLR signaling pathway. Studies on miR-145-5p will enrich knowledge of its functions in immune response regulation in fish, as well as offer a basis for regulatory networks that are composed of numerous miRNAs.
Collapse
Affiliation(s)
- Jingjing Han
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yuena Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Weihua Song
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
42
|
Wang B, Gan Z, Wang Z, Yu D, Lin Z, Lu Y, Wu Z, Jian J. Integrated analysis neurimmiRs of tilapia (Oreochromis niloticus) involved in immune response to Streptococcus agalactiae, a pathogen causing meningoencephalitis in teleosts. FISH & SHELLFISH IMMUNOLOGY 2017; 61:44-60. [PMID: 27956091 DOI: 10.1016/j.fsi.2016.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNA molecules and play important roles in a wide spectrum of biological processes, including in immune response. Recent years have witnessed considerable amount of research interest in studies on miRNA-mediated modulation gene function during neuroinflammation. Here, we evaluated Streptococcus agalactiae infected tilapia (Oreochromis niloticus) brain for the expression profile of miRNAs, potential functions and their correlation with genes involved in inflammatory pathways. A total of 1981 miRNAs were identified, including in 486 miRNAs which have homologues in the currently available databases and 1945 novel miRNAs. The expression levels of 547 miRNAs were significantly altered at 6 h-48 h post-bacterial infection, and these miRNAs were therefore classified as differentially expressed tilapia miRNAs. Real-time PCR were implemented for 14 miRNAs co-expressed in five samples, and agreement was confirmed between the high-throughput sequencing and real-time PCR data. For the 486 differentially expressed miRNAs target 41,820 genes. GO and KEGG enrichment analysis revealed that some target genes of miRNAs were grouped mainly into the categories of apoptotic, signal pathwayand immune response. This is the first report of comprehensive identification of teleost miRNAs being differentially regulated in brain in normal conditions relating to bacterial infection.
Collapse
Affiliation(s)
- Bei Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Zhen Gan
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhongliang Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Dapeng Yu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Ziwei Lin
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Zaohe Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China.
| |
Collapse
|
43
|
Fu Y, Jia L, Shi Z, Zhang J, Li W. Gene expression patterns regulating embryogenesis based on the integrated de novo transcriptome assembly of the Japanese flounder. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:58-66. [PMID: 28199879 DOI: 10.1016/j.cbd.2017.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/16/2016] [Accepted: 01/21/2017] [Indexed: 01/15/2023]
Abstract
The Japanese flounder (Paralichthys olivaceus) is one of the most important commercial and biological marine fishes. However, the molecular biology involved during embryogenesis and early development of the Japanese flounder remains largely unknown due to a lack of genomic resources. A comprehensive and integrated transcriptome is necessary to study the molecular mechanisms of early development and to allow for the detailed characterization of gene expression patterns during embryogenesis; this approach is critical to understanding the processes that occur prior to mesectoderm formation during early embryonic development. In this study, more than 117.8 million 100bp PE reads were generated from pooled RNA extracted from unfertilized eggs to 41dph (days post-hatching) embryos and were sequenced using Illumina pair-end sequencing technology. In total, 121,513 transcripts (≥200bp) were obtained using de novo assembly. A sequence similarity search indicated that 52,338 transcripts show significant similarity to 22,462 known proteins from the NCBI non-redundant database and the Swiss-Prot protein database and were annotated using Blast2GO. GO terms were assigned to 44,627 transcripts with 12,006 functional terms, and 10,024 transcripts were assigned to 133 KEGG pathways. Furthermore, gene expression differences between the unfertilized egg and the gastrula embryo were analysed using Illumina RNA-Seq with single-read sequencing technology, and 24,837 differentially and specifically expressed transcripts were identified and included 5,286 annotated transcripts and 19,569 non-annotated transcripts. All of the expressed transcripts in the unfertilized egg and gastrula embryo were further classified as maternal, zygotic, or maternal-zygotic transcripts, which may help us to understand the roles of these transcripts during the embryonic development of the Japanese flounder. Thus, the results will contribute to an improved understanding of the gene expression patterns and signalling pathways that control the molecular mechanisms of early embryonic development.
Collapse
Affiliation(s)
- Yuanshuai Fu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, China
| | - Liang Jia
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, China
| | - Zhiyi Shi
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, China.
| | - Junling Zhang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, China
| | - Wenjuan Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, China
| |
Collapse
|
44
|
Robledo D, Hermida M, Rubiolo JA, Fernández C, Blanco A, Bouza C, Martínez P. Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 21:41-55. [PMID: 28063346 DOI: 10.1016/j.cbd.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Flatfish have a high market acceptance thus representing a profitable aquaculture production. The main farmed species is the turbot (Scophthalmus maximus) followed by Japanese flounder (Paralichthys olivaceous) and tongue sole (Cynoglossus semilaevis), but other species like Atlantic halibut (Hippoglossus hippoglossus), Senegalese sole (Solea senegalensis) and common sole (Solea solea) also register an important production and are very promising for farming. Important genomic resources are available for most of these species including whole genome sequencing projects, genetic maps and transcriptomes. In this work, we integrate all available genomic information of these species within a common framework, taking as reference the whole assembled genomes of turbot and tongue sole (>210× coverage). New insights related to the genetic basis of productive traits and new data useful to understand the evolutionary origin and diversification of this group were obtained. Despite a general 1:1 chromosome syntenic relationship between species, the comparison of turbot and tongue sole genomes showed huge intrachromosomic reorganizations. The integration of available mapping information supported specific chromosome fusions along flatfish evolution and facilitated the comparison between species of previously reported genetic associations for productive traits. When comparing transcriptomic resources of the six species, a common set of ~2500 othologues and ~150 common miRNAs were identified, and specific sets of putative missing genes were detected in flatfish transcriptomes, likely reflecting their evolutionary diversification.
Collapse
Affiliation(s)
- Diego Robledo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Biology (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Hermida
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Juan A Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
45
|
Agarwal S, Nagpure NS, Srivastava P, Kumar R, Pandey M, Srivastava S, Jena JK, Das P, Kushwaha B. In Silico Mining of Conserved miRNAs of Indian Catfish Clarias batrachus (Linnaeus, 1758) from the Contigs, ESTs, and BAC End Sequences. Appl Biochem Biotechnol 2016; 182:956-966. [DOI: 10.1007/s12010-016-2373-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
|
46
|
Identification and Characterization of MicroRNAs in the Liver of Blunt Snout Bream (Megalobrama amblycephala) Infected by Aeromonas hydrophila. Int J Mol Sci 2016; 17:ijms17121972. [PMID: 27898025 PMCID: PMC5187772 DOI: 10.3390/ijms17121972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that play key roles in regulation of various biological processes. In order to better understand the biological significance of miRNAs in the context of Aeromonas hydrophila infection in Megalobrama amblycephala, small RNA libraries obtained from fish liver at 0 (non-infection), 4, and 24 h post infection (poi) were sequenced using Illumina deep sequencing technology. A total of 11,244,207, 9,212,958, and 7,939,157 clean reads were obtained from these three RNA libraries, respectively. Bioinformatics analysis identified 171 conserved miRNAs and 62 putative novel miRNAs. The existence of ten randomly selected novel miRNAs was validated by RT-PCR. Pairwise comparison suggested that 61 and 44 miRNAs were differentially expressed at 4 and 24 h poi, respectively. Furthermore, the expression profiles of nine randomly selected miRNAs were validated by qRT-PCR. MicroRNA target prediction, gene ontology (GO) annotation, and Kyoto Encylopedia of Genes and Genomes (KEGG) analysis indicated that a variety of biological pathways could be affected by A. hydrophila infection. Additionally, transferrin (TF) and transferrin receptor (TFR) genes were confirmed to be direct targets of miR-375. These results will expand our knowledge of the role of miRNAs in the immune response of M. amblycephala to A. hydrophila infection, and facilitate the development of effective strategies against A. hydrophila infection in M. amblycephala.
Collapse
|
47
|
Wan SM, Yi SK, Zhong J, Nie CH, Guan NN, Zhang WZ, Gao ZX. Dynamic mRNA and miRNA expression analysis in response to intermuscular bone development of blunt snout bream (Megalobrama amblycephala). Sci Rep 2016; 6:31050. [PMID: 27486015 PMCID: PMC4971466 DOI: 10.1038/srep31050] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 07/13/2016] [Indexed: 12/21/2022] Open
Abstract
Intermuscular bone (IB), which occurs only in the myosepta of lower teleosts, is attracting more attention because they are difficult to remove and make the fish unpleasant to eat. By gaining a better understanding of the genetic regulation of IB development, an integrated analysis of miRNAs and mRNAs expression profiling was performed on Megalobrama amblycephala. Four key development stages were selected for transcriptome and small RNA sequencing. A number of significantly differentially expressed miRNAs/genes associated with bone formation and differentiation were identified and the functional characteristics of these miRNAs/genes were revealed by GO function and KEGG pathway analysis. These were involved in TGF-β, ERK and osteoclast differentiation pathways known in the literature to affect bone formation and differentiation. MiRNA-mRNA interaction pairs were detected from comparison of expression between different stages. The function annotation results also showed that many miRNA-mRNA interaction pairs were likely to be involved in regulating bone development and differentiation. A negative regulation effect of two miRNAs was verified through dual luciferase reporter assay. As a unique public resource for gene expression and regulation during the IB development, this study is expected to provide forwards ideas and resources for further biological researches to understand the IBs’ development.
Collapse
Affiliation(s)
- Shi-Ming Wan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Shao-Kui Yi
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Jia Zhong
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Chun-Hong Nie
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Ning-Nan Guan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Wei-Zhuo Zhang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| |
Collapse
|
48
|
Han J, Xu G, Xu T. The miiuy croaker microRNA transcriptome and microRNA regulation of RIG-I like receptor signaling pathway after poly(I:C) stimulation. FISH & SHELLFISH IMMUNOLOGY 2016; 54:419-426. [PMID: 27131903 DOI: 10.1016/j.fsi.2016.04.126] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs) as endogenous small non-coding RNAs play key regulatory roles in diverse biological processes via degrading the target mRNAs or inhibiting protein translation. Previously many researchers have reported the identification, characteristic of miRNAs and the interaction with its target gene. But, the study on the regulation of miRNAs to biological processes via regulatory the key signaling pathway was still limited. In order to comprehend the regulatory mechanism of miRNAs, two small RNA libraries from the spleen of miiuy croaker individuals with or without poly(I:C) infection were constructed. The 197 conserved miRNAs and 75 novel miRNAs were identified, and 14 conserved and 8 novel miRNAs appeared significant variations. Those differently expressed miRNAs relate to immune regulation of miiuy croaker. Furthermore, expressions of four differently expressed miRNAs were validated by qRT-PCR, and the result was consistent with sequencing data. The target genes of the differently expressed miRNAs in the two libraries were predicted, and some candidate target genes were involved in the RIG-I-like receptor (RLR) signaling pathway. The negative regulation of miRNAs to target genes were confirmed by comparing the expression pattern of miRNAs and their target genes. The results of regulating target genes were that firstly directly or indirectly activating the downstream signaling cascades and subsequent inducting the type I interferon, inflammatory cytokines and apoptosis. These studies could help us to deeper understand the roles of miRNAs played in the fish immune system, and provide a new way to investigate the defense mechanism of fish.
Collapse
Affiliation(s)
- Jingjing Han
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Guoliang Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
49
|
Identification and profiling of growth-related microRNAs of the swimming crab Portunus trituberculatus by using Solexa deep sequencing. Mar Genomics 2016; 28:113-120. [PMID: 27095170 DOI: 10.1016/j.margen.2016.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate gene expression by post-transcriptional repression of mRNAs. The swimming crab Portunus trituberculatus is one of the most important crustacean species for aquaculture in China. However, to date no miRNAs have been reported to for modulating growth in P. trituberculatus. To investigate miRNAs involved in the growth of this species, we constructed six small RNA libraries for big individuals (BIs) and small individuals (SIs) from a highly inbred family. Six mixed RNA pools of five tissues (eyestalk, gill, heart, hepatopancreas, and muscle) were obtained. By aligning sequencing data with those for known miRNAs, a total of 404 miRNAs, including 339 known and 65 novel miRNAs, were identified from the six libraries. MiR-100 and miR-276a-3p were among the most prominent miRNA species. We identified seven differentially expressed miRNAs between the BIs and SIs, which were validated using real-time PCR. Preliminary analyzes of their putative target genes and GO and KEGG pathway analyzes showed that these differentially expressed miRNAs could play important roles in global transcriptional depression and cell differentiation of P. trituberculatus. This study reveals the first miRNA profile related to the body growth of P. trituberculatus, which would be particularly useful for crab breeding programs.
Collapse
|
50
|
Li R, Jiang GF, Ren QP, Wang YT, Zhou XM, Zhou CF, Qin DZ. MicroRNAs of the mesothorax in Qinlingacris elaeodes, an alpine grasshopper showing a wing polymorphism with unilateral wing form. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:225-232. [PMID: 26693589 DOI: 10.1017/s0007485315000991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs) are now recognized as key post-transcriptional regulators in regulation of phenotypic diversity. Qinlingacris elaeodes is a species of the alpine grasshopper, which is endemic to China. Adult individuals have three wing forms: wingless, unilateral-winged and short-winged. This is an ideal species to investigate the phenotypic plasticity, development and evolution of insect wings because of its case of unilateral wing form in both the sexes. We sequenced a small RNA library prepared from mesothoraxes of the adult grasshoppers using the Illumina deep sequencing technology. Approximately 12,792,458 raw reads were generated, of which the 854,580 high-quality reads were used only for miRNA identification. In this study, we identified 49 conserved miRNAs belonging to 41 families and 69 species-specific miRNAs. Moreover, seven miRNA*s were detected both for conserved miRNAs and species-specific miRNAs, which were supported by hairpin forming precursors based on polymerase chain reaction. This is the first description of miRNAs in alpine grasshoppers. The results provide a useful resource for further studies on molecular regulation and evolution of miRNAs in grasshoppers. These findings not only enrich the miRNAs for insects but also lay the groundwork for the study of post-transcriptional regulation of wing forms.
Collapse
Affiliation(s)
- R Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,College of Life Sciences, Nanjing Normal University,Nanjing,China
| | - G F Jiang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,College of Life Sciences, Nanjing Normal University,Nanjing,China
| | - Q P Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,College of Life Sciences, Nanjing Normal University,Nanjing,China
| | - Y T Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,College of Life Sciences, Nanjing Normal University,Nanjing,China
| | - X M Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,College of Life Sciences, Nanjing Normal University,Nanjing,China
| | - C F Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,College of Life Sciences, Nanjing Normal University,Nanjing,China
| | - D Z Qin
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education,Entomological Museum,Northwest A & F University,Yangling,China
| |
Collapse
|