1
|
Hsieh MS, Chen MY, Hsu CW, Tsai YW, Chiu FF, Hsu CL, Lin CL, Wu CC, Tu LL, Chiang CY, Liu SJ, Liao CL, Chen HW. Recombinant lipidated FLIPr effectively enhances mucosal and systemic immune responses for various vaccine types. NPJ Vaccines 2023; 8:82. [PMID: 37268688 DOI: 10.1038/s41541-023-00680-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Formyl peptide receptor-like 1 inhibitor protein (FLIPr) is an immune evasion protein produced by Staphylococcus aureus, and FLIPr is a potential vaccine candidate for reducing Staphylococcus aureus virulence and biofilm formation. We produced recombinant lipidated FLIPr (rLF) to increase the immunogenicity of FLIPr and showed that rLF alone elicited potent anti-FLIPr antibody responses to overcome the FLIPr-mediated inhibition of phagocytosis. In addition, rLF has potent immunostimulatory properties. We demonstrated that rLF is an effective adjuvant. When an antigen is formulated with rLF, it can induce long-lasting antigen-specific immune responses and enhance mucosal and systemic antibody responses as well as broad-spectrum T-cell responses in mice. These findings support further exploration of rLF in the clinic as an adjuvant for various vaccine types with extra benefits to abolish FLIPr-mediated immunosuppressive effects.
Collapse
Affiliation(s)
- Ming-Shu Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Wei Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Wen Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Fang-Feng Chiu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Cheng-Lung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chang-Ling Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chiao-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ling-Ling Tu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Tian D, Subramaniam S, Heffron CL, Mahsoub HM, Sooryanarain H, Wang B, Cao QM, Hassebroek A, LeRoith T, Foss DL, Calvert JG, Meng XJ. Construction and efficacy evaluation of novel swine leukocyte antigen (SLA) class I and class II allele-specific poly-T cell epitope vaccines against porcine reproductive and respiratory syndrome virus. J Gen Virol 2021; 101:1191-1201. [PMID: 32894211 DOI: 10.1099/jgv.0.001492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically important global swine disease. Here we report the development of subunit PRRSV-2 vaccines by expressing swine leucocyte antigen (SLA) class I and class II allele-specific epitope antigens in a robust adenovirus vector. SLA I-specific CD8 and SLA II-specific CD4 T cell epitopes of PRRSV-2 NADC20 were predicted in silico. Stable murine leukaemia cell lines (RMA-S), which are TAP-deficient and lacking endogenous class I epitope loading, were established to express different SLA I alleles. The binding stability of PRRSV T cell epitope peptides with SLA I alleles expressed on RMA-S cells was characterized. Two PRRSV poly-T cell epitope peptides were designed. NADC20-PP1 included 39 class I epitopes, consisting of 8 top-ranked epitopes specific to each of 5 SLA I alleles, and fused to 5 class II epitopes specific to SLA II alleles. NADC20-PP2, a subset of PP1, included two top-ranked class I epitopes specific to each of the five SLA I alleles. Two vaccine candidates, Ad-NADC20-PP1 and Ad-NADC20-PP2, were constructed by expressing the polytope peptides in a replication-incompetent human adenovirus 5 vector. A vaccination and challenge study in 30 piglets showed that animals vaccinated with the vaccines had numerically lower gross and histopathology lung lesions, and numerically lower PRRSV RNA loads in lung and serum after challenge compared to the controls, although there was no statistical significance. The results suggested that the Ad-NADC20-PP1 and Ad-NADC20-PP2 vaccines provided little or no protection, further highlighting the tremendous challenges faced in developing an effective subunit PRRSV-2 vaccine.
Collapse
Affiliation(s)
- Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sakthivel Subramaniam
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - C Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Hassan M Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Qian M Cao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Anna Hassebroek
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
3
|
Wilken L, Rimmelzwaan GF. Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design? Pathogens 2020; 9:pathogens9060470. [PMID: 32549226 PMCID: PMC7350362 DOI: 10.3390/pathogens9060470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
The four serotypes of dengue virus are the most widespread causes of arboviral disease, currently placing half of the human population at risk of infection. Pre-existing immunity to one dengue virus serotype can predispose to severe disease following secondary infection with a different serotype. The phenomenon of immune enhancement has complicated vaccine development and likely explains the poor long-term safety profile of a recently licenced dengue vaccine. Therefore, alternative vaccine strategies should be considered. This review summarises studies dissecting the adaptive immune responses to dengue virus infection and (experimental) vaccination. In particular, we discuss the roles of (i) neutralising antibodies, (ii) antibodies to non-structural protein 1, and (iii) T cells in protection and pathogenesis. We also address how these findings could translate into next-generation vaccine approaches that mitigate the risk of enhanced dengue disease. Finally, we argue that the development of a safe and efficacious dengue vaccine is an attainable goal.
Collapse
|
4
|
Chen MY, Chai KM, Chiang CY, Wu CC, Yu GY, Liu SJ, Chen HW. Recombinant lipidated Zika virus envelope protein domain III elicits durable neutralizing antibody responses against Zika virus in mice. J Biomed Sci 2020; 27:51. [PMID: 32290844 PMCID: PMC7158147 DOI: 10.1186/s12929-020-00646-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/27/2020] [Indexed: 01/06/2023] Open
Abstract
Background The emergence of Zika virus (ZV) in tropical and subtropical areas of the world has created an urgent need for vaccines against ZV. However, approved vaccines that prevent ZV infection are not available. To develop an effective vaccine against ZV infection, a lipidated form of ZV envelope protein domain III that possesses an intrinsic adjuvant property was rationally designed. Our goal was to examine the immunogenicity of recombinant lipidated ZV envelope protein domain III (rLZE3) and evaluate its potential as a vaccine candidate against ZV. Methods Recombinant ZV envelope protein domain III (rZE3) and rLZE3 were prepared with an Escherichia coli-based system. Dendritic cell surface marker expression and cytokine production upon stimulation were analyzed to evaluate the function of rLZE3. Neutralizing antibody capacities were evaluated using focus reduction neutralization tests after immunization. To investigate the protective immunity in immunized mice, serum samples collected from immunized mice were adoptively transferred into AG129 mice, and then viremia levels and survival times were examined after ZV challenge. Results rLZE3 alone but not rZE3 alone efficiently activated dendritic cells in vitro and was taken up by dendritic cells in vivo. Immunization of C57BL/6 mice with rLZE3 alone (without exogenous adjuvant) could induce ZV-specific neutralizing antibody responses. Furthermore, serum samples obtained from rLZE3-immunized mice provided protection as indicated by a reduction in viremia levels and prolongation of survival times after ZV challenge. Conclusion These results indicate that rLZE3 is an excellent vaccine candidate and has great potential that should be evaluated in further preclinical studies.
Collapse
Affiliation(s)
- Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chiao-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Pang EL, Peyret H, Ramirez A, Loh HS, Lai KS, Fang CM, Rosenberg WM, Lomonossoff GP. Epitope Presentation of Dengue Viral Envelope Glycoprotein Domain III on Hepatitis B Core Protein Virus-Like Particles Produced in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2019; 10:455. [PMID: 31057572 PMCID: PMC6477658 DOI: 10.3389/fpls.2019.00455] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/26/2019] [Indexed: 05/07/2023]
Abstract
Dengue fever is currently ranked as the top emerging tropical disease, driven by increased global travel, urbanization, and poor hygiene conditions as well as global warming effects which facilitate the spread of Aedes mosquitoes beyond their current distribution. Today, more than 100 countries are affected most of which are tropical Asian and Latin American nations with limited access to medical care. Hence, the development of a dengue vaccine that is dually cost-effective and able to confer a comprehensive protection is ultimately needed. In this study, a consensus sequence of the antigenic dengue viral glycoprotein domain III (cEDIII) was used aiming to provide comprehensive coverage against all four circulating dengue viral serotypes and potential clade replacement event. Utilizing hepatitis B tandem core technology, the cEDIII sequence was inserted into the immunodominant c/e1 loop region so that it could be displayed on the spike structures of assembled particles. The tandem core particles displaying cEDIII epitopes (tHBcAg-cEDIII) were successfully produced in Nicotiana benthamiana via Agrobacterium-mediated transient expression strategy to give a protein of ∼54 kDa, detected in both soluble and insoluble fractions of plant extracts. The assembled tHBcAg-cEDIII virus-like particles (VLPs) were also visualized from transmission electron microscopy. These VLPs had diameters that range from 32 to 35 nm, presenting an apparent size increment as compared to tHBcAg control particles without cEDIII display (namely tEL). Mice immunized with tHBcAg-cEDIII VLPs showed a positive seroconversion to cEDIII antigen, thereby signifying that the assembled tHBcAg-cEDIII VLPs have successfully displayed cEDIII antigen to the immune system. If it is proven to be successful, tHBcAg-cEDIII has the potential to be developed as a cost-effective vaccine candidate that confers a simultaneous protection against all four infecting dengue viral serotypes.
Collapse
Affiliation(s)
- Ee Leen Pang
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Hadrien Peyret
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | | | - Hwei-San Loh
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Kok-Song Lai
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | | | | |
Collapse
|
6
|
In situ removal of consensus dengue virus envelope protein domain III fused to hydrophobin in Pichia pastoris cultures. Protein Expr Purif 2018; 153:131-137. [PMID: 30240632 DOI: 10.1016/j.pep.2018.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/14/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022]
Abstract
This work describes a novel strategy for the integrated expression and purification of recombinant proteins in Pichia pastoris cultures. Hydrophobins can be used as fusion tags, proteins fused to them alter their hydrophobicity and can be purified by aqueous two-phase systems (ATPS) based on non-ionic surfactants. Here, the consensus dengue virus envelope protein domain III fused to hydrophobin I of Trichoderma reesei was expressed in Pichia pastoris cultures and an in situ product removal by an ATPS using a non-ionic detergent, (Triton X-114) was performed. The protein was produced and purified directly from the yeast culture supernatant both efficiently and with no loss. The purified protein was properly immobilized by adsorption in solid phase and recognized by anti-dengue antibodies, showing its potential for the development of an indirect immunoassay for dengue virus.
Collapse
|
7
|
Quach QH, Ang SK, Chu JHJ, Kah JCY. Size-dependent neutralizing activity of gold nanoparticle-based subunit vaccine against dengue virus. Acta Biomater 2018; 78:224-235. [PMID: 30099200 DOI: 10.1016/j.actbio.2018.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
Dengue results in substantial human morbidity and significant socio-economic impacts, but a specific dengue therapeutic is not available. The currently available dengue vaccine has low efficacy and high rate of adverse effects, necessitating different strategies for the development of a safer and more efficient vaccine against dengue virus. We describe here a hybrid combination of different-sized gold nanoparticles (AuNPs) and domain III of envelope glycoprotein derived from serotype 2 of dengue virus (EDIII) as dengue subunit vaccine. The efficacy of the EDIII-functionalized AuNPs (AuNP-E) to induce neutralizing antibody in BALB/c mice is evaluated. Obtained results show that AuNP-E induced a high level of antibody which mediates serotype-specific neutralization of dengue virus. More importantly, the level of antibody is dependent on both the size of AuNPs and the concentration of AuNP-E, implicating the possibility to modulate it through adjusting these parameters. These results represent an important step towards the development of tetravalent AuNP-based subunit dengue vaccine. STATEMENT OF SIGNIFICANCE This research presents a novel subunit vaccine against dengue virus using a hybrid comprising gold nanoparticles (AuNPs) and domain III of envelop protein (EDIII). We proved the neutralizing activity of anti-EDIII antibody induced in immunized mice on Dengue virus serotype 2 in an AuNP core size and concentration dependent manner. The hybrid concept behind this work could also be adopted for the development of a tetravalent vaccine against four serotypes of Dengue virus.
Collapse
|
8
|
Chiang CY, Chen YJ, Wu CC, Liu SJ, Leng CH, Chen HW. Efficient Uptake of Recombinant Lipidated Survivin by Antigen-Presenting Cells Initiates Antigen Cross-Presentation and Antitumor Immunity. Front Immunol 2018; 9:822. [PMID: 29755461 PMCID: PMC5932405 DOI: 10.3389/fimmu.2018.00822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Survivin is overexpressed in various types of human cancer, but rarely expressed in terminally differentiated adult tissues. Thus, survivin is a potential target antigen for a cancer vaccine. However, self-tumor-associated antigens are not highly immunogenic. Bacteria-derived lipoproteins can activate antigen-presenting cells through their toll-like receptors to enhance immune responses. In this context, lipidated survivin is an attractive candidate for cancer immunotherapy. In the present study, recombinant lipidated human survivin (LSur) was prepared from an Escherichia coli-based system. We investigated whether LSur is efficiently captured by antigen-presenting cells then facilitating effective induction of survivin cross-presentation and generation of immunity against cancer cells. Our results demonstrate that LSur, but not its non-lipidated counterpart, can activate mouse bone-marrow-derived-dendritic cells (BMDCs) to enhance cytokine (IL-6, TNF-α, and IL-12) secretion and costimulatory molecules (CD40, CD80, CD86, and MHC II) expression. However, the pathways involved in the capture of the recombinant lipidated antigen by antigen-presenting cells have not yet been elucidated. To this end, we employ various endocytosis inhibitors to study the effect on LSur internalization. We show that the internalization of LSur is suppressed by the inhibition of various routes of endocytosis. These results suggest that endocytosis of LSur by BMDCs can be mediated by multiple mechanisms. Furthermore, LSur is trafficked to the early endosome after internalization by BMDCs. These features of LSur are advantageous for cross-presentation and the induction of antitumor immunity. We demonstrate that immunization of C57BL/6 mice with LSur under treatment with exogenous adjuvant-free formulation induce survivin-specific CD8+ T-cell responses and suppress tumor growth. The antitumor responses are mediated by CD8+ cells. Our findings indicate that LSur is a potential candidate for stimulating protective antitumor immunity. This study suggests that lipidated tumor antigens may be a promising approach for raising a robust antitumor response in cancer immunotherapy.
Collapse
Affiliation(s)
- Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Jyun Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chiao-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chih-Hsiang Leng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Bal J, Luong NN, Park J, Song KD, Jang YS, Kim DH. Comparative immunogenicity of preparations of yeast-derived dengue oral vaccine candidate. Microb Cell Fact 2018; 17:24. [PMID: 29452594 PMCID: PMC5815244 DOI: 10.1186/s12934-018-0876-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/09/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Dengue is listed as a neglected tropical disease by the Center for Disease Control and Preservation, as there are insufficient integrated surveillance strategies, no effective treatment, and limited licensed vaccines. Consisting of four genetically distinct serotypes, dengue virus (DENV) causes serious life-threatening infections due to its complexity. Antibody-dependent enhancement by pre-existing cross-reactive as well as homotypic antibodies further worsens the clinical symptoms of dengue. Thus, a vaccine conferring simultaneous and durable immunity to each of the four DENV serotypes is essential to restrict its escalation. In deeply affected resource-limited countries, oral vaccination using food-grade organisms is considered to be a beneficial approach in terms of costs, patient comfort, and simple logistics for mass immunization. The current study used a mouse model to explore the immunogenicity of an oral dengue vaccine candidate prepared using whole recombinant yeast cells (WC) and cell-free extracts (CFE) from cells expressing recombinant Escherichia coli heat-labile toxin protein B-subunit (LTB) fused to the consensus dengue envelope domain III (scEDIII). Mice were treated orally with recombinant WC and CFE vaccines in 2-week intervals for 4 weeks and changes in systemic and mucosal immune responses were monitored. RESULTS Both WC and CFE dosage applications of LTB-scEDIII stimulated a systemic humoral immune response in the form of dengue-specific serum IgG as well as mucosal immune response in the form of secretory sIgA. Antigen-specific B cell responses in isolated lymphoid cells from the spleen and Peyer's patches further indicated an elevated mucosal immune response. Cellular immune response estimated through lymphocyte proliferation assay indicated higher levels in CFE than WC dosage. Furthermore, sera obtained after both oral administrations successfully neutralized DENV-1, whereas CFE formulation only neutralized DENV-2 serotype, two representative serotypes which cause severe dengue infection. Sera from mice that were fed CFE preparations demonstrated markedly higher neutralizing titers compared to those from WC-fed mice. However, WC feeding elicited strong immune responses, which were similar to the levels induced by CFE feeding after intraperitoneal booster with purified scEDIII antigen. CONCLUSIONS CFE preparations of LTB-scEDIII produced strong immunogenicity with low processing requirements, signifying that this fusion protein shows promise as a potent oral vaccine candidate against dengue viral infection.
Collapse
Affiliation(s)
- Jyotiranjan Bal
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Nguyen Ngoc Luong
- Department of Biology, College of Sciences, Hue University, Hue, Vietnam
| | - Jisang Park
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, The Animal Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Yong-Suk Jang
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
10
|
Wu CC, Liu SJ, Chen HW, Shen KY, Leng CH. A Toll-like receptor 2 agonist-fused antigen enhanced antitumor immunity by increasing antigen presentation and the CD8 memory T cells population. Oncotarget 2017; 7:30804-19. [PMID: 27127171 PMCID: PMC5058719 DOI: 10.18632/oncotarget.9001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/31/2016] [Indexed: 11/25/2022] Open
Abstract
The induction of long-lived effector CD8+ T cells is key to the development of efficient cancer vaccines. In this study, we demonstrated that a Toll-like receptor 2 (TLR2) agonist-fused antigen increased antigen presentation via TLR2 signaling and induced effector memory-like CD8+ T cells against cancer after immunization. The N-terminus of ovalbumin (OVA) was biologically fused with a bacterial lipid moiety TLR2 agonist to produce a recombinant lipidated ovalbumin (rlipo-OVA). We demonstrated that rlipo-OVA activated bone marrow-derived dendritic cells (BM-DCs) maturation and increased antigen presentation by major histocompatibility complex (MHC) class I via TLR2. After immunization, rlipo-OVA skewed the immune response towards T helper (Th) 1 and induced OVA-specific cytotoxic T lymphocyte (CTL) responses. Moreover, immunization with rlipo-OVA induced higher numbers of effector memory (CD44+CD62L-) CD8+ T cells compared with recombinant ovalbumin (rOVA) alone or rOVA mixed with the TLR2 agonist Pam3CSK4. Accordingly, the CD27+CD43+ effector memory CD8+ T cells expressed high levels of the long-lived CD127 marker. The administration of rlipo-OVA could inhibit tumor growth, but the anti-tumor effects were lost after the depletion of CD8 or CD127 cells in vivo. These findings suggested that the TLR2 agonist-fused antigen induced long-lived memory CD8+ T cells for efficient cancer therapy.
Collapse
Affiliation(s)
- Chiao-Chieh Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.,National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County 350, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County 350, Taiwan.,Graduate Institute of Immunology, China Medical University, Taichung 40402, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County 350, Taiwan.,Graduate Institute of Immunology, China Medical University, Taichung 40402, Taiwan
| | - Kuan-Yin Shen
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County 350, Taiwan
| | - Chih-Hsiang Leng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.,National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County 350, Taiwan.,Graduate Institute of Immunology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
11
|
Kim M, Van Dolleweerd C, Copland A, Paul MJ, Hofmann S, Webster GR, Julik E, Ceballos‐Olvera I, Reyes‐del Valle J, Yang M, Jang Y, Reljic R, Ma JK. Molecular engineering and plant expression of an immunoglobulin heavy chain scaffold for delivery of a dengue vaccine candidate. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1590-1601. [PMID: 28421694 PMCID: PMC5698049 DOI: 10.1111/pbi.12741] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 05/22/2023]
Abstract
In order to enhance vaccine uptake by the immune cells in vivo, molecular engineering approach was employed to construct a polymeric immunoglobulin G scaffold (PIGS) that incorporates multiple copies of an antigen and targets the Fc gamma receptors on antigen-presenting cells. These self-adjuvanting immunogens were tested in the context of dengue infection, for which there is currently no globally licensed vaccine yet. Thus, the consensus domain III sequence (cEDIII) of dengue glycoprotein E was incorporated into PIGS and expressed in both tobacco plants and Chinese Ovary Hamster cells. Purified mouse and human cEDIII-PIGS were fractionated by HPLC into low and high molecular weight forms, corresponding to monomers, dimers and polymers. cEDIII-PIGS were shown to retain important Fc receptor functions associated with immunoglobulins, including binding to C1q component of the complement and the low affinity Fcγ receptor II, as well as to macrophage cells in vitro. These molecules were shown to be immunogenic in mice, with or without an adjuvant, inducing a high level IgG antibody response which showed a neutralizing potential against the dengue virus serotype 2. The cEDIII-PIGS also induced a significant cellular immune response, IFN-γ production and polyfunctional T cells in both the CD4+ and CD8+ compartments. This proof-of-principle study shows that the potent antibody Fc-mediated cellular functions can be harnessed to improve vaccine design, underscoring the potential of this technology to induce and modulate a broad-ranging immune response.
Collapse
Affiliation(s)
- Mi‐Young Kim
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
- Department of Molecular Biology and The Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | | | - Alastair Copland
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Matthew John Paul
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Sven Hofmann
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Gina R. Webster
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Emily Julik
- School of Life SciencesArizona State UniversityTempeAZUSA
| | | | | | - Moon‐Sik Yang
- Department of Molecular Biology and The Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | - Yong‐Suk Jang
- Department of Molecular Biology and The Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | - Rajko Reljic
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Julian K. Ma
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| |
Collapse
|
12
|
Kulkarni A, Bhat R, Malik M, Sane S, Kothari S, Vaidya S, Chowdhary A, Deshmukh RA. Neutralizing Antibody Response and Efficacy of Novel Recombinant Tetravalent Dengue DNA Vaccine Comprising Envelope Domain III in Mice. IRANIAN JOURNAL OF MEDICAL SCIENCES 2017; 42:152-160. [PMID: 28360441 PMCID: PMC5366363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Dengue is a global arboviral threat to humans; causing 390 million infections per year. The availability of safe and effective tetravalent dengue vaccine is a global requirement to prevent epidemics, morbidity, and mortality associated with it. METHODS Five experimental groups (6 mice per group) each of 5-week-old BALB/c mice were immunized with vaccine and placebo (empty plasmid) (100 µg, i.m.) on days 0, 14 and 28. Among these, four groups (one group per serotype) of each were subsequently challenged 3 weeks after the last boost with dengue virus (DENV) serotypes 1-4 (100 LD50, 20 µl intracerebrally) to determine vaccine efficacy. The fifth group of each was used as a control. The PBS immunized group was used as mock control. Serum samples were collected before and after subsequent immunizations. EDIII fusion protein expression was determined by Western blot. Total protein concentration was measured by Bradford assay. Neutralizing antibodies were assessed by TCID50-CPE inhibition assay. Statistical analysis was performed using Stata/IC 10.1 software for Windows. One-way repeated measures ANOVA and Mann-Whitney test were used for neutralizing antibody analysis and vaccine efficacy, respectively. RESULTS The recombinant EDIII fusion protein was expressed adequately in transfected 293T cells. Total protein concentration was almost 3 times more than the control. Vaccine candidate induced neutralizing antibodies against all four DENV serotypes with a notable increase after subsequent boosters. Vaccine efficacy was 83.3% (DENV-1, -3, -4) and 50% (DENV-2). CONCLUSION Our results suggest that vaccine is immunogenic and protective; however, further studies are required to improve the immunogenicity particularly against DENV-2.
Collapse
Affiliation(s)
- Ajit Kulkarni
- Department of Virology, Haffkine Institute for Traning, Research and Testing, Acharya Donde Marg, Mumbai-400012 India,Correspondence: Ajit Kulkarni, MS; Department of Virology, Haffkine Institute for Traning, Research and Testing, Acharya Donde Marg, Mumbai-400012 India Tel: +91 22 24160947 Fax: +91 22 24161787
| | - Rushil Bhat
- Department of Virology, Haffkine Institute for Traning, Research and Testing, Acharya Donde Marg, Mumbai-400012 India
| | - Mansi Malik
- Department of Zoonosis, Haffkine Institute for Traning, Research and Testing, Acharya Donde Marg, Mumbai-400012 India
| | - Suvarna Sane
- National AIDS Research Institute, MIDC, Bhosari, Pune-411026 India
| | - Sweta Kothari
- Department of Virology, Haffkine Institute for Traning, Research and Testing, Acharya Donde Marg, Mumbai-400012 India
| | - Shashikant Vaidya
- Department of Virology, Haffkine Institute for Traning, Research and Testing, Acharya Donde Marg, Mumbai-400012 India
| | - Abhay Chowdhary
- Department of Virology, Haffkine Institute for Traning, Research and Testing, Acharya Donde Marg, Mumbai-400012 India
| | - Ranjana A. Deshmukh
- Department of Virology, Haffkine Institute for Traning, Research and Testing, Acharya Donde Marg, Mumbai-400012 India
| |
Collapse
|
13
|
Zhang T, Liu H, Chen X, Wang Z, Wang S, Qu C, Zhang J, Xu X. Lipidated L2 epitope repeats fused with a single-chain antibody fragment targeting human FcγRI elicited cross-neutralizing antibodies against a broad spectrum of human papillomavirus types. Vaccine 2016; 34:5531-5539. [PMID: 27729176 DOI: 10.1016/j.vaccine.2016.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 12/24/2022]
Abstract
Numerous types of human papillomaviruses (HPVs) have been identified, and the global burden of diseases associated with HPV infection is remarkable, especially in developing regions. Thus a low-cost broad-spectrum prophylactic vaccine is urgently needed. The N-terminal amino acid 17-36 of HPV 16 L2 protein is confirmed to be a major cross-neutralizing epitope (RG-1 epitope). Monomeric proteins containing RG-1 epitopes and scaffold proteins, such as bacterial thioredoxin or modified IgG1 Fc fragment and L2 epitope fusion protein, induced cross-neutralizing antibodies, arousing the possibility of the development of low-cost monomeric vaccine in bacterial expression system. Here we show that a novel immunogen-scaffold protein containing a lipidated triple-repeat HPV 16RG-1 epitope and a hFcγRI specific single-chain antibody fragment (H22scFv), named LpE3H22, elicited high titers of cross-neutralizing antibodies against a broad range of mucosal and cutaneous HPV types when adjuvanted with MF59 and poly I:C. LpE3H22 was produced in E. coli expression system. In contrast to three repeats of RG-1 epitope (E3) and unlipidated fusion protein E3H22, vaccination of LpE3H22 induced robust cross-neutralizing antibody responses in hFcγRI transgenic mice. Furthermore, the neutralizing antibody response induced by LpE3H22 was significantly weaker in WT mice than in the Tg mice. The cross-neutralizing antibodies induced by LpE3H22 sustained for at least 10months in Tg mice. Our results demonstrate that hFcγRI targeting and lipidation both contribute to the enhancement of immunogenicity of L2 antigen. Therefore, delivering the lipidated L2 antigen with H22scFv opens a new avenue for low-cost pan-HPV vaccine development.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hongyang Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xue Chen
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhirong Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shuo Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chunfeng Qu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingzhi Zhang
- Changchun Werersai Biotec Pharmaceutical Co., LTD, Changchun, China
| | - Xuemei Xu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Chiang CY, Pan CH, Chen MY, Hsieh CH, Tsai JP, Liu HH, Liu SJ, Chong P, Leng CH, Chen HW. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice. Sci Rep 2016; 6:30648. [PMID: 27470096 PMCID: PMC4965760 DOI: 10.1038/srep30648] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/08/2016] [Indexed: 11/09/2022] Open
Abstract
We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates.
Collapse
Affiliation(s)
- Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
| | - Chien-Hsiung Pan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
| | - Chun-Hsiang Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
| | - Jy-Ping Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
| | - Hsueh-Hung Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
| | - Pele Chong
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
| | - Chih-Hsiang Leng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|
15
|
A novel liposomal recombinant lipoimmunogen enhances anti-tumor immunity. J Control Release 2016; 233:57-63. [PMID: 27164542 DOI: 10.1016/j.jconrel.2016.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/10/2016] [Accepted: 05/05/2016] [Indexed: 01/08/2023]
Abstract
Synthetic liposomes provide a biocompatible and biodegradable approach for delivering drugs and antigens. In addition, self-adjuvanting recombinant lipoproteins (rlipoproteins) can enhance Th1 anti-tumor immune responses via the TLR2 signaling pathway. To generate a liposomal rlipoprotein for a cancer immunotherapeutic vaccine, we assessed 3 types of synthetic liposomes for use with the rlipoproteins rlipoE7m and rlipoOVA. We determined that the cationic liposome DOTAP could stabilize anionic rlipoproteins and delay rlipoprotein release. Surprisingly, rlipoproteins and DOTAP could synergistically up-regulate CD83 expression in bone marrow-derived dendritic cells (BMDCs). Compared with other liposome formulations, the rlipoprotein/DOTAP formulation elicited higher cytotoxic T-lymphocyte (CTL) responses. To explore the mechanism of BMDC activation by rlipoprotein/DOTAP, we assessed the production of reactive oxygen species (ROS) and the TNF-α secretion of BMDCs. We observed that rlipoprotein/DOTAP induced ROS to the same extent as DOTAP did. In addition, TLR2 signaling was also required for the TNF-α secretion of rlipoprotein/DOTAP-treated BMDCs. Moreover, compared with rlipoOVA-treated BMDCs, rlipoOVA/DOTAP-treated BMDCs increased the levels of IFN-γ produced by OVA-specific T cells. We also observed that rlipoE7m/DOTAP treatment but not rlipoE7m treatment delayed tumor growth. These results indicate that the rlipoprotein/DOTAP formulation can synergistically activate BMDCs via ROS and the TLR2 signaling pathway. In summary, rlipoprotein/DOTAP is a novel and stable formulation for cancer immunotherapy.
Collapse
|
16
|
Pang EL, Loh HS. Current perspectives on dengue episode in Malaysia. ASIAN PAC J TROP MED 2016; 9:395-401. [PMID: 27086160 DOI: 10.1016/j.apjtm.2016.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/20/2016] [Indexed: 11/29/2022] Open
Abstract
Prevalence of dengue transmission has been alarmed by an estimate of 390 million infections per annum. Urban encroachment, ecological disruption and poor sanitation are all contributory factors of increased epidemiology. Complication however arises from the fact that dengue virus inherently exists as four different serotypes. Secondary infection is often manifested in the more severe form, such that antibody-dependent enhancement (ADE) could aggravate ailment by allowing pre-existing antibodies to form complexes with infecting viruses as means of intrusion. Consequently, increased viraemic titter and suppression of antiviral response are observed. Deep concerns are thus expressed in regards to escalating trend of hospitalisation and mortality rates. In Malaysia, situation is exacerbated by improper clinical management and pending vector control operations. As a preparedness strategy against the potential deadly dengue pandemic, the call for development of a durable and cost-effective dengue vaccine against all infecting serotypes is intensified. Even though several vaccine candidates are currently being evaluated in clinical trials, uncertainties in regards to serotypes interference, incomplete protection and dose adequacy have been raised. Instead of sole reliance on outsourcing, production of local vaccine should be considered in coherent to government's efforts to combat against dengue.
Collapse
Affiliation(s)
- Ee Leen Pang
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; Biotechnology Research Centre, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
17
|
Chiang CY, Liu SJ, Hsieh CH, Chen MY, Tsai JP, Liu HH, Chen IH, Chong P, Leng CH, Chen HW. Recombinant lipidated dengue-3 envelope protein domain III stimulates broad immune responses in mice. Vaccine 2016; 34:1054-61. [PMID: 26776472 DOI: 10.1016/j.vaccine.2016.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 11/16/2022]
Abstract
The linkage of an immunogen with a toll-like receptor ligand has great potential to induce highly potent immune responses with the initial features of antigen-presenting cell activation. In the current study, we expressed recombinant dengue-3 envelope protein domain III (D3ED III) in lipidated form using an Escherichia coli-based system. The recombinant lipidated dengue-3 envelope protein domain III (LD3ED III) augments the expression levels of IL-12 family cytokines. LD3ED III-immunized mice enhance wide ranges of T cell responses as indicated by IFN-γ, IL-17, IL-21 production. Additionally, LD3ED III-immunized mice increase the frequencies of anti-D3ED III antibody producing cells. The boosted antibody titers cover various IgG isotypes, including IgG1, IgG2a, IgG2b, and IgG3. Importantly, LD3ED III-immunized mice induce neutralizing antibody capacity associated with a reduction of viremia levels after challenges. In contrast, mice that are immunized with D3ED III formulated with aluminum phosphate (D3ED III/Alum) only enhance Th2 responses and boost IgG1 antibody titers. Neither neutralizing antibody responses nor the inhibition of viremia levels after challenge is observed in mice that are immunized with D3ED III/Alum. These results suggest that LD3ED III can induce broad profiles of cellular and humoral immune responses.
Collapse
Affiliation(s)
- Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Chun-Hsiang Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Jy-Ping Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Hsueh-Hung Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - I-Hua Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Pele Chong
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Chih-Hsiang Leng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan.
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
18
|
Lam JH, Ong LC, Alonso S. Key concepts, strategies, and challenges in dengue vaccine development: an opportunity for sub-unit candidates? Expert Rev Vaccines 2015; 15:483-95. [PMID: 26508565 DOI: 10.1586/14760584.2016.1106318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite 70 years of research that has intensified in the past decade, a safe and efficacious dengue vaccine has yet to be available. In addition to the expected challenges such as identifying immune correlates of protection, the dengue vaccine field has faced additional hurdles including the necessity to design a tetravalent formulation and the risk of antibody-mediated disease enhancement. Nevertheless, tetravalent live attenuated vaccine candidates have reached efficacy trials and demonstrated some benefit, despite imbalanced immunogenicity and incomplete protection against the four serotypes. Meanwhile, the development of sub-unit dengue vaccines has gained momentum. As the target of most of the neutralizing antibodies so far reported, the virus envelope E protein has been the focus of much effort and represents the leading dengue sub-unit vaccine candidate. However, its notorious poor immunogenicity has prompted the development of innovative approaches to make E-derived constructs part of the second generation dengue vaccines portfolio.
Collapse
Affiliation(s)
- Jian Hang Lam
- a Department of Microbiology and Immunology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore
| | - Li Ching Ong
- b Immunology programme, Life Sciences Institute , National University of Singapore , Singapore
| | - Sylvie Alonso
- a Department of Microbiology and Immunology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore.,b Immunology programme, Life Sciences Institute , National University of Singapore , Singapore
| |
Collapse
|
19
|
Leng CH, Liu SJ, Chen HW, Chong P. Recombinant bacterial lipoproteins as vaccine candidates. Expert Rev Vaccines 2015; 14:1623-32. [PMID: 26420467 DOI: 10.1586/14760584.2015.1091732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recombinant bacterial lipoproteins (RLP) with built-in immuno-stimulating properties for novel subunit vaccine development are reviewed. This platform technology offers the following advantages: easily converts antigens into highly immunogenic RLP using a fusion sequence containing lipobox; the lipid moiety of RLP is recognized as the danger signals in the immune system through the Toll-like receptor 2, so both innate and adaptive immune responses can be induced by RLP; serves as an efficient and cost-effective bioprocess for producing RLP in Escherichia coli and the feasibility and safety of this core platform technology has been successfully demonstrated in animal model studies including meningococcal group B subunit vaccine, dengue subunit vaccine, novel subunit vaccine against Clostridium difficile-associated diseases and HPV-based immunotherapeutic vaccines.
Collapse
Affiliation(s)
- Chih-Hsiang Leng
- a Vaccine R&D Center, National Health Research Institutes, Zhunan Town, Miaoli 350, Taiwan
| | - Shih-Jen Liu
- a Vaccine R&D Center, National Health Research Institutes, Zhunan Town, Miaoli 350, Taiwan
| | - Hsin-Wei Chen
- a Vaccine R&D Center, National Health Research Institutes, Zhunan Town, Miaoli 350, Taiwan
| | | |
Collapse
|
20
|
Vannice KS, Roehrig JT, Hombach J. Next generation dengue vaccines: A review of the preclinical development pipeline. Vaccine 2015; 33:7091-9. [PMID: 26424602 DOI: 10.1016/j.vaccine.2015.09.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 11/17/2022]
Abstract
Dengue represents a significant and growing public health problem across the globe, with approximately half of the world's population at risk. The increasing and expanding burden of dengue has highlighted the need for new tools to prevent dengue, including development of dengue vaccines. Recently, the first dengue vaccine candidate was evaluated in Phase 3 clinical trials, and other vaccine candidates are under clinical evaluation. There are also a number of candidates in preclinical development, based on diverse technologies, with promising results in animal models and likely to move into clinical trials and could eventually be next-generation dengue vaccines. This review provides an overview of the various technological approaches to dengue vaccine development with specific focus on candidates in preclinical development and with evaluation in non-human primates.
Collapse
Affiliation(s)
- Kirsten S Vannice
- Initiative for Vaccine Research, Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - John T Roehrig
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Joachim Hombach
- Initiative for Vaccine Research, Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
21
|
Recombinant Lipoproteins as Novel Vaccines with Intrinsic Adjuvant. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 99:55-74. [PMID: 26067816 DOI: 10.1016/bs.apcsb.2015.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A core platform technology for high production of recombinant lipoproteins with built-in immunostimulator for novel subunit vaccine development has been established. This platform technology has the following advantages: (1) easily convert antigen into lipidated recombinant protein using a fusion sequence containing lipobox and express high level (50-150mg/L) in Escherichia coli; (2) a robust high-yield up- and downstream bioprocess for lipoprotein production is successfully developed to devoid endotoxin contamination; (3) the lipid moiety of recombinant lipoproteins, which is identical to that of bacterial lipoproteins is recognized as danger signals by the immune system (Toll-like receptor 2 agonist), so both innate and adaptive immune responses can be induced by lipoproteins; and (4) successfully demonstrate the feasibility and safety of this core platform technology in meningococcal group B subunit vaccine, dengue subunit vaccine, novel subunit vaccine against Clostridium difficile-associated diseases, and HPV-based immunotherapeutic vaccines in animal model studies.
Collapse
|
22
|
Ghosh A, Dar L. Dengue vaccines: Challenges, development, current status and prospects. Indian J Med Microbiol 2015; 33:3-15. [DOI: 10.4103/0255-0857.148369] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Nguyen NL, So KK, Kim JM, Kim SH, Jang YS, Yang MS, Kim DH. Expression and characterization of an M cell-specific ligand-fused dengue virus tetravalent epitope using Saccharomyces cerevisiae. J Biosci Bioeng 2014; 119:19-27. [PMID: 25027708 DOI: 10.1016/j.jbiosc.2014.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/19/2014] [Accepted: 06/11/2014] [Indexed: 11/29/2022]
Abstract
A fusion construct (Tet-EDIII-Co1) consisting of an M cell-specific peptide ligand (Co1) at the C-terminus of a recombinant tetravalent gene encoding the amino acid sequences of dengue envelope domain III (Tet-EDIII) from four serotypes was expressed and tested for binding activity to the mucosal immune inductive site M cells for the development of an oral vaccine. The yeast episomal expression vector, pYEGPD-TER, which was designed to direct gene expression using the glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter, a functional signal peptide of the amylase 1A protein from rice, and the GAL7 terminator, was used to clone the Tet-EDIII-Co1 gene and resultant plasmids were then used to transform Saccharomyces cerevisiae. PCR and back-transformation into Escherichia coli confirmed the presence of the Tet-EDIII-Co1 gene-containing plasmid in transformants. Northern blot analysis of transformed S. cerevisiae identified the presence of the Tet-EDIII-Co1-specific transcript. Western blot analysis indicated that the produced Tet-EDIII-Co1 protein with the expected molecular weight was successfully secreted into the culture medium. Quantitative Western blot analysis and ELISA revealed that the recombinant Tet-EDIII-Co1 protein comprised approximately 0.1-0.2% of cell-free extracts (CFEs). In addition, 0.1-0.2 mg of Tet-EDIII-Co1 protein per liter of culture filtrate was detected on day 1, and this quantity peaked on day 3 after cultivation. In vivo binding assays showed that the Tet-EDIII-Co1 protein was delivered specifically to M cells in Peyer's patches (PPs) while the Tet-EDIII protein lacking the Co1 ligand did not, which demonstrated the efficient targeting of this antigenic protein through the mucosal-specific ligand.
Collapse
Affiliation(s)
- Ngoc-Luong Nguyen
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Kum-Kang So
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Jung-Mi Kim
- Department of Bio-Environmental Chemistry, Wonkwang University, Iksan, Chonbuk 570-749, Republic of Korea
| | - Sae-Hae Kim
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Yong-Suk Jang
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Moon-Sik Yang
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Dae-Hyuk Kim
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Dengue is a rapidly spreading vector-borne disease estimated to infect 400 million people worldwide. To date, there are no licensed treatments or vaccines. The last few years have seen significant developments in dengue control strategies. In this review, we will address four key areas: vaccines, vector control, antivirals and immunotherapeutics. RECENT FINDINGS The first generation of dengue vaccines is able to induce good serological responses in test individuals. However, the recent Sanofi-Pasteur trial in Thailand found that a good serological response did not correlate with clinical protection. This trial did not demonstrate an increase in cases of severe disease following immunization, suggesting that concerns over vaccine-related immune enhancement may have been overcome. The bacterium Wolbachia appears to control dengue proliferation in Aedes mosquitoes, and field studies are underway. A large number of antivirals are in early-stage development and may prove useful in epidemics. Monoclonal antibodies have been postulated to have a clinical role. Whether their clinical application is feasible has yet to be seen. SUMMARY Marked improvements in our knowledge of dengue have been made over the recent years. Sadly, clinical application remains some years away.
Collapse
|
25
|
Lazo L, Izquierdo A, Suzarte E, Gil L, Valdés I, Marcos E, Álvarez M, Romero Y, Guzmán MG, Guillén G, Hermida Cruz L. Evaluation in mice of the immunogenicity and protective efficacy of a tetravalent subunit vaccine candidate against dengue virus. Microbiol Immunol 2014; 58:219-26. [DOI: 10.1111/1348-0421.12140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/16/2014] [Accepted: 01/25/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Laura Lazo
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| | - Alienys Izquierdo
- Virology Department; Tropical Medicine Institute “Pedro Kourí,” Pan American Health Organization/World Health Organization Collaborating Center for the Study of Dengue and its Vector; P.O. Box Marianao 13 Havana 11 600 Cuba
| | - Edith Suzarte
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| | - Lázaro Gil
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| | - Iris Valdés
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| | - Ernesto Marcos
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| | - Mayling Álvarez
- Virology Department; Tropical Medicine Institute “Pedro Kourí,” Pan American Health Organization/World Health Organization Collaborating Center for the Study of Dengue and its Vector; P.O. Box Marianao 13 Havana 11 600 Cuba
| | - Yaremis Romero
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| | - María Guadalupe Guzmán
- Virology Department; Tropical Medicine Institute “Pedro Kourí,” Pan American Health Organization/World Health Organization Collaborating Center for the Study of Dengue and its Vector; P.O. Box Marianao 13 Havana 11 600 Cuba
| | - Gerardo Guillén
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| | - Lisset Hermida Cruz
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| |
Collapse
|
26
|
Chiang CY, Hsieh CH, Chen MY, Tsai JP, Liu HH, Liu SJ, Chong P, Leng CH, Chen HW. Recombinant lipidated dengue-4 envelope protein domain III elicits protective immunity. Vaccine 2014; 32:1346-53. [PMID: 24486311 DOI: 10.1016/j.vaccine.2014.01.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 02/06/2023]
Abstract
The combination of recombinant protein antigens with an immunostimulator has the potential to greatly increase the immunogenicity of recombinant protein antigens. In the present study, we selected the dengue-4 envelope protein domain III as a dengue vaccine candidate and expressed the protein in lipidated form using an Escherichia coli-based system. The recombinant lipidated dengue-4 envelope protein domain III folded into the proper conformation and competed with the dengue-4 virus for cellular binding sites. Mice immunized with lipidated dengue-4 envelope protein domain III without exogenous adjuvant had higher frequencies of dengue-4 envelope protein domain III-specific B cells secreting antibodies than mice immunized with the nonlipidated form. Importantly, lipidated dengue-4 envelope protein domain III-immunized mice demonstrated a durable neutralizing antibody response and had reduced viremia levels after challenge. The study demonstrates that lipidated dengue-4 envelope protein domain III is immunogenic and may be a potential dengue vaccine candidate. Furthermore, the lipidation strategy can be applied to other serotypes of dengue virus.
Collapse
Affiliation(s)
- Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC
| | - Chun-Hsiang Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC
| | - Jy-Ping Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC
| | - Hsueh-Hung Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
| | - Pele Chong
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
| | - Chih-Hsiang Leng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC.
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC.
| |
Collapse
|
27
|
Li XQ, Qiu LW, Chen Y, Wen K, Cai JP, Chen J, Pan YX, Li J, Hu DM, Huang YF, Liu LD, Ding XX, Guo YH, Che XY. Dengue virus envelope domain III immunization elicits predominantly cross-reactive, poorly neutralizing antibodies localized to the AB loop: implications for dengue vaccine design. J Gen Virol 2013; 94:2191-2201. [PMID: 23851440 DOI: 10.1099/vir.0.055178-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne virus that causes severe health problems. An effective tetravalent dengue vaccine candidate that can provide life-long protection simultaneously against all four DENV serotypes is highly anticipated. A better understanding of the antibody response to DENV envelope protein domain III (EDIII) may offer insights into vaccine development. Here, we identified 25 DENV cross-reactive mAbs from immunization with Pichia pastoris-expressed EDIII of a single or all four serotype(s) using a prime-boost protocol, and through pepscan analysis found that 60 % of them (15/25) specifically recognized the same highly conserved linear epitope aa 309-320 of EDIII. All 15 complex-reactive mAbs exhibited significant cross-reactivity with recombinant EDIII from all DENV serotypes and also with C6/36 cells infected with DENV-1, -2, -3 and -4. However, neutralization assays indicated that the majority of these 15 mAbs were either moderately or weakly neutralizing. Through further epitope mapping by yeast surface display, two residues in the AB loop, Q316 and H317, were discovered to be critical. Three-dimensional modelling analysis suggests that this epitope is surface exposed on EDIII but less accessible on the surface of the E protein dimer and trimer, especially on the surface of the mature virion. It is concluded that EDIII as an immunogen may elicit cross-reactive mAbs toward an epitope that is not exposed on the virion surface, therefore contributing inefficiently to the mAbs neutralization potency. Therefore, the prime-boost strategy of EDIII from a single serotype or four serotypes mainly elicited a poorly neutralizing, cross-reactive antibody response to the conserved AB loop of EDIII.
Collapse
Affiliation(s)
- Xiao-Quan Li
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.,Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.,Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, PR China
| | - Li-Wen Qiu
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.,Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Yue Chen
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.,Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Kun Wen
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.,Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Jian-Piao Cai
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.,Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Jing Chen
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.,Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Yu-Xian Pan
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.,Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Jie Li
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.,Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Dong-Mei Hu
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.,Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Yan-Fen Huang
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.,Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Li-Dong Liu
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.,Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Xi-Xia Ding
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.,Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Yong-Hui Guo
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.,Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Xiao-Yan Che
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.,Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| |
Collapse
|
28
|
Rodriguez-Roche R, Gould EA. Understanding the dengue viruses and progress towards their control. BIOMED RESEARCH INTERNATIONAL 2013; 2013:690835. [PMID: 23936833 PMCID: PMC3722981 DOI: 10.1155/2013/690835] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/08/2013] [Indexed: 01/12/2023]
Abstract
Traditionally, the four dengue virus serotypes have been associated with fever, rash, and the more severe forms, haemorrhagic fever and shock syndrome. As our knowledge as well as understanding of these viruses increases, we now recognise not only that they are causing increasing numbers of human infections but also that they may cause neurological and other clinical complications, with sequelae or fatal consequences. In this review we attempt to highlight some of these features in the context of dengue virus pathogenesis. We also examine some of the efforts currently underway to control this "scourge" of the tropical and subtropical world.
Collapse
Affiliation(s)
- Rosmari Rodriguez-Roche
- Pedro Kouri Tropical Medicine Institute, WHO/PAHO Collaborating Centre for the Study of Dengue and Its Vector, Havana, Cuba.
| | | |
Collapse
|
29
|
Induction of robust immunity by the emulsification of recombinant lipidated dengue-1 envelope protein domain III. Microbes Infect 2013; 15:719-28. [PMID: 23774693 DOI: 10.1016/j.micinf.2013.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/15/2013] [Accepted: 06/05/2013] [Indexed: 12/17/2022]
Abstract
Many attempts have focused on the use of either immunomodulators or antigen delivery systems to obtain an efficacious vaccine. Here, we report a novel approach that combined an immunomodulator and delivery system to enhance antigen association and induce robust immunity. We expressed a recombinant lipidated dengue-1 envelope protein domain III (LD1ED III) and its non-lipidated form, D1ED III, in an Escherichia coli system. The LD1ED III contains a bacterial lipid moiety, which is a potent immunomodulator. We demonstrated that LD1ED III possesses an inherent immunostimulation ability that can activate RAW 264.7 macrophage cells by up-regulating their expression of CD40, CD80, CD83, CD86 and MHC II, whereas D1ED III could not induce the up-regulation of these molecules. Moreover, combining LD1ED III with a multiphase emulsion system (called PELC) increased the antigen association more than either combining D1ED III with PELC or the antigen alone. Enhanced antigen association has been shown to correlate with stronger T cell responses, greater antibody avidity and improved neutralizing capacity. Our results demonstrate that combining recombinant lipoproteins with PELC improved both the intensity and the quality of the immune response. This approach is a promising strategy for the development of subunit vaccines that induce robust immunity.
Collapse
|
30
|
Wan SW, Lin CF, Wang S, Chen YH, Yeh TM, Liu HS, Anderson R, Lin YS. Current progress in dengue vaccines. J Biomed Sci 2013; 20:37. [PMID: 23758699 PMCID: PMC3686670 DOI: 10.1186/1423-0127-20-37] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/13/2013] [Indexed: 01/23/2023] Open
Abstract
Dengue is one of the most important emerging vector-borne viral diseases. There are four serotypes of dengue viruses (DENV), each of which is capable of causing self-limited dengue fever (DF) or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The major clinical manifestations of severe DENV disease are vascular leakage, thrombocytopenia, and hemorrhage, yet the detailed mechanisms are not fully resolved. Besides the direct effects of the virus, immunopathological aspects are also involved in the development of dengue symptoms. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, and live recombinant, DNA and subunit vaccines. The live attenuated virus vaccines and live chimeric virus vaccines are undergoing clinical evaluation. The other vaccine candidates have been evaluated in preclinical animal models or are being prepared for clinical trials. For the safety and efficacy of dengue vaccines, the immunopathogenic complications such as antibody-mediated enhancement and autoimmunity of dengue disease need to be considered.
Collapse
Affiliation(s)
- Shu-Wen Wan
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zidane N, Dussart P, Bremand L, Villani ME, Bedouelle H. Thermodynamic stability of domain III from the envelope protein of flaviviruses and its improvement by molecular design. Protein Eng Des Sel 2013; 26:389-99. [PMID: 23479674 DOI: 10.1093/protein/gzt010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Flavivirus genus includes widespread and severe human pathogens like the four serotypes of dengue virus (DENV1 to DENV4), yellow fever virus, Japanese encephalitis virus and West Nile virus. Domain III (ED3) of the viral envelope protein interacts with cell receptors and contains epitopes recognized by virus neutralizing antibodies. Its structural, antigenic and immunogenic properties have been thoroughly studied contrary to its physico-chemical properties. Here, the ED3 domains of the above pathogenic flaviviruses were produced in the periplasm of Escherichia coli. Their thermodynamic stabilities were measured and compared in experiments of unfolding equilibriums, induced with chemicals or heat and monitored through protein fluorescence. A designed ED3 domain, with the consensus sequence of DENV strains from all serotypes, was highly stable. The low stability of the ED3 domain from DENV3 was increased by three changes of residues in the protein core without affecting its reactivity towards DENV-infected human serums. Additional changes showed that the stability of ED3 varied with the DENV3 genotype. The T(m) of ED3 was higher than 69°C for all the tested viruses and reached 86°C for the consensus ED3. The latter, deprived of its disulfide bond by mutations, was predominantly unfolded at 20°C. These results will help better understand and design the properties of ED3 for its use as diagnostic, vaccine or therapeutic tools.
Collapse
Affiliation(s)
- Nora Zidane
- Unit of Molecular Prevention and Therapy of Human Diseases, Department of Infection and Epidemiology, Institut Pasteur, Rue du Dr. Roux, F-75015 Paris, France
| | | | | | | | | |
Collapse
|
32
|
Chen HW, Liu SJ, Li YS, Liu HH, Tsai JP, Chiang CY, Chen MY, Hwang CS, Huang CC, Hu HM, Chung HH, Wu SH, Chong P, Leng CH, Pan CH. A consensus envelope protein domain III can induce neutralizing antibody responses against serotype 2 of dengue virus in non-human primates. Arch Virol 2013; 158:1523-31. [PMID: 23456422 DOI: 10.1007/s00705-013-1639-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/10/2013] [Indexed: 12/19/2022]
Abstract
We have previously demonstrated that vaccination with a subunit dengue vaccine containing a consensus envelope domain III with aluminum phosphate elicits neutralizing antibodies against all four serotypes of dengue virus in mice. In this study, we evaluated the immunogenicity of the subunit dengue vaccine in non-human primates. After vaccination, monkeys that received the subunit vaccine with aluminum phosphate developed a significantly strong and long-lasting antibody response. A specific T cell response with cytokine production was also induced, and this correlated with the antibody response. Additionally, neutralizing antibodies against serotype 2 were detected in two of three monkeys. The increase in serotype-2-specific antibody titers and avidity observed in these two monkeys suggested that a serotype-2-biased antibody response occurs. These data provide evidence that a protective neutralizing antibody response was successfully elicited in non-human primates by the dengue subunit vaccine with aluminum phosphate adjuvant.
Collapse
Affiliation(s)
- Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dengue virus therapeutic intervention strategies based on viral, vector and host factors involved in disease pathogenesis. Pharmacol Ther 2013; 137:266-82. [DOI: 10.1016/j.pharmthera.2012.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 12/27/2022]
|
34
|
Nguyen NL, Kim JM, Park JA, Park SM, Jang YS, Yang MS, Kim DH. Expression and purification of an immunogenic dengue virus epitope using a synthetic consensus sequence of envelope domain III and Saccharomyces cerevisiae. Protein Expr Purif 2013; 88:235-42. [PMID: 23376461 DOI: 10.1016/j.pep.2013.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/06/2013] [Accepted: 01/20/2013] [Indexed: 12/24/2022]
Abstract
A synthetic consensus gene was designed based on residues of the amino acid sequences of dengue envelope domain III (scEDIII) from all four serotypes, and codon optimization for expression was conducted using baker's yeast, Saccharomyces cerevisiae. The synthetic gene was cloned into a yeast episomal expression vector, pYEGPD-TER, which was designed to direct cloned gene expression using the glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter, a functional signal peptide of the amylase 1A protein from rice, and the GAL7 terminator. PCR and back-transformation into Escherichia coli confirmed the presence of the scEDIII gene-containing plasmid in the transformants. Northern blot analysis showed the presence of the scEDIII-specific transcript. Western blot analysis indicated that expressed scEDIII, with mobility similar to purified EDIII from E. coli, was successfully secreted into the culture media. Quantitative ELISA revealed that the recombinant scEDIII comprised approximately 0.1-0.6% of cell-free extract. In addition, 0.1-0.6 mg of scEDIII protein per liter of culture filtrate was detected on day 1 and peaked on day 3 after cultivation. The secreted scEDIII protein can be purified to ≥90% purity with 85% recovery using a simple ion-exchange FPLC followed by molecular weight cut-off. Upon administration of the purified protein to mice, mouse sera contained antibodies that were specific to all four serotypes of dengue virus. Moreover, a balanced immune response against all four serotypes was observed, suggesting that it may be possible to develop an effective tetravalent dengue vaccine using S. cerevisiae.
Collapse
Affiliation(s)
- Ngoc-Luong Nguyen
- Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Kim TG, Kim MY, Huy NX, Kim SH, Yang MS. M Cell-Targeting Ligand and Consensus Dengue Virus Envelope Protein Domain III Fusion Protein Production in Transgenic Rice Calli. Mol Biotechnol 2012; 54:880-7. [DOI: 10.1007/s12033-012-9637-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Recombinant lipidated HPV E7 induces a Th-1-biased immune response and protective immunity against cervical cancer in a mouse model. PLoS One 2012; 7:e40970. [PMID: 22815882 PMCID: PMC3399806 DOI: 10.1371/journal.pone.0040970] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 06/18/2012] [Indexed: 02/02/2023] Open
Abstract
The E7 oncoprotein of human papillomavirus (HPV) is an ideal target for developing immunotherapeutic strategies against HPV-associated tumors. However, because protein-based immunogens alone are poor elicitors of the cytotoxic T-lymphocyte (CTL) responses, they have been difficult to exploit for therapeutic purposes. In this study, we report that a recombinant lipoprotein consisting of inactive E7 (E7m) biologically linked to a bacterial lipid moiety (rlipo-E7m) induces the maturation of mouse bone marrow-derived dendritic cells through toll-like receptor 2 (TLR2), skews the immune responses toward the Th1 responses and induces E7-specific CTL responses. We further studied the ability of rlipo-E7m to provide protection against a TC-1 tumor cell challenge in an animal model. Mice prophylactically immunized with two 10-µg doses of rlipo-E7m were found to be free of TC-1 tumor growth. Experiments in a therapeutic immunization model showed that the tumor volume in mice receiving a single dose of rlipo-E7m was less than 0.01 cm3 on day 40, whereas the tumor volume in mice treated with rE7m was 2.28±1.21 cm3. The tumor volume of the entire control group was over 3 cm3. In addition, we demonstrated that the CD8+ T cells play a major role in anti-tumor immunity when administration of rlipo-E7m. These results demonstrate that rlipo-E7m could be a promising candidate for treating HPV-associated tumors.
Collapse
|
37
|
Chiang CY, Huang MH, Hsieh CH, Chen MY, Liu HH, Tsai JP, Li YS, Chang CY, Liu SJ, Chong P, Leng CH, Chen HW. Dengue-1 envelope protein domain III along with PELC and CpG oligodeoxynucleotides synergistically enhances immune responses. PLoS Negl Trop Dis 2012; 6:e1645. [PMID: 22616020 PMCID: PMC3352863 DOI: 10.1371/journal.pntd.0001645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/02/2012] [Indexed: 12/16/2022] Open
Abstract
The major weaknesses of subunit vaccines are their low immunogenicity and poor efficacy. Adjuvants can help to overcome some of these inherent defects with subunit vaccines. Here, we evaluated the efficacy of the newly developed water-in-oil-in-water multiphase emulsion system, termed PELC, in potentiating the protective capacity of dengue-1 envelope protein domain III. Unlike aluminum phosphate, dengue-1 envelope protein domain III formulated with PELC plus CpG oligodeoxynucleotides induced neutralizing antibodies against dengue-1 virus and increased the splenocyte secretion of IFN-γ after in vitro re-stimulation. The induced antibodies contained both the IgG1 and IgG2a subclasses. A rapid anamnestic neutralizing antibody response against a live dengue virus challenge was elicited at week 26 after the first immunization. These results demonstrate that PELC plus CpG oligodeoxynucleotides broaden the dengue-1 envelope protein domain III-specific immune responses. PELC plus CpG oligodeoxynucleotides is a promising adjuvant for recombinant protein based vaccination against dengue virus. Dengue is a mosquito-borne disease. Infection of dengue virus can cause clinical manifestations ranging from self-limiting dengue fever to potentially life-threatening dengue hemorrhagic fever or dengue shock syndrome. In recent years, dengue has spread to most tropical and subtropical areas, making it a global health concern. Specific approaches for dengue therapy do not exist; the development of a dengue vaccine would represent a major advance in the control of the disease. Currently, no licensed dengue vaccine is available. Subunit vaccines provide a great safety strategy for developing dengue vaccine. However, the major weaknesses of subunit vaccines are low immunogenicity and poor efficacy. Here we employed dengue-1 envelope protein domain III as a model vaccine candidate and described a newly developed water-in-oil-in water multiphase emulsion system to overcome the inherent defect of subunit vaccines. We showed that emulsification of dengue-1 envelope protein domain III and CpG oligodeoxynucleotides synergistically broadened immune responses and potentiated the protective capacity of dengue-1 envelope protein domain III. These results provide valuable information for development of recombinant protein based vaccination against dengue virus and future clinical studies.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Dengue Vaccines/administration & dosage
- Dengue Vaccines/genetics
- Dengue Vaccines/immunology
- Dengue Virus/immunology
- Immunoglobulin G/blood
- Interferon-gamma/metabolism
- Leukocytes, Mononuclear/immunology
- Mice
- Mice, Inbred BALB C
- Oils/administration & dosage
- Oligodeoxyribonucleotides/administration & dosage
- Spleen/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chun-Hsiang Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsueh-Hung Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jy-Ping Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Shiuan Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Yun Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Pele Chong
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Chih-Hsiang Leng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- * E-mail: (C-HL); (H-WC)
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- * E-mail: (C-HL); (H-WC)
| |
Collapse
|