1
|
Paikray E, Pattnaik M, Mishra V, Abhisek PA, Pradhan SS, Rout A. Evaluation of health-related quality of life and adherence among pre-extensively drug-resistant tuberculosis patients receiving either Bedaquiline or Delamanid regimen at a teaching hospital in Eastern India. J Family Med Prim Care 2024; 13:4684-4692. [PMID: 39629384 PMCID: PMC11610896 DOI: 10.4103/jfmpc.jfmpc_572_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 12/07/2024] Open
Abstract
Background The foremost concern and challenge in managing drug-resistant tuberculosis is ensuring a high health-related quality of life (HRQoL). The effectiveness of pre-extensively drug-resistant (Pre-XDR) tuberculosis management hinges on patients adhering to therapy, a crucial factor in averting the development of drug-resistant strains, ultimately enhancing HRQoL. Methodology This analytical longitudinal study spanned two years at a teaching hospital and involved collaboration between the Departments of Pharmacology and Pulmonary Medicine. A case record form was utilized to gather baseline data, encompassing patient demographics, medication details, WHO BREF HRQoL scores, and treatment adherence. Patients were classified as either adherent or nonadherent using three distinct criteria: the guidelines of the Revised National Tuberculosis Programme (RNTCP), the Morisky-Green-Levine Scale (MGLS), and the Batalla test. The sample size was determined based on 30% nonadherence rates from preliminary analysis of prior data, resulting in 86 patients included in the study. The association between the improvement of HRQoL score from the baseline with the predictor variables was assessed with a linear regression model. Comparison of nonadherence with the different predictors of the study population was assessed with binary logistic regression model. Results Analysis of demographic data revealed no notable differences in age and BMI between the Bedaquiline and Delamanid groups. However, there was a gender-related difference in treatment distribution, with more men in the Bedaquiline group. Other factors, such as marital status, socioeconomic status, employment status, stigma/discrimination, comorbidity, and addiction, showed no significant differences between the groups. Comparing HRQoL scores at baseline and after six months showed substantial improvements in all domains, indicating a positive impact of the treatment. Linear regression analysis revealed a strong association between QoL improvement and adherence. Adherence patterns did not significantly differ between the two treatment groups, as assessed by various criteria. The patients with high stigma, newly diagnosed Pre-XDR cases, and the presence of adverse events had higher odds of nonadherence. Conclusion This study highlights the substantial impact of Bedaquiline and Delamanid treatment on the HRQoL of Pre-XDR TB patients in Eastern India. Adherence to treatment plays a crucial role in improving QoL, and factors like stigma, newly diagnosed Pre-XDR patients, and adverse drug reactions influence adherence adversely. The findings emphasize the importance of patient support and education to enhance treatment outcomes.
Collapse
Affiliation(s)
- Elisha Paikray
- Department of Pharmacology, Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Manoranjan Pattnaik
- Department of Pulmonary Medicine, S.C.B. Medical College and Hospital, Cuttack, Odisha, India
| | - Vedvyas Mishra
- Department of Pharmacology, S.C.B. Medical College and Hospital, Cuttack, Odisha, India
| | | | | | - Anima Rout
- Department of Pharmacology, Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Ahmad Khosravi N, Sirous M, Khosravi A, Saki M. A Narrative Review of Bedaquiline and Delamanid: New Arsenals Against Multidrug-Resistant and Extensively Drug-Resistant Mycobacterium tuberculosis. J Clin Lab Anal 2024; 38:e25091. [PMID: 39431709 PMCID: PMC11492330 DOI: 10.1002/jcla.25091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The treatment of multidrug-resistant (MDR-) and extensively drug-resistant tuberculosis (XDR-TB) is a formidable challenge. Treatment of MDR- and XDR-TB using bedaquiline (BDQ) and delamanid (DLM), two newly introduced medications, is steadily increasing. This narrative review aimed to present a concise overview of the existing information regarding BDQ and DLM, and elucidate their antimicrobial characteristics, resistance mechanisms, synergism with other drugs, and side effects. METHODS To collect the required information about the antimicrobial properties, a search for scientific evidence from the Scopus, PubMed, and Embase databases was performed, and all recently published articles up to May 2024 were considered. RESULTS BDQ had potent antimicrobial effects on various types of nontuberculous mycobacteria (NTM), including rapid-growing and slow-growing species, and MDR/XDR Mycobacterium tuberculosis. The mechanisms of BDQ resistance in M. tuberculosis primarily involve mutations in three genes: atpE, mmpR (Rv0678) and pepQ. BDQ may have synergistic effects when combined with DLM, pyrazinamide, and pretomanid/linezolid. BDQ has a low incidence of side effects. The use of BDQ may prolong the QTc interval. Similarly, DLM showed potent antimicrobial effects on NTM and MDR/XDR M. tuberculosis. The main resistance mechanisms to DLM are induced by mutations in fbiA, fbiB, fbiC, fgd1, and ddn genes. The DLM had synergistic effects with BDQ and moxifloxacin. The DLM also has few side effects in some patients including QTc prolongation. CONCLUSION BDQ and DLM are suitable antibiotics with few side effects for the treatment of MDR/XDR-TB. These antibiotics have synergistic effects when combined with other antituberculosis drugs.
Collapse
Affiliation(s)
- Nazanin Ahmad Khosravi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Mehrandokht Sirous
- Department of Microbiology and Parasitology, Faculty of MedicineBushehr University of Medical SciencesBushehrIran
| | - Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Morteza Saki
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
3
|
Vadankula GR, Nilkanth VV, Rizvi A, Yandrapally S, Agarwal A, Chirra H, Biswas R, Arifuddin M, Nema V, Mallika A, Mande SC, Banerjee S. Confronting Tuberculosis: A Synthetic Quinoline-Isonicotinic Acid Hydrazide Hybrid Compound as a Potent Lead Molecule Against Mycobacterium tuberculosis. ACS Infect Dis 2024; 10:2288-2302. [PMID: 38717380 DOI: 10.1021/acsinfecdis.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The current tuberculosis (TB) treatment is challenged by a complex first-line treatment for drug-sensitive (DS) TB. Additionally, the prevalence of multidrug (MDR)- and extensively drug (XDR)-resistant TB necessitates the search for new drug prototypes. We synthesized and screened 30 hybrid compounds containing aminopyridine and 2-chloro-3-formyl quinoline to arrive at a compound with potent antimycobacterial activity, UH-NIP-16. Subsequently, antimycobacterial activity against DS and MDR Mycobacterium tuberculosis (M.tb) strains were performed. It demonstrated an MIC50 value of 1.86 ± 0.21 μM for laboratory pathogenic M.tb strain H37Rv and 3.045 ± 0.813 μM for a clinical M.tb strain CDC1551. UH-NIP-16 also decreased the MIC50 values of streptomycin, isoniazid, ethambutol, and bedaquiline to about 45, 55, 68, and 76%, respectively, when used in combination, potentiating their activities. The molecule was active against a clinical MDR M.tb strain. Cytotoxicity on PBMCs from healthy donors and on human cell lines was found to be negligible. Further, blind docking of UH-NIP-16 using Auto Dock Vina and MGL tools onto diverse M.tb proteins showed high binding affinities with multiple M.tb proteins, the top five targets being metabolically critical proteins CelA1, DevS, MmaA4, lysine acetyltransferase, and immunity factor for tuberculosis necrotizing toxin. These bindings were confirmed by fluorescence spectroscopy using a representative protein, MmaA4. Envisaging that a pathogen will have a lower probability of developing resistance to a hybrid molecule with multiple targets, we propose that UH-NIP-16 can be further developed as a lead molecule with the bacteriostatic potential against M.tb, both alone and in combination with first-line drugs.
Collapse
Affiliation(s)
- Govinda Raju Vadankula
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
| | - Vipul V Nilkanth
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India
| | - Arshad Rizvi
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
| | - Sriram Yandrapally
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
| | - Anushka Agarwal
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
| | - Hepshibha Chirra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rashmita Biswas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Vijay Nema
- Molecular Biology Division, ICMR-National Institute for Translational Virology and AIDS Research, Pune 411026, India
| | - Alvala Mallika
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Shekhar C Mande
- National Centre for Cell Science, Pune 411007, India
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India
| | - Sharmistha Banerjee
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
| |
Collapse
|
4
|
Rana HK, Singh AK, Kumar R, Pandey AK. Antitubercular drugs: possible role of natural products acting as antituberculosis medication in overcoming drug resistance and drug-induced hepatotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1251-1273. [PMID: 37665346 DOI: 10.1007/s00210-023-02679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium which causes tuberculosis (TB). TB control programmes are facing threats from drug resistance. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains need longer and more expensive treatment with many medications resulting in more adverse effects and decreased chances of treatment outcomes. The World Health Organization (WHO) has emphasised the development of not just new individual anti-TB drugs, but also novel medication regimens as an alternative treatment option for the drug-resistant Mtb strains. Many plants, as well as marine creatures (sponge; Haliclona sp.) and fungi, have been continuously used to treat TB in various traditional treatment systems around the world, providing an almost limitless supply of active components. Natural products, in addition to their anti-mycobacterial action, can be used as adjuvant therapy to increase the efficacy of conventional anti-mycobacterial medications, reduce their side effects, and reverse MDR Mtb strain due to Mycobacterium's genetic flexibility and environmental adaptation. Several natural compounds such as quercetin, ursolic acid, berberine, thymoquinone, curcumin, phloretin, and propolis have shown potential anti-mycobacterial efficacy and are still being explored in preclinical and clinical investigations for confirmation of their efficacy and safety as anti-TB medication. However, more high-level randomized clinical trials are desperately required. The current review provides an overview of drug-resistant TB along with the latest anti-TB medications, drug-induced hepatotoxicity and oxidative stress. Further, the role and mechanisms of action of first and second-line anti-TB drugs and new drugs have been highlighted. Finally, the role of natural compounds as anti-TB medication and hepatoprotectants have been described and their mechanisms discussed.
Collapse
Affiliation(s)
- Harvesh Kumar Rana
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Zoology, Feroze Gandhi College, Raebareli, 229001, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Botany, BMK Government. Girls College, Balod, Chhattisgarh, 491226, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India.
| |
Collapse
|
5
|
Negi A, Perveen S, Gupta R, Singh PP, Sharma R. Unraveling Dilemmas and Lacunae in the Escalating Drug Resistance of Mycobacterium tuberculosis to Bedaquiline, Delamanid, and Pretomanid. J Med Chem 2024; 67:2264-2286. [PMID: 38351709 DOI: 10.1021/acs.jmedchem.3c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Delamanid, bedaquiline, and pretomanid have been recently added in the anti-tuberculosis (anti-TB) treatment regimens and have emerged as potential solutions for combating drug-resistant TB. These drugs have proven to be effective in treating drug-resistant TB when used in combination. However, concerns have been raised about the eventual loss of these drugs due to evolving resistance mechanisms and certain adverse effects such as prolonged QT period, gastrointestinal problems, hepatotoxicity, and renal disorders. This Perspective emphasizes the properties of these first-in-class drugs, including their mechanism of action, pharmacokinetics/pharmacodynamics profiles, clinical studies, adverse events, and underlying resistance mechanisms. A brief coverage of efforts toward the generation of best-in-class leads in each class is also provided. The ongoing clinical trials of new combinations of these drugs are discussed, thus providing a better insight into the use of these drugs while designing an effective treatment regimen for resistant TB cases.
Collapse
Affiliation(s)
- Anjali Negi
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ria Gupta
- Natural Products and Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Parvinder Pal Singh
- Natural Products and Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
6
|
Fontes FL, Rooker SA, Lynn-Barbe JK, Lyons MA, Crans DC, Crick DC. Pyrazinoic acid, the active form of the anti-tuberculosis drug pyrazinamide, and aromatic carboxylic acid analogs are protonophores. Front Mol Biosci 2024; 11:1350699. [PMID: 38414662 PMCID: PMC10896915 DOI: 10.3389/fmolb.2024.1350699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
Pyrazinoic acid is the active form of pyrazinamide, a first-line antibiotic used to treat Mycobacterium tuberculosis infections. However, the mechanism of action of pyrazinoic acid remains a subject of debate, and alternatives to pyrazinamide in cases of resistance are not available. The work presented here demonstrates that pyrazinoic acid and known protonophores including salicylic acid, benzoic acid, and carbonyl cyanide m-chlorophenyl hydrazone all exhibit pH-dependent inhibition of mycobacterial growth activity over a physiologically relevant range of pH values. Other anti-tubercular drugs, including rifampin, isoniazid, bedaquiline, and p-aminosalicylic acid, do not exhibit similar pH-dependent growth-inhibitory activities. The growth inhibition curves of pyrazinoic, salicylic, benzoic, and picolinic acids, as well as carbonyl cyanide m-chlorophenyl hydrazone, all fit a quantitative structure-activity relationship (QSAR) derived from acid-base equilibria with R2 values > 0.95. The QSAR model indicates that growth inhibition relies solely on the concentration of the protonated forms of these weak acids (rather than the deprotonated forms). Moreover, pyrazinoic acid, salicylic acid, and carbonyl cyanide m-chlorophenyl hydrazone all caused acidification of the mycobacterial cytoplasm at concentrations that inhibit bacterial growth. Thus, it is concluded that pyrazinoic acid acts as an uncoupler of oxidative phosphorylation and that disruption of proton motive force is the primary mechanism of action of pyrazinoic acid rather than the inhibition of a classic enzyme activity.
Collapse
Affiliation(s)
- Fabio L. Fontes
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Steven A. Rooker
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jamie K. Lynn-Barbe
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Michael A. Lyons
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Debbie C. Crans
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
| | - Dean C. Crick
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
7
|
Słabońska J, Sappati S, Marciniak A, Czub J. Low-Barrier Hydrogen Bond Determines Target-Binding Affinity and Specificity of the Antitubercular Drug Bedaquiline. ACS Med Chem Lett 2024; 15:265-269. [PMID: 38352844 PMCID: PMC10860170 DOI: 10.1021/acsmedchemlett.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024] Open
Abstract
The role of short strong hydrogen bonds (SSHBs) in ligand-target binding remains largely unexplored, thereby hindering a potentially important avenue in rational drug design. Here we investigate the interaction between the antituberculosis drug bedaquiline (Bq) and the mycobacterial ATP synthase to unravel the role of a specific hydrogen bond to a conserved acidic residue in the target affinity and specificity. Our ab initio molecular dynamics simulations reveal that this bond belongs to the SSHB category and accounts for a substantial fraction of the target binding free energy. We also demonstrate that the presence of an extra acidic residue, i.e., aspartic acid at position 32 (D32), found exclusively in mycobacteria, cooperatively enhances the HB strength, ensuring specificity for the mycobacterial target. Consistently, we show that the removal of D32 markedly weakens the affinity, leading to Bq resistance associated with mutations of D32 to nonacidic residues. By designing simple Bq analogs, we then explore the possibility to overcome the resistance and potentially broaden the Bq antimicrobial spectrum by making the SSHB independent of the presence of the extra acidic residue.
Collapse
Affiliation(s)
- Joanna Słabońska
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
| | - Subrahmanyam Sappati
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
- BioTechMed
Center, Gdańsk University of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
| | - Antoni Marciniak
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
- Department
of Applied Physics, KTH Royal Institute
of Technology, SE-171 65 Solna, Sweden
| | - Jacek Czub
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
- BioTechMed
Center, Gdańsk University of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
| |
Collapse
|
8
|
Krah A, Ragunathan P, Bond PJ, Grüber G. Variations of the Mycobacterium abscessus F-ATP synthase subunit a-c interface alter binding and potency of the anti-TB drug bedaquiline. Biochem Biophys Res Commun 2024; 690:149249. [PMID: 38000294 DOI: 10.1016/j.bbrc.2023.149249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
The anti-tuberculosis therapeutic bedaquiline (BDQ) is used against Mycobacterium abscessus. In M. abscessus BDQ is only bacteriostatic and less potent compared to M. tuberculosis or M. smegmatis. Here we demonstrate its reduced ATP synthesis inhibition against M. abscessus inside-out vesicles, including the F1FO-ATP synthase. Molecular dynamics simulations and binding free energy calculations highlight the differences in drug-binding of the M. abscessus and M. smegmatis FO-domain at the lagging site, where the drug deploys its mechanistic action, inhibiting ATP synthesis. These data pave the way for improved anti-M. abscessus BDQ analogs.
Collapse
Affiliation(s)
- Alexander Krah
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore.
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| | - Gerhard Grüber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| |
Collapse
|
9
|
Shi Y, Jiang Y, Qiu H, Hu D, Song X. Mitochondrial dysfunction induced by bedaquiline as an anti-Toxoplasma alternative. Vet Res 2023; 54:123. [PMID: 38115043 PMCID: PMC10731829 DOI: 10.1186/s13567-023-01252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/29/2023] [Indexed: 12/21/2023] Open
Abstract
Toxoplasma gondii is a zoonotic parasite that infects one-third of the world's population and nearly all warm-blooded animals. Due to the complexity of T. gondii's life cycle, available treatment options have limited efficacy. Thus, there is an urgent need to develop new compounds or repurpose existing drugs with potent anti-Toxoplasma activity. This study demonstrates that bedaquiline (BDQ), an FDA-approved diarylquinoline antimycobacterial drug for the treatment of tuberculosis, potently inhibits the tachyzoites of T. gondii. At a safe concentration, BDQ displayed a dose-dependent inhibition on T. gondii growth with a half-maximal effective concentration (EC50) of 4.95 μM. Treatment with BDQ significantly suppressed the proliferation of T. gondii tachyzoites in the host cell, while the invasion ability of the parasite was not affected. BDQ incubation shrunk the mitochondrial structure and decreased the mitochondrial membrane potential and ATP level of T. gondii parasites. In addition, BDQ induced elevated ROS and led to autophagy in the parasite. By transcriptomic analysis, we found that oxidative phosphorylation pathway genes were significantly disturbed by BDQ-treated parasites. More importantly, BDQ significantly reduces brain cysts for the chronically infected mice. These results suggest that BDQ has potent anti-T. gondii activity and may impair its mitochondrial function by affecting proton transport. This study provides bedaquiline as a potential alternative drug for the treatment of toxoplasmosis, and our findings may facilitate the development of new effective drugs for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Yuehong Shi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yucong Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Haolong Qiu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China.
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China.
| |
Collapse
|
10
|
Yuan Z, Wang J, Qu Q, Zhu Z, Xu M, Zhao M, Sun C, Peng H, Huang X, Dong Y, Dong C, Zheng Y, Yuan S, Li Y. Celastrol Combats Methicillin-Resistant Staphylococcus aureus by Targeting Δ 1 -Pyrroline-5-Carboxylate Dehydrogenase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302459. [PMID: 37381655 PMCID: PMC10477891 DOI: 10.1002/advs.202302459] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Indexed: 06/30/2023]
Abstract
The emergence and rapid spread of methicillin-resistant Staphylococcus aureus (MRSA) raise a critical need for alternative therapeutic options. New antibacterial drugs and targets are required to combat MRSA-associated infections. Based on this study, celastrol, a natural product from the roots of Tripterygium wilfordii Hook. f., effectively combats MRSA in vitro and in vivo. Multi-omics analysis suggests that the molecular mechanism of action of celastrol may be related to Δ1 -pyrroline-5-carboxylate dehydrogenase (P5CDH). By comparing the properties of wild-type and rocA-deficient MRSA strains, it is demonstrated that P5CDH, the second enzyme of the proline catabolism pathway, is a tentative new target for antibacterial agents. Using molecular docking, bio-layer interferometry, and enzyme activity assays, it is confirmed that celastrol can affect the function of P5CDH. Furthermore, it is found through site-directed protein mutagenesis that the Lys205 and Glu208 residues are key for celastrol binding to P5CDH. Finally, mechanistic studies show that celastrol induces oxidative stress and inhibits DNA synthesis by binding to P5CDH. The findings of this study indicate that celastrol is a promising lead compound and validate P5CDH as a potential target for the development of novel drugs against MRSA.
Collapse
Affiliation(s)
- Zhongwei Yuan
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Jun Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Qianwei Qu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Zhenxin Zhu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Marc Xu
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Mengmeng Zhao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Chongxiang Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Haixin Peng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Xingyu Huang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Yue Dong
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Chunliu Dong
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Yadan Zheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| |
Collapse
|
11
|
Mackieh R, Al-Bakkar N, Kfoury M, Roufayel R, Sabatier JM, Fajloun Z. Inhibitors of ATP Synthase as New Antibacterial Candidates. Antibiotics (Basel) 2023; 12:antibiotics12040650. [PMID: 37107012 PMCID: PMC10135114 DOI: 10.3390/antibiotics12040650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
ATP, the power of all cellular functions, is constantly used and produced by cells. The enzyme called ATP synthase is the energy factory in all cells, which produces ATP by adding inorganic phosphate (Pi) to ADP. It is found in the inner, thylakoid and plasma membranes of mitochondria, chloroplasts and bacteria, respectively. Bacterial ATP synthases have been the subject of multiple studies for decades, since they can be genetically manipulated. With the emergence of antibiotic resistance, many combinations of antibiotics with other compounds that enhance the effect of these antibiotics have been proposed as approaches to limit the spread of antibiotic-resistant bacteria. ATP synthase inhibitors, such as resveratrol, venturicidin A, bedaquiline, tomatidine, piceatannol, oligomycin A and N,N-dicyclohexylcarbodiimide were the starting point of these combinations. However, each of these inhibitors target ATP synthase differently, and their co-administration with antibiotics increases the susceptibility of pathogenic bacteria. After a brief description of the structure and function of ATP synthase, we aim in this review to highlight therapeutic applications of the major bacterial ATP synthase inhibitors, including animal’s venoms, and to emphasize their importance in decreasing the activity of this enzyme and subsequently eradicating resistant bacteria as ATP synthase is their source of energy.
Collapse
|
12
|
Berg K, Hegde P, Pujari V, Brinkmann M, Wilkins DZ, Parish T, Crick DC, Aldrich CC. SAR study of piperidine derivatives as inhibitors of 1,4-dihydroxy-2-naphthoate isoprenyltransferase (MenA) from Mycobacterium tuberculosis. Eur J Med Chem 2023; 249:115125. [PMID: 36682292 PMCID: PMC9975056 DOI: 10.1016/j.ejmech.2023.115125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
The electron transport chain (ETC) in the cell membrane consists of a series of redox complexes that transfer electrons from electron donors to acceptors and couples this electron transfer with the transfer of protons (H+) across a membrane. This process generates proton motive force which is used to produce ATP and a myriad of other functions and is essential for the long-term survival of Mycobacterium tuberculosis (Mtb), the causative organism of tuberculosis (TB), under the hypoxic conditions present within infected granulomas. Menaquinone (MK), an important carrier molecule within the mycobacterial ETC, is synthesized de novo by a cluster of enzymes known as the classic/canonical MK biosynthetic pathway. MenA (1,4-dihydroxy-2-naphthoate prenyltransferase), the antepenultimate enzyme in this pathway, is a verified target for TB therapy. In this study, we explored structure-activity relationships of a previously discovered MenA inhibitor scaffold, seeking to improve potency and drug disposition properties. Focusing our campaign upon three molecular regions, we identified two novel inhibitors with potent activity against MenA and Mtb (IC50 = 13-22 μM, GIC50 = 8-10 μM). These analogs also displayed substantially improved pharmacokinetic parameters and potent synergy with other ETC-targeting agents, achieving nearly complete sterilization of Mtb in combination therapy within two weeks in vivo. These new inhibitors of MK biosynthesis present a promising new strategy to curb the continued spread of TB.
Collapse
Affiliation(s)
- Kaja Berg
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, Minneapolis, MN, 55455, USA
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, Minneapolis, MN, 55455, USA
| | - Venugopal Pujari
- Mycobacteria Research Laboratories, Microbiology, Immunology, and Pathology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - Marzena Brinkmann
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, Minneapolis, MN, 55455, USA
| | - David Z Wilkins
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - Tanya Parish
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - Dean C Crick
- Mycobacteria Research Laboratories, Microbiology, Immunology, and Pathology Department, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
Barbaro L, Nagalingam G, Triccas JA, Tan L, West NP, Priebbenow DL, Baell JB. Discovery of Anti-tubercular Analogues of Bedaquiline with Modified A-, B- and C-Ring Subunits. ChemMedChem 2023; 18:e202200533. [PMID: 36259365 DOI: 10.1002/cmdc.202200533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/16/2022] [Indexed: 01/24/2023]
Abstract
To date, the clinical use of the anti-tubercular therapy bedaquiline has been somewhat limited due to safety concerns. Recent investigations determined that modification of the B- and C-ring units of bedaquiline delivered new diarylquinolines (for example TBAJ-587) with potent anti-tubercular activity yet an improved safety profile due to reduced affinity for the hERG channel. Building on our recent discovery that substitution of the quinoline motif (the A-ring subunit) for C5-aryl pyridine groups within bedaquiline analogues led to retention of anti-tubercular activity, we investigated the concurrent modification of A-, B- and C-ring units within bedaquiline variants. This led to the discovery that 4-trifluoromethoxyphenyl and 4-chlorophenyl pyridyl analogues of TBAJ-587 retained relatively potent anti-tubercular activity and for the 4-chlorophenyl derivative in particular, a significant reduction in hERG inhibition relative to bedaquiline was achieved, demonstrating that modifications of the A-, B- and C-ring units within the bedaquiline structure is a viable strategy for the design of effective, yet safer (and less lipophilic) anti-tubercular compounds.
Collapse
Affiliation(s)
- Lisa Barbaro
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, 3052, Parkville, Victoria, Australia
| | - Gayathri Nagalingam
- School of Medical Sciences and Marie Bashir Institute, The University of Sydney, 2006, Sydney, NSW, Australia
| | - James A Triccas
- School of Medical Sciences and Marie Bashir Institute, The University of Sydney, 2006, Sydney, NSW, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland, 4072, St Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, 4067 St., Lucia, Queensland, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Bioscience, The University of Queensland, 4072, St Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, 4067 St., Lucia, Queensland, Australia
| | - Daniel L Priebbenow
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, 3052, Parkville, Victoria, Australia.,School of Chemistry, The University of Melbourne, 3010, Parkville, Victoria, Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, 3052, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Singh B, Singh C. Bedaquiline in Drug-Resistant Tuberculosis: A Mini-Review. Curr Mol Pharmacol 2023; 16:243-253. [PMID: 36919348 DOI: 10.2174/1874467215666220421130707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Mycobacterium tuberculosis causes a contagious pulmonary disease with a high mortality rate in developing countries. However, the recommendation of DOTS (approved by WHO) was effective in treating tuberculosis, but nowadays, resistance from the first line (MDR-TB) and the second line (XDR-TB) drugs is highly common. Whereas, the resistance is a result of factors like poor patient constancy due to the long duration of therapy and co-infection with HIV. The approval of bedaquiline under an accelerated program for the treatment of MDR-TB has revealed its effectiveness in clinical trials as a therapeutic novel molecule. BDQ selectively inhibits the ATP synthase of bacterium and reduces ATP production. Additionally, the poor pharmacokinetic properties raised provocations in the MDR therapy, but the use of targeted drug delivery can solve the hurdles. While the preclinical and clinical studies included in this review are strongly suggesting the usefulness of BDQ in MDR-TB and XDR-TB, the repurposing of different drug classes in resistant TB is opening new opportunities to manage the disease conditions. In this review, we have summarized the examples of pipeline drugs and repurposed molecules with preclinical formulation developments.
Collapse
Affiliation(s)
- Baljinder Singh
- Department of Pharmaceutics, UIPS, Punjab University, Chandigarh 160014, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, 246174, India
| |
Collapse
|
15
|
Nesci S. Bacterial and mammalian F1FO-ATPase: Structural similarities and divergences to exploit in the battle against Mycobacterium tuberculosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [DOI: 10.1016/bs.ircmb.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Paikray E, Das P, Pattnaik M, Mishra V. Adverse Drug Reaction Monitoring in Multidrug-Resistant Tuberculosis Patients Receiving Bedaquiline and Delamanid-Based Regimen. Cureus 2022; 14:e30764. [DOI: 10.7759/cureus.30764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
|
17
|
Lawer A, Tyler C, Hards K, Keighley LM, Cheung CY, Kierek F, Su S, Matikonda SS, McInnes T, Tyndall JDA, Krause KL, Cook GM, Gamble AB. Synthesis and Biological Evaluation of Aurachin D Analogues as Inhibitors of Mycobacterium tuberculosis Cytochrome bd Oxidase. ACS Med Chem Lett 2022; 13:1663-1669. [PMID: 36262396 PMCID: PMC9575164 DOI: 10.1021/acsmedchemlett.2c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
A revised total synthesis of aurachin D (1a), an isoprenoid quinolone alkaloid that targets Mycobacterium tuberculosis (Mtb) cytochrome bd (cyt-bd) oxidase, was accomplished using an oxazoline ring-opening reaction. The ring opening enabled access to a range of electron-poor analogues, while electron-rich analogues could be prepared using the Conrad-Limpach reaction. The aryl-substituted and side-chain-modified aurachin D analogues were screened for inhibition of Mtb cyt-bd oxidase and growth inhibition of Mtb. Nanomolar inhibition of Mtb cyt-bd oxidase was observed for the shorter-chain analogue 1d (citronellyl side chain) and the aryl-substituted analogues 1g/1k (fluoro substituent at C6/C7), 1t/1v (hydroxy substituent at C5/C6) and 1u/1w/1x (methoxy substituent at C5/C6/C7). Aurachin D and the analogues did not inhibit growth of nonpathogenic Mycobacterium smegmatis, but the citronellyl (1d) and 6-fluoro-substituted (1g) inhibitors from the Mtb cyt-bd oxidase assay displayed moderate growth inhibition against pathogenic Mtb (MIC = 4-8 μM).
Collapse
Affiliation(s)
- Aggie Lawer
- School
of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Chelsea Tyler
- School
of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Kiel Hards
- Department
of Microbiology and Immunology, University
of Otago, Dunedin 9054, New Zealand
| | - Laura M. Keighley
- Department
of Microbiology and Immunology, University
of Otago, Dunedin 9054, New Zealand
| | - Chen-Yi Cheung
- Department
of Microbiology and Immunology, University
of Otago, Dunedin 9054, New Zealand
| | - Fabian Kierek
- School
of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Simon Su
- School
of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | | | - Tyler McInnes
- Department
of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | | | - Kurt L. Krause
- Department
of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Gregory M. Cook
- Department
of Microbiology and Immunology, University
of Otago, Dunedin 9054, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin 9054, New Zealand
| | - Allan B. Gamble
- School
of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
18
|
Population Pharmacokinetic Modeling of Bedaquiline among Multidrug-Resistant Pulmonary Tuberculosis Patients from China. Antimicrob Agents Chemother 2022; 66:e0081122. [PMID: 36106884 PMCID: PMC9578397 DOI: 10.1128/aac.00811-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bedaquiline has been widely used as a part of combination dosage regimens for the treatment of multidrug-resistant tuberculosis (MDR-TB) patients with limited options. Although the effectiveness and safety of bedaquiline have been demonstrated in clinical trials, limited studies have investigated the significant pharmacokinetics and the impact of genotype on bedaquiline disposition. Here, we developed a population pharmacokinetic model of bedaquiline to describe the concentration-time data from Chinese adult patients diagnosed with MDR-TB. A total of 246 observations were collected from 99 subjects receiving the standard recommended dosage. Bedaquiline disposition was well described by a one-compartment model with first-order absorption. Covariate modeling identified that gamma-glutamyl transferase (GGT) and the single-nucleotide polymorphism (SNP) rs319952 in the AGBL4 gene were significantly associated with the apparent clearance of bedaquiline. The clearance (CL/F) was found to be 1.4 L/h lower for subjects with allele GG in SNP rs319952 than for subjects with alleles AG and AA and to decrease by 30% with a doubling in GGT. The model-based simulations were designed to assess the impact of GGT/SNP rs319952 on bedaquiline exposure and showed that patients with genotype GG in SNP rs319952 and GGT ranging from 10 to 50 U/L achieved the targeted maximum serum concentration at steady state (Cmax,ss). However, when GGT was increased to 100 U/L, Cmax,ss was 1.68-fold higher than the highest concentration pursued. The model developed provides the consideration of genetic polymorphism and hepatic function for bedaquiline dosage in MDR-TB adult patients.
Collapse
|
19
|
Feng S, Liang L, Shen C, Lin D, Li J, Lyu L, Liang W, Zhong LL, Cook GM, Doi Y, Chen C, Tian GB. A CRISPR-guided mutagenic DNA polymerase strategy for the detection of antibiotic-resistant mutations in M. tuberculosis. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:354-367. [PMID: 35950213 PMCID: PMC9358013 DOI: 10.1016/j.omtn.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
A sharp increase in multidrug-resistant tuberculosis (MDR-TB) threatens human health. Spontaneous mutation in essential gene confers an ability of Mycobacterium tuberculosis resistance to anti-TB drugs. However, conventional laboratory strategies for identification and prediction of the mutations in this slowly growing species remain challenging. Here, by combining XCas9 nickase and the error-prone DNA polymerase A from M. tuberculosis, we constructed a CRISPR-guided DNA polymerase system, CAMPER, for effective site-directed mutagenesis of drug-target genes in mycobacteria. CAMPER was able to generate mutagenesis of all nucleotides at user-defined loci, and its bidirectional mutagenesis at nick sites allowed editing windows with lengths up to 80 nucleotides. Mutagenesis of drug-targeted genes in Mycobacterium smegmatis and M. tuberculosis with this system significantly increased the fraction of the antibiotic-resistant bacterial population to a level approximately 60- to 120-fold higher than that in unedited cells. Moreover, this strategy could facilitate the discovery of the mutation conferring antibiotic resistance and enable a rapid verification of the growth phenotype-mutation genotype association. Our data demonstrate that CAMPER facilitates targeted mutagenesis of genomic loci and thus may be useful for broad functions such as resistance prediction and development of novel TB therapies.
Collapse
|
20
|
Deshkar AT, Shirure PA. Bedaquiline: A Novel Diarylquinoline for Multidrug-Resistant Pulmonary Tuberculosis. Cureus 2022; 14:e28519. [PMID: 36185922 PMCID: PMC9516320 DOI: 10.7759/cureus.28519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022] Open
Abstract
A new drug Bedaquiline, a diarylquinoline agent has been approved by the Food and Drug Administration for the treatment of pulmonary multidrug-resistant tuberculosis. It has been given approval for use along with the basic regimen with only conditional access through the National Program for tuberculosis in India. The major problem with existing antitubercular drugs used for the treatment of multi-drug resistant tuberculosis is antimicrobial resistance, less efficacy, and poor side effect profile. Bedaquiline might be a solution to these issues. Bedaquiline is a first of its class drug with a unique and specific mechanism of action. It inhibits mycobacterial adenosine triphosphate (ATP) synthase's proton pump. There are many randomized clinical trials and cohort studies that reported a higher culture conversion rate with bedaquiline treatment as compared to the control group. Many meta-analyses and systematic reviews have reported higher culture conversion rate, higher cure rate, and lower mortality rate in patients with drug-resistant tuberculosis treated with a bedaquiline-containing regimen. Here is a detailed drug profile of bedaquiline to help health care workers treat tuberculosis patients. Keywords:
Collapse
|
21
|
Si A, Landgraf AD, Geden S, Sucheck SJ, Rohde KH. Synthesis and Evaluation of Marine Natural Product-Inspired Meroterpenoids with Selective Activity toward Dormant Mycobacterium tuberculosis. ACS OMEGA 2022; 7:23487-23496. [PMID: 35847331 PMCID: PMC9281309 DOI: 10.1021/acsomega.2c01887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tuberculosis is a disease caused primarily by the organism Mycobacterium tuberculosis (Mtb), which claims about 1.5 million lives every year. A challenge that impedes the elimination of this pathogen is the ability of Mtb to remain dormant after primary infection, thus creating a reservoir for the disease in the population that reactivates under more ideal conditions. A better understanding of the physiology of dormant Mtb and therapeutics able to kill these phenotypically tolerant bacilli will be critical for completely eradicating Mtb. Our groups are focusing on characterizing the activity of derivatives of the marine natural product (+)-puupehenone (1). Recently, the Rohde group reported that puupehedione (2) and 15-α-methoxypuupehenol (3) exhibit enhanced activity in an in vitro multi-stress dormancy model of Mtb. To optimize the antimycobacterial activity of these terpenoids, novel 15-α-methoxy- and 15-α-acetoxy-puupehenol esters were prepared from (+)-puupehenone (1) accessed through a (+)-sclareolide-derived β-hydroxyl aldehyde. For added diversity, various congeners related to (1) were also prepared from a common borono-sclareolide donor, which resulted in the synthesis of epi-puupehenol and the natural products (+)-chromazonarol and (+)-yahazunol. In total, we generated a library of 24 compounds, of which 14 were found to be active against Mtb, and the most active compounds retained the enhanced activity against dormant Mtb seen in the parent compound. Several of the 15-α-methoxy- and 15-α-acetoxy-puupehenol esters possessed potent activity against actively dividing and dormant Mtb. Intriguingly, the closely related triisobutyl derivative 16 showed similar activity to 1 in actively dividing Mtb but lost about 178-fold activity against dormant Mtb. However, the monopivaloyl compound 13 showed a modest 3- to 4-fold loss in activity in both actively dividing and dormant Mtb relative to the activity of 1 revealing the importance of the free OH at C19 supporting the potential role of quinone methide formation as critical for activity in dormant Mtb. Elucidating important structure-activity relationships and the mechanism of action of this natural product-inspired chemical series may yield insights into vulnerable drug targets in dormant bacilli and new therapeutics to more effectively target dormant Mtb.
Collapse
Affiliation(s)
- Anshupriya Si
- Department
of Chemistry and Biochemistry, University
of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United
States
| | - Alexander D. Landgraf
- Department
of Chemistry and Biochemistry, University
of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United
States
| | - Sandra Geden
- Division
of Immunity and Pathogenesis, Burnett School of Biomedical Sciences,
College of Medicine, University of Central
Florida, Orlando, Florida 32827, United
States
| | - Steven J. Sucheck
- Department
of Chemistry and Biochemistry, University
of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United
States
| | - Kyle H. Rohde
- Division
of Immunity and Pathogenesis, Burnett School of Biomedical Sciences,
College of Medicine, University of Central
Florida, Orlando, Florida 32827, United
States
| |
Collapse
|
22
|
Mason M, Gregory E, Foster K, Klatt M, Zoubek S, Eid A. Pharmacologic management of Mycobacterium chimaera Infections: A Primer for Clinicians. Open Forum Infect Dis 2022; 9:ofac287. [PMID: 35866101 PMCID: PMC9297092 DOI: 10.1093/ofid/ofac287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Mycobacterium chimaera, a member of the Mycobacterium avium complex, can cause infections in individuals after open heart surgery due to contaminated heater-cooler units. The diagnosis can be challenging, as the incubation period can be quite variable, and symptoms are nonspecific. In addition to aggressive surgical management, combination pharmacologic therapy is the cornerstone of therapy, which should consist of a macrolide, a rifamycin, ethambutol, and amikacin. Multiple second-line agents may be utilized in the setting of intolerances or toxicities. In vitro susceptibility of these agents is similar to activity against other species in the Mycobacterium avium complex. Drug–drug interactions are frequently encountered, as many individuals have chronic medical comorbidities and are prescribed medications that interact with the first-line agents used to treat M. chimaera. Recognition of these drug–drug interactions and appropriate management are essential for optimizing treatment outcomes.
Collapse
Affiliation(s)
- Matt Mason
- The University of Kansas Health System, Department of Pharmacy , Kansas City, KS , USA
| | - Eric Gregory
- The University of Kansas Health System, Department of Pharmacy , Kansas City, KS , USA
| | - Keith Foster
- The University of Kansas Health System, Department of Pharmacy , Kansas City, KS , USA
| | - Megan Klatt
- The University of Kansas Health System, Department of Pharmacy , Kansas City, KS , USA
| | - Sara Zoubek
- The University of Kansas Health System, Department of Pharmacy , Kansas City, KS , USA
| | - Albert Eid
- Kansas University Medical Center, Department of Infectious Diseases , Kansas City, KS , USA
| |
Collapse
|
23
|
Dwivedi M, Bajpai K. The chamber of secretome in Mycobacterium tuberculosis as a potential therapeutic target. Biotechnol Genet Eng Rev 2022; 39:1-44. [PMID: 35613080 DOI: 10.1080/02648725.2022.2076031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mycobacterium tuberculosis (MTB) causes one of the ancient diseases, Tuberculosis, affects people around the globe and its severity can be understood by its classification as a second infectious disease after COVID-19 and the 13th leading cause of death according to a WHO report. Despite having advanced diagnostic approaches and therapeutic strategies, unfortunately, TB is still spreading across the population due to the emergence of drug-resistance MTB and Latent TB infection (LTBI). We are seeking for effective approaches to overcome these hindrances and efficient treatment for this perilous disease. Therefore, there is an urgent need to develop drugs based on operative targeting of the bacterial system that could result in both efficient treatment and lesser emergence of MDR-TB. One such promising target could be the secretory systems and especially the Type 7 secretory system (T7SS-ESX) of Mycobacterium tuberculosis, which is crucial for the secretion of effector proteins as well as in establishing host-pathogen interactions of the tubercle bacilli. The five paralogous ESX systems (ESX-1 to EXS-5) have been observed by in silico genome analysis of MTB, among which ESX-1 and ESX-5 are substantial for virulence and mediating host cellular inflammasome. The bacterium growth and virulence can be modulated by targeting the T7SS. In the present review, we demonstrate the current status of therapeutics against MTB and focus on the function and cruciality of T7SS along with other secretory systems as a promising therapeutic target against Tuberculosis.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Kriti Bajpai
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| |
Collapse
|
24
|
Xu L, Zhou Y, Niu S, Liu Z, Zou Y, Yang Y, Feng H, Liu D, Niu X, Deng X, Wang Y, Wang J. A novel inhibitor of monooxygenase reversed the activity of tetracyclines against tet(X3)/tet(X4)-positive bacteria. EBioMedicine 2022; 78:103943. [PMID: 35306337 PMCID: PMC8933826 DOI: 10.1016/j.ebiom.2022.103943] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tigecycline is one of the few last-resort antibiotics for the treatment of carbapenem-resistant Enterobacteriaceae infection, the incidence of which has been rapidly increasing. However, the emergence and spread of tigecycline resistance genes tet(X) (including tet(X3) and tet(X4)) has largely compromised the efficient usage of tetracyclines in the clinical settings. METHODS The synergistic effect was determined by a checkerboard minimum inhibitory concentration (MIC) assay, a time-killing assay and scanning electron microscopy (SEM) analysis. In-depth mechanisms were defined using an enzyme inhibition assay, western blotting, RT-PCR analysis, molecular dynamics (MD) simulations, biolayer interferometry (BLI) assay and metabolomics analysis. FINDINGS Herein, our work identified a natural compound, plumbagin, as an effective broad-spectrum inhibitor of Tet(X) (also known as monooxygenase) by simultaneously inhibiting the activity and the production of Tet(X3)/Tet(X4). Plumbagin in combination with tetracyclines showed a synergistic bactericidal effect against Tet(X3)/Tet(X4)-producing bacteria. Mechanistic studies revealed that direct engagement of plumbagin with the catalytic pocket of Tet(X3)/Tet(X4) induced an alternation in its secondary structure to inhibit the activity of these monooxygenases. As a consequence, monotherapy or combination therapy with plumbagin increases the oxidative stress and metabolism in bacteria. Moreover, in a mouse systemic infection model of tet(X4)-positive E. coli, the combination of plumbagin and methacycline exhibited remarkable treatment benefits, as shown by a reduced bacterial load and the alleviation of pathological injury. INTERPRETATION Plumbagin, as an inhibitor of Tet(X3)/Tet(X4), represents a promising lead drug, as well as an adjunct with tetracyclines to treat bacterial infections, especially for extensively drug-resistant bacteria harbouring Tet(X3)/Tet(X4). FUNDING The National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yonglin Zhou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sen Niu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhiying Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yinuo Zou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanan Yang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haihua Feng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dejun Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaodi Niu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Jianfeng Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
25
|
Targeting the ATP synthase in bacterial and fungal pathogens – beyond Mycobacterium tuberculosis. J Glob Antimicrob Resist 2022; 29:29-41. [DOI: 10.1016/j.jgar.2022.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022] Open
|
26
|
Krah A, Grüber G, Bond PJ. Binding properties of the anti-TB drugs bedaquiline and TBAJ-876 to a mycobacterial F-ATP synthase. Curr Res Struct Biol 2022; 4:278-284. [PMID: 36186842 PMCID: PMC9516385 DOI: 10.1016/j.crstbi.2022.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/13/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Tuberculosis (TB), the deadly disease caused by Mycobacterium tuberculosis (Mtb), kills more people worldwide than any other bacterial infectious disease. There has been a recent resurgence of TB drug discovery activities, resulting in the identification of a number of novel enzyme inhibitors. Many of these inhibitors target the electron transport chain complexes and the F1FO-ATP synthase; these enzymes represent new target spaces for drug discovery, since the generation of ATP is essential for the bacterial pathogen's physiology, persistence, and pathogenicity. The anti-TB drug bedaquiline (BDQ) targets the Mtb F-ATP synthase and is used as salvage therapy against this disease. Medicinal chemistry efforts to improve the physio-chemical properties of BDQ resulted in the discovery of 3,5-dialkoxypyridine (DARQ) analogs to which TBAJ-876 belongs. TBAJ-876, a clinical development candidate, shows attractive in vitro and in vivo antitubercular activity. Both BDQ and TBAJ-876 inhibit the mycobacterial F1FO-ATP synthase by stopping rotation of the c-ring turbine within the FO domain, thereby preventing proton translocation and ATP synthesis to occur. While structural data for the BDQ bound state are available, no structural information about TBAJ-876 binding have been described. In this study, we show how TBAJ-876 binds to the FO domain of the M. smegmatis F1FO-ATP synthase. We further calculate the binding free energy of both drugs bound to their target and predict an increased affinity of TBAJ-876 for the FO domain. This approach will be useful in future efforts to design new and highly potent DARQ analogs targeting F-ATP synthases of Mtb, nontuberculosis mycobacteria (NTM) as well as the M. leprosis complex. BDQ inhibits mycobacterial F-ATP synthase. TBAJ-876 is a BDQ analogue with improved affinity for the enzyme. Simulations help to structurally clarify the FO domain binding sites of TBAJ-876. Insights will help guide development of multidrug-resistant tuberculosis drugs.
Collapse
Affiliation(s)
- Alexander Krah
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Str., #07-01 Matrix, 138671, Singapore
- Corresponding author.
| | - Gerhard Grüber
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Str., #07-01 Matrix, 138671, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Peter J. Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Str., #07-01 Matrix, 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
- Corresponding author. Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Str., #07-01 Matrix, 138671, Singapore.
| |
Collapse
|
27
|
Umbrasas D, Arandarcikaite O, Grigaleviciute R, Stakauskas R, Borutaite V. Neuroprotective Effect of a Novel ATP-Synthase Inhibitor Bedaquiline in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:9717. [PMID: 34575875 PMCID: PMC8472139 DOI: 10.3390/ijms22189717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dysfunction during ischemic stroke ultimately manifests as ATP depletion. Mitochondrial ATP synthase upon loss of mitochondrial membrane potential during ischemia rapidly hydrolyses ATP and thus contributes to ATP depletion. Increasing evidence suggests that inhibition of ATP synthase limits ATP depletion and is protective against ischemic tissue damage. Bedaquiline (BDQ) is an anti-microbial agent, approved for clinical use, that inhibits ATP synthase of Mycobacteria; however recently it has been shown to act on mitochondrial ATP synthase, inhibiting both ATP synthesis and hydrolysis in low micromolar concentrations. In this study, we investigated whether preconditioning with BDQ can alleviate ischemia/reperfusion-induced brain injury in Wistar rats after middle cerebral artery occlusion-reperfusion and whether it affects mitochondrial functions. We found that BDQ was effective in limiting necrosis and neurological dysfunction during ischemia-reperfusion. BDQ also caused inhibition of ATPase activity, mild uncoupling of respiration, and stimulated mitochondrial respiration both in healthy and ischemic mitochondria. Mitochondrial calcium retention capacity was unaffected by BDQ preconditioning. We concluded that BDQ has neuroprotective properties associated with its action on mitochondrial respiration and ATPase activity.
Collapse
Affiliation(s)
- Danielius Umbrasas
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (O.A.); (V.B.)
| | - Odeta Arandarcikaite
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (O.A.); (V.B.)
| | - Ramune Grigaleviciute
- Biological Research Center, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (R.G.); (R.S.)
| | - Rimantas Stakauskas
- Biological Research Center, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (R.G.); (R.S.)
| | - Vilmante Borutaite
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (O.A.); (V.B.)
| |
Collapse
|
28
|
Kumar A, Karkara BB, Panda G. Novel candidates in the clinical development pipeline for TB drug development and their Synthetic Approaches. Chem Biol Drug Des 2021; 98:787-827. [PMID: 34397161 DOI: 10.1111/cbdd.13934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) is an infection caused by Mycobacterium tuberculosis (Mtb) and one of the deadliest infectious diseases in the world. Mtb has the ability to become dormant within the host and to develop resistance. Hence, new antitubercular agents are required to overcome problems in the treatment of multidrug resistant-Tb (MDR-Tb) and extensively drug resistant-Tb (XDR-Tb) along with shortening the treatment time. Several efforts are being made to develop very effective new drugs for Tb, within the pharmaceutical industry, the academia, and through public private partnerships. This review will address the anti-tubercular activities, biological target, mode of action, synthetic approaches and thoughtful concept for the development of several new drugs currently in the clinical trial pipeline (up to October 2019) for tuberculosis. The aim of this review may be very useful in scheming new chemical entities (NCEs) for Mtb.
Collapse
Affiliation(s)
- Amit Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| | - Bidhu Bhusan Karkara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.,Department of Pharmaceutical Science, Vignan's Foundation for Science, Technology and Research University, Guntur, 522213, AP, India
| | - Gautam Panda
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| |
Collapse
|
29
|
Barbaro L, Nagalingam G, Triccas JA, Tan L, West NP, Baell JB, Priebbenow DL. Synthesis and evaluation of pyridine-derived bedaquiline analogues containing modifications at the A-ring subunit. RSC Med Chem 2021; 12:943-959. [PMID: 34223160 DOI: 10.1039/d1md00063b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
Despite promising efficacy, the clinical use of the anti-tubercular therapeutic bedaquiline has been restricted due to safety concerns. To date, limited SAR studies have focused on the quinoline ring (A-ring), and as such, we set out to explore modifications within this region in an attempt to discover new bedaquiline variants with an improved safety profile. We herein report the development of unique synthetic strategies that facilitated access to novel bedaquiline analogues leading to the discovery that anti-tubercular activity could be retained following replacement of the quinoline motif with pyridine heterocycles. This discovery is anticipated to open up multiple new avenues for exploration in the design of improved anti-tubercular therapeutics.
Collapse
Affiliation(s)
- Lisa Barbaro
- Monash Institute of Pharmaceutical Sciences, Monash University 381 Royal Parade Parkville Victoria 3052 Australia
| | - Gayathri Nagalingam
- School of Medical Sciences and Marie Bashir Institute, The University of Sydney Sydney NSW 2006 Australia
| | - James A Triccas
- School of Medical Sciences and Marie Bashir Institute, The University of Sydney Sydney NSW 2006 Australia
| | - Lendl Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland St Lucia Queensland 4072 Australia.,Australian Infectious Diseases Research Centre St. Lucia Queensland 4067 Australia
| | - Nicholas P West
- School of Chemistry and Molecular Bioscience, The University of Queensland St Lucia Queensland 4072 Australia.,Australian Infectious Diseases Research Centre St. Lucia Queensland 4067 Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University 381 Royal Parade Parkville Victoria 3052 Australia
| | - Daniel L Priebbenow
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
30
|
Chauhan A, Kumar M, Kumar A, Kanchan K. Comprehensive review on mechanism of action, resistance and evolution of antimycobacterial drugs. Life Sci 2021; 274:119301. [PMID: 33675895 DOI: 10.1016/j.lfs.2021.119301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023]
Abstract
Tuberculosis is one of the deadliest infectious diseases existing in the world since ancient times and still possesses serious threat across the globe. Each year the number of cases increases due to high drug resistance shown by Mycobacterium tuberculosis (Mtb). Available antimycobacterial drugs have been classified as First line, Second line and Third line antibiotics depending on the time of their discoveries and their effectiveness in the treatment. These antibiotics have a broad range of targets ranging from cell wall to metabolic processes and their non-judicious and uncontrolled usage in the treatment for years has created a significant problem called multi-drug resistant (MDR) tuberculosis. In this review, we have summarized the mechanism of action of all the classified antibiotics currently in use along with the resistance mechanisms acquired by Mtb. We have focused on the new drug candidates/repurposed drugs, and drug in combinations, which are in clinical trials for either treating the MDR tuberculosis more effectively or involved in reducing the time required for the chemotherapy of drug sensitive TB. This information is not discussed very adequately on a single platform. Additionally, we have discussed the recent technologies that are being used to discover novel resistance mechanisms acquired by Mtb and for exploring novel drugs. The story of intrinsic resistance mechanisms and evolution in Mtb is far from complete. Therefore, we have also discussed intrinsic resistance mechanisms of Mtb and their evolution with time, emphasizing the hope for the development of novel antimycobacterial drugs for effective therapy of tuberculosis.
Collapse
Affiliation(s)
- Aditi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India
| | - Manoj Kumar
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
| | - Awanish Kumar
- Department of Bio Technology, National Institute of Technology, Raipur, India
| | - Kajal Kanchan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India.
| |
Collapse
|
31
|
Kumar G, Narayan R, Kapoor S. Chemical Tools for Illumination of Tuberculosis Biology, Virulence Mechanisms, and Diagnosis. J Med Chem 2020; 63:15308-15332. [PMID: 33307693 DOI: 10.1021/acs.jmedchem.0c01337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases and begs the scientific community to up the ante for research and exploration of completely novel therapeutic avenues. Chemical biology-inspired design of tunable chemical tools has aided in clinical diagnosis, facilitated discovery of therapeutics, and begun to enable investigation of virulence mechanisms at the host-pathogen interface of Mycobacterium tuberculosis. This Perspective highlights chemical tools specific to mycobacterial proteins and the cell lipid envelope that have furnished rapid and selective diagnostic strategies and provided unprecedented insights into the function of the mycobacterial proteome and lipidome. We discuss chemical tools that have enabled elucidating otherwise intractable biological processes by leveraging the unique lipid and metabolite repertoire of mycobacterial species. Some of these probes represent exciting starting points with the potential to illuminate poorly understood aspects of mycobacterial pathogenesis, particularly the host membrane-pathogen interactions.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda 403 401, Goa, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India.,Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| |
Collapse
|
32
|
Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline. Nature 2020; 589:143-147. [PMID: 33299175 DOI: 10.1038/s41586-020-3004-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/21/2020] [Indexed: 01/01/2023]
Abstract
Tuberculosis-the world's leading cause of death by infectious disease-is increasingly resistant to current first-line antibiotics1. The bacterium Mycobacterium tuberculosis (which causes tuberculosis) can survive low-energy conditions, allowing infections to remain dormant and decreasing their susceptibility to many antibiotics2. Bedaquiline was developed in 2005 from a lead compound identified in a phenotypic screen against Mycobacterium smegmatis3. This drug can sterilize even latent M. tuberculosis infections4 and has become a cornerstone of treatment for multidrug-resistant and extensively drug-resistant tuberculosis1,5,6. Bedaquiline targets the mycobacterial ATP synthase3, which is an essential enzyme in the obligate aerobic Mycobacterium genus3,7, but how it binds the intact enzyme is unknown. Here we determined cryo-electron microscopy structures of M. smegmatis ATP synthase alone and in complex with bedaquiline. The drug-free structure suggests that hook-like extensions from the α-subunits prevent the enzyme from running in reverse, inhibiting ATP hydrolysis and preserving energy in hypoxic conditions. Bedaquiline binding induces large conformational changes in the ATP synthase, creating tight binding pockets at the interface of subunits a and c that explain the potency of this drug as an antibiotic for tuberculosis.
Collapse
|
33
|
Luo M, Zhou W, Patel H, Srivastava AP, Symersky J, Bonar MM, Faraldo-Gómez JD, Liao M, Mueller DM. Bedaquiline inhibits the yeast and human mitochondrial ATP synthases. Commun Biol 2020; 3:452. [PMID: 32814813 PMCID: PMC7438494 DOI: 10.1038/s42003-020-01173-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Bedaquiline (BDQ, Sirturo) has been approved to treat multidrug resistant forms of Mycobacterium tuberculosis. Prior studies suggested that BDQ was a selective inhibitor of the ATP synthase from M. tuberculosis. However, Sirturo treatment leads to an increased risk of cardiac arrhythmias and death, raising the concern that this adverse effect results from inhibition at a secondary site. Here we show that BDQ is a potent inhibitor of the yeast and human mitochondrial ATP synthases. Single-particle cryo-EM reveals that the site of BDQ inhibition partially overlaps with that of the inhibitor oligomycin. Molecular dynamics simulations indicate that the binding mode of BDQ to this site is similar to that previously seen for a mycobacterial enzyme, explaining the observed lack of selectivity. We propose that derivatives of BDQ ought to be made to increase its specificity toward the mycobacterial enzyme and thereby reduce the side effects for patients that are treated with Sirturo. Luo, Zhou et al. show that Bedaquiline (BDQ, Sirturo), approved to treat multi-drug-resistant tuberculosis, inhibits the yeast and human mitochondrial ATP synthases in addition to its intended target, the Mycobacterium tuberculosis ATP synthase. The structure of the mitochondrial ATP synthase bound to BDQ suggests a means to modify this inhibitor to increase its specificity for the M. tuberculosis enzyme, thereby reducing its side effects for patients.
Collapse
Affiliation(s)
- Min Luo
- Department of Cell Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Hiral Patel
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Anurag P Srivastava
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Jindrich Symersky
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Michał M Bonar
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA.
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA.
| | - David M Mueller
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd, North Chicago, IL, 60064, USA.
| |
Collapse
|
34
|
|
35
|
Johnson ME, Fung LWM. Structural approaches to pathway-specific antimicrobial agents. Transl Res 2020; 220:114-121. [PMID: 32105648 PMCID: PMC7293926 DOI: 10.1016/j.trsl.2020.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
This perspective provides an overview of the evolution of antibiotic discovery from a largely phenotypic-based effort, through an intensive structure-based design focus, to a more holistic approach today. The current focus on antibiotic development incorporates assay and discovery conditions that replicate the host environment as much as feasible. They also incorporate several strategies, including target identification and validation within the whole cell environment, a variety of target deconvolution methods, and continued refinement of structure-based design approaches.
Collapse
Affiliation(s)
- Michael E Johnson
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois.
| | - Leslie W-M Fung
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
36
|
Oxidative Phosphorylation—an Update on a New, Essential Target Space for Drug Discovery in Mycobacterium tuberculosis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072339] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New drugs with new mechanisms of action are urgently required to tackle the global tuberculosis epidemic. Following the FDA-approval of the ATP synthase inhibitor bedaquiline (Sirturo®), energy metabolism has become the subject of intense focus as a novel pathway to exploit for tuberculosis drug development. This enthusiasm stems from the fact that oxidative phosphorylation (OxPhos) and the maintenance of the transmembrane electrochemical gradient are essential for the viability of replicating and non-replicating Mycobacterium tuberculosis (M. tb), the etiological agent of human tuberculosis (TB). Therefore, new drugs targeting this pathway have the potential to shorten TB treatment, which is one of the major goals of TB drug discovery. This review summarises the latest and key findings regarding the OxPhos pathway in M. tb and provides an overview of the inhibitors targeting various components. We also discuss the potential of new regimens containing these inhibitors, the flexibility of this pathway and, consequently, the complexity in targeting it. Lastly, we discuss opportunities and future directions of this drug target space.
Collapse
|
37
|
Bosquez M, Fomina L, Salcedo R. Selectivity of Bedaquiline reacting with different polypeptide chains. Theoretical approach. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1714042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Marlene Bosquez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de, Coyoacán, Ciudad de México, Mexico
| | - Lioudmila Fomina
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de, Coyoacán, Ciudad de México, Mexico
| | - Roberto Salcedo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de, Coyoacán, Ciudad de México, Mexico
| |
Collapse
|
38
|
Karkara BB, Mishra SS, Singh BN, Panda G. Synthesis of 2-methoxy-3-(thiophen-2-ylmethyl)quinoline containing amino carbinols as antitubercular agents. Bioorg Chem 2020; 99:103775. [PMID: 32222618 DOI: 10.1016/j.bioorg.2020.103775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/13/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
We have designed and synthesized 2-methoxy-3-(thiophen-2-ylmethyl)quinoline containing amino carbinols as possible anti-tubercular agents to combat the disease. These molecules were synthesized by tethering amino ether linkage with hydroxyl group to diarylquinoline skeleton; hydroxyl and amine chains were engrafted on diaryl ring. They were evaluated against strain (H37Ra) of Mycobacterium tuberculosis and most of compounds showed in vitro antitubercular activity. Two compounds having diaryl quinoline hydroxyl amino ether scaffold and three compounds having diaryl amino alkyl carbinol core showed activities at 6.25 μg/mL. This study explores diaryl carbinol prototype as inhibitor against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Bidhu Bhusan Karkara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Shashank Shekhar Mishra
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Bhupendra N Singh
- Microbiology Division, CSIR-Central Drug Research Institute BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academiy of Scientific and Innovative Research, New Delhi 110001, India
| | - Gautam Panda
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academiy of Scientific and Innovative Research, New Delhi 110001, India.
| |
Collapse
|
39
|
Re-Understanding the Mechanisms of Action of the Anti-Mycobacterial Drug Bedaquiline. Antibiotics (Basel) 2019; 8:antibiotics8040261. [PMID: 31835707 PMCID: PMC6963887 DOI: 10.3390/antibiotics8040261] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 12/07/2019] [Indexed: 12/14/2022] Open
Abstract
Bedaquiline (BDQ) inhibits ATP generation in Mycobacterium tuberculosis by interfering with the F-ATP synthase activity. Two mechanisms of action of BDQ are broadly accepted. A direct mechanism involves BDQ binding to the enzyme’s c-ring to block its rotation, thus inhibiting ATP synthesis in the enzyme’s catalytic α3β3-headpiece. An indirect mechanism involves BDQ uncoupling electron transport in the electron transport chain from ATP synthesis at the F-ATP synthase. In a recently uncovered second direct mechanism, BDQ binds to the enzyme’s ε-subunit to disrupt its ability to link c-ring rotation to ATP synthesis at the α3β3-headpiece. However, this mechanism is controversial as the drug’s binding affinity for the isolated ε-subunit protein is moderate and spontaneous resistance mutants in the ε-subunit cannot be isolated. Recently, the new, structurally distinct BDQ analogue TBAJ-876 was utilized as a chemical probe to revisit BDQ’s mechanisms of action. In this review, we first summarize discoveries on BDQ’s mechanisms of action and then describe the new insights derived from the studies of TBAJ-876. The TBAJ-876 investigations confirm the c-ring as a target, while also supporting a functional role for targeting the ε-subunit. Surprisingly, the new findings suggest that the uncoupler mechanism does not play a key role in BDQ’s anti-mycobacterial activity.
Collapse
|
40
|
Mascolo L, Bald D. Cytochrome bd in Mycobacterium tuberculosis: A respiratory chain protein involved in the defense against antibacterials. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 152:55-63. [PMID: 31738981 DOI: 10.1016/j.pbiomolbio.2019.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022]
Abstract
The branched respiratory chain of Mycobacterium tuberculosis has attracted attention as a highly promising target for next-generation antibacterials. This system includes two terminal oxidases of which the exclusively bacterial cytochrome bd represents the less energy-efficient one. Albeit dispensable for growth under standard laboratory conditions, cytochrome bd is important during environmental stress. In this review, we discuss the role of cytochrome bd during infection of the mammalian host and in the defense against antibacterials. Deeper insight into the biochemistry of mycobacterial cytochrome bd is needed to understand the physiological role of this bacteria-specific defense factor. Conversely, cytochrome bd may be utilized to gain information on mycobacterial physiology in vitro and during host infection. Knowledge-based manipulation of cytochrome bd function may assist in designing the next-generation tuberculosis combination chemotherapy.
Collapse
Affiliation(s)
- Ludovica Mascolo
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Dirk Bald
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Bahuguna A, Rawat DS. An overview of new antitubercular drugs, drug candidates, and their targets. Med Res Rev 2019; 40:263-292. [PMID: 31254295 DOI: 10.1002/med.21602] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
The causative agent of tuberculosis (TB), Mycobacterium tuberculosis and more recently totally drug-resistant strains of M. tuberculosis, display unique mechanisms to survive in the host. A four-drug treatment regimen was introduced 40 years ago but the emergence of multidrug-resistance and more recently TDR necessitates the identification of new targets and drugs for the cure of M. tuberculosis infection. The current efforts in the drug development process are insufficient to completely eradicate the TB epidemic. For almost five decades the TB drug development process remained stagnant. The last 10 years have made sudden progress giving some new and highly promising drugs including bedaquiline, delamanid, and pretomanid. Many of the candidates are repurposed compounds, which were developed to treat other infections but later, exhibited anti-TB properties also. Each class of drug has a specific target and a definite mode of action. These targets are either involved in cell wall biosynthesis, protein synthesis, DNA/RNA synthesis, or metabolism. This review discusses recent progress in the discovery of newly developed and Food and Drug Administration approved drugs as well as repurposed drugs, their targets, mode of action, drug-target interactions, and their structure-activity relationship.
Collapse
Affiliation(s)
| | - Diwan S Rawat
- Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
42
|
A structural insight of bedaquiline for the cardiotoxicity and hepatotoxicity. Tuberculosis (Edinb) 2019; 117:79-84. [PMID: 31378273 DOI: 10.1016/j.tube.2019.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/25/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
Bedaquiline was approved by USFDA in 2012 for pulmonary MDR-TB. The IC50 value of bedaquiline was reported to be remarkably low (25 nM), effectively inhibiting mycobacterial ATP synthase. In addition to these obvious assets of bedaquiline, the potential disadvantages of bedaquiline include inhibition of the hERG (human Ether-à-go-related gene; KCNH2) potassium channel (concurrent risk of cardiac toxicity), hepatic toxicity and possibly phospholipidosis. The current review focuses primarily on the structural part of bedaquiline for the activity-toxicity optimization. This critical analysis of the structure of bedaquiline will help medicinal chemists to synthesize the better modified analouge of bedaquiline with reduced cardiotoxicity, hepatotoxicity potential and improved pharmacokinetics.
Collapse
|
43
|
Saxena AK, Singh A. Mycobacterial tuberculosis Enzyme Targets and their Inhibitors. Curr Top Med Chem 2019; 19:337-355. [PMID: 30806318 DOI: 10.2174/1568026619666190219105722] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) still continues to be a major killer disease worldwide. Unlike other bacteria Mycobacterium tuberculosis (Mtb) has the ability to become dormant within the host and to develop resistance. Hence efforts are being made to overcome these problems by searching for new antitubercular agents which may be useful in the treatment of multidrug-(MDR) and extensively drugresistant (XDR) M. tuberculosis and shortening the treatment time. The recent introduction of bedaquiline to treat MDR-TB and XDR-TB may improve the status of TB treatment. The target enzymes in anti-TB drug discovery programs play a key role, hence efforts have been made to review the work on molecules including antiTB drugs acting on different enzyme targets including ATP synthase, the target for bedaquiline. Literature searches have been carried out to find the different chemical molecules including drugs and their molecular targets responsible for their antitubercular activities in recent years. This review provides an overview of the chemical structures with their antitubercular activities and enzyme targets like InhA, ATP synthase, Lip Y, transmembrane transport protein large (MmpL3), and decaprenylphospho-β-D-ribofuranose 2-oxidase, (DprE1). The major focus has been on the new target ATP synthase. Such an attempt may be useful in designing new chemical entities (NCEs) for specific and multi-drug targeting against Mtb.
Collapse
Affiliation(s)
- Anil Kumar Saxena
- Division of Medicinal and Process Chemistry, CSIR Central Drug Research Institute, Lucknow 226 001, India
| | - Anamika Singh
- Division of Medicinal and Process Chemistry, CSIR Central Drug Research Institute, Lucknow 226 001, India
| |
Collapse
|
44
|
Salifu EY, Agoni C, Olotu FA, Dokurugu YM, Soliman MES. Halting ionic shuttle to disrupt the synthetic machinery-Structural and molecular insights into the inhibitory roles of Bedaquiline towards Mycobacterium tuberculosis ATP synthase in the treatment of tuberculosis. J Cell Biochem 2019; 120:16108-16119. [PMID: 31125144 DOI: 10.1002/jcb.28891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
Abstract
Therapeutic targeting of the adenosine triphosphate (ATP) machinery of Mycobacterium tuberculosis (Mtb) has recently presented a potent and alternative measure to halt the pathogenesis of tuberculosis. This has been potentiated by the development of bedaquiline (BDQ), a novel small molecule inhibitor that selectively inhibits mycobacterial F1 Fo -ATP synthase by targeting its rotor c-ring, resulting in the disruption of ATP synthesis and consequential cell death. Although the structural resolution of the mycobacterial C9 ring in co`mplex with BDQ provided the first-hand detail of BDQ interaction at the c-ring region of the ATP synthase, there still remains a need to obtain essential and dynamic insights into the mechanistic activity of this drug molecule towards crucial survival machinery of Mtb. As such, for the first time, we report an atomistic model to describe the structural dynamics that explicate the experimentally reported antagonistic features of BDQ in halting ion shuttling by the mycobacterial c-ring, using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Surface Area methods. Results showed that BDQ exhibited a considerably high ΔG while it specifically maintained high-affinity interactions with Glu65B and Asp32B , blocking their crucial roles in proton binding and shuttling, which is required for ATP synthesis. Moreover, the bulky nature of BDQ induced a rigid and compact conformation of the rotor c-ring, which impedes the essential rotatory motion that drives ion exchange and shuttling. In addition, the binding affinity of a BDQ molecule was considerably increased by the complementary binding of another BDQ molecule, which indicates that an increase in BDQ molecule enhances inhibitory potency against Mtb ATP synthase. Taken together, findings provide atomistic perspectives into the inhibitory mechanisms of BDQ coupled with insights that could enhance the structure-based design of novel ATP synthase inhibitors towards the treatment of tuberculosis.
Collapse
Affiliation(s)
- Elliasu Y Salifu
- Molecular Bio-computation and Drug Design Laboratory, Discipline of Pharmaceutical Chemistry, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, Discipline of Pharmaceutical Chemistry, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, Discipline of Pharmaceutical Chemistry, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Yussif M Dokurugu
- College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural & Mechanical University, Tallahassee, Florida
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, Discipline of Pharmaceutical Chemistry, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
45
|
Belosludtsev KN, Penkov NV, Tenkov KS, Talanov EY, Belosludtseva NV, Agafonov AV, Stepanova AE, Starinets VS, Vashchenko OV, Gudkov SV, Dubinin MV. Interaction of the anti-tuberculous drug bedaquiline with artificial membranes and rat erythrocytes. Chem Biol Interact 2019; 299:8-14. [PMID: 30496736 DOI: 10.1016/j.cbi.2018.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/06/2018] [Accepted: 11/25/2018] [Indexed: 11/28/2022]
|
46
|
Affiliation(s)
- Sang-Won Yoon
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jae Chol Choi
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Belosludtsev KN, Belosludtseva NV, Talanov EY, Tenkov KS, Starinets VS, Agafonov AV, Pavlik LL, Dubinin MV. Effect of bedaquiline on the functions of rat liver mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:288-297. [PMID: 29920239 DOI: 10.1016/j.bbamem.2018.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 01/27/2023]
|
48
|
Mutations in the MAB_2299c TetR Regulator Confer Cross-Resistance to Clofazimine and Bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother 2018; 63:AAC.01316-18. [PMID: 30323043 DOI: 10.1128/aac.01316-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/09/2018] [Indexed: 11/20/2022] Open
Abstract
New therapeutic approaches are needed against Mycobacterium abscessus, a respiratory mycobacterial pathogen that evades efforts to successfully treat infected patients. Clofazimine and bedaquiline, two drugs used for the treatment of multidrug-resistant tuberculosis, are being considered as alternatives for the treatment of lung diseases caused by M. abscessus With the aim to understand the mechanism of action of these agents in M. abscessus, we sought herein to determine the means by which M. abscessus can develop resistance. Spontaneous resistant strains selected on clofazimine, followed by whole-genome sequencing, identified mutations in MAB_2299c, encoding a putative TetR transcriptional regulator. Unexpectedly, mutants with these mutations were also cross-resistant to bedaquiline. MAB_2299c was found to bind to its target DNA, located upstream of the divergently oriented MAB_2300-MAB_2301 gene cluster, encoding MmpS/MmpL membrane proteins. Point mutations or deletion of MAB_2299c was associated with the concomitant upregulation of the mmpS and mmpL transcripts and accounted for this cross-resistance. Strikingly, deletion of MAB_2300 and MAB_2301 in the MAB_2299c mutant strain restored susceptibility to bedaquiline and clofazimine. Overall, these results expand our knowledge with respect to the regulatory mechanisms of the MmpL family of proteins and a novel mechanism of drug resistance in this difficult-to-treat respiratory mycobacterial pathogen. Therefore, MAB_2299c may represent an important marker of resistance to be considered in the treatment of M. abscessus diseases with clofazimine and bedaquiline in clinical settings.
Collapse
|
49
|
Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon. Biomed Pharmacother 2018; 103:1733-1747. [PMID: 29864964 DOI: 10.1016/j.biopha.2018.04.176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Tuberculosis is an ever evolving infectious disease that still claims about 1.8 million human lives each year around the globe. Although modern chemotherapy has played a pivotal role in combating TB, the increasing emergence of drug-resistant TB aligned with HIV pandemic threaten its control. This highlights both the need to understand how our current drugs work and the need to develop new and more effective drugs. TB drug discovery is revisiting the clinically validated drug targets in Mycobacterium tuberculosis using whole-cell phenotypic assays in search of better therapeutic scaffolds. Herein, we review the promises of current TB drug regimens, major pitfalls faced, key drug targets exploited so far in M. tuberculosis along with the status of newly discovered drugs against drug resistant forms of TB. New antituberculosis regimens that use lesser number of drugs, require shorter duration of treatment, are equally effective against susceptible and resistant forms of disease, have acceptable toxicity profiles and behave friendly with anti-HIV regimens remains top most priority in TB drug discovery.
Collapse
|
50
|
Golichenari B, Velonia K, Nosrati R, Nezami A, Farokhi-Fard A, Abnous K, Behravan J, Tsatsakis AM. Label-free nano-biosensing on the road to tuberculosis detection. Biosens Bioelectron 2018; 113:124-135. [DOI: 10.1016/j.bios.2018.04.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/14/2018] [Accepted: 04/28/2018] [Indexed: 12/16/2022]
|