1
|
Mazzantini D, Gherardini G, Rossi V, Celandroni F, Calvigioni M, Panattoni A, Massimino M, Lupetti A, Ghelardi E. Dissecting the role of the MS-ring protein FliF in Bacillus cereus flagella-related functions. Mol Microbiol 2024; 122:255-270. [PMID: 39030901 DOI: 10.1111/mmi.15299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
The flagellar MS-ring, uniquely constituted by FliF, is essential for flagellar biogenesis and functionality in several bacteria. The aim of this study was to dissect the role of FliF in the Gram-positive and peritrichously flagellated Bacillus cereus. We demonstrate that fliF forms an operon with the upstream gene fliE. In silico analysis of B. cereus ATCC 14579 FliF identifies functional domains and amino acid residues that are essential for protein functioning. The analysis of a ΔfliF mutant of B. cereus, constructed in this study using an in frame markerless gene replacement method, reveals that the mutant is unexpectedly able to assemble flagella, although in reduced amounts compared to the parental strain. Nevertheless, motility is completely abolished by fliF deletion. FliF deprivation causes the production of submerged biofilms and affects the ability of B. cereus to adhere to gastrointestinal mucins. We additionally show that the fliF deletion does not compromise the secretion of the three components of hemolysin BL, a toxin secreted through the flagellar type III secretion system. Overall, our findings highlight the important role of B. cereus FliF in flagella-related functions, being the protein required for complete flagellation, motility, mucin adhesion, and pellicle biofilms.
Collapse
Affiliation(s)
- Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Guendalina Gherardini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Virginia Rossi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Adelaide Panattoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mariacristina Massimino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Research Center Nutraceuticals and Food for Health-Nutrafood, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
El-Naggar NEA, Shiha AM, Mahrous H, Mohammed ABA. A sustainable green-approach for biofabrication of chitosan nanoparticles, optimization, characterization, its antifungal activity against phytopathogenic Fusarium culmorum and antitumor activity. Sci Rep 2024; 14:11336. [PMID: 38760441 PMCID: PMC11101436 DOI: 10.1038/s41598-024-59702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024] Open
Abstract
Chitosan is a natural non-toxic, biocompatible, biodegradable, and mucoadhesive polymer. It also has a broad spectrum of applications such as agriculture, medical fields, cosmetics and food industries. In this investigation, chitosan nanoparticles were produced by an aqueous extract of Cympopogon citratus leaves as a reducing agent. According to the SEM and TEM micrographs, CNPs had a spherical shape, and size ranging from 8.08 to 12.01 nm. CNPs have a positively charged surface with a Zeta potential of + 26 mV. The crystalline feature of CNPs is determined by X-ray diffraction. There are many functional groups, including C꞊C, CH2-OH, C-O, C-S, N-H, CN, CH and OH were detected by FTIR analysis. As shown by the thermogravimetric study, CNPs have a high thermal stability. For the optimization of the green synthesis of CNPs, a Face centered central composite design (FCCCD) with 30 trials was used. The maximum yield of CNPs (13.99 mg CNPs/mL) was produced with chitosan concentration 1.5%, pH 4.5 at 40 °C, and incubation period of 30 min. The antifungal activity of CNPs was evaluated against phytopathogenic fungus; Fusarium culmorum. A 100% rate of mycelial growth inhibition was gained by the application of 20 mg CNPs/mL. The antitumor activity of the green synthesized CNPs was examined using 6 different cell lines, the viability of the cells reduced when the concentration of green synthesized CNPs increased, the IC50 dose of the green synthesized CNPs on the examined cell lines HePG-2, MCF-7, HCT-116, PC-3, Hela and WI-38 was 36.25 ± 2.3, 31.21 ± 2.2, 67.45 ± 3.5, 56.30 ± 3.3, 44.62 ± 2.6 and 74.90 ± 3.8; respectively.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Alaa M Shiha
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| | - Hoda Mahrous
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - A B Abeer Mohammed
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
3
|
Poshvina DV, Dilbaryan DS, Kasyanov SP, Sadykova VS, Lapchinskaya OA, Rogozhin EA, Vasilchenko AS. Staphylococcus aureus is able to generate resistance to novel lipoglycopeptide antibiotic gausemycin A. Front Microbiol 2022; 13:963979. [PMID: 36246291 PMCID: PMC9558223 DOI: 10.3389/fmicb.2022.963979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Gausemycin A is the first member of the novel lipoglycopeptides family produced by Streptomyces roseoflavus INA-Ac-5812. Gausemycin A has a pronounced bactericidal activity against methicillin-resistant Staphylococcus aureus. However, the ability of S. aureus to be resistant to gausemycin A has not been investigated yet. Using serial passaging, we have obtained the resistant variant S. aureus 5812R, which is 80 times more resistant compared to the parent strain. Susceptibility testing of S. aureus 5812R revealed the acquisition of cross-resistance to daptomycin, cefazolin, tetracycline, and gentamicin, while the resistance to vancomycin, nisin, and ramoplanin was absent. Whole genome sequencing revealed single nucleotide polymorphism (SNP) and deletions in S. aureus 5812R, among which are genes encoding efflux pump (sepA), the two-component Kdp system (kdpE), and the component of isoprenoid biosynthesis pathway (hepT). Phenotypically, S. aureus 5812R resembles a small-colony variant, as it is slow-growing, forms small colonies, and is deficient in pigments. Profiling of fatty acids (FA) composition constituting the cytoplasmic membrane of S. aureus 5812R revealed the prevalence of anteiso-branched FA, while straight FA was slightly less present. The evidence also showed that the gausemycin A-resistant strain has increased expression of the cls2 gene of the cardiolipin synthase. The performed checkerboard assay pointed out that the combination of gausemycin A and ciprofloxacin showed a synergistic effect against S. aureus 5812R.
Collapse
Affiliation(s)
- Darya V. Poshvina
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Diana S. Dilbaryan
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Sergey P. Kasyanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Vladivostok, Russia
| | | | | | - Eugene A. Rogozhin
- Gause Institute of New Antibiotics, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - Alexey S. Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
- *Correspondence: Alexey S. Vasilchenko
| |
Collapse
|
4
|
Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial Actions and Applications of Chitosan. Polymers (Basel) 2021; 13:904. [PMID: 33804268 PMCID: PMC7998239 DOI: 10.3390/polym13060904] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Chitosan is a naturally originating product that can be applied in many areas due to its biocompatibility, biodegradability, and nontoxic properties. The broad-spectrum antimicrobial activity of chitosan offers great commercial potential for this product. Nevertheless, the antimicrobial activity of chitosan varies, because this activity is associated with its physicochemical characteristics and depends on the type of microorganism. In this review article, the fundamental properties, modes of antimicrobial action, and antimicrobial effects-related factors of chitosan are discussed. We further summarize how microorganisms genetically respond to chitosan. Finally, applications of chitosan-based biomaterials, such as nanoparticles and films, in combination with current clinical antibiotics or antifungal drugs, are also addressed.
Collapse
Affiliation(s)
| | | | | | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (C.-L.K.); (F.-S.D.); (C.-Y.C.)
| |
Collapse
|
5
|
Huang X, You Z, Luo Y, Yang C, Ren J, Liu Y, Wei G, Dong P, Ren M. Antifungal activity of chitosan against Phytophthora infestans, the pathogen of potato late blight. Int J Biol Macromol 2020; 166:1365-1376. [PMID: 33161079 DOI: 10.1016/j.ijbiomac.2020.11.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Phytophthora infestans, the pathogen of potato late blight which is a devastating disease of potatoes, causes stem and leaf rot, leading to significant economic losses. Chitosan is a naturally occurring polysaccharide with a broad spectrum of antimicrobial properties. However, the specific mechanism of chitosan on Phytophthora infestans has not been studied. In this study, we found that chitosan significantly inhibited the mycelial growth and spore germination of Phytophthora infestans in vitro, reduced the resistance of Phytophthora infestans to various adverse conditions, and it had synergistic effect with pesticides, making it a potential way to reduce the use of chemical pesticides. In addition, chitosan could induce resistance in potato pieces and leaves to Phytophthora infestans. Transcriptome analysis data showed that chitosan mainly affected cell growth of Phytophthora infestans, and most of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene ontology (GO) terms revolved in metabolic processes, cell membrane structure and function and ribosome biogenesis. Differentially expressed genes (DEGs) related to adverse stress and virulence were also discussed. On the whole, this study provided new ideas for the development of chitosan as an eco-friendly preparation for controlling potato late blight.
Collapse
Affiliation(s)
- Xiaoqing Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Ziyue You
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Yang Luo
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Chengji Yang
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Jie Ren
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Yanlin Liu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Guangjing Wei
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Pan Dong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China.
| | - Maozhi Ren
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| |
Collapse
|
6
|
Rubio NK, Quintero R, Fuentes J, Brandao J, Janes M, Prinyawiwatkul W. Antimicrobial activities of high molecular weight water-soluble chitosans against selected gram-negative and gram-positive foodborne pathogens. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nancy Katherine Rubio
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803-4200 USA
| | - Rita Quintero
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803-4200 USA
| | - Jose Fuentes
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803-4200 USA
| | - Jose Brandao
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803-4200 USA
| | - Marlene Janes
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803-4200 USA
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803-4200 USA
| |
Collapse
|
7
|
Hattori H, Ishihara M. Feasibility of improving platelet-rich plasma therapy by using chitosan with high platelet activation ability. Exp Ther Med 2017; 13:1176-1180. [PMID: 28450960 DOI: 10.3892/etm.2017.4041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/28/2016] [Indexed: 01/06/2023] Open
Abstract
Platelet-rich plasma (PRP) is blood plasma containing a high number of platelets that release growth factors for wound healing and tissue regeneration. In the present study, the feasibility of improving PRP therapy by using chitosan that exhibits high platelet activation ability was investigated. A total of 13 chitosan samples with different molecular weight (Mw) and degree of deacetylation (DDA) were individually added to blood samples of rats and the amount of growth factors, albumin and fibrinogen in plasma was measured. To examine the influence of plasma activated by chitosan on the proliferation of fibroblasts and adipose tissue-derived stromal cells (ASCs), the plasma was added to the culture medium of human fibroblasts and adipose tissue-derived stromal cells. Chitosan with a DDA of >75% increased the release of platelet factor 4 into the plasma. The amount of growth factors released into the plasma and platelet activation varied depending on the Mw and DDA, while albumin and fibrinogen were hardly affected. The proliferation rate was highest when using plasma activated by chitosan with a DDA of 75-85% and an Mw of 50,000-190,000 Da. These results suggested that the effectiveness of PRP therapy may be improved by using chitosan with a DDA of 75-85% and an Mw of 50,000-190,000 Da.
Collapse
Affiliation(s)
- Hidemi Hattori
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan.,Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki 889-2192, Japan
| | - Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
8
|
Ali M, Sun Y, Xie L, Yu H, Bashir A, Li L. The Pathogenicity of Pseudomonas syringae MB03 against Caenorhabditis elegans and the Transcriptional Response of Nematicidal Genes upon Different Nutritional Conditions. Front Microbiol 2016; 7:805. [PMID: 27303387 PMCID: PMC4884745 DOI: 10.3389/fmicb.2016.00805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Different species of the Pseudomonas genus have been reported for their pathogenic potential against animal cells. However, the pathogenicity of Pseudomonas syringae against Caenorhabditis elegans has never been reported. In this study, the interaction of P. syringae MB03 with C. elegans was studied. Different bioassays such as killing assay, lawn leaving assay, food preference assay, L4 growth assay and newly developed “secretion assay” were performed to evaluate the pathogenic potential of P. syringae on different growth media. The results of the killing assay showed that P. syringae MB03 was able to kill C. elegans under specific conditions, as the interaction between the host and the pathogen varied from non-pathogenic (assay on NGM medium) to pathogenic (assay on PG medium). The lawn leaving assay and the food preference assay illustrated that C. elegans identified P. syringae MB03 as a pathogen when assays were performed on PG medium. Green fluorescent protein was used as the reporter protein to study gut colonization by P. syringae MB03. Our results suggested that MB03 has the ability to colonize the gut of C. elegans. Furthermore, to probe the role of selected virulence determinants, qRT-PCR was used. The genes for pyoverdine, phoQ/phoP, phoR/phoB, and flagella were up regulated during the interaction of P. syringae MB03 and C. elegans on PG medium. Other than these, the genes for some proteases, such as pepP, clpA, and clpS, were also up regulated. On the other hand, kdpD and kdpB were down regulated more than threefold in the NGM – C. elegans interaction model. The deletion of the kdpD and kdpE genes altered the pathogenicity of the bacterial strain against C. elegans. Overall, our results suggested that the killing of C. elegans by P. syringae requires a prolonged interaction between the host and pathogen in an agar-based assay. Moreover, it seemed that some toxic metabolites were secreted by the bacterial strain that were sensed by C. elegans. Previously, it was believed that P. syringae could not damage animal cells. However, this study provides evidence of the pathogenic behavior of P. syringae against C. elegans.
Collapse
Affiliation(s)
- Muhammad Ali
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information TechnologyAbbottabad, Pakistan
| | - Yu Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Li Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Huafu Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Anum Bashir
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
9
|
Abstract
The two-component system (TCS) KdpD/KdpE, extensively studied for its regulatory role in potassium (K+) transport, has more recently been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria, including Staphylococcus aureus, entero-haemorrhagic Escherichia coli, Salmonella typhimurium, Yersinia pestis, Francisella species, Photorhabdus asymbiotica, and mycobacteria. Key homeostasis requirements monitored by KdpD/KdpE and other TCSs such as PhoP/PhoQ are critical to survival in the stressful conditions encountered by pathogens during host interactions. It follows these TCSs may therefore acquire adaptive roles in response to selective pressures associated with adopting a pathogenic lifestyle. Given the central role of K+ in virulence, we propose that KdpD/KdpE, as a regulator of a high-affinity K+ pump, has evolved virulence-related regulatory functions. In support of this hypothesis, we review the role of KdpD/KdpE in bacterial infection and summarize evidence that (i) KdpD/KdpE production is correlated with enhanced virulence and survival, (ii) KdpE regulates a range of virulence loci through direct promoter binding, and (iii) KdpD/KdpE regulation responds to virulence-related conditions including phagocytosis, exposure to microbicides, quorum sensing signals, and host hormones. Furthermore, antimicrobial stress, osmotic stress, and oxidative stress are associated with KdpD/KdpE activity, and the system's accessory components (which allow TCS fine-tuning or crosstalk) provide links to stress response pathways. KdpD/KdpE therefore appears to be an important adaptive TCS employed during host infection, promoting bacterial virulence and survival through mechanisms both related to and distinct from its conserved role in K+ regulation.
Collapse
Affiliation(s)
- Zoë N. Freeman
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Steve Dorus
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Nicholas R. Waterfield
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Castañeda-Ramírez JC, de la Fuente-Salcido NM, Salcedo-Hernández R, León-Galván F, Bideshi DK, Barboza-Corona JE. High-level synthesis of endochitinase ChiA74 in Escherichia coli K12 and its promising potential for use in biotechnology. Folia Microbiol (Praha) 2013; 58:455-62. [DOI: 10.1007/s12223-013-0229-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 01/24/2013] [Indexed: 12/16/2022]
|
11
|
Kovács ÁT, Eckhardt TH, van Kranenburg R, Kuipers OP. Functional analysis of the ComK protein of Bacillus coagulans. PLoS One 2013; 8:e53471. [PMID: 23301076 PMCID: PMC3536758 DOI: 10.1371/journal.pone.0053471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/29/2012] [Indexed: 11/27/2022] Open
Abstract
The genes for DNA uptake and recombination in Bacilli are commonly regulated by the transcriptional factor ComK. We have identified a ComK homologue in Bacillus coagulans, an industrial relevant organism that is recalcitrant for transformation. Introduction of B. coagulans comK gene under its own promoter region into Bacillus subtilis comK strain results in low transcriptional induction of the late competence gene comGA, but lacking bistable expression. The promoter regions of B. coagulans comK and the comGA genes are recognized in B. subtilis and expression from these promoters is activated by B. subtilis ComK. Purified ComK protein of B. coagulans showed DNA-binding ability in gel retardation assays with B. subtilis- and B. coagulans-derived probes. These experiments suggest that the function of B. coagulans ComK is similar to that of ComK of B. subtilis. When its own comK is overexpressed in B. coagulans the comGA gene expression increases 40-fold, while the expression of another late competence gene, comC is not elevated and no reproducible DNA-uptake could be observed under these conditions. Our results demonstrate that B. coagulans ComK can recognize several B.subtilis comK-responsive elements, and vice versa, but indicate that the activation of the transcription of complete sets of genes coding for a putative DNA uptake apparatus in B. coagulans might differ from that of B. subtilis.
Collapse
Affiliation(s)
- Ákos T. Kovács
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Tom H. Eckhardt
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | - Oscar P. Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|