1
|
Labetov I, Vaganova A, Kovalev G, Shkarupa D. Extracorporeal shockwave therapy in treatment of chronic prostatitis/chronic pelvic pain syndrome: Systematic review and meta-analyses. Neurourol Urodyn 2024; 43:1924-1937. [PMID: 38847290 DOI: 10.1002/nau.25524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/03/2024] [Accepted: 05/28/2024] [Indexed: 10/23/2024]
Abstract
AIMS Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) prevalence varies from 8.4% to 25% of the male population and is associated with diminished health-related quality of life. Managing CP/CPPS remains challenging and there is not any common option to treat all patients effectively because of the complex disease nature. The currently available data for the extracorporeal shockwave therapy (eSWT) effect on pain relief and well-being were analyzed in the present study. METHODS We adhered to PRISMA 2022 guidelines for reporting the quantitative and qualitative data synthesis. A literature search was conducted in March 2023 using PubMed/Medline, Scopus, and Google Scholar. Randomized prospective studies of eSWT alone or eSWT plus conventional medicinal treatment were included. The risk of bias was estimated using the RoB 2.0. Primary outcomes were self-reported scores, including the NIH-CPSI questionnaire and VAS, at 1 month or 2, 3, and 6, months follow-up. RESULTS The CP/CPPS patients who receive eSWT have more pronounced pain relief and improvement of other subjective NIH-CPSI scores compared with control groups that received placebo or medication therapy. The effect of eSWT seems to be long-lasting and was confirmed in the 6-month follow-up (p < 0.01). CONCLUSIONS Based on the meta-analysis of accessible studies, we receive the equivalence eSWT applicability for the CP/CPPS treatment and can be offered to patients because of its noninvasiveness, high level of safety, and successful clinical results demonstrated in this analysis.
Collapse
Affiliation(s)
- Ivan Labetov
- Neurourology department, Saint-Petersburg State University Hospital, Saint-Petersburg, Russia
| | - Anastasia Vaganova
- Neurourology department, Saint-Petersburg State University Hospital, Saint-Petersburg, Russia
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Gleb Kovalev
- Neurourology department, Saint-Petersburg State University Hospital, Saint-Petersburg, Russia
| | - Dmitry Shkarupa
- Neurourology department, Saint-Petersburg State University Hospital, Saint-Petersburg, Russia
| |
Collapse
|
2
|
Li G, Xu X, Man L. Low-intensity extracorporeal shock wave therapy for Peyroniès disease: a systematic review and meta-analysis. BMC Urol 2024; 24:217. [PMID: 39375617 PMCID: PMC11459888 DOI: 10.1186/s12894-024-01607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND A systematic review of the evidence was conducted to assess the efficacy of low-intensity extracorporeal shock wave therapy (LI-ESWT) for patients with Peyronie`s Disease (PD). METHODS A comprehensive search of the Cochrane Registry, PubMed and Embase databases was conducted to identify all controlled trials, including randomised controlled trials (RCTs), cohort studies and case-control studies, focusing on the efficacy of LI-ESWT in treating PD, and published before February 2023. The size of plaques, curvature deviation, visual analog scale [VAS] and International Index of Erectile Function (IIEF) were the most commonly used tool to evaluate the treatment effectiveness of LI-ESWT. RESULTS There were 7 studies including 475 patients from 1999 to 2023. The meta-analysis of the data revealed that LI-ESWT could considerably enhance the proportion of men experiencing a reduction in penile plaques (RD 0.27, 95% CI: 0.04-0.50, P = 0.02), improvement in penile curvature (RD: 0.13; 95% CI, 0-0.26; p = 0.05), alleviation of pain (RD 0.22, 95% CI: 0.01-0.42, P = 0.04), and complete remission (RD 0.38, 95% CI 0.23-0.52, P < 0.00001). However, there were no significant differences in improvement of sexual function (MD: 1.44; 95% CI, -3.10-5.97; p = 0.53) between LI-ESWT and the placebo group. CONCLUSIONS According to these studies, LI-ESWT has the potential to decrease plaque size and improve penile curvature or pain in men with PD. The publication of robust evidence from additional well-designed long-term multicenter randomized controlled trials would provide more confidence regarding use of these devices in patients with PD.
Collapse
Affiliation(s)
- Guizhong Li
- Department of Urology, Beijing Jishuitan Hospital, Capital Medical University, Xinjiekou East Street, West District, Beijing, 100035, China.
| | - Xiao Xu
- Department of Urology, Beijing Jishuitan Hospital, Capital Medical University, Xinjiekou East Street, West District, Beijing, 100035, China
| | - Libo Man
- Department of Urology, Beijing Jishuitan Hospital, Capital Medical University, Xinjiekou East Street, West District, Beijing, 100035, China
| |
Collapse
|
3
|
Song Y, Che X, Wang Z, Li M, Zhang R, Wang D, Shi Q. A randomized trial of treatment for anterior cruciate ligament reconstruction by radial extracorporeal shock wave therapy. BMC Musculoskelet Disord 2024; 25:57. [PMID: 38216944 PMCID: PMC10787473 DOI: 10.1186/s12891-024-07177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
OBJECTIVE The aim of this study was to explore the effects of radial extracorporeal shock wave therapy (rESWT) in patients with anterior cruciate ligament(ACL) reconstruction(ACLR). METHODS We conducted a randomized, controlled trial involving 72 eligible patients with ACL reconstruction in which we compared two strategies: the experimental group was standard rehabilitation plus rESWT and the control group was standard rehabilitation plus sham rESWT. The outcome was the change from baseline to 24 weeks in the average score on Lysholm knee joint score (LKS), range of motion (ROM), visual analogue scale (VAS) and International Knee Literature Committee (IKDC). RESULTS Of 36 subjects assigned to rehabilitation plus rESWT, 4 lost to follow up. Of 36 assigned to rehabilitation plus sham rESWT, 5 lost to follow up. The LKS, ROM and IKDC scores of the experimental group were markedly increased at 3 and 6 weeks after treatment (P < 0.001), and the VAS was notably decreased (P < 0.001). However, there were no significant differences in the LKS, ROM, IKDC and VAS between the groups at 24 weeks after treatment (P > 0.05). CONCLUSION The strategy of rehabilitation plus rESWT had better functional outcomes after ACL reconstruction. As such, our study demonstrates that rESWT is essential for patients with ACL reconstruction. Early use of rESWT can improve joint function, pain relief and ability of daily living. rESWT has a positive effect on the overall rehabilitation of patients.
Collapse
Affiliation(s)
- Yufeng Song
- Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xinle Che
- Shanxi Medical University, Taiyuan, 030001, China
| | - Zheyun Wang
- Shanxi Medical University, Taiyuan, 030001, China
| | - Mengshi Li
- Shanxi Medical University, Taiyuan, 030001, China
| | - Runjie Zhang
- Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Dongming Wang
- Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Qiongfang Shi
- Department of Rehabilitation, Xinghualing District Central Hospital, Taiyuan, 030001, China
| |
Collapse
|
4
|
Sheu JJ, Yeh JN, Sung PH, Chiang JY, Chen YL, Wang YT, Yip HK, Guo J. ITRI Biofilm Prevented Thoracic Adhesion in Pigs That Received Myocardial Ischemic Induction Treated by Myocardial Implantation of EPCs and ECSW Treatment. Cell Transplant 2024; 33:9636897241253144. [PMID: 38798036 PMCID: PMC11129566 DOI: 10.1177/09636897241253144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
This study tested the hypothesis that ITRI Biofilm prevents adhesion of the chest cavity. Combined extracorporeal shock wave (ECSW) + bone marrow-derived autologous endothelial progenitor cell (EPC) therapy was superior to monotherapy for improving heart function (left ventricular ejection fraction [LVEF]) in minipigs with ischemic cardiomyopathy (IC) induced by an ameroid constrictor applied to the mid-left anterior descending artery. The minipigs (n = 30) were equally designed into group 1 (sham-operated control), group 2 (IC), group 3 (IC + EPCs/by directly implanted into the left ventricular [LV] myocardium; 3 [+]/3[-] ITRI Biofilm), group 4 (IC + ECSW; 3 [+]/[3] - ITRI Biofilm), and group 5 (IC + EPCs-ECSW; 3 [+]/[3] - ITRI Biofilm). EPC/ECSW therapy was administered by day 90, and the animals were euthanized, followed by heart harvesting by day 180. In vitro studies demonstrated that cell viability/angiogenesis/cell migratory abilities/mitochondrial concentrations were upregulated in EPCs treated with ECSW compared with those in EPCs only (all Ps < 0.001). The LVEF was highest in group 1/lowest in group 2/significantly higher in group 5 than in groups 3/4 (all Ps < 0.0001) by day 180, but there was no difference in groups 3/4. The adhesion score was remarkably lower in patients who received ITRI Biofilm treatment than in those who did not (all Ps <0.01). The protein expressions of oxidative stress (NOX-1/NOX-2/oxidized protein)/apoptotic (mitochondrial-Bax/caspase3/PARP)/fibrotic (TGF-β/Smad3)/DNA/mitochondria-damaged (γ-H2AX/cytosolic-cytochrome-C/p-DRP1), and heart failure/pressure-overload (BNP [brain natriuretic peptide]/β-MHC [beta myosin heavy chain]) biomarkers displayed a contradictory manner of LVEF among the groups (all Ps < 0.0001). The protein expression of endothelial biomarkers (CD31/vWF)/small-vessel density revealed a similar LVEF within the groups (all Ps < 0.0001). ITRI Biofilm treatment prevented chest cavity adhesion and was superior in restoring IC-related LV dysfunction when combined with EPC/ECSW therapy compared with EPC/ECSW therapy alone.
Collapse
Affiliation(s)
- Jiunn-Jye Sheu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Jui-Ning Yeh
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Pei-Hsun Sung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - John Y. Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung
| | - Yi-Ling Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Yi-Ting Wang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Hon-Kan Yip
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
- Department of Nursing, Asia University, Taichung
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Sheng Y, Yuan H, Chen L, Yu B. The effects of high and low dose extracorporeal shockwave therapy on immune activation and immunosuppressive markers in elderly patients with osteoarthritis: a study protocol for a randomized controlled trial. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2023; 12:164-172. [PMID: 38187367 PMCID: PMC10767198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE This randomized controlled trial aims to compare the effects of high versus low dose extracorporeal shockwave therapy (ESWT) on immune system activation and regulation in elderly patients with osteoarthritis. METHODS 120 patients aged 65 years and older with knee osteoarthritis will be randomly allocated to receive either high dose (0.25 mJ/mm2) or low dose (0.10 mJ/mm2) ESWT administered weekly for 4 weeks. Serum cytokines, stimulated immune cell subsets, and T regulatory cells will be measured at baseline, 4 weeks after intervention and at 1-month follow-up. RESULTS High dose ESWT will increase pro-inflammatory cytokines and decrease immunosuppressive T regulatory cells compared to low dose ESWT in elderly osteoarthritis patients may be the outcome mainly. CONCLUSION This study will provide evidence on ESWT dosing protocols and their differential immunomodulatory effects, which can guide optimal use for musculoskeletal conditions in geriatric populations.
Collapse
Affiliation(s)
- Yilan Sheng
- Department of Rehabilitation, Shanghai Fifth Rehabilitation HospitalNo. 279, Ledu Road, Shanghai 201600, China
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
| | - Haiyin Yuan
- Department of Rehabilitation, Shanghai Fifth Rehabilitation HospitalNo. 279, Ledu Road, Shanghai 201600, China
| | - Lihua Chen
- Department of Rehabilitation, Shanghai Fifth Rehabilitation HospitalNo. 279, Ledu Road, Shanghai 201600, China
| | - Bo Yu
- Department of Rehabilitation, Shanghai Fifth Rehabilitation HospitalNo. 279, Ledu Road, Shanghai 201600, China
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
| |
Collapse
|
6
|
Skov-Jeppesen SM, Petersen NA, Yderstraede KB, Jensen BL, Bistrup C, Lund L. Low-Intensity Extracorporeal Shockwave Therapy (LI-ESWT) in Renal Diseases: A Review of Animal and Human Studies. Int J Nephrol Renovasc Dis 2023; 16:31-42. [PMID: 36778197 PMCID: PMC9912820 DOI: 10.2147/ijnrd.s389219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Background Low-intensity extracorporeal shockwave therapy (LI-ESWT) has been suggested as a treatment for vascular diseases such as ischemic heart disease, diabetic foot ulcers, and erectile dysfunction. Primarily, LI-ESWT is known for its ability to stimulate angiogenesis and activation of stem cells in target tissues. Application of LI-ESWT in chronic progressive renal diseases is a novel area. The aim of the present review was to summarize available data on the effects of LI-ESWT used in the setting of renal diseases. Methods We systematically searched PubMed, Medline, and Embase databases for relevant studies. Our review included the results from preclinical animal experiments and clinical research. Results Eleven animal studies and one clinical study were included in the review. In the animal studies, LI-ESWT was used for the treatment of hypertensive nephropathy (n=1), diabetic nephropathy (n=1), or various types of ischemic renal injury (ie, artery occlusion, reperfusion injury) (n=9). The clinical study was conducted in a single-arm cohort as a Phase 1 study with patients having diabetic nephropathy. In animal studies, the application of LI-ESWT was associated with several effects: LI-ESWT led to increased VEGF and endothelial cell proliferation and improved vascularity and perfusion of the kidney tissue. LI-ESWT reduced renal inflammation and fibrosis. LI-ESWT caused only mild side effects in the clinical study, and, similarly, there were no signs of kidney injury after LI-ESWT in the animal studies. Conclusion LI-ESWT, as a non-invasive treatment, reduces the pathological manifestations (inflammation, capillary rarefaction, fibrosis, decreased perfusion) associated with certain types of renal disease. The efficacy of renal LI-ESWT needs to be confirmed in randomized clinical trials.
Collapse
Affiliation(s)
- Sune Moeller Skov-Jeppesen
- Department of Urology, Odense University Hospital, Odense, Denmark,Clinical Institute, University of Southern Denmark, Odense, Denmark,Correspondence: Sune Moeller Skov-Jeppesen, Department of Urology, Odense University Hospital, Sdr. Boulevard 29, Odense, 5000, Denmark, Tel +45 51210911, Fax +45 65411726, Email
| | | | - Knud Bonnet Yderstraede
- Clinical Institute, University of Southern Denmark, Odense, Denmark,Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Claus Bistrup
- Clinical Institute, University of Southern Denmark, Odense, Denmark,Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark,Clinical Institute, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Burneikaitė G, Shkolnik E, Puronaitė R, Zuozienė G, Petrauskienė B, Misonis N, Kazėnaitė E, Laucevičius A, Smih F, Rouet P, Čelutkienė J. The association of catestatin and endocan with the effects of cardiac shock wave therapy: Biomarker sub-study of the randomized, sham procedure-controlled trial. Front Cardiovasc Med 2023; 10:1004574. [PMID: 36910537 PMCID: PMC9996196 DOI: 10.3389/fcvm.2023.1004574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Cardiac shock-wave therapy (CSWT) is a non-invasive regenerative treatment method based on low-frequency ultrasound waves, which stimulate angiogenesis. Current data about the effects of revascularization procedures on angiogenesis biomarkers is limited. Recently, an association of catestatin and endocan with coronary collateral development was shown in several trials. In this study, we aimed to evaluate the impact of CSWT on the dynamics of catestatin and endocan levels and to assess their correlation with parameters of myocardial perfusion and function. Methods Prospective, randomized, triple-blind, sham procedure-controlled study enrolled 72 adult subjects who complied with defined inclusion criteria (NCT02339454). We measured biomarkers in 48 patients with stable angina (24 patients of CSWT group, 24 patients of sham-procedure group). Additionally, patients were divided into responders and non-responders according to improvement in myocardial perfusion and/or contractility assessed by myocardial scintigraphy and dobutamine echocardiography (30 and 13 patients, respectively). The blood samples were collected at baseline, after the last treatment procedure (9th treatment week) and at 6-month follow-up to evaluate biomarkers concentration and stored at -80° until analysis. Serum catestatin and endocan levels were determined by commercially available ELISA kits. Results Serum catestatin concentration significantly increased in all patients. While endocan levels significantly decreased in the responders sub-group. The increase in catestatin levels at 9th week and 6 months was positively associated with improvement in summed difference score (rho = 0.356, p = 0.028) and wall motion score, WMS (rho = 0.397, p = 0.009) at 6 months in the whole study population. Meanwhile, the decrease in endocan levels over 6 months was positively correlated with improvement in WMS at 3- and 6- months (r = 0.378, p = 0.015 and r = 0.311, p = 0.045, respectively). ROC analysis revealed that a change at 6 months in catestatin and endocan levels significantly predicted improvement in myocardial perfusion and contractile function with 68.9% sensitivity and 75.0% specificity (p = 0.039) and 51.7% sensitivity, and 91.7% specificity (p = 0.017), respectively. Baseline endocan concentration and its change at 6 months predicted response to CSWT with 68.8% sensitivity and 83.3% specificity (p = 0.039) and 81.3% sensitivity and 100% specificity (p < 0.0001), respectively. Conclusion This study demonstrates the association of increase in catestatin and decrease in endocan levels with the improvement of myocardial perfusion and contractile function. The potential predictive value of catestatin and endocan dynamics for the response to regenerative therapy is shown.
Collapse
Affiliation(s)
- Greta Burneikaitė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- LA Maison de la Mitochondrie (LAMMI), Obesity and Heart Failure: Molecular and Clinical Investigations, INSERM Occitanie, Toulouse, France
- *Correspondence: Greta Burneikaitė ✉
| | - Evgeny Shkolnik
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Roma Puronaitė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Faculty of Mathematics and Informatics, Institute of Data Science and Digital Technologies, Vilnius University, Vilnius, Lithuania
| | - Gitana Zuozienė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Birutė Petrauskienė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Nerijus Misonis
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Edita Kazėnaitė
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Aleksandras Laucevičius
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Fatima Smih
- INI-CRCT-FCRIN, GREAT Networks, Toulouse, France
- Spartacus-Biomed, Auterive, France
| | - Philippe Rouet
- LA Maison de la Mitochondrie (LAMMI), Obesity and Heart Failure: Molecular and Clinical Investigations, INSERM Occitanie, Toulouse, France
- INI-CRCT-FCRIN, GREAT Networks, Toulouse, France
| | - Jelena Čelutkienė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Centre of Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
8
|
Şah V. The Short-Term Efficacy of Large-Focused and Controlled-Unfocused (Radial) Extracorporeal Shock Wave Therapies in the Treatment of Hip Osteoarthritis. J Pers Med 2022; 13:jpm13010048. [PMID: 36675709 PMCID: PMC9865373 DOI: 10.3390/jpm13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Although the classical treatments listed in the guidelines for osteoarthritis are widely used, the majority of patients do not fully recover from their pain. It is a fact that new treatment methods are needed both to relieve pain and restore deteriorated joint function. No study has been found to date that evaluated the efficacy of ESWT in hip OA. This pilot trial is the first in the literature to investigate the comparative effects of the two ESWT types (f-ESWT and r-ESWT) in the treatment of hip OA. Briefly, 148 patients were randomly distributed into the three ESWT groups: focused (f-ESWT), radial (r-ESWT), and sham (s-ESWT). Patients were assessed with the Visual Analog Scale (VAS) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores just before the treatment (0 week), just after the treatment (4th week), and 1 month after completion of the treatment (8th week). VAS and all WOMAC scores were significantly reduced at follow-up points (4th and 8th weeks) in both the f-ESWT and r-ESWT groups compared with baseline (0 week) (for all, p < 0.001). Statistical comparisons between the f-ESWT and r-ESWT groups showed that f-ESWT was superior to r-ESWT for the decrease in VAS and WOMAC scores from baseline to the 4th and 8th weeks (p < 0.001 or p < 0.002). Both r-ESWT and f-ESWT were found to have significant treatment efficacy compared with s-ESWT. However, f-ESWT produced a superior improvement in follow-up parameters compared to r-ESWT.
Collapse
Affiliation(s)
- Volkan Şah
- Department of Sports Medicine, University of Yüzüncü Yıl, Van 65040, Turkey
| |
Collapse
|
9
|
Yang X, Shi L, Zhang T, Gao F, Sun W, Wang P, Wu X, Li Z. High-energy focused extracorporeal shock wave prevents the occurrence of glucocorticoid-induced osteonecrosis of the femoral head: A prospective randomized controlled trial. J Orthop Translat 2022; 36:145-151. [PMID: 36263382 PMCID: PMC9550842 DOI: 10.1016/j.jot.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022] Open
Abstract
Background Studies have shown that high-energy focused extracorporeal shock wave therapy (HF-ESWT) has a certain therapeutic effect on glucocorticoid-induced osteonecrosis of the femoral head (ONFH). This study aimed to observe the efficacy and safety of HF-ESWT as a precautionary measure to reduce the probability of glucocorticoid-induced ONFH. Methods A prospective randomized controlled trial was designed to evaluate whether HF-ESWT (Group A) can significantly prevent the incidence of glucocorticoid-induced ONFH relative to a control group without shockwave intervention (Group B). MRI was used to assess whether all participants experienced ONFH at 3, 6, and 12 months after the intervention. Continuous scoring was used to evaluate the intervention results: the 10-cm visual analog scale (VAS) was used to evaluate pain, and the hip Harris score (HHS) was used to evaluate the function of the hip joint. Any adverse events were recorded. Results 153 patients (89 females and 64 males) who had been allocated to group A (75 patients) or Group B (78 patients) were included in the final analysis. The patients were 45.0 ± 13.0 years old. There were significant differences between the two groups in MRI diagnosis of ONFH patients (2 cases in Group A, 9 cases in Group B; p = 0.034). Significant differences between groups were found in bilateral hip function measured using the HHS at 6 months (Left p = 0.026; Right p = 0.033) and 12 months (Left p = 0.018; Right p = 0.038). However, there was no difference in the functional results measured at 3 months and the VAS at any points. Conclusions This study confirms that HF-ESWT can be successfully used to reduce the probability of glucocorticoid-induced ONFH. Pain and hip dysfunction are common clinical manifestations when ONFH is unavoidable. Therefore, HF-ESWT can be recommended for the prevention and intervention of ONFH high-risk populations receiving high-dose glucocorticoid therapy. The Translational potential of this article The effective prevention of HF-ESWT on ONFH after high-dose glucocorticoid application demonstrated its transformation potential as a preventive method in the clinical prevention of glucocorticoid-induced ONFH.
Collapse
Affiliation(s)
- Xu Yang
- Department of Orthopedics, Peking University China-Japan Friendship Clinical Hospital, Beijing, 100029, China,Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Orthopaedic Department, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Lijun Shi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Tao Zhang
- Department of Chinese Medicine, The First Clinical School of Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fuqiang Gao
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Orthopaedic Department, China-Japan Friendship Hospital, Beijing, 100029, China,Corresponding author.
| | - Wei Sun
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Orthopaedic Department, China-Japan Friendship Hospital, Beijing, 100029, China,Corresponding author.
| | - Peixu Wang
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Orthopaedic Department, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xinjie Wu
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Zirong Li
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Orthopaedic Department, China-Japan Friendship Hospital, Beijing, 100029, China
| |
Collapse
|
10
|
Comparative Effectiveness of Focused Extracorporeal versus Radial Extracorporeal Shockwave Therapy for Knee Osteoarthritis—Randomized Controlled Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159001. [PMID: 35897371 PMCID: PMC9332723 DOI: 10.3390/ijerph19159001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Both focused extracorporeal shockwave (f-ESWT) and radial extracorporeal shockwave therapy (r-ESWT) can alleviate symptoms in patients with knee osteoarthritis, but no trials have directly compared f-ESWT with r-ESWT for knee osteoarthritis. This study aimed to compare the effectiveness of f-ESWT and r-ESWT on knee osteoarthritis. Forty-two patients with bilateral knee osteoarthritis were randomly assigned to receive three sessions of either f-ESWT or r-ESWT at 1-week intervals. The patients were evaluated at baseline and at 4 and 8 weeks after the final treatment. The primary outcome was the change in pain intensity, as measured on the visual analog scale (VAS). Secondary outcomes included the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), range of motion of the knee joint, and the 6-minute walk test. At the end of 4 weeks, the VAS score was substantially reduced in both groups (f-ESWT, −4.5 ± 2.5 points; r-ESWT, −2.6 ± 2.0 points), with a greater reduction in the f-ESWT group. Both groups showed significant improvement in secondary outcomes; however, the f-ESWT group yielded greater improvement in the VAS score, WOMAC score, and 6-minute walk test. Our results showed that f-ESWT was more effective than r-ESWT in improving pain and physical function in patients with knee osteoarthritis.
Collapse
|
11
|
Graber M, Nägele F, Hirsch J, Pölzl L, Schweiger V, Lechner S, Grimm M, Cooke JP, Gollmann-Tepeköylü C, Holfeld J. Cardiac Shockwave Therapy – A Novel Therapy for Ischemic Cardiomyopathy? Front Cardiovasc Med 2022; 9:875965. [PMID: 35647069 PMCID: PMC9133452 DOI: 10.3389/fcvm.2022.875965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 11/14/2022] Open
Abstract
Over the past decades, shockwave therapy (SWT) has gained increasing interest as a therapeutic approach for regenerative medicine applications, such as healing of bone fractures and wounds. More recently, pre-clinical studies have elucidated potential mechanisms for the regenerative effects of SWT in myocardial ischemia. The mechanical stimulus of SWT may induce regenerative effects in ischemic tissue via growth factor release, modulation of inflammatory response, and angiogenesis. Activation of the innate immune system and stimulation of purinergic receptors by SWT appears to enhance vascularization and regeneration of injured tissue with functional improvement. Intriguingly, small single center studies suggest that SWT may improve angina, exercise tolerance, and hemodynamics in patients with ischemic heart disease. Thus, SWT may represent a promising technology to induce cardiac protection or repair in patients with ischemic heart disease.
Collapse
Affiliation(s)
- Michael Graber
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Felix Nägele
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Hirsch
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
- Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Victor Schweiger
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Sophia Lechner
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - John P. Cooke
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | | | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Johannes Holfeld,
| |
Collapse
|
12
|
Chen PY, Cheng JH, Wu ZS, Chuang YC. New Frontiers of Extracorporeal Shock Wave Medicine in Urology from Bench to Clinical Studies. Biomedicines 2022; 10:675. [PMID: 35327477 PMCID: PMC8945448 DOI: 10.3390/biomedicines10030675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
A shock wave (SW), which carries energy and propagates through a medium, is a type of continuous transmitted sonic wave that can achieve rapid energy transformations. SWs have been applied for many fields of medical science in various treatment settings. In urology, high-energy extracorporeal SWs have been used to disintegrate urolithiasis for 30 years. However, at lower energy levels, SWs enhance the expression of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), proliferating cell nuclear antigen (PCNA), chemoattractant factors, and the recruitment of progenitor cells, and inhibit inflammatory molecules. Low energy extracorporeal shock wave (LESW) therapy has been used in urology for treating chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), interstitial cystitis/bladder pain syndrome (IC/BPS), overactive bladder, stress urinary incontinence, and erectile dysfunction through the mechanisms of anti-inflammation, neovascularization, and tissue regeneration. Additionally, LESW have been proven to temporarily increase tissue permeability and facilitate intravesical botulinum toxin delivery for treating overactive bladders in animal studies and in a human clinical trial. LESW assisted drug delivery was also suggested to have a synergistic effect in combination with cisplatin to improve the anti-cancer effect for treating urothelial cancer in an in vitro and in vivo study. LESW assisted drug delivery in uro-oncology is an interesting suggestion, but no comprehensive clinical trials have been conducted as of yet. Taken together, LESW is a promising method for the treatment of various diseases in urology. However, further investigation with a large scale of clinical studies is necessary to confirm the real role of LESW in clinical use. This article provides information on the basics of SW physics, mechanisms of action on biological systems, and new frontiers of SW medicine in urology.
Collapse
Affiliation(s)
- Po-Yen Chen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (P.-Y.C.); (Z.-S.W.)
- Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Graduate Institute of Human Sexuality, Shu-Te University, Kaohsiung 833, Taiwan
| | - Jai-Hong Cheng
- Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Division of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Zong-Sheng Wu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (P.-Y.C.); (Z.-S.W.)
- Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Yao-Chi Chuang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (P.-Y.C.); (Z.-S.W.)
- Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| |
Collapse
|
13
|
Extracorporeal Shock Wave Therapy Salvages Critical Limb Ischemia in B6 Mice through Upregulating Cell Proliferation Signaling and Angiogenesis. Biomedicines 2022; 10:biomedicines10010117. [PMID: 35052796 PMCID: PMC8773589 DOI: 10.3390/biomedicines10010117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
(1) This study tests hypothesis whether extracorporeal shock wave (ECSW) therapy effectively salvages mouse critical limb ischemia (CLI). In vitro result demonstrated that the angiogenesis parameters (i.e., tubular length/cluster/network formation) and protein expressions of EGFR/VEGFR2/RAS/c-Raf/MEK/ERK/VEGF/p-PI3K/p-Akt/p-m-TOR were significantly and progressively increased with stepwise augmentation of ECSW energy (0.1/0.14/0.20 mJ/mm2/140 impulses). On the other hand, they were suppressed by administration of Avastin (20 μM). Adult male B6 mice (n = 24) were equally categorized into group 1 (sham-operated control), group 2 (CLI), group 3 [CLI + ECSW (0.12 mJ/mm2/120 impulses/at days 1/3/7 after CLI induction)] and group 4 [CLI + ECSW (0.12 mJ/mm2/120 impulses) + Avastin (1 mg/intramuscular-injection)] at days 1/3/7 after CLI induction] and quadriceps were harvested by day 14. The laser Doppler result showed that the ratio of left (ischemia) to right (normal) limb blood flow was highest in group 1, lowest in group 2, and significantly higher in group 3 than in group 4 by days 7/14 after the CLI procedure (p < 0.0001). The protein expressions of cell proliferation/migration/angiogenesis receptors (EGFR/VEGFR2), angiogenesis biomarkers (VEGF/CXCR4/SDF-1) and cell proliferation/growth/survival (Ras/c-Raf/MEK/ERK)/(PI3K/Akt/m-TOR) and cell motility/proliferation (p-FAK/p-Scr) signaling biomarkers were significantly higher in group 3 than in groups 1/2/4, and significantly lower in group 1 than in groups 2/4, but they did not show a difference between groups 2 and 4 (all p < 0.001). The small vessel density and cellular levels of endothelial cell surface marker (CD31+) exhibited an identical pattern of blood flow, whereas the angiogenesis (CXCR4+/VEGF+) displayed an identical pattern of VEGFR2 among the groups (all p < 0.0001). The in vitro and in vivo studies found ECSW salvaged the CLI mainly through upregulating Ras-Raf-MEK/ERK/cell motility, cell proliferation/growth pathways and angiogenesis.
Collapse
|
14
|
Wang M, Yang D, Hu Z, Shi Y, Ma Y, Cao X, Guo T, Cai H, Cai H. Extracorporeal Cardiac Shock Waves Therapy Improves the Function of Endothelial Progenitor Cells After Hypoxia Injury via Activating PI3K/Akt/eNOS Signal Pathway. Front Cardiovasc Med 2021; 8:747497. [PMID: 34708093 PMCID: PMC8542843 DOI: 10.3389/fcvm.2021.747497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Extracorporeal cardiac shock waves (ECSW) have great potential in the treatment of coronary heart disease. Endothelial progenitor cells (EPCs) are a class of pluripotent progenitor cells derived from bone marrow or peripheral blood, which have the capacity to migrate to ischemic myocardium and differentiate into mature endothelial cells and play an important role in neovascularization and endothelial repair. In this study, we investigated whether ECSW therapy can improve EPCs dysfunction and apoptosis induced by hypoxia and explored the underlying mechanisms. Methods: EPCs were separated from ApoE gene knockout rat bone marrow and identified using flow cytometry and fluorescence staining. EPCs were used to produce in vitro hypoxia-injury models which were then divided into six groups: Control, Hypoxia, Hypoxia + ECSW, Hypoxia + LY294002 + ECSW, Hypoxia + MK-2206 + ECSW, and Hypoxia + L-NAME + ECSW. EPCs from the Control, Hypoxia, and Hypoxia + ECSW groups were used in mRNA sequencing reactions. mRNA and protein expression levels were analyzed using qRT-PCR and western blot analysis, respectively. Proliferation, apoptosis, adhesion, migration, and angiogenesis were measured using CCK-8, flow cytometry, gelatin, transwell, and tube formation, respectively. Nitric oxide (NO) levels were measured using an NO assay kit. Results: Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that differentially expressed genes were enriched in cancer signaling, PI3K-Akt signaling, and Rap1 signaling pathways. We selected differentially expressed genes in the PI3K-Akt signaling pathway and verified them using a series of experiments. The results showed that ECSW therapy (500 shots at 0.09 mJ/mm2) significantly improved proliferation, adhesion, migration, and tube formation abilities of EPCs following hypoxic injury, accompanied by upregulation of p-PI3K, p-Akt, p-eNOS, Bcl-2 protein and NO, PI3K, and Akt mRNA expression, and downregulation of Bax and Caspase3 protein expression. All these effects of ECSW were eliminated using inhibitors specific to PI3K (LY294002), Akt (MK-2206), and eNOS (L-NAME). Conclusion: ECSW exerted a strong repaired effect on EPCs suffering inhibited hypoxia injury by inhibiting cell apoptosis and promoting angiogenesis, mainly through activating the PI3K/Akt/eNOS signaling pathway, which provide new evidence for ECSW therapy in CHD.
Collapse
Affiliation(s)
- Mingqiang Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Hu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunke Shi
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiming Ma
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingyu Cao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tao Guo
- Department of Cardiology, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
| | - Hongbo Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongyan Cai
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Extracorporeal Shock Wave Enhanced Exogenous Mitochondria into Adipose-Derived Mesenchymal Stem Cells and Further Preserved Heart Function in Rat Dilated Cardiomyopathy. Biomedicines 2021; 9:biomedicines9101362. [PMID: 34680479 PMCID: PMC8533341 DOI: 10.3390/biomedicines9101362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
This study tested whether extracorporeal shock wave (ECSW) supported-exogenous mitochondria (Mito) into adipose-derived mesenchymal stem cells (ADMSCs) would preserve left-ventricular-ejection-fraction (LVEF) in doxorubicin/12 mg/kg-induced dilated cardiomyopathy (DCM) rat. Adult-male-SD rats were equally categorized into group 1 (sham-control), group 2 (DCM), group 3 (DCM + ECSW/1.5 mJ/mm2 for 140 shots/week × 3 times/since day 14 after DCM induction), group 4 (DCM + ECSW/1.5 mJ/mm2/100 shots-assisted mito delivery (500 μg) into ADMSCs/1.2 × 106 cells, then implanted into LV myocardium day 14 after DCM induction) and group 5 (DCM + ECSW-assisted mito delivery into ADMSCs/1.2 × 106 cells, then implanted into LV, followed by ECSW/1.5 mJ/mm2 for 140 shots/week × 3 times/since day 14 after DCM induction) and euthanized by day 49. Microscopic findings showed mitochondria were abundantly enhanced by ECSW into H9C2 cells. The q-PCR showed a significant increase in relative number of mitDNA in mitochondrial-transferred H9C2 cells than in control group (p < 0.01). The angiogenesis/angiogenesis factors (VEGF/SDF-1α/IG-F1) in HUVECs were significantly progressively increased by a stepwise-increased amount of ECSW energy (0.1/0.25/0.35 mJ/mm2) (all p < 0.001). The 49-day LVEF was highest in group 1 and significantly progressively increased from groups 2 to 5 (all p < 0.0001). Cardiomyocyte size/fibrosis exhibited an opposite pattern of LVEF, whereas cellular/protein levels of angiogenesis factors (VEGF/SDF-1α) in myocardium were significantly progressively increased from groups 1 to 5 (all p < 0.0001). The protein expressions of apoptotic/mitochondrial (cleaved-caspase-3/cleaved-PARP/mitochondrial-Bax/cytosolic-cytochrome-C), fibrotic (p-Smad3/TGF-ß), oxidative-stress (NOX-1/NOX-2) and pressure-overload/heart failure (BNP/ß-MHC) biomarkers exhibited an opposite pattern of LVEF among the five groups (all p < 0.0001). ECSW-assisted mitochondrial-delivery into ADMSCs plus ECSW offered an additional benefit for preserving LVEF in DCM rat.
Collapse
|
16
|
Chang CL, Chen KH, Sung PH, Chiang JY, Huang CR, Chen HH, Yip HK. Combined high energy of extracorporeal shock wave and 5-FU effectively suppressed the proliferation and growth of tongue squamous cell carcinoma. Biomed Pharmacother 2021; 142:112036. [PMID: 34411913 DOI: 10.1016/j.biopha.2021.112036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We tested the hypothesis that extracorporeal shock wave (ECSW)-assisted 5-FU therapy effectively suppressed human tongue squamous carcinoma cell line SAS (i.e., SAS cells) proliferation and tumor growth. METHODS AND RESULTS In vitro study showed that as compared with lower ECSW energy (≤0.12 mJ/mm2), higher ECSW energy (≥0.25-035 mJ/mm2) significantly suppressed the SAS cell proliferation and upregulated tumor cell apoptosis/DNA-damage/oxidative-stress, whereas combined higher ECSW energy (0.35 mJ/mm2) and 5-FU (20uM) further significantly altered the expressions of these parameters (all p < 0.001). Adult male nude mice (NM) (n = 36) were equally categorized into group 1 (2.0 × 105 SAS cells were implanted into NM back), group 2 [SAS in NM back + stepwise-increased ECSW energy (from 0.05/0.1/0.3/to 0.5 mJ/mm2)/500 impulses which applied to the tumor at days 9/12/15/21], group 3 (SAS in NM back + 5-FU/i.p./7 mg/kg/every 3-day) and group 4 (SAS in NM back + ECSW + 5-FU) and tumors were removed from each animal by day-28. The result showed that tumor volume and tumor weight were significantly progressively reduced from group 1 to group 4 (all p < 0.0001). The protein expressions of apoptotic (mitochondrial-Bax/cleaved-caspase3/cleaved-PARP/cyclophyllin-D), autophagic (ratio of LC3B-II/LC3B-I) and oxidative-stress (NOX-1/NOX-2) biomarkers displayed an opposite pattern of tumor mass among the groups, whereas the cell-stress signaling (p-PI3K/p-Akt/p-m-TOR, and ASK1/MKK4/MKK7/p38/p-JNK/p-c-JUN), MAP kinase family members (RAS/cRAF/KRAS/BRAF/p-ERK1/2), tumor protein (p53) and cellular levels of angiogenesis/DNA-damage (α-SMA+/VEGF+/γ-H2AX+) exhibited an identical pattern of tumor mass among the groups (all p < 0.0001). CONCLUSION Combined high-energy ECSW and 5-FU offers an additional benefit for suppressing the cancer cell proliferation and tumor growth.
Collapse
Affiliation(s)
- Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Department of Nursing, Asia University, Taichung 41354, Taiwan; Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen 361028, Fujian, China.
| |
Collapse
|
17
|
Skov-Jeppesen SM, Yderstraede KB, Jensen BL, Bistrup C, Hanna M, Lund L. Low-Intensity Shockwave Therapy (LI-ESWT) in Diabetic Kidney Disease: Results from an Open-Label Interventional Clinical Trial. Int J Nephrol Renovasc Dis 2021; 14:255-266. [PMID: 34285548 PMCID: PMC8286109 DOI: 10.2147/ijnrd.s315143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 01/07/2023] Open
Abstract
Purpose Treatment with low-intensity shockwave therapy (LI-ESWT) is associated with angiogenesis and is suggested as a treatment for different types of vascular diseases. It was hypothesized that LI-ESWT improves the renal filtration barrier and halts the progression of GFR decline in diabetic kidney disease (DKD) potentially through VEGF and NO formation. We present the first data on LI-ESWT in human DKD. Methods The study was designed as an interventional, prospective, one-arm, Phase 1 study. We investigated change in GFR and albuminuria in 28 patients with DKD treated with six sessions of LI-ESWT over three weeks. The patients were followed for six months. Urine excretion of kidney injury markers, vascular endothelial growth factor (VEGF) and nitric oxide metabolites (NOx) was studied after LI-ESWT. Results There were no significant changes in GFR and albuminuria up to six months after LI-ESWT compared to baseline. Urine VEGF was transiently reduced one month after LI-ESWT, but there were no other significant changes in urine VEGF or NOx after LI-ESWT. Secondary analysis showed that NOx increased after LI-ESWT in patients who had low levels of NOx at baseline. Kidney injury marker trefoil factor 3 (TFF3) increased acutely after the first session of LI-ESWT indicating transient endothelial repair. Other markers of kidney injury were stable in relation to LI-ESWT. Conclusion LI-ESWT treatment did not significantly improve kidney function and albumin excretion. It is concluded that LI-ESWT is not harmful. A randomized blinded study should be performed to clarify whether adjunctive treatment with LI-ESWT is superior to standard treatment of DKD.
Collapse
Affiliation(s)
- Sune Moeller Skov-Jeppesen
- Department of Urology, Odense University Hospital, Odense, Denmark.,OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark.,Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Knud Bonnet Yderstraede
- Clinical Institute, University of Southern Denmark, Odense, Denmark.,Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Claus Bistrup
- Clinical Institute, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Milad Hanna
- Department of Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark.,Clinical Institute, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
18
|
Jeon HM, Lee WJ, Chung HS, Yi YG, Yang S, Kim DH, Do KH. Extracorporeal shock wave therapy to treat neurogenic heterotopic ossification in a patient with spinal cord injury: A case report. J Spinal Cord Med 2021; 44:627-630. [PMID: 31242091 PMCID: PMC8288140 DOI: 10.1080/10790268.2019.1632597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: To evaluate the efficacy and safety of treatment for neurogenic heterotopic ossification (NHO) using extracorporeal shock wave therapy (ESWT) in persons with spinal cord injury (SCI).Design: Single case report.Setting: Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center.Participants: A 55-year-old male with cervical SCI, who developed painful NHO around the right hip joint.Interventions: Ultrasound-guided ESWT that used 4,000 shocks at the rate of 3 Hz and the energy flux density between 0.056 and 0.068 mJ/mm2 was applied to the NHO region a total of 7 times, weekly.Outcome Measures: We assessed the treatment outcomes using a visual analog scale (VAS) score, wheelchair sitting time and size of NHO.Result: After 7 weeks of ESWT treatment, his pain reduced from a VAS score of 7-8 to 3 and his wheelchair sitting time increased. However, there was no significant change of size of NHO.Conclusion: The application of ESWT could be a possible alternative to other treatments for NHO in persons with SCI.Clinical Trial Registry Number: 2019-03-003.
Collapse
Affiliation(s)
- Hyun Min Jeon
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, Korea
| | - Won Jae Lee
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, Korea
| | - Hee Sup Chung
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, Korea
| | - You Gyoung Yi
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, Korea
| | - Seoyon Yang
- Department of Rehabilitation Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - Dae Hyun Kim
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, Korea
| | - Kyung Hee Do
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, Korea,Correspondence to: Kyung Hee Do, Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, Korea; Ph: 82-2-2225-4602; 82-2-2225-4602.
| |
Collapse
|
19
|
Mittermayr R, Haffner N, Feichtinger X, Schaden W. The role of shockwaves in the enhancement of bone repair - from basic principles to clinical application. Injury 2021; 52 Suppl 2:S84-S90. [PMID: 33714550 DOI: 10.1016/j.injury.2021.02.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/02/2023]
Abstract
Extracorporeal shockwave therapy is a treatment modality, originally introduced into the clinic as lithotripsie, which has also been successfully used in the last two decades in the non-invasive treatment of delayed or non-healing fractures. Initially, the mechanism of action was attributed to microfracture-induced repair, but intensive basic research has now shown that the shockwave generates its effect in tissue via mechanotransduction. Numerous signal transduction pathways have already been demonstrated, which in their entirety trigger an endogenous regeneration process via cell proliferation, migration and differentiation. Clinically, these shockwave-conveyed biological signals support healing of acute, delayed and non-union fractures. The attainable outcome is comparable to surgery but avoiding an open approach with associated potential complications. These advantageous properties with a clearly positive cost-benefit ratio make shockwave therapy a first line treatment in delayed and non-union fractures.
Collapse
Affiliation(s)
- Rainer Mittermayr
- Ludwig Boltzmann Institute for experimental and clinical traumatology, Vienna, Austria; AUVA Trauma Center Meidling, Vienna, Austria; AUVA trauma research center, Vienna, Austria; Austrian Cluster for Tissue Engineering, Vienna, Austria.
| | - Nicolas Haffner
- Ludwig Boltzmann Institute for experimental and clinical traumatology, Vienna, Austria; Clinic Floridsdorf, Orthopedic and Traumatology Department, Vienna, Austria
| | | | - Wolfgang Schaden
- Ludwig Boltzmann Institute for experimental and clinical traumatology, Vienna, Austria; AUVA trauma research center, Vienna, Austria; Austrian Cluster for Tissue Engineering, Vienna, Austria; AUVA Medical Board, Vienna, Austria
| |
Collapse
|
20
|
Extracorporeal shockwave treatment in knee osteoarthritis: therapeutic effects and possible mechanism. Biosci Rep 2021; 40:226702. [PMID: 33074309 PMCID: PMC7670564 DOI: 10.1042/bsr20200926] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 01/16/2023] Open
Abstract
Osteoarthritis (OA), the most common degenerative joint disease, is characterized by the cardinal symptoms of chronic pain and restricted joint activity. The complicated pathological changes associated with OA and unclear mechanistic etiology have rendered existing non-surgical OA management options unsatisfactory. Increasing clinical and experimental evidence suggests that extracorporeal shockwave therapy (ESWT) is beneficial in OA treatment. ESWT is found to have modifying effects on cartilage and subchondral bone alterations in OA progression, as well as the clinical complaints of patients, including chronic pain and limited joint activities. However, the specific treatment strategy regarding the dosage and frequency of ESWT is still underdetermined. This review discusses the existing evidence regarding the therapeutic indications and possible mechanism of ESWT for OA treatment.
Collapse
|
21
|
Martínez-Sánchez C, Azar-Manzur F, González-Pacheco H, Amezcua-Guerra LM, Massó F, Márquez-Velasco R, Bojalil R, Carvajal-Juárez I, Alexanderson-Rosas E, Hernández S, Paez-Arenas A, López-Mora E, Venegas-Román A, Brianza-Padilla M, Gopar-Nieto R, Sandoval J. Effectiveness and Safety of Extracorporeal Shockwave Myocardial Revascularization in Patients With Refractory Angina Pectoris and Heart Failure. Am J Cardiol 2021; 144:26-32. [PMID: 33385348 DOI: 10.1016/j.amjcard.2020.12.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
Extracorporeal shockwave myocardial revascularization (ESMR) is a therapy for refractory angina pectoris. Our aim was to assess the efficacy and safety of ESMR in the management of patients with stable coronary artery disease (CAD) and heart failure as well as its effects on inflammation and angiogenesis. In this single-arm prospective trial, we included 48 patients with CAD, myocardial ischemia assessed by radionuclide imaging, echocardiographic evidence of left ventricular systolic dysfunction and without revascularization options. Changes in angina grading score, myocardial perfusion, left ventricular ejection fraction, and six-minute walk test after ESMR therapy were used for efficacy assessment. Changes of inflammation and angiogenesis biomarkers were also evaluated. ESMR therapy was performed using a commercially available cardiac shockwave generator system (Cardiospec; Medispec). After 9 weeks of ESMR therapy, a significant improvement was found regarding the initial angina class, severity of ischemia, left ventricular ejection fraction, and six-minute walk test in most patients. No deleterious side effects after treatment were detected. Regarding biomarkers, endothelial progenitor cells and angiopoietin-3 were significantly increased whereas IL-18 and TGF-β were significantly decreased after ESMR in the total group. Notably, VEGF, IL-1ß, and lipoxin A4 levels were significantly increased only in patients with myocardial ischemia improvement. In conclusion, ESMR therapy is safe and effective in most but not all patients with CAD and heart failure. ESMR is associated with increased markers of angiogenesis and decreased markers of inflammation. Myocardial ischemia improvement after ESMR is associated with increased markers of angiogenesis and pro-resolving mediators.
Collapse
|
22
|
Abstract
The combination of an aging population and improved survival rates among patients with coronary artery disease has resulted in an increase in the number of patients with refractory angina or anginal equivalent symptoms despite maximal medical therapy. Patients with refractory angina are often referred to the cardiac catheterization laboratory; however, they have often exhausted conventional revascularization options; thus, this population is often deemed as having "no options." We review the definition, prevalence, outcomes, therapeutic options, and treatment considerations for no-option refractory angina patients and focus on novel therapies for this complex and challenging population. We propose a multidisciplinary team approach for the evaluation and management of patients with refractory angina, ideally in a designated clinic. The severe limitations and symptomatology experienced by these patients highlight the need for additional research into the development of innovative treatments.
Collapse
Affiliation(s)
- Thomas J Povsic
- Department of Medicine, Program for Advanced Coronary Disease, Duke University Medical Center and Duke Clinical Research Institute, Durham, NC (T.J.P., E.M.O.)
| | - Timothy D Henry
- The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, OH (T.D.H.)
| | - E Magnus Ohman
- Department of Medicine, Program for Advanced Coronary Disease, Duke University Medical Center and Duke Clinical Research Institute, Durham, NC (T.J.P., E.M.O.)
| |
Collapse
|
23
|
Alunni G, D'''''Amico S, Castelli C, De Lio G, Fioravanti F, Gallone G, Marra S, De Ferrari GM. Impact of extracorporeal shockwave myocardial revascularization on the ischemic burden of refractory angina patients: a single photon emission computed tomography study. Minerva Cardioangiol 2020; 68:567-576. [DOI: 10.23736/s0026-4725.20.05110-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Bowman M, Shindel AW. Low-Intensity Extracorporeal Shockwave Therapy for Erectile Dysfunction. CURRENT SEXUAL HEALTH REPORTS 2020. [DOI: 10.1007/s11930-020-00289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Abstract
Chronic kidney disease is a global health care burden, yet clinically-proven treatments are limited. Low-intensity shockwave, which utilizes ≈10% of the energy levels used in clinically indicated shockwave lithotripsy, is a promising technique to ameliorate ischemia and regenerate tissues. It has been demonstrated to improve healing in tissues such as bone, muscle, myocardium, and kidney via several mechanisms, particularly through promoting neovascularization. Low-intensity shockwave stimulates mechanoreceptors located primarily in endothelial and proximal tubular cells and subsequently upregulates vascular endothelial growth factors. This, in turn, promotes angiogenesis and ameliorates renal hypoxia, inflammation, and fibrosis, and ultimately preserves renal function. Furthermore, low-intensity shockwave can stimulate release of homing factors to attract endothelial progenitor or stem cells into injured kidneys for tissue repair. These effects may be beneficial in several kidney disease models, including renal artery stenosis, diabetic kidney disease, and various chronic kidney diseases, although most studies reported to date have been performed in animal models. Because of its low energy intensity, the procedure is relatively tolerable and safe, yet, more clinical studies are needed to establish its efficacy beyond currently existing strategies. Therefore, low-intensity shockwave therapy emerges as an alternative therapeutic approach that may offer a promising noninvasive intervention for treating renal diseases. Registration- URL: https://www.clinicaltrials.gov; Unique identifier: NCT02515461; NCT03602807; and NCT03445247.
Collapse
Affiliation(s)
- Nattawat Klomjit
- From the Division of Nephrology and Hypertension (N.K., L.O.L.), Mayo Clinic, Rochester, MN
| | - Amir Lerman
- Department of Cardiovascular Disease (A.L.), Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- From the Division of Nephrology and Hypertension (N.K., L.O.L.), Mayo Clinic, Rochester, MN
| |
Collapse
|
26
|
Abstract
Extracorporeal shock wave therapy (ESWT) is a safe therapy and there are only a few side effects known (such as pain during ESWT and minor haematomata), but no severe complications are to be expected if it is performed as recommended. Contraindications are severe coagulopathy for high-energy ESWT, and ESWT with focus on the foetus or embryo and focus on severe infection. The effect mechanism of ESWT is still a component of diverse studies, but as far as we can summarize today, it is a similar process to a cascade triggered by mechano-transduction: mechanical energy causes changes in the cellular skeleton, which provokes a reaction of the cell core (for example release of mRNA) to influence diverse cell structures such as mitochondria, endoplasmic reticulum, intracellular vesicles, etc., so the enzymatic response leads to the improvement of the healing process. The usage of ESWT should be taught, to improve the outcome. Courses should be organized by national societies, since the legal framework conditions are different from one country to another. In this update the musculoskeletal indications are addressed (mainly bone and tendons): pseudoarthrosis, delayed fracture healing, bone marrow oedema and osteonecrosis in its early stages, insertional tendinopathies such as plantar fasciitis and Achilles tendon fasciitis, calcifying tendonitis of the rotator cuff, tennis elbow, and wound healing problems.
Cite this article: EFORT Open Rev 2020;5:584-592. DOI: 10.1302/2058-5241.5.190067
Collapse
Affiliation(s)
- Vinzenz Auersperg
- Department of Orthopaedics, Klinikum Steyr-Kirchdorf, Steyr, Austria
| | - Klemens Trieb
- Department of Orthopaedic and Trauma Surgery, Paracelsus Medical University Salzburg, Salzburg, Austria.,Computed Tomography Research Group, University of Applied Sciences Upper Austria, Wels, Austria
| |
Collapse
|
27
|
Ma Y, Hu Z, Yang D, Li L, Wang L, Xiao J, Cao X, Shi Y, Cai H. Extracorporeal cardiac shock waves therapy promotes function of endothelial progenitor cells through PI3K/AKT and MEK/ERK signaling pathways. Am J Transl Res 2020; 12:3895-3905. [PMID: 32774743 PMCID: PMC7407747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have demonstrated extracorporeal cardiac shock waves (ECSW) could induce angiogenesis and improves myocardial function in patients with coronary heart diseases as a safe, effective, and non-invasive angiogenic approach. The endothelial progenitor cells (EPCs) can migrate to the ischemic myocardium and differentiate into vascular endothelial cells, thus promoting the angiogenesis. Whether ECSW can improve the angiogenic ability of EPCs is unclear. This topic studied the effects of ECSW Therapy on EPCs functions and related signal transduction pathways. The bone marrow-derived EPCs of SD rats were isolated by the density centrifugation method. After treatment with ECSW (500 shots at 0.09 mJ/mm2), the cell viability, anti-apoptosis, migration, and tube formation of EPCs were significantly improved. In addition, the expressions of phosphorylated AKT and ERK were increased after ECSW treatment, the expressions of downstream signaling molecules eNOS and Bcl-2 were also increased, but the expressions of Bax and Caspase3 were decreased. However, these beneficial effects can be inhibited by PI3K/AKT inhibitor LY294002 and MEK/ERK inhibitor PD98059. Together, ECSW can promote the cell viability, migration, and angiogenic ability of EPCs and inhibit the apoptosis of EPCs through the PI3K/AKT and MEK/ERK signaling pathways. The mechanism may be related to promoting the expressions of downstream p-eNOS and anti-apoptotic protein Bcl-2 and inhibiting the expressions of pro-apoptotic protein Bax and Caspase3 through the PI3K/AKT and MEK/ERK signaling pathways.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University Kunming, China
| | - Zhao Hu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University Kunming, China
| | - Dan Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University Kunming, China
| | - Li Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University Kunming, China
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University Kunming, China
| | - Jianming Xiao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University Kunming, China
| | - Xingyu Cao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University Kunming, China
| | - Yunke Shi
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University Kunming, China
| | - Hongyan Cai
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University Kunming, China
| |
Collapse
|
28
|
Chen YT, Yang CC, Sung PH, Lin KC, Chiang JY, Huang CR, Huang KH, Chuang FC, Chu YC, Huang EY, Yip HK. Long-term effect of extracorporeal shock wave therapy on attenuating radiation-induced chronic cystitis in rat. Am J Transl Res 2020; 12:999-1015. [PMID: 32269730 PMCID: PMC7137039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND This study tested the long-term effect of extracorporeal shock wave (ECSW) therapy on ameliorating radiotherapy-induced chronic cystitis (CC) in rat. METHODS AND RESULTS Adult-female SD rats (n = 24) were equally categorized into group 1 (normal control), group 2 (CC induced by radiotherapy with 450 cGy twice with a four-hour interval to the urinary bladder), group 3 [CC with ECSW treatment (0.1 mJ/mm2/120 impulses once every 3 days after radiotherapy)]. Bladder specimens were harvested by day 60 after radiotherapy. By day 60, the degree of detrusor contraction was significantly reduced in group 2 than groups 1 and 3, and significantly reduced in group 3 than in group 1 (P < 0.0001). Number of WBC, occulted blood and bacteria were significantly higher in group 2 than in groups 1 and 3 (P < 0.01), but they showed no difference between the latter two groups (P > 0.3). The protein expressions of oxidative stress (NOX-1/NOX-2/oxidized protein), apoptosis (cleaved-caspase-3/cleaved-PARP), DNA-damaged marker (γ-H2AX), fibrosis (TGF-β/Smad3) and inflammatory signaling (TLR-4/MYD88/Mal/TRAF6/p-IκBα/p-NFκB/TNF-α/MMP-9/COX-2) were significantly higher in group 2 than in group 1, and were significantly reduced in group 3 (all P < 0.001). The cellular expressions of inflammatory (CD14+/CD68+/MIF+/MMP-9), immunoreactive (CD4+/CD8+) and cytokeratin (CK17/CK18) biomarkers, and collagen-deposition/fibrotic areas as well as bladder-damaged score/disruption of the bladder mucosa displayed an identical pattern compared to that of oxidative stress among the three groups (all P < 0.0001). CONCLUSION The long-term effect of ECSW treatment was reliable on protecting the urinary bladder from radiation-induced CC.
Collapse
Affiliation(s)
- Yen-Ta Chen
- Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan
| | - Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-sen UniversityKaohsiung, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan
| | - Kuan-Hui Huang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiung, Taiwan
| | - Fei-Chi Chuang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiung, Taiwan
| | - Yi-Ching Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan
| | - Eng-Yen Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiung, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University College of MedicineTaoyuan, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical UniversityTaichung, Taiwan
- Department of Nursing, Asia UniversityTaichung, Taiwan
| |
Collapse
|
29
|
Liu DD, Ullah M, Concepcion W, Dahl JJ, Thakor AS. The role of ultrasound in enhancing mesenchymal stromal cell-based therapies. Stem Cells Transl Med 2020; 9:850-866. [PMID: 32157802 PMCID: PMC7381806 DOI: 10.1002/sctm.19-0391] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been a popular platform for cell‐based therapy in regenerative medicine due to their propensity to home to damaged tissue and act as a repository of regenerative molecules that can promote tissue repair and exert immunomodulatory effects. Accordingly, a great deal of research has gone into optimizing MSC homing and increasing their secretion of therapeutic molecules. A variety of methods have been used to these ends, but one emerging technique gaining significant interest is the use of ultrasound. Sound waves exert mechanical pressure on cells, activating mechano‐transduction pathways and altering gene expression. Ultrasound has been applied both to cultured MSCs to modulate self‐renewal and differentiation, and to tissues‐of‐interest to make them a more attractive target for MSC homing. Here, we review the various applications of ultrasound to MSC‐based therapies, including low‐intensity pulsed ultrasound, pulsed focused ultrasound, and extracorporeal shockwave therapy, as well as the use of adjunctive therapies such as microbubbles. At a molecular level, it seems that ultrasound transiently generates a local gradient of cytokines, growth factors, and adhesion molecules that facilitate MSC homing. However, the molecular mechanisms underlying these methods are far from fully elucidated and may differ depending on the ultrasound parameters. We thus put forth minimal criteria for ultrasound parameter reporting, in order to ensure reproducibility of studies in the field. A deeper understanding of these mechanisms will enhance our ability to optimize this promising therapy to assist MSC‐based approaches in regenerative medicine.
Collapse
Affiliation(s)
- Daniel D Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California
| | - Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California
| | - Waldo Concepcion
- Department of Surgery, Stanford University, Palo Alto, California
| | - Jeremy J Dahl
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California
| |
Collapse
|
30
|
Shcherbak MM, Shkolnik EL, Vasyuk YA, Yushchuk EN, Trush EY, Burneykaite G, Chelutkene E, Yakutis G, Zuoziene G, Petrauskiene B. Various protocols of extracorporeal shock wave therapy in the treatment of stable angina. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2019. [DOI: 10.15829/1728-8800-2019-5-17-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
| | | | | | | | - E. Yu. Trush
- Moscow State University of Medicine and Dentistry
| | - G. Burneykaite
- Vilnius University, Institute of Clinical Medicine, Clinic of cardiovascular diseases
| | - E. Chelutkene
- Vilnius University, Institute of Clinical Medicine, Clinic of cardiovascular diseases
| | - G. Yakutis
- Vilnius University, Institute of Clinical Medicine, Clinic of cardiovascular diseases
| | - G. Zuoziene
- Vilnius University, Institute of Clinical Medicine, Clinic of cardiovascular diseases
| | - B. Petrauskiene
- Vilnius University, Institute of Clinical Medicine, Clinic of cardiovascular diseases
| |
Collapse
|
31
|
Low-Energy Extracorporeal Shock Wave Ameliorates Streptozotocin Induced Diabetes and Promotes Pancreatic Beta Cells Regeneration in a Rat Model. Int J Mol Sci 2019; 20:ijms20194934. [PMID: 31590394 PMCID: PMC6801760 DOI: 10.3390/ijms20194934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023] Open
Abstract
Traditional therapy for diabetes mellitus has focused on supportive treatment, and is not significant in the promotion of pancreatic beta cells regeneration. We investigated the effect of low- energy extracorporeal shock wave (SW) on a streptozotocin induced diabetes (DM) rat model. Methods: The DM rats were treated with ten sessions of low-energy SW therapy (weekly for ten consecutive weeks) or left untreated. We assessed blood glucose, hemoglobin A1c (HbA1c), urine volume, pancreatic islets area, c-peptide, glucagon-like peptide 1 (GLP-1) and insulin production, beta cells number, pancreatic tissue inflammation, oxidative stress, apoptosis, angiogenesis, and stromal cell derived factor 1 (SDF-1) ten weeks after the completion of treatment. Results: The ten- week low-energy SW therapy regimen significantly reduced blood glucose, HbA1c, and urine volume as well as significantly enhancing pancreatic islets area, c-peptide, GLP-1, and insulin production in the rat model of DM. Moreover, low-energy SW therapy increased the beta cells number in DM rats. This was likely primarily attributed to the fact that low-energy SW therapy reduced pancreatic tissue inflammation, apoptosis, and oxidative stress as well as increasing angiogenesis, cell proliferation, and tissue repair potency. Conclusions: Low-energy SW therapy preserved pancreatic islets function in streptozotocin-induced DM. Low-energy SW therapy may serve as a novel noninvasive and effective treatment of DM.
Collapse
|
32
|
Spivak L, Shultz T, Appel B, Verze P, Yagudaev D, Vinarov A. Low-Intensity Extracorporeal Shockwave Therapy for Erectile Dysfunction in Diabetic Patients. Sex Med Rev 2019; 9:619-627. [DOI: 10.1016/j.sxmr.2019.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022]
|
33
|
Low-Energy Extracorporeal Shock Wave Therapy Ameliorates Kidney Function in Diabetic Nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8259645. [PMID: 31354913 PMCID: PMC6637677 DOI: 10.1155/2019/8259645] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 01/08/2023]
Abstract
Background Diabetic nephropathy is the most common cause of end-stage renal disease. Traditional therapy for diabetic nephropathy has focused on supportive treatment, and there is no significant effective therapy. We investigated the effect of low-energy extracorporeal shock wave therapy on a diabetic nephropathy rat model. Methods Streptozotocin-induced diabetic nephropathy rats were treated with six sessions of low-energy extracorporeal shock wave therapy (weekly for six consecutive weeks) or left untreated. We assessed urinary creatinine and albumin, glomerular volume, renal fibrosis, podocyte number, renal inflammation, oxidative stress, and tissue repair markers (SDF-1 and VEGF) six weeks after the completion of treatment. Results The six-week low-energy extracorporeal shock wave therapy regimen decreased urinary albumin excretion as well as reduced glomerular hypertrophy and renal fibrosis in the rat model of diabetic nephropathy. Moreover, low-energy extracorporeal shock wave therapy increased podocyte number in diabetic nephropathy rats. This was likely primarily attributed to the fact that low-energy extracorporeal shock wave therapy reduced renal inflammation and oxidative stress as well as increased tissue repair potency and cell proliferation. Conclusions Low-energy extracorporeal shock wave therapy preserved kidney function in diabetic nephropathy. Low-energy extracorporeal shock wave therapy may serve as a novel noninvasive and effective treatment of diabetic nephropathy.
Collapse
|
34
|
Čelutkienė J, Burneikaitė G, Shkolnik E, Jakutis G, Vajauskas D, Čerlinskaitė K, Zuozienė G, Petrauskienė B, Puronaitė R, Komiagienė R, Butkuvienė I, Steponėnienė R, Misiūra J, Laucevičius A. The effect of cardiac shock wave therapy on myocardial function and perfusion in the randomized, triple-blind, sham-procedure controlled study. Cardiovasc Ultrasound 2019; 17:13. [PMID: 31272465 PMCID: PMC6610956 DOI: 10.1186/s12947-019-0163-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
Background Recent triple-blind sham procedure-controlled study revealed neutral effects of the cardiac shock wave therapy (CSWT) on exercise tolerance and symptoms in patients with stable angina. Current data about the effects of CSWT on global and regional myocardial contractility and perfusion is limited. Hereby we report the results of an imaging sub-study that evaluated the capacity of CSWT to ameliorate myocardial ischemia induced during dobutamine stress echocardiography (DSE) and cardiac single photon emission computed tomography (SPECT). Methods Prospective, randomized, triple-blind, sham procedure-controlled study enrolled 72 adult subjects who complied with defined inclusion criteria. The subjects were assigned to the OMT + CSWT and the OMT + sham procedure study groups with 1:1 ratio. Application of the CSWT covered all segments of the left ventricle. Imaging ischemia tests were performed in 59 study patients: DSE and SPECT before the CSWT treatment and after 6 months, with DSE carried out additionally at 3 months after randomization. Co-primary endpoints of the study were: change in wall motion score index (WMSI), representing the stress-induced impairment of regional myocardial function, and change in summed difference score (SDS), representing the amount of perfusion defect. Results OMT + CSWT and OMT + sham procedure study groups included 30 and 29 patients, respectively. Regional myocardial contractility during DSE significantly improved at 3 months follow-up in OMT + CSWT group compared to baseline as shown by WMSI at stress (1.4 ± 0.4 vs 1.6 ± 0.4, p = 0.001), but not in OMT + sham procedure group (1.5 ± 0.3 vs 1.6 ± 0.4, p = 0.136). The difference in stress DSE results between both study groups disappeared after 6 months. SPECT results demonstrated a significant reduction of inducible ischemia in OMT + CSWT group compared to OMT + sham procedure group at 6 months follow-up (SDS dropped from 5.4 ± 3.7 to 3.6 ± 3.8 vs 6.4 ± 5.9 to 6.2 ± 5 respectively, p = 0.034). Conclusions Cardiac shock wave treatment showed the ability to reduce stress-induced myocardial ischemia, as assessed by wall motion abnormalities and perfusion defects, compared to sham procedure. Trial registration Clinicaltrials.gov (NCT02339454). The trial was registered retrospectively on 12 January 2015.
Collapse
Affiliation(s)
- Jelena Čelutkienė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania.
| | - Greta Burneikaitė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Evgeny Shkolnik
- Yale-New Haven Health Bridgeport Hospital, 267 Grant St, Bridgeport, 06610, CT, USA
| | - Gabrielius Jakutis
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Donatas Vajauskas
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Kamilė Čerlinskaitė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Gitana Zuozienė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Birutė Petrauskienė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Roma Puronaitė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Renata Komiagienė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Irena Butkuvienė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Rima Steponėnienė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Jonas Misiūra
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Aleksandras Laucevičius
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| |
Collapse
|
35
|
Efficacy of cardiac shock wave therapy in patients with stable angina: The design of randomized, triple blind, sham-procedure controlled study. Anatol J Cardiol 2019; 19:100-109. [PMID: 29424731 PMCID: PMC5864803 DOI: 10.14744/anatoljcardiol.2017.8023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective: Despite revascularization and optimal medical treatment (OMT), patients with angina often have a reduced quality of life due to inadequate relief from symptoms. Recent studies have shown that the application of shock waves may reduce angina symptoms and improve quality of life, exercise capacity, and myocardial perfusion due to the stimulation of angiogenesis. However, there is limited evidence due to small, single-arm, single-center studies of low to moderate quality. The purpose of this study is to evaluate the impact of cardiac shock wave therapy (CSWT) on exercise tolerance and angina symptoms in patients with coronary artery disease and objective evidence of myocardial ischemia who cannot undergo traditional revascularization and experience angina despite OMT in comparison to sham procedure. Methods: We designed a randomized, triple-blind, placebo-controlled, multicentre trial (NCT02339454) to assess the efficacy of CSWT in addition to OMT in patients with stable angina and myocardial ischemia documented by exercise treadmill test (ETT). All patients were treated with stable doses of standard medical treatment 4 weeks before screening. An increase in the total exercise duration on ETT by ≥90 s from the baseline at the end of the study was set as the primary endpoint. Secondary endpoints included angina class, Seattle angina questionnaire scores, symptoms, and ECG changes during stress test. Patients underwent nine sessions of CSWT or corresponding sham procedure applied to all segments of the left ventricle, within 9 weeks. Endpoint assessments were performed at 6-month follow-up. The imaging substudies assessed the potential of CSWT to reduce stress-induced myocardial ischemia detected by dobutamine stress echocardiography, cardiac single-photon emission computed tomography, and cardiac magnetic resonance imaging. Results: At two centers, 72 of the 323 screened patients were randomized in two groups (ratio 1:1): active treatment and placebo control. Study patients were predominantly males (70.8%); the mean age of the patients was 68.4±8.3 years. Of these, 44 patients had angina Canadian Cardiovascular Society class III, and 66.7% of the patients had a history of myocardial infarction. Conclusion: Using sham applicators, blinding study participants, investigators, and endpoints assessors to the study data as well as centralized randomization ensures rigorous methodology and low risk of bias in this large randomized controlled CSWT study.
Collapse
|
36
|
Gruenwald I, Spector A, Shultz T, Lischinsky D, Kimmel E. The beginning of a new era: treatment of erectile dysfunction by use of physical energies as an alternative to pharmaceuticals. Int J Impot Res 2019; 31:155-161. [DOI: 10.1038/s41443-019-0142-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
|
37
|
Sung PH, Chen KH, Li YC, Chiang JY, Lee MS, Yip HK. Sitagliptin and shock wave-supported peripheral blood derived endothelial progenitor cell therapy effectively preserves residual renal function in chronic kidney disease in rat-role of dipeptidyl peptidase 4 inhibition. Biomed Pharmacother 2019; 111:1088-1102. [PMID: 30841422 DOI: 10.1016/j.biopha.2019.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 01/08/2023] Open
Abstract
This study tested whether sitagliptin and shock wave (SW)-assisted circulatory-derived autologous endothelial progenitor cell (EPC) therapy would effectively preserve residual renal function in chronic kidney disease (CKD) induced by 5/6 left-nephrectomy/remove right kidney plus daily feeding high-protein diet (HPD) in rat. Adult-male SD rats (n = 40) were categorized into group 1 (sham-operated control with HPD), group 2 (HPD-CKD), group 3 [HPD-CKD + EPC (1.2 × 106 cell)/intra-vessel administration by day 14 after CKD-induction], group 4 [HPD-CKD + SW (0.12 mJ/mm2/180 shorts) at days 14/21/28 after CKD-induction by ultrasound-guided application] and group 5 [HPD-CKD + SW + EPC + sitagliptin (Sita; 600 mg/kg/day since day 14 after CKD induction)]. All animals were euthanized by day 60. By day 60, renal blood flow (RBF) was highest in group 1 and progressively increased from groups 2 to 5, whereas the levels of creatinine/BUN/proteinuria exhibited an opposite pattern of RBF among the five groups (all p < 0.001). The circulating levels of GLP-1/SDF-1α and protein levels of angiogenesis (VEGF/SDF-1α/CXCR4) and GLP-1R in kidney were progressively increased from groups 1 to 5, whereas circulating DPP4 activity exhibited an opposite pattern of SDF-1α among the groups (all p < 0.0001). The protein expressions of oxidative-stress (NOX-1/NOX-2/oxidized protein), apoptosis (Bax/caspase-3/PARP), fibrosis (Smad3/TGF-ß) and inflammation (TNF-α/NF-κB/MMP-2) and kidney injury score displayed an opposite pattern, whereas the protein expressions of TMP2, endothelial-cell markers (CD31/eNOS) and podocyte integrity biomarkers (podocin/ZO-1/synaptopodin) exhibited an identical pattern of RBF among the groups (all p < 0.001). In conclusion Sita associated SW-assisted EPC effectively protected residual renal function in CKD.
Collapse
Affiliation(s)
- Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC
| | - Kuan-Hung Chen
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC; Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC;; Quanzhou University of Information Engineering, Quanzhou, China
| | - Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC; Department of Nursing, Asia University, Taichung, 41354, Taiwan, ROC.
| |
Collapse
|
38
|
Yang CH, Yip HK, Chen HF, Yin TC, Chiang JY, Sung PH, Lin KC, Tsou YH, Chen YL, Li YC, Huang TH, Huang CR, Luo CW, Chen KH. Long-term Therapeutic Effects of Extracorporeal Shock Wave-Assisted Melatonin Therapy on Mononeuropathic Pain in Rats. Neurochem Res 2019; 44:796-810. [PMID: 30632086 DOI: 10.1007/s11064-018-02713-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/31/2018] [Indexed: 01/21/2023]
Abstract
We evaluated the ability of extracorporeal shock wave (ECSW)-assisted melatonin (Mel) therapy to offer an additional benefit for alleviating the neuropathic pain (NP) in rats. Left sciatic nerve was subjected to chronic constriction injury (CCI) to induce NP. Animals (n = 30) were randomized into group 1 (sham-operated control), group 2 (CCI only), group 3 (CCI + ECSW), group 4 (CCI + Mel) and group 5 (CCI + ECSW + Mel). By days 15, 22 and 29 after CCI, the thermal paw withdrawal latency (TPWL) and mechanical paw withdrawal threshold (MPWT) were highest in group 1, lowest in group 2, significantly higher in group 5 than in groups 3 and 4, but they showed no difference between the later two groups (all p < 0.0001). The protein expressions of inflammatory (TNF-α, NF-κB, MMP-9, IL-1ß), oxidative-stress (NOXs-1, -2, -4, oxidized protein), apoptotic (cleaved-caspase3, cleaved-PARP), DNA/mitochondrial-damaged (γ-H2AX/cytosolic-cytochrome C), microglia/astrocyte activation (ox42/GFAP), and MAPKs [phosphorylated (p)-p38, p-JNK, p-ERK] biomarkers in dorsal root ganglia neurons (DRGs) and in spinal dorsal horn were exhibited an opposite pattern of TPWL among the five groups (all p < 0.0001). Additionally, protein expressions of Nav.1.3, Nav.1.8 and Nav.1.9 in sciatic nerve exhibited an identical pattern to inflammation among the five groups (all p < 0.0001). The numbers of cellular expressions of MAPKs (p-ERK1/2+/peripherin + cells, p-ERK1/2+/NF200 + cells and p-JNK+/peripherin + cells, p-JNK+/NF200 + cells) and voltage-gated sodium channels (Nav.1.8+/peripherin + cells, Nav.1.8+/NF200 + cells, Nav.1.9+/peripherin + cells, Nav.1.9+/NF200 + cells) in small and large DRGs displayed an identical pattern to inflammation among the five groups (all p < 0.0001). In conclusion, the synergistic effect of combined ECSW-Mel therapy is superior to either one alone for long-term improvement of mononeuropathic pain-induced by CCI in rats.
Collapse
Affiliation(s)
- Chien-Hui Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist, Kaohsiung, 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- Department of Nursing, Asia University, Taichung, 41354, Taiwan
| | - Hung-Fei Chen
- Institute of Technological and Vocational Education, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Tsung-Cheng Yin
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist, Kaohsiung, 83301, Taiwan
| | - Yu-Huan Tsou
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist, Kaohsiung, 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chi-Wen Luo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist, Kaohsiung, 83301, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
39
|
Yin TC, Sung PH, Chen KH, Li YC, Luo CW, Huang CR, Sheu JJ, Chiang JY, Lee MS, Yip HK. Extracorporeal shock wave-assisted adipose-derived fresh stromal vascular fraction restores the blood flow of critical limb ischemia in rat. Vascul Pharmacol 2018; 113:57-69. [PMID: 30597218 DOI: 10.1016/j.vph.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/22/2018] [Accepted: 12/22/2018] [Indexed: 11/17/2022]
Abstract
We tested the hypothesis that extracorporeal-shock-wave (ECSW)-assisted adipose-derived stromal vascular fraction (SVF) therapy was better than either one for restoring the blood flow in critical limb ischemia (CLI). Adult male-SD rats were categorized into group 1 (sham-operated-control), group 2 (CLI), group 3 [CLI + ECSW (280 impulses/0.10 mJ/mm2) applied to left inguinal area at 3 h after CLI], group 4 [CLI + SVF (1.2 × 106) implanted into CLI area at 3 h after CLI], group 5 (CLI + ECSW-SVF). In vitro studies showed that ECSW significantly enhanced angiogenesis in human umbilical-vein endothelial cells and carotid-artery ring, and SVF significantly suppressed inflammation (TNF-α/NF-Κb/IL-1ß/MMP-9) in smooth-muscle cells treated by LPS (all p < .001). By day 14 after CLI, the ratio of ischemic/normal blood flow (INBF) was highest in group 1, lowest in group 2, significantly higher in group 5 than in groups 3 and 4, but no difference was shown between the latter two groups (all p < .001). The fibrotic area in CLI region exhibited an opposite pattern of INBF ratio (all p < .0001). Protein (CD31/vWF/eNOS) and cellular (CD31/vWF) expressions and number of small vessels in CLI area exhibited an identical pattern, whilst protein expressions of apoptotic (caspase3/PARP/mitochondrial-Bax) fibrotic/DNA-damaged (Samd3/TFG-ß/γ-H2AX) biomarkers exhibited an opposite pattern to INBF among five groups (all p < .0001). The numbers of angiogenetic cells in CLI region (SDF-1α/VEGF/CXCR4) and endothelial-progenitor cells (C-kit/CD31+//Sca-1/CD31+//CD34/KDR+/VE-cadherin/CD34+) in circulation significantly and progressively increased from groups 2 to 5 (all p < .0001). In conclusion, ECSW-SVF therapy effectively enhanced angiogenesis and restoration of blood flow in CLI area.
Collapse
Affiliation(s)
- Tsung-Cheng Yin
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Kuan-Hung Chen
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chi-Wen Luo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jiunn-Jye Sheu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Department of Nursing, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
40
|
Shock Wave Therapy Enhances Mitochondrial Delivery into Target Cells and Protects against Acute Respiratory Distress Syndrome. Mediators Inflamm 2018; 2018:5425346. [PMID: 30420790 PMCID: PMC6215567 DOI: 10.1155/2018/5425346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/05/2018] [Indexed: 01/11/2023] Open
Abstract
This study tested the hypothesis that shock wave therapy (SW) enhances mitochondrial uptake into the lung epithelial and parenchymal cells to attenuate lung injury from acute respiratory distress syndrome (ARDS). ARDS was induced in rats through continuous inhalation of 100% oxygen for 48 h, while SW entailed application 0.15 mJ/mm2 for 200 impulses at 6 Hz per left/right lung field. In vitro and ex vivo studies showed that SW enhances mitochondrial uptake into lung epithelial and parenchyma cells (all p < 0.001). Flow cytometry demonstrated that albumin levels and numbers of inflammatory cells (Ly6G+/CD14+/CD68+/CD11b/c+) in bronchoalveolar lavage fluid were the highest in untreated ARDS, were progressively reduced across SW, Mito, and SW + Mito (all p < 0.0001), and were the lowest in sham controls. The same profile was also seen for fibrosis/collagen deposition, levels of biomarkers of oxidative stress (NOX-1/NOX-2/oxidized protein), inflammation (MMP-9/TNF-α/NF-κB/IL-1β/ICAM-1), apoptosis (cleaved caspase 3/PARP), fibrosis (Smad3/TGF-β), mitochondrial damage (cytosolic cytochrome c) (all p < 0.0001), and DNA damage (γ-H2AX+), and numbers of parenchymal inflammatory cells (CD11+/CD14+/CD40L+/F4/80+) (p < 0.0001). These results suggest that SW-assisted Mito therapy effectively protects the lung parenchyma from ARDS-induced injury.
Collapse
|
41
|
Extracorporeal Shock Wave-Supported Adipose-Derived Fresh Stromal Vascular Fraction Preserved Left Ventricular (LV) Function and Inhibited LV Remodeling in Acute Myocardial Infarction in Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7518920. [PMID: 30416645 PMCID: PMC6207868 DOI: 10.1155/2018/7518920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
This study tested the hypothesis that extracorporeal shock wave- (ECSW-) assisted adipose-derived stromal vascular fraction (SVF) therapy could preserve left ventricular ejection fraction (LVEF) and inhibit LV remodeling in a rat after acute myocardial infarction (AMI). Adult male SD rats were categorized into group 1 (sham control), group 2 (AMI induced by left coronary artery ligation), group 3 [AMI + ECSW (280 impulses at 0.1 mJ/mm2, applied to the chest wall at 3 h, days 3 and 7 after AMI), group 4 [AMI + SVF (1.2 × 106) implanted into the infarct area at 3 h after AMI], and group 5 (AMI + ECSW-SVF). In vitro, SVF protected H9C2 cells against menadione-induced mitochondrial damage and increased fluorescent intensity of mitochondria in nuclei (p < 0.01). By day 42 after AMI, LVEF was highest in group 1, lowest in group 2, significantly higher in group 5 than in groups 3 and 4, and similar between the latter two groups (all p < 0.0001). LV remodeling and infarcted, fibrotic, and collagen deposition areas as well as apoptotic nuclei exhibited an opposite pattern to LVEF among the groups (all p < 0.0001). Protein expressions of CD31/vWF/eNOS/PGC-1α/α-MHC/mitochondrial cytochrome C exhibited an identical pattern, whilst protein expressions of MMP-9/TNF-α/IL-1β/NF-κB/caspase-3/PARP/Samd3/TGF-β/NOX-1/NOX-2/oxidized protein/β-MHC/BNP exhibited an opposite pattern to LVEF among five groups (all p < 0.0001). Cellular expressions of CXCR4/SDF-1α/Sca-1/c-Kit significantly and progressively increased from groups 1 to 5 (all p < 0.0001). Cellular expression of γ-H2AX/CD68 displayed an opposite pattern to LVEF among the five groups (all p < 0.0001). In conclusion, ECSW-SVF therapy effectively preserved LVEF and inhibited LV remodeling in rat AMI.
Collapse
|
42
|
Effects of low-intensity shock wave therapy (LiST) on the erectile tissue of naturally aged rats. Int J Impot Res 2018; 31:162-169. [PMID: 30120384 DOI: 10.1038/s41443-018-0064-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Low-intensity shock wave therapy (LiST) improves erectile function in patients with erectile dysfunction (ED), probably by promoting angiogenesis as suggested by studies on animals with comorbidities as disease associated ED models. We aim to investigate the effects of LiST on erectile tissue of healthy, naturally aged rats. Twelve naturally aged male rats were randomized into two groups: control group (n = 6) and LiST-treatment group (n = 6). Young rats (8 weeks) (n = 6) was also used as control. Each rat in treatment group received 300 shock waves with an energy flux density of 0.09 mJ/mm2 at 2 Hz. Sessions were repeated three times/week for 2 weeks, followed by a 2-week washout period. Real-time RT-PCR for the expressions of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), nerve growth factor (NGF), neuronal NOS (nNOS), as well as α1 and α2-adrenergic receptors (α1AR, α2AR) was performed, followed by immunohistochemical analysis (IHC) to evaluate protein expression. The expressions of VEGF, eNOS, and α2AR/α1AR ratio were increased after LiST (p = 0.039, p = 0.008, and p = 0.006 respectively). The increase of VEGF, eNOS, and α2AR was confirmed in IHC (p = 0.013, p = 0.092, and p = 0.096, respectively). The increase of VEGF and eNOS seem to play key role in the mechanism of action of LiST, apparently by inducing angiogenesis. The altered expression of α1/α2-adrenergic receptors could indicate a decrease in sympathetic activity. LiST showed to partially reverse changes associated with aging in erectile tissue of rats, which supports future research for ED prevention.
Collapse
|
43
|
Duque AS, Ceccon CL, Mathias W, Majesky JD, Gowdak LH, Sbano JCN, Cesar LAM, Abduch MC, Lima MSM, Dourado PMM, Cruz CBBV, Tsutsui JM. Cardiac shock wave therapy improves myocardial perfusion and preserves left ventricular mechanics in patients with refractory angina: A study with speckle tracking echocardiography. Echocardiography 2018; 35:1564-1570. [DOI: 10.1111/echo.14054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Anderson S. Duque
- Heart Institute (InCor); University of Sao Paulo Medical School; Sao Paulo Brazil
| | - Conrado L. Ceccon
- Heart Institute (InCor); University of Sao Paulo Medical School; Sao Paulo Brazil
| | - Wilson Mathias
- Heart Institute (InCor); University of Sao Paulo Medical School; Sao Paulo Brazil
- Fleury Medicine and Health; Sao Paulo Brazil
| | - Joana Diniz Majesky
- Heart Institute (InCor); University of Sao Paulo Medical School; Sao Paulo Brazil
| | - Luis H. Gowdak
- Heart Institute (InCor); University of Sao Paulo Medical School; Sao Paulo Brazil
| | - João C. N. Sbano
- Heart Institute (InCor); University of Sao Paulo Medical School; Sao Paulo Brazil
- Fleury Medicine and Health; Sao Paulo Brazil
| | | | | | - Márcio S. M. Lima
- Heart Institute (InCor); University of Sao Paulo Medical School; Sao Paulo Brazil
- Fleury Medicine and Health; Sao Paulo Brazil
| | - Paulo M. M. Dourado
- Heart Institute (InCor); University of Sao Paulo Medical School; Sao Paulo Brazil
| | - Cecilia B. B. V. Cruz
- Heart Institute (InCor); University of Sao Paulo Medical School; Sao Paulo Brazil
- Fleury Medicine and Health; Sao Paulo Brazil
| | - Jeane M. Tsutsui
- Heart Institute (InCor); University of Sao Paulo Medical School; Sao Paulo Brazil
- Fleury Medicine and Health; Sao Paulo Brazil
| |
Collapse
|
44
|
Kikuchi Y, Ito K, Shindo T, Hao K, Shiroto T, Matsumoto Y, Takahashi J, Matsubara T, Yamada A, Ozaki Y, Hiroe M, Misumi K, Ota H, Takanami K, Hiraide T, Takase K, Tanji F, Tomata Y, Tsuji I, Shimokawa H. A multicenter trial of extracorporeal cardiac shock wave therapy for refractory angina pectoris: report of the highly advanced medical treatment in Japan. Heart Vessels 2018; 34:104-113. [PMID: 29942978 DOI: 10.1007/s00380-018-1215-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/22/2018] [Indexed: 01/09/2023]
Abstract
We have previously demonstrated that cardiac shock wave therapy (CSWT) effectively improves myocardial ischemia through coronary neovascularization both in a porcine model of chronic myocardial ischemia and in patients with refractory angina pectoris (AP). In this study, we further addressed the efficacy and safety of CSWT in a single-arm multicenter study approved as a highly advanced medical treatment by the Japanese Ministry of Health, Labour and Welfare. Fifty patients with refractory AP [mean age 70.9 ± 12.6 (SD) years, M/F 38/12] without the indications of percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG) were enrolled in 4 institutes in Japan. Ischemic myocardial regions in the left ventricle (LV) were identified by drug-induced stress myocardial perfusion imaging (MPI). Shock waves (200 shots/spot at 0.09 mJ/mm2) were applied to 40-60 spots in the ischemic myocardium 3 times in the first week. The patients were followed up for 3 months thereafter. Forty-one patients underwent CSWT and completed the follow-up at 3 months. CSWT markedly improved weekly nitroglycerin use [from 3.5 (IQR 2 to 6) to 0 (IQR 0 to 1)] and the symptoms [Canadian Cardiovascular Society functional class score, from 2 (IQR 2 to 3) to 1 (IQR 1 to 2)] (both P < 0.001). CSWT also significantly improved 6-min walking distance (from 384 ± 91 to 435 ± 122 m, P < 0.05). There were no significant changes in LV ejection fraction evaluated by echocardiography and LV stroke volume evaluated by cardiac magnetic resonance imaging (from 56.3 ± 14.7 to 58.8 ± 12.8%, P = 0.10, and from 52.3 ± 17.4 to 55.6 ± 15.7 mL, P = 0.15, respectively). Percent myocardium ischemia assessed by drug-induced stress MPI tended to be improved only in the treated segments (from 16.0 ± 11.1 to 12.1 ± 16.2%, P = 0.06), although no change was noted in the whole LV. No procedural complications or adverse effects related to the CSWT were noted. These results of the multicenter trial further indicate that CSWT is a useful and safe non-invasive strategy for patients with refractory AP with no options of PCI or CABG.
Collapse
Affiliation(s)
- Yoku Kikuchi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenta Ito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiko Shindo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyotaka Hao
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuharu Matsumoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takao Matsubara
- Department of Cardiovascular Medicine, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Akira Yamada
- Department of Cardiovascular Medicine, Fujita Health University Hospital, Toyoake, Japan
| | - Yukio Ozaki
- Department of Cardiovascular Medicine, Fujita Health University Hospital, Toyoake, Japan
| | - Michiaki Hiroe
- Department of Cardiovascular Medicine, Chiba-Nishi General Hospital, Matsudo, Japan
| | - Kazuo Misumi
- Department of Cardiovascular Medicine, Chiba-Nishi General Hospital, Matsudo, Japan
| | - Hideki Ota
- Department of Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kentaro Takanami
- Department of Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomomichi Hiraide
- Department of Radiology, Miyagi Cardiovascular and Respiratory Center, Kurihara, Japan
| | - Kei Takase
- Department of Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiya Tanji
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai, Japan
| | - Yasutake Tomata
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai, Japan
| | - Ichiro Tsuji
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
45
|
Chen YT, Chen KH, Sung PH, Yang CC, Cheng BC, Chen CH, Chang CL, Sheu JJ, Lee FY, Shao PL, Sun CK, Yip HK. Extracorporeal shock wave markedly alleviates radiation-induced chronic cystitis in rat. Am J Transl Res 2018; 10:1036-1052. [PMID: 29636892 PMCID: PMC5883143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
This study tested the hypothesis that extracorporeal shock wave (ECSW) treatment can effectively inhibit radiation-induced chronic cystitis (CC). Adult male Sprague-Dawley (SD) rats (n = 24) were randomly divided into group 1 (normal control), group 2 (CC induced by radiation with 300 cGy twice with a four-hour interval to the urinary bladder), group 3 [CC with ECSW treatment (0.2 mJ/mm2/120 impulses/at days 1, 7, and 14 after radiation)]. Bladder specimens were harvested by day 28 after radiation. By day 28 after radiation, the degree of detrusor contraction impairment was significantly higher in group 2 than that in groups 1 and 3, and significantly higher in group 3 than that in group 1 (P<0.0001). The urine albumin concentration expressed an opposite pattern compared to that of detrusor function among the three groups (P<0.0001). The bladder protein expressions of inflammatory (TLR-2/TLR-4/IL-6/IL-12/MMP-9/TNF-α/NF-κB/RANTES/iNOS) and oxidative-stress (NOX-1/NOX-2/oxidized protein) biomarkers exhibited a pattern identical to that of urine albumin in all groups (all P<0.0001). The cellular expressions of inflammatory (CD14+/CD68+/CD74+/COX-2/MIF+/substance P+) and cytokeratin (CK13+/HMW CK+/CK+17/CK+18/CK+19) biomarkers, and collagen-deposition/fibrotic areas as well as epithelial-damaged score displayed an identical pattern compared to that of urine albumin among the three groups (all P<0.0001). In conclusion, ECSW treatment effectively protected urinary bladder from radiation-induced CC.
Collapse
Affiliation(s)
- Yen-Ta Chen
- Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Kuan-Hung Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Pei-Hsun Sung
- Divisions of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Chih-Chao Yang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Ben-Chung Cheng
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Chih-Hung Chen
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, 83301, Taiwan
| | - Chia-Lo Chang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Jiunn-Jye Sheu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Fan-Yen Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical CenterTaipei 11490, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia UniversityTaichung 41354, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International StudentsKaohsiung 82445, Taiwan
| | - Hon-Kan Yip
- Divisions of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Department of Nursing, Asia UniversityTaichung 41354, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| |
Collapse
|
46
|
Antonic V, Hartmann B, Balks P, Schaden W, Ottomann C. Extracorporeal shockwave therapy as supplemental therapy for closure of large full thickness defects—Rat full-thickness skin graft model. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.wndm.2017.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The Role of Extracorporeal Shockwave Treatment in Musculoskeletal Disorders. J Bone Joint Surg Am 2018; 100:251-263. [PMID: 29406349 DOI: 10.2106/jbjs.17.00661] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Daniel Moya
- Buenos Aires British Hospital, Buenos Aires, Argentina
| | - Silvia Ramón
- Hospital Quirón, Barcelona, Fundación García Cugat, Spain
| | | | | | | | | |
Collapse
|
48
|
Cardiac shock wave therapy promotes arteriogenesis of coronary micrangium, and ILK is involved in the biomechanical effects by proteomic analysis. Sci Rep 2018; 8:1814. [PMID: 29379038 PMCID: PMC5788936 DOI: 10.1038/s41598-018-19393-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/28/2017] [Indexed: 01/04/2023] Open
Abstract
Cardiac Shock Wave Therapy (CSWT) improves myocardial perfusion and ameliorates cardiac remodeling after acute myocardial infarction (AMI), but the precise mechanisms remain obscure. Herein, we have applied CSWT to a rat model of AMI to demonstrate the arteriogenesis of coronary micrangium and protein expression changes in ischemic myocardium after CSWT. Four weeks after CSWT, the fraction shortening of rats was improved greatly and the cardiomyocyte apoptosis index was significantly lower than the AMI group (P < 0.05). Besides, the fibrotic area was markedly decreased in the CSWT group. In the infarction border zone, the thickness of smooth muscle layer was expanded apparently after CSWT. Label-free quantitative proteomic analysis and bioinformatics analysis revealed that the differentially expressed proteins were largely enriched in the focal adhesion signaling pathway. And integrin linked kinase (ILK) may be a key factor contributed to arteriogenesis of coronary micrangium during CSWT. In conclusion, non-invasive cardiac shock wave could promote arteriogenesis of coronary micrangium and alleviate myocardial apoptosis and fibrosis after AMI. Furthermore, focal adhesion signaling pathway may have a central role in the related signal network and ILK was closely related to the arteriogenesis of coronary micrangium during CSWT.
Collapse
|
49
|
Alunni G, Barbero U, Vairo A, D'Amico S, Pianelli M, Zema D, Bongiovanni F, Gaita F. The beneficial effect of extracorporeal shockwave myocardial revascularization: Two years of follow-up. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2017. [DOI: 10.1016/j.carrev.2017.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Chai HT, Chen KH, Wallace CG, Chen CH, Sung PH, Chen YL, Yuen CM, Shao PL, Sun CK, Chang HW, Wang CJ, Lee MS, Yip HK, Ko SF. Extracorporeal shock wave therapy effectively protects brain against chronic cerebral hypo-perfusion-induced neuropathological changes. Am J Transl Res 2017; 9:5074-5093. [PMID: 29218106 PMCID: PMC5714792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
This study tested the hypothesis that extracorporeal shock wave (ECSW) therapy could protect mouse brain from chronic cerebral hypoperfusion (CHP)-induced neuropathological changes in a bilateral carotid arterial stenosis (CAS) model. Adult-male C57BL/6 (B6) mice (n=36) were randomized into group 1 (sham-control), group 2 (CHP) and group 3 [CHP+ECSW (100 impulses at 0.15 mJ/mm2) on day 5, 10 and 15 after CHP induction]. By day 60 after CHP induction, the white matter lesion, protein expressions of inflammatory (TNF-α/NF-κB/iNOS), oxidative-stress (NOX-1/NOX-2/NOX-4/nitrotyrosine), angiogenesis (eNOS/CD31), apoptotic (Bax/caspase-3/PARP), fibrotic (Smad3/TGF-ß) and mitochondrial-damaged (cytosolic cytochrome-C) biomarkers were significantly higher in group 2 than in groups 1 and 3, and significantly higher in group 3 than in group 1, whereas the protein expressions of anti-apoptotic (Bcl-2), anti-fibrotic (BMP-2/Smad1/5), and mitochondrial-integrity (mitochondrial cytochrome-C) biomarkers showed an opposite pattern to inflammation among the three groups (all P<0.0001). The cellular expressions of inflammatory (Iba-1/GFAP/CD14, F4/80), apoptotic (TUNEL-assay) and brain-damaged (γ-H2AX/AQP4) biomarkers showed an identical pattern to inflammation, whereas the cellular expressions of endothelial-cell (CD31/vWF), neuron/energy-integrity (NeuN/PGC-1α) and small-vessel density exhibited an opposite pattern to inflammation among the three groups (all P<0.0001). Cellular angiogenesis (VEGF/SDF-1α) significantly and progressively increased from groups 1 to 3 (all P<0.0001). In conclusion, ECSW therapy enhanced angiogenesis, inhibited molecular-cellular perturbations, and protected the white matter and neuron from CHP damage.
Collapse
Affiliation(s)
- Han-Tan Chai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | | | - Chih-Hung Chen
- Divisions of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Yung-Lung Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Chun-Man Yuen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia UniversityTaichung, 41354, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-DA Hospital, I-Shou UniversityKaohsiung 82445, Taiwan
| | - Hsueh-Wen Chang
- Department of Biological Sciences, National Sun Yat-sen UniversityKaohsiung, 80424, Taiwan
| | - Ching-Jen Wang
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Department of Nursing, Asia UniversityTaichung, 41354, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical UniversityTaichung, 40402, Taiwan
| | - Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| |
Collapse
|