1
|
Nolan RB, Fan JY, Price JL. Circadian rhythms in the Drosophila eye may regulate adaptation of vision to light intensity. Front Neurosci 2024; 18:1401721. [PMID: 38872947 PMCID: PMC11169718 DOI: 10.3389/fnins.2024.1401721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
The sensitivity of the eye at night would lead to complete saturation of the eye during the day. Therefore, the sensitivity of the eye must be down-regulated during the day to maintain visual acuity. In the Drosophila eye, the opening of TRP and TRPL channels leads to an influx of Ca++ that triggers down-regulation of further responses to light, including the movement of the TRPL channel and Gα proteins out of signaling complexes found in actin-mediated microvillar extensions of the photoreceptor cells (the rhabdomere). The eye also exhibits a light entrained-circadian rhythm, and we have recently observed that one component of this rhythm (BDBT) becomes undetectable by antibodies after exposure to light even though immunoblot analyses still detect it in the eye. BDBT is necessary for normal circadian rhythms, and in several circadian and visual mutants this eye-specific oscillation of detection is lost. Many phototransduction signaling proteins (e.g., Rhodopsin, TRP channels and Gα) also become undetectable shortly after light exposure, most likely due to a light-induced compaction of the rhabdomeric microvilli. The circadian protein BDBT might be involved in light-induced changes in the rhabdomere, and if so this could indicate that circadian clocks contribute to the daily adaptations of the eye to light. Likewise, circadian oscillations of clock proteins are observed in photoreceptors of the mammalian eye and produce a circadian oscillation in the ERG. Disruption of circadian rhythms in the eyes of mammals causes neurodegeneration in the eye, demonstrating the importance of the rhythms for normal eye function.
Collapse
Affiliation(s)
| | | | - Jeffrey L. Price
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri – Kansas City, Kansas City, MO, United States
| |
Collapse
|
2
|
Felder-Schmittbuhl MP, Hicks D, Ribelayga CP, Tosini G. Melatonin in the mammalian retina: Synthesis, mechanisms of action and neuroprotection. J Pineal Res 2024; 76:e12951. [PMID: 38572848 DOI: 10.1111/jpi.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/09/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Melatonin is an important player in the regulation of many physiological functions within the body and in the retina. Melatonin synthesis in the retina primarily occurs during the night and its levels are low during the day. Retinal melatonin is primarily synthesized by the photoreceptors, but whether the synthesis occurs in the rods and/or cones is still unclear. Melatonin exerts its influence by binding to G protein-coupled receptors named melatonin receptor type 1 (MT1) and type 2 (MT2). MT1 and MT2 receptors activate a wide variety of signaling pathways and both receptors are present in the vertebrate photoreceptors where they may form MT1/MT2 heteromers (MT1/2h). Studies in rodents have shown that melatonin signaling plays an important role in the regulation of retinal dopamine levels, rod/cone coupling as well as the photopic and scotopic electroretinogram. In addition, melatonin may play an important role in protecting photoreceptors from oxidative stress and can protect photoreceptors from apoptosis. Critically, melatonin signaling is involved in the modulation of photoreceptor viability during aging and other studies have implicated melatonin in the pathogenesis of age-related macular degeneration. Hence melatonin may represent a useful tool in the fight to protect photoreceptors-and other retinal cells-against degeneration due to aging or diseases.
Collapse
Affiliation(s)
- Marie Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Christophe P Ribelayga
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, Texas, USA
| | - Gianluca Tosini
- Department of Pharmacology & Toxicology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Okamoto HH, Cecon E, Nureki O, Rivara S, Jockers R. Melatonin receptor structure and signaling. J Pineal Res 2024; 76:e12952. [PMID: 38587234 DOI: 10.1111/jpi.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/05/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Melatonin (5-methoxy-N-acetyltryptamine) binds with high affinity and specificity to membrane receptors. Several receptor subtypes exist in different species, of which the mammalian MT1 and MT2 receptors are the best-characterized. They are members of the G protein-coupled receptor superfamily, preferentially coupling to Gi/o proteins but also to other G proteins in a cell-context-depending manner. In this review, experts on melatonin receptors will summarize the current state of the field. We briefly report on the discovery and classification of melatonin receptors, then focus on the molecular structure of human MT1 and MT2 receptors and highlight the importance of molecular simulations to identify new ligands and to understand the structural dynamics of these receptors. We then describe the state-of-the-art of the intracellular signaling pathways activated by melatonin receptors and their complexes. Brief statements on the molecular toolbox available for melatonin receptor studies and future perspectives will round-up this review.
Collapse
Affiliation(s)
- Hiroyuki H Okamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Erika Cecon
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
4
|
Klosen P. Thirty-seven years of MT1 and MT2 melatonin receptor localization in the brain: Past and future challenges. J Pineal Res 2024; 76:e12955. [PMID: 38606787 DOI: 10.1111/jpi.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/21/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
Identifying the target cells of a hormone is a key step in understanding its function. Once the molecular nature of the receptors for a hormone has been established, researchers can use several techniques to detect these receptors. Here I will review the different tools used over the years to localize melatonin receptors and the problems associated with each of these techniques. The radioligand 2-[125I] iodomelatonin was the first tool to allow localization of melatonin receptors on tissue sections. Once the MT1 and MT2 receptors were cloned, in situ hybridization could be used to detect the messenger RNA for these receptors. The deduced amino acid sequences for MT1 and MT2 receptors allowed the production of peptide immunogens to generate antibodies against the MT1 and MT2 receptors. Finally, transgenic reporters driven by the promoter elements of the MT1 and MT2 genes have been used to map the expression of MT1 and MT2 in the brain and the retina. Several issues have complicated the localization of melatonin receptors and the characterization of melatonin target cells over the last three decades. Melatonin receptors are expressed at low levels, leading to sensitivity issues for their detection. The second problem are specificity issues with antibodies directed against the MT1 and MT2 melatonin receptors. These receptors are G protein-coupled receptors and many antibodies directed against such receptors have been shown to present similar problems concerning their specificity. Despite these specificity problems which start to be seriously addressed by recent studies, antibodies will be important tools in the future to identify and phenotype melatonin target cells. However, we will have to be more stringent than previously when establishing their specificity. The results obtained by these antibodies will have to be confronted and be coherent with results obtained by other techniques.
Collapse
Affiliation(s)
- Paul Klosen
- Regulation and Disruption of Neuroendocrine Rhythms, Institute of Cellular and Integrative Neurosciences, INCI CNRS UPR-3212, University of Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Ye S, Wang Z, Ma JH, Ji S, Peng Y, Huang Y, Chen J, Tang S. Diabetes Reshapes the Circadian Transcriptome Profile in Murine Retina. Invest Ophthalmol Vis Sci 2023; 64:3. [PMID: 37788001 PMCID: PMC10552875 DOI: 10.1167/iovs.64.13.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/09/2023] [Indexed: 10/04/2023] Open
Abstract
Purpose Diabetic retinopathy (DR) is a common complication of diabetes and has a high prevalence. Dysregulation of circadian rhythmicity is associated with the development of DR. This research aimed to investigate rhythmical transcriptome alterations in the retina of diabetic mice. Methods C57BL/6J mice were used to establish a diabetes model by intraperitoneal injection of streptozotocin (STZ). After 12 weeks, retinas were collected continuously at 4-hour intervals over 1 day. Total RNA was extracted from normal and STZ-treated retinas and RNA sequencing was performed. Meta2d algorithm, Kyoto Encyclopedia of Genes, Phase Set Enrichment Analysis, and time-series cluster analysis were used to identify, analyze and annotate the composition, phase, and molecular functions of rhythmic transcripts in retinas. Results The retina exhibited powerful transcriptome rhythmicity. STZ-induced diabetes markedly modified the transcriptome characteristics of the circadian transcriptome in the retina, including composition, phase, and amplitude. Moreover, the diabetic mice led to re-organized temporal and clustering enrichment pathways in space and time and affected core clock machinery. Conclusions Diabetes impairs the circadian rhythm of the transcriptomic profile of retinas. This study offers new perspectives on the negative effects of diabetes on the retina, which may provide important information for the development of new treatments for DR.
Collapse
Affiliation(s)
- Suna Ye
- AIER Eye Hospital, Jinan University, Guangzhou, China
- AIER Eye Institute, Changsha, China
| | | | | | | | | | | | - Jiansu Chen
- AIER Eye Hospital, Jinan University, Guangzhou, China
- AIER Eye Institute, Changsha, China
| | - Shibo Tang
- AIER Eye Hospital, Jinan University, Guangzhou, China
- AIER Eye Institute, Changsha, China
| |
Collapse
|
6
|
Wichert K, Hoppe R, Ickstadt K, Behrens T, Winter S, Herold R, Terschüren C, Lo WY, Guénel P, Truong T, Bolla MK, Wang Q, Dennis J, Michailidou K, Lush M, Andrulis IL, Brenner H, Chang-Claude J, Cox A, Cross SS, Czene K, Eriksson M, Figueroa JD, García-Closas M, Goldberg MS, Hamann U, He W, Holleczek B, Hopper JL, Jakubowska A, Ko YD, Lubiński J, Mulligan AM, Obi N, Rhenius V, Shah M, Shu XO, Simard J, Southey MC, Zheng W, Dunning AM, Pharoah PDP, Hall P, Easton DF, Brüning T, Brauch H, Harth V, Rabstein S. Polymorphisms in genes of melatonin biosynthesis and signaling support the light-at-night hypothesis for breast cancer. Eur J Epidemiol 2023; 38:1053-1068. [PMID: 37789226 PMCID: PMC10570222 DOI: 10.1007/s10654-023-01048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023]
Abstract
Light-at-night triggers the decline of pineal gland melatonin biosynthesis and secretion and is an IARC-classified probable breast-cancer risk factor. We applied a large-scale molecular epidemiology approach to shed light on the putative role of melatonin in breast cancer. We investigated associations between breast-cancer risk and polymorphisms at genes of melatonin biosynthesis/signaling using a study population of 44,405 women from the Breast Cancer Association Consortium (22,992 cases, 21,413 population-based controls). Genotype data of 97 candidate single nucleotide polymorphisms (SNPs) at 18 defined gene regions were investigated for breast-cancer risk effects. We calculated adjusted odds ratios (ORs) and 95% confidence intervals (CI) by logistic regression for the main-effect analysis as well as stratified analyses by estrogen- and progesterone-receptor (ER, PR) status. SNP-SNP interactions were analyzed via a two-step procedure based on logic regression. The Bayesian false-discovery probability (BFDP) was used for all analyses to account for multiple testing. Noteworthy associations (BFDP < 0.8) included 10 linked SNPs in tryptophan hydroxylase 2 (TPH2) (e.g. rs1386492: OR = 1.07, 95% CI 1.02-1.12), and a SNP in the mitogen-activated protein kinase 8 (MAPK8) (rs10857561: OR = 1.11, 95% CI 1.04-1.18). The SNP-SNP interaction analysis revealed noteworthy interaction terms with TPH2- and MAPK-related SNPs (e.g. rs1386483R ∧ rs1473473D ∧ rs3729931D: OR = 1.20, 95% CI 1.09-1.32). In line with the light-at-night hypothesis that links shift work with elevated breast-cancer risks our results point to SNPs in TPH2 and MAPK-genes that may impact the intricate network of circadian regulation.
Collapse
Grants
- C12292/A11174 Cancer Research UK
- C5047/A15007 Cancer Research UK
- UM1 CA164920 NCI NIH HHS
- R01CA100374 NIH HHS
- C1281/A12014 Cancer Research UK
- C5047/A10692 Cancer Research UK
- R01 CA100374 NCI NIH HHS
- C490/A16561 Cancer Research UK
- C8197/A16565 Cancer Research UK
- C490/A10124 Cancer Research UK
- R01 CA128978 NCI NIH HHS
- C1287/A10118 Cancer Research UK
- P30 CA068485 NCI NIH HHS
- U01 CA164920 NCI NIH HHS
- CA128978 NIH HHS
- U19 CA148112 NCI NIH HHS
- C1287/A10710 Cancer Research UK
- C5047/A8384 Cancer Research UK
- European Union's Horizon 2020 Research and Innovation Programme
- Genome Canada
- Canadian Institutes of Health Research
- Ministère de l’Économie et de l'Innovation du Québec
- Government of Canada
- Génome Québec
- Fondation du cancer du sein du Québec
- Confluence project by National Cancer Institute Intramural Research Program, National Institutes of Health
- European Community's Seventh Framework Programme
- Cancer Research UK
- National Institutes of Health
- Post-Cancer GWAS initiative
- Department of Defence
- Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer
- Susan G. Komen for the Cure
- Breast Cancer Research Foundation
- Ovarian Cancer Research Fund
- National Cancer Institute (USA)
- National Health and Medical Research Council of Australia
- Cancer Council NSW
- Victorian Health Promotion Foundation (Australia)
- Victorian Breast Cancer Research Consortium
- National Health and Medical Research Council
- Fondation de France
- Institut National du Cancer (INCa)
- Ligue Nationale contre le Cancer
- Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail
- Agence Nationale de la Recherche
- Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg
- Deutsche Krebshilfe
- Bundesministerium für Bildung und Forschung
- Robert Bosch Stiftung
- Deutsches Krebsforschungszentrum
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA)
- Department of Internal Medicine, Johanniter GmbH Bonn, Johanniter Krankenhaus, Bonn, Germany
- Märit and Hans Rausings Initiative Against Breast Cancer
- Hamburger Krebsgesellschaft
- Canadian Institutes of Health Research for the “CIHR Team in Familial Risks of Breast Cancer” program
- Ministry of Economic Development, Innovation and Export Trade
- NIH
- Survey and Biospecimen Shared Resource
- USA National Cancer Institute of the National Institutes of Health
- Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA
- Agency for Science, Technology and Research of Singapore
- US National Institute of Health
- Susan G. Komen
- Sheffield Experimental Cancer Medicine Centre
- Breast Cancer Now Tissue Bank
- UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge
- NHS in the East of England through the Clinical Academic Reserve
- Minister of Science and Higher Education, Regional Initiative of Excellence, project number 002/RID/2018/19
- Ruhr-Universität Bochum (1007)
Collapse
Affiliation(s)
- Katharina Wichert
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Katja Ickstadt
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Thomas Behrens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Robert Herold
- Institute for Occupational and Maritime Medicine Hamburg (ZfAM), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Claudia Terschüren
- Institute for Occupational and Maritime Medicine Hamburg (ZfAM), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Wing-Yee Lo
- Department of Clinical Pathology, University of Melbourne Centre for Cancer Research Victorian Comprehensive Cancer Centre Melbourne, Melbourne, VIC, Australia
| | - Pascal Guénel
- Team "Exposome and Heredity", CESP, Gustave Roussy, INSERM, University Paris-Saclay, UVSQ, Villejuif, France
| | - Thérèse Truong
- Team "Exposome and Heredity", CESP, Gustave Roussy, INSERM, University Paris-Saclay, UVSQ, Villejuif, France
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonine D Figueroa
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montréal, QC, Canada
- Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montréal, QC, Canada
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Yon-Dschun Ko
- Department of Internal Medicine, Johanniter GmbH Bonn, Johanniter Krankenhaus, Bonn, Germany
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Valerie Rhenius
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- iFIT-Cluster of Excellence, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Volker Harth
- Institute for Occupational and Maritime Medicine Hamburg (ZfAM), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sylvia Rabstein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| |
Collapse
|
7
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Allen AE. Circadian Regulation of the Rod Contribution to Mesopic Vision in Mice. J Neurosci 2022; 42:8795-8806. [PMID: 36216501 PMCID: PMC9698662 DOI: 10.1523/jneurosci.0486-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
At intermediate (mesopic) light levels, rods and cones are both active and can contribute to vision. This presents a challenge to the retina because the visual responses originating with rods and cones are distinct, yet their visual responses must be seamlessly combined. The current study aimed to establish how the circadian clock regulates rod and/or cone vision in these conditions, given the strong time-of-day change in the reliance on each photoreceptor. Visual responses were recorded in the retina and visual thalamus of anaesthetized male mice at distinct circadian time points, and the method of receptor silent substitution was used to selectively stimulate different photoreceptor types. With stimuli designed to only activate rods, responses in the mesopic range were highly rhythmic and peaked in amplitude in the subjective night. This rhythm was abolished following intravitreal injection of the gap junction blocker meclofenamic acid, consistent with a circadian variation in the strength of electrical coupling of photoreceptors. In contrast, responses to stimuli designed to only activate cones were arrhythmic within the mesopic to photopic range when adapted to the background irradiance. The outcome was that combined rod-plus-cone responses showed a stable contrast-response relationship across mesopic-photopic backgrounds in the circadian day, whereas at night, responses were significantly amplified at lower light levels. These data support the idea that the circadian clock is a key regulator of vision, in this case defining the relative amplitude of rod/cone vision across the mesopic transition according to time of day.SIGNIFICANCE STATEMENT Although the importance of circadian clocks in regulating vision has been long recognized, less is known about how the clock shapes vision in conditions where both rods and cones are active (mesopic conditions). Here, the novel approach of receptor silent substitution has been applied to trace rod and cone visual responses in mice across the circadian cycle and has identified pronounced rhythms in rod, but not cone, vision. This has the effect of boosting responses in dimmer backgrounds at night at the cost of impaired contrast-response stability across the mesopic to photopic range. Thus, the circadian clock drives anticipatory changes in the relative contribution of rods versus cones to vision, which match the prevailing visual environment.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
9
|
Ye D, Xu Y, Shi Y, Fan M, Lu P, Bai X, Feng Y, Hu C, Cui K, Tang X, Liao J, Huang W, Xu F, Liang X, Huang J. Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model. J Pineal Res 2022; 73:e12828. [PMID: 36031799 DOI: 10.1111/jpi.12828] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Acute ocular hypertension (AOH) is the most important characteristic of acute glaucoma, which can lead to retinal ganglion cell (RGC) death and permanent vision loss. So far, approved effective therapy is still lacking in acute glaucoma. PANoptosis (pyroptosis, apoptosis, and necroptosis), which consists of three key modes of programmed cell death-apoptosis, necroptosis, and pyroptosis-may contribute to AOH-induced RGC death. Previous studies have demonstrated that melatonin (N-acetyl-5-methoxytryptamine) exerts a neuroprotective effect in many retinal degenerative diseases. However, whether melatonin is anti-PANoptotic and neuroprotective in the progression of acute glaucoma remains unclear. Thus, this study aimed to explore the role of melatonin in AOH retinas and its underlying mechanisms. The results showed that melatonin treatment attenuated the loss of ganglion cell complex thickness, retinal nerve fiber layer thickness, and RGC after AOH injury, and improved the amplitudes of a-wave, b-wave, and oscillatory potentials in the electroretinogram. Additionally, the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells was decreased, and the upregulation of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 and p-Bad were inhibited after melatonin administration. Meanwhile, both the expression and activation of MLKL, RIP1, and RIP3, along with the number of PI-positive cells, were reduced in melatonin-treated mice, and p-RIP3 was in both RGC and microglia/macrophage after AOH injury. Furthermore, melatonin reduced the expression of NLRP3, ASC, cleaved caspase-1, gasdermin D (GSDMD), and cleaved GSDMD, and decreased the number of Iba1/interleukin-1β-positive cells. In conclusion, melatonin ameliorated retinal structure, prevented retinal dysfunction after AOH, and exerted a neuroprotective effect via inhibition of PANoptosis in AOH retinas.
Collapse
Affiliation(s)
- Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Peng Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanlin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chenyang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Liao
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Wei Huang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Fan Xu
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
10
|
Yu S, Cui K, Wu P, Wu B, Lu X, Huang R, Tang X, Lin J, Yang B, Zhao J, He Q, Liang X, Xu Y. Melatonin prevents experimental central serous chorioretinopathy in rats. J Pineal Res 2022; 73:e12802. [PMID: 35436360 DOI: 10.1111/jpi.12802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
Central serous chorioretinopathy (CSC) is a vision-threatening disease with no validated treatment and unclear pathogenesis. It is characterized by dilation and leakage of choroidal vasculature, resulting in the accumulation of subretinal fluid, and serous detachment of the neurosensory retina. Numerous studies have demonstrated that melatonin had multiple protective effects against endothelial dysfunction, vascular inflammation, and blood-retinal barrier (BRB) breakdown. However, the effect of melatonin on CSC, and its exact pathogenesis, is not well understood thus far. In this study, an experimental model was established by intravitreal injection of aldosterone in rats, which mimicked the features of CSC. Our results found that melatonin administration in advance significantly inhibited aldosterone-induced choroidal thickening and vasodilation by reducing the expression of calcium-activated potassium channel KCa2.3, and attenuated tortuosity of choroid vessels. Moreover, melatonin protected the BRB integrity and prevented the decrease in tight junction protein (ZO-1, occludin, and claudin-1) levels in the rat model induced by aldosterone. Additionally, the data also showed that intraperitoneal injection of melatonin in advance inhibited aldosterone-induced macrophage/microglia infiltration, and remarkably diminished the levels of inflammatory cytokines (interleukin-6 [IL-6], IL-1β, and cyclooxygenase-2), chemokines (chemokine C-C motif ligand 3, and C-X-C motif ligand 1), and matrix metalloproteinases (MMP-2 and MMP-9). Luzindole, as the nonselective MT1 and MT2 antagonist, and 4-phenyl-2-propionamidotetraline, as the selective MT2 antagonist, neutralized the melatonin-induced inhibition of choroidal thickening and choroidal vasodilation, indicating that melatonin might exert the effects via binding to its receptors. Furthermore, the IL-17A/nuclear factor-κB signaling pathway was activated by intravitreal administration of aldosterone, while it was suppressed in melatonin-treated in advance rat eyes. This study indicates that melatonin could serve as a promising safe therapeutic strategy for CSC patients.
Collapse
Affiliation(s)
- Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Peiqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Benjuan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Rong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jianqiang Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Boyu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jinfeng Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjing He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
11
|
Pfeffer M, von Gall C, Wicht H, Korf HW. The Role of the Melatoninergic System in Circadian and Seasonal Rhythms—Insights From Different Mouse Strains. Front Physiol 2022; 13:883637. [PMID: 35492605 PMCID: PMC9039042 DOI: 10.3389/fphys.2022.883637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 01/01/2023] Open
Abstract
The melatoninergic system comprises the neurohormone melatonin and its molecular targets. The major source of melatonin is the pineal organ where melatonin is rhythmically produced during darkness. In mammals, melatonin biosynthesis is controlled by the central circadian rhythm generator in the suprachiasmatic nucleus (SCN) and photoreceptors in the retina. Melatonin elicits its function principally through two specific receptors called MT1 and MT2. MT1 is highly expressed in the SCN and the hypophysial pars tuberalis (PT), an important interface for control of seasonal functions. The expression of the MT2 is more widespread. The role of the melatoninergic system in the control of seasonal functions, such as reproduction, has been known for more than 4 decades, but investigations on its impact on the circadian system under normal (entrained) conditions started 2 decades later by comparing mouse strains with a fully functional melatoninergic system with mouse strains which either produce insufficient amounts of melatonin or lack the melatonin receptors MT1 and MT2. These studies revealed that an intact melatoninergic system is not required for the generation or maintenance of rhythmic behavior under physiological entrained conditions. As shown by jet lag experiments, the melatoninergic system facilitated faster re-entrainment of locomotor activity accompanied by a more rapid adaptation of the molecular clock work in the SCN. This action depended on MT2. Further studies indicated that the endogenous melatoninergic system stabilizes the locomotor activity under entrained conditions. Notably, these effects of the endogenous melatoninergic system are subtle, suggesting that other signals such as corticosterone or temperature contribute to the synchronization of locomotor activity. Outdoor experiments lasting for a whole year indicate a seasonal plasticity of the chronotype which depends on the melatoninergic system. The comparison between mice with an intact or a compromised melatoninergic system also points toward an impact of this system on sleep, memory and metabolism.
Collapse
Affiliation(s)
- Martina Pfeffer
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- *Correspondence: Martina Pfeffer,
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Helmut Wicht
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin der Goethe-Universität, Frankfurt am Main, Germany
| | - Horst-Werner Korf
- Institute of Anatomy I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
12
|
Baba K, Tosini G. Assessing the Role of Melatonin in the Modulation of Visual Functions in the Mouse. Methods Mol Biol 2022; 2550:377-389. [PMID: 36180707 DOI: 10.1007/978-1-0716-2593-4_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The electroretinogram (ERG) is a noninvasive method to evaluate retinal function. It can be applied to patients to be diagnosed a variety of retinal pathologies such as photoreceptor dystrophy, diabetic retinopathy, macular degeneration, and glaucoma. ERG has also been a reliable tool to assess retinal functions in animal studies that range from fish to humans. Melatonin is a neurohormone that regulates several retinal functions within the retina, and previous studies have shown that melatonin plays an important role in the modulation of the ERG in humans and other vertebrates. This chapter describes experimental methods to evaluate retinal function using ERG in the mouse and how to assess the contribution of melatonin. An introduction is provided for materials, environmental settings, recording procedures, and analysis necessary for ERG measurements.
Collapse
Affiliation(s)
- Kenkichi Baba
- Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, GA, USA.
| | - Gianluca Tosini
- Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
13
|
Endogenous functioning and light response of the retinal clock in vertebrates. PROGRESS IN BRAIN RESEARCH 2022; 273:49-69. [DOI: 10.1016/bs.pbr.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Gegnaw ST, Sandu C, Mendoza J, Bergen AA, Felder-Schmittbuhl MP. Dark-adapted light response in mice is regulated by a circadian clock located in rod photoreceptors. Exp Eye Res 2021; 213:108807. [PMID: 34695438 DOI: 10.1016/j.exer.2021.108807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 01/28/2023]
Abstract
The retinal circadian system consists of a network of clocks located virtually in every retinal cell-type. Although it is established that the circadian clock regulates many rhythmic processes in the retina, the links between retinal cell-specific clocks and visual function remain to be elucidated. Bmal1 is a principal, non-redundant component of the circadian clock in mammals and is required to keep 24 h rhythms in the retinal transcriptome and in visual processing under photopic light condition. In the current study, we investigated the retinal function in mice with a rod-specific knockout of Bmal1. For this purpose, we measured whole retina PER2::Luciferase bioluminescence and the dark-adapted electroretinogram (ERG). We observed circadian day-night differences in ERG a- and b-waves in control mice carrying one allele of Bmal1 in rods, with higher amplitudes during the subjective night. These differences were abolished in rod-specific Bmal1 knockout mice, whose ERG light-responses remained constitutively low (day-like). Overall, PER2::Luciferase rhythmicity in whole retinas was not defective in these mice but was characterized by longer period and higher rhythmic power compared to retinas with wild type Bmal1 gene. Taken together, these data suggest that a circadian clock located in rods regulates visual processing in a cell autonomous manner.
Collapse
Affiliation(s)
- Shumet T Gegnaw
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67084, Strasbourg, France; Amsterdam UMC, University of Amsterdam, Departments of Human Genetics and Ophthalmology, AMC, Meibergdreef 9, 1105 AZ, Amsterdam, NL, the Netherlands.
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67084, Strasbourg, France.
| | - Jorge Mendoza
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67084, Strasbourg, France.
| | - Arthur A Bergen
- Amsterdam UMC, University of Amsterdam, Departments of Human Genetics and Ophthalmology, AMC, Meibergdreef 9, 1105 AZ, Amsterdam, NL, the Netherlands; The Netherlands Institute for Neuroscience (NIN-KNAW), Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, NL, the Netherlands.
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67084, Strasbourg, France.
| |
Collapse
|
15
|
Neumann A, Breher K, Wahl S. Effects of screen-based retinal light stimulation measured with a novel contrast sensitivity test. PLoS One 2021; 16:e0254877. [PMID: 34324537 PMCID: PMC8320929 DOI: 10.1371/journal.pone.0254877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/05/2021] [Indexed: 02/02/2023] Open
Abstract
Myopia is increasing worldwide hence it exists a pressing demand to find effective myopia control strategies. Previous studies have shown that light, spectral composition, spatial frequencies, and contrasts play a critical role in refractive development. The effects of light on multiple retinal processes include growth regulation, but also visual performance and perception. Changes in subjective visual performance can be examined by contrast sensitivity (CS). This study was conducted to investigate whether retinal light stimulation of different wavelength ranges is able to elicit changes in CS and, therefore, may be used for myopia control purposes. In total, 30 right eyes were stimulated with the light of different wavelength ranges, including dominant wavelengths of ∼480 nm, ∼530 nm, ∼630 nm and polychromatic light via a commercial liquid crystal display (LCD) screen. Stimulation was performed screen full-field and on the optic nerve head only. CS was measured before any stimulation and after each stimulation condition using a novel and time-efficient CS test. Post-stimulation CS changes were analyzed by ANOVA regarding the influencing factors spatial frequency, stimulation wavelength and stimulation location. A priorly conducted verification study on a subset of five participants compared the newly developed CS test to a validated CS test. The novel CS test exhibited good reliability of 0.94 logCS and repeatability of 0.13 logCS with a duration of 92 sec ± 17 sec. No clinically critical change between pre- and post-stimulation CS was detected (all p>0.05). However, the results showed that post-stimulation CS differed significantly at 18 cpd after stimulation with polychromatic light from short-wavelength light (p<0.0001). Location of illumination (screen full-field vs. optic nerve head) or any interactions with other factors did not reveal significant influences (all p>0.05). To summarize, a novel CS test measures the relationship between retinal light stimulation and CS. However, using retinal illumination via LCD screens to increase CS is inconclusive.
Collapse
Affiliation(s)
- Antonia Neumann
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katharina Breher
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Carl Zeiss Vision International GmbH, Aalen, Germany
| | - Siegfried Wahl
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Carl Zeiss Vision International GmbH, Aalen, Germany
| |
Collapse
|
16
|
Gubin D, Neroev V, Malishevskaya T, Cornelissen G, Astakhov SY, Kolomeichuk S, Yuzhakova N, Kabitskaya Y, Weinert D. Melatonin mitigates disrupted circadian rhythms, lowers intraocular pressure, and improves retinal ganglion cells function in glaucoma. J Pineal Res 2021; 70:e12730. [PMID: 33730443 DOI: 10.1111/jpi.12730] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023]
Abstract
Glaucoma is a progressive optic neuropathy associated with damage to retinal ganglion cells (RGCs) and disrupted circadian rhythms. Melatonin is a promising substance to ameliorate glaucoma-associated compromised circadian rhythms, sleep, mood, and retinal cells function. However, studies estimating melatonin effects in glaucoma are currently lacking. Therefore, In this study, we investigated the effect of long-term (daily at 10:30 pm for 90 days) oral melatonin administration on systemic (Tb) and local to the organ of vision (IOP) circadian rhythms, pattern electroretinogram (PERG), sleep, and mood, depending on glaucoma stage in patients diagnosed with stable or advanced primary open-angle glaucoma. In a laboratory study in 15 of them, 24-hour records of salivary melatonin were obtained and MTNR1B receptor gene polymorphism was assessed. Melatonin increased the stability of the Tb circadian rhythm by improving its phase alignment and alignment with IOP. Melatonin time-dependently decreased IOP and IOP standard deviation (SD). IOP 24-hour mean and IOP SD decreases were more pronounced in individuals with the higher initial 24-hour IOP mean. Melatonin improved RGCs function in advanced glaucoma; N95 amplitude increase correlated positively with RGCs loss. The beneficial effects of melatonin on sleep and mood were greater in advanced glaucoma. Finally, delayed salivary melatonin and Tb phases were observed in MTNR1B G-allele carriers with advanced glaucoma. Combined, these results provide evidence for melatonin efficiency in restoring disrupted circadian rhythms in glaucoma with different effects of melatonin on systemic vs. local circadian rhythms, indicating that a personalized strategy of melatonin administration may further refine its treatment benefits.
Collapse
Affiliation(s)
- Denis Gubin
- Department of Biology, Medical University, Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| | - Vladimir Neroev
- Helmholtz Moscow Research Institute of Eye Diseases, Moscow, Russia
| | | | - Germaine Cornelissen
- Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Sergei Y Astakhov
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Sergey Kolomeichuk
- Laboratory of Genetics, Institute of Biology of the Karelian Science Center of the Russian Academy of Sciences, Petrozavodsk, Russia
| | | | - Yana Kabitskaya
- Center for Genomic Technologies, Northern Trans-Ural State Agricultural University, Tyumen, Russia
| | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, Halle-Wittenberg, Germany
| |
Collapse
|
17
|
Abstract
SIGNIFICANCE Investigation of the mechanism and the role of melanopsin in lens-induced myopia is necessary to find out potential targets in the prevention of myopia development. PURPOSE We aimed to study the effect and mechanism of retinal melanopsin on lens-induced myopia in guinea pigs, as well as the interactions between melanopsin and other myopic regulation neurotransmitters such as dopamine and melatonin, and to explore the possible role of melanopsin in the prevention of myopia development. METHODS Twenty-day-old tricolor guinea pigs were randomly divided into four groups: control group, defocus group, defocus + AA92593 group, and defocus + dimethyl sulfoxide (DMSO) group. The defocus eyes wore -6.00 D lens. In the defocus + AA92593 group, the vitreous cavities were injected with melanopsin antagonist AA92593. In the defocus + DMSO group, the vitreous cavities were injected with 5% DMSO as the administration control. The expression of retinal melanopsin protein was measured with immunofluorescence staining and Western blot. The content of dopamine and melatonin in the retina was determined by the high-performance liquid chromatography electrochemical method. RESULTS Compared with the defocus group, intravitreal injection of AA92593 resulted in increased axial length of the defocus eyes (defocus, 8.05 ± 0.09 mm; defocus + AA92593, 8.15 ± 0.11 mm; P = .008), lower refractive degree (defocus, -1.98 ± 0.82 D; defocus + AA92593, -2.59 ± 0.97 D; P = .05), decreased relative expression of retinal melanopsin protein (defocus, 0.67 ± 0.11; defocus + AA92593, 0.20 ± 0.06; P < .0001), and increased melatonin content in the defocus eyes (defocus, 0.38 ± 0.09 ng/mg; defocus + AA92593, 0.55 ± 0.13 ng/mg; P = .01), but it had no obvious effect on dopamine content (defocus, 0.64 ± 0.18 ng/mg; defocus + AA9259, 0.61 ± 0.17 ng/mg; P > .99). The melatonin content of retina in the defocus + AA92593 group was correlated with refractive error (Pearson correlation coefficient = -0.68, P = .006) and eye axis length (Pearson correlation coefficient = 0.74, P = .02). CONCLUSIONS Retinal melanopsin has inhibitory effect on lens-induced myopia development in guinea pigs, and such effect may be related to retinal melatonin.
Collapse
|
18
|
Sheng W, Weng S, Li F, Zhang Y, He Q, Sheng W, Fu Y, Yan H, Liu K. Immunohistological Localization of Mel1a Melatonin Receptor in Pigeon Retina. Nat Sci Sleep 2021; 13:113-121. [PMID: 33574722 PMCID: PMC7872906 DOI: 10.2147/nss.s290757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Melatonin (N-acetyl-5-methoxytryptamine), a significant indoleamine neuromodulator implicated in circadian rhythms and sleep patterns, regulates diverse rhythmic functions via activating its high-affinity G-protein-coupled receptors. However, the detailed cellular expression of the Mel1a receptor in the retina is still a research gap. METHODS The expression of the Mel1a receptor in pigeon retina was assessed using Western blot analysis and immunofluorescent staining. The cellular localization of the Mel1a receptor was studied using double immunofluorescent staining and laser-scanning confocal microscopy. RESULTS Our data suggested that the Mel1a receptor was extensively expressed in the outer segment of Rho4D2-labeled rod and L/M-opsin-labeled red/green cone and in the somata of the CB-labeled horizontal cell, TH-labeled dopaminergic amacrine cell, ChAT-labeled cholinergic amacrine cell, PV-labeled AII amacrine cell, Brn3a-labeled conventional ganglion cell, melanopsin-containing ganglion cell and CRALBP-labeled Müller glial cell. In addition, the Mel1a receptor was diffusely distributed throughout the full thickness of the inner plexiform layer. However, the outer segment of S-opsin-labeled blue cone, the somata of ChX-10-labeled bipolar cell and outer plexiform layer seemed to lack immunoreactivity of the Mel1a receptor. CONCLUSION The finding that multiple types of retinal cells express the Mel1a receptor provides a new neurobiological basis for the participation of melatonin in the regulation of retinal functions through activating the Mel1a receptor.
Collapse
Affiliation(s)
- Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Fei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Wenxiang Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Ying Fu
- Shandong Science and Technology Exchange Center, Jinan, People's Republic of China
| | - Haiyue Yan
- Shandong Institute of Scientific and Technical Information, Jinan, People's Republic of China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| |
Collapse
|
19
|
Bhatwadekar AD, Rameswara V. Circadian rhythms in diabetic retinopathy: an overview of pathogenesis and investigational drugs. Expert Opin Investig Drugs 2020; 29:1431-1442. [PMID: 33107770 DOI: 10.1080/13543784.2020.1842872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Circadian rhythm is a natural endogenous process occurring roughly every 24 hours. Circadian rhythm dysfunction is involved in diabetic retinopathy (DR) pathogenesis. Interestingly, there are investigational drugs that exhibit potential in the treatment of DR by targeting circadian rhythm dysfunction. AREAS COVERED We performed a literature search in June 2020 using PubMed's Medical Subject Heading (MeSH) terms 'circadian clock,' 'circadian rhythms,' and 'diabetic retinopathy.' This article offers an overview of the physiology of the biological clock and clock regulatory genes and presents an examination of the retinal clock. It discusses the pathogenic mechanisms of DR and emphasizes how circadian rhythm dysfunction at structural, physiological, metabolic and cellular levels, plays a critical role in the development of DR. The latter part of the paper sheds light on those investigational drugs (such as melatonin, tasimelteon and metformin) which exhibit potential in the treatment of DR by the targeting of circadian rhythm dysfunction. EXPERT OPINION An enhanced understanding of circadian rhythm and its role in DR could offer therapeutic potential by targeting of circadian rhythm dysfunction.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute , Indianapolis, IN, USA
| | - Varun Rameswara
- Indiana University School of Medicine. Indiana University , Indianapolis, IN, USA
| |
Collapse
|
20
|
Li Y, Cohen ED, Qian H. Rod and Cone Coupling Modulates Photopic ERG Responses in the Mouse Retina. Front Cell Neurosci 2020; 14:566712. [PMID: 33100974 PMCID: PMC7546330 DOI: 10.3389/fncel.2020.566712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Light adaptation changes both the sensitivity and maximum amplitude (Rmax) of the mouse photopic electroretinogram (ERG) b-wave. Using the ERG, we examined how modulation of gap junctional coupling between rod and cones alters the light-adapted ERG. To measure changes, a b-wave light adaptation enhancement factor (LAEF), was defined as the ratio of Rmax after 15 min light adaptation to Rmax recorded at the onset of an adapting light. For wild-type mice (WT), the LAEF averaged 2.64 ± 0.29, however, it was significantly reduced (1.06 ± 0.04) for connexin 36 knock out (Cx36KO) mice, which lack electrical coupling between photoreceptors. Wild type mice intraocularly injected with meclofenamic acid (MFA), a gap junction blocker, also showed a significantly reduced LAEF. Degeneration of rod photoreceptors significantly alters the effects of light adaptation on the photopic ERG response. Rd10 mice at P21, with large portions of their rod photoreceptors present in the retina, exhibited a similar b-wave enhancement as wildtype controls, with a LAEF of 2.55 ± 0.19. However, by P31 with most of their rod photoreceptors degenerated, rd10 mice had a much reduced b-wave enhancement during light-adaptation (LAEF of 1.54 ± 0.12). Flicker ERG responses showed a higher temporal amplitude in mesopic conditions for WT than those of Cx36KO mice, suggesting rod-cone coupling help high-frequency signals to pass from rods to cone pathways in the retina. In conclusion, our study provides a novel method to noninvasively measure the dynamics and modulation by the light adaptation for rod-cone gap junctional coupling in intact eyes.
Collapse
Affiliation(s)
- Yichao Li
- Visual Function Core, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD, United States
| | - Ethan D Cohen
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, United States
| | - Haohua Qian
- Visual Function Core, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Ali AA, Avakian GA, Von Gall C. The Role of Purinergic Receptors in the Circadian System. Int J Mol Sci 2020; 21:E3423. [PMID: 32408622 PMCID: PMC7279285 DOI: 10.3390/ijms21103423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022] Open
Abstract
The circadian system is an internal time-keeping system that synchronizes the behavior and physiology of an organism to the 24 h solar day. The master circadian clock, the suprachiasmatic nucleus (SCN), resides in the hypothalamus. It receives information about the environmental light/dark conditions through the eyes and orchestrates peripheral oscillators. Purinergic signaling is mediated by extracellular purines and pyrimidines that bind to purinergic receptors and regulate multiple body functions. In this review, we highlight the interaction between the circadian system and purinergic signaling to provide a better understanding of rhythmic body functions under physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | - Charlotte Von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany; (A.A.H.A.); (G.A.A.)
| |
Collapse
|
22
|
Chen M, Cecon E, Karamitri A, Gao W, Gerbier R, Ahmad R, Jockers R. Melatonin MT 1 and MT 2 receptor ERK signaling is differentially dependent on G i/o and G q/11 proteins. J Pineal Res 2020; 68:e12641. [PMID: 32080899 DOI: 10.1111/jpi.12641] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) transmit extracellular signals into cells by activating G protein- and β-arrestin-dependent pathways. Extracellular signal-regulated kinases (ERKs) play a central role in integrating these different linear inputs coming from a variety of GPCRs to regulate cellular functions. Here, we investigated human melatonin MT1 and MT2 receptors signaling through the ERK1/2 cascade by employing different biochemical techniques together with pharmacological inhibitors and siRNA molecules. We show that ERK1/2 activation by both receptors is exclusively G protein-dependent, without any participation of β-arrestin1/2 in HEK293 cells. ERK1/2 activation by MT1 is only mediated though Gi/o proteins, while MT2 is dependent on the cooperative activation of Gi/o and Gq/11 proteins. In the absence of Gq/11 proteins, however, MT2 -induced ERK1/2 activation switches to a β-arrestin1/2-dependent mode. The signaling cascade downstream of G proteins is the same for both receptors and involves activation of the PI3K/PKCζ/c-Raf/MEK/ERK cascade. The differential G protein dependency of MT1 - and MT2 -mediated ERK activation was confirmed at the level of EGR1 and FOS gene expression, two ERK1/2 target genes. Gi/o /Gq/11 cooperativity was also observed in Neuroscreen-1 cells expressing endogenous MT2 , whereas in the mouse retina, where MT2 is engaged into MT1 /MT2 heterodimers, ERK1/2 signaling is exclusively Gi/o -dependent. Collectively, our data reveal differential signaling modes of MT1 and MT2 in terms of ERK1/2 activation, with an unexpected Gi/o /Gq/11 cooperativity exclusively for MT2 . The plasticity of ERK activation by MT2 is highlighted by the switch to a β-arrestin1/2-dependent mode in the absence of Gq/11 proteins and by the switch to a Gi/o mode when engaged into MT1 /MT2 heterodimers, revealing a new mechanism underlying tissue-specific responses to melatonin.
Collapse
Affiliation(s)
- Min Chen
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Erika Cecon
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | | | - Wenwen Gao
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Romain Gerbier
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Raise Ahmad
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Ralf Jockers
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| |
Collapse
|
23
|
Fahrenfort I, Ribelayga CP. Sensory Processing: Visual Sensitivity Gets High at Night. Curr Biol 2020; 30:R18-R20. [DOI: 10.1016/j.cub.2019.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Ko GYP. Circadian regulation in the retina: From molecules to network. Eur J Neurosci 2020; 51:194-216. [PMID: 30270466 PMCID: PMC6441387 DOI: 10.1111/ejn.14185] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
The mammalian retina is the most unique tissue among those that display robust circadian/diurnal oscillations. The retina is not only a light sensing tissue that relays light information to the brain, it has its own circadian "system" independent from any influence from other circadian oscillators. While all retinal cells and retinal pigment epithelium (RPE) possess circadian oscillators, these oscillators integrate by means of neural synapses, electrical coupling (gap junctions), and released neurochemicals (such as dopamine, melatonin, adenosine, and ATP), so the whole retina functions as an integrated circadian system. Dysregulation of retinal clocks not only causes retinal or ocular diseases, it also impacts the circadian rhythm of the whole body, as the light information transmitted from the retina entrains the brain clock that governs the body circadian rhythms. In this review, how circadian oscillations in various retinal cells are integrated, and how retinal diseases affect daily rhythms.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
25
|
Sheng W, Jin M, Pan G, Weng S, Sik A, Han L, Liu K. Cellular localization of melatonin receptor Mel1b in pigeon retina. Neuropeptides 2019; 78:101974. [PMID: 31645269 DOI: 10.1016/j.npep.2019.101974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/10/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022]
Abstract
Melatonin, an important neuromodulator involved in circadian rhythms, modulates a series of physiological processes via activating its specific receptors, namely Mel1a (MT1), Mel1b (MT2) and Mel1c receptors. In this work, the localization of Mel1b receptor was studied in pigeon retina using double immunohistochemistry staining and confocal scanning microscopy. Our results showed that Mel1b receptor widely existed in the outer segment of photoreceptors and in the somata of dopaminergic amacrine cells, cholinergic amacrine cells, glycinergic AII amacrine cells, conventional ganglion cells and intrinsically photosensitive retinal ganglion cells, while horizontal cells, bipolar cells and Müller glial cells seemed to lack immunoreactivity of Mel1b receptor. That multiple types of retinal cells expressing Mel1b receptor suggests melatonin may directly modulate the activities of retina via activating Mel1b receptor.
Collapse
Affiliation(s)
- Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ge Pan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, University of Pecs, Pecs, Hungary; Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary; Medical School, University of Birmingham, Birmingham, UK
| | - Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
26
|
Verra DM, Sajdak BS, Merriman DK, Hicks D. Diurnal rodents as pertinent animal models of human retinal physiology and pathology. Prog Retin Eye Res 2019; 74:100776. [PMID: 31499165 DOI: 10.1016/j.preteyeres.2019.100776] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022]
Abstract
This presentation will survey the retinal architecture, advantages, and limitations of several lesser-known rodent species that provide a useful diurnal complement to rats and mice. These diurnal rodents also possess unusually cone-rich photoreceptor mosaics that facilitate the study of cone cells and pathways. Species to be presented include principally the Sudanian Unstriped Grass Rat and Nile Rat (Arvicanthis spp.), the Fat Sand Rat (Psammomys obesus), the degu (Octodon degus) and the 13-lined ground squirrel (Ictidomys tridecemlineatus). The retina and optic nerve in several of these species demonstrate unusual resilience in the face of neuronal injury, itself an interesting phenomenon with potential translational value.
Collapse
Affiliation(s)
- Daniela M Verra
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France
| | | | - Dana K Merriman
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - David Hicks
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France.
| |
Collapse
|
27
|
Berg DJ, Kartheiser K, Leyrer M, Saali A, Berson DM. Transcriptomic Signatures of Postnatal and Adult Intrinsically Photosensitive Ganglion Cells. eNeuro 2019; 6:ENEURO.0022-19.2019. [PMID: 31387875 PMCID: PMC6712207 DOI: 10.1523/eneuro.0022-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 11/21/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are rare mammalian photoreceptors essential for non-image-forming vision functions, such as circadian photoentrainment and the pupillary light reflex. They comprise multiple subtypes distinguishable by morphology, physiology, projections, and levels of expression of melanopsin (Opn4), their photopigment. The molecular programs that distinguish ipRGCs from other ganglion cells and ipRGC subtypes from one another remain elusive. Here, we present comprehensive gene expression profiles of early postnatal and adult mouse ipRGCs purified from two lines of reporter mice that mark different sets of ipRGC subtypes. We find dozens of novel genes highly enriched in ipRGCs. We reveal that Rasgrp1 and Tbx20 are selectively expressed in subsets of ipRGCs, though these molecularly defined groups imperfectly match established ipRGC subtypes. We demonstrate that the ipRGCs regulating circadian photoentrainment are diverse at the molecular level. Our findings reveal unexpected complexity in gene expression patterns across mammalian ipRGC subtypes.
Collapse
Affiliation(s)
- Daniel J Berg
- Molecular Biology, Cellular Biology, and Biochemistry Program, Brown University, Providence, Rhode Island 02912
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | | | - Megan Leyrer
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Alexandra Saali
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
28
|
Di R, Luo Q, Mathew D, Bhatwadekar AD. Diabetes Alters Diurnal Rhythm of Electroretinogram in db/db Mice. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:155-167. [PMID: 31249476 PMCID: PMC6585529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diabetic retinopathy (DR) is the most common complications of diabetes and a leading cause of blindness in the United States. The retinal neuronal changes precede the vascular dysfunction observed in DR. The electroretinogram (ERG) determines the electrical activity of retinal neural and non-neuronal cells. The retinal ERG amplitude is reduced gradually on the progression of DR to a more severe form. Circadian rhythms play an important role in the physiological function of the body. While ERG is known to exhibit a diurnal rhythm, it is not known whether a progressive increase in the duration of diabetes affects the physiological rhythm of retinal ERG. To study this, we determined the ERG rhythm of db/db mice, an animal model of type 2 diabetes at 2, 4, and 6 months of diabetes under a regular light-dark cycle and constant dark. Our studies demonstrate that the diurnal rhythm of ERG amplitude for retinal a-wave and b-wave was altered in diabetes. The implicit time was increased in db/db mice while the oscillatory potential was reduced. Moreover, there was a progressive decline in an intrinsic rhythm of ERG upon an increase in the duration of diabetes. In conclusion, our studies provide novel insights into the pathogenic mechanism of DR by showing an altered circadian rhythm of the ERG.
Collapse
Affiliation(s)
- Rong Di
- Department of Ophthalmology, Indiana University, Indianapolis, IN,Department of Ophthalmology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qianyi Luo
- Department of Ophthalmology, Indiana University, Indianapolis, IN
| | - Deepa Mathew
- Department of Ophthalmology, Indiana University, Indianapolis, IN
| | - Ashay D. Bhatwadekar
- Department of Ophthalmology, Indiana University, Indianapolis, IN,To whom all correspondence should be addressed: Ashay D. Bhatwadekar, Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, 1160 W Michigan Street, GK-305P, Indianapolis, IN-46202; E-mail:
| |
Collapse
|
29
|
DeVera C, Baba K, Tosini G. Retinal Circadian Clocks are Major Players in the Modulation of Retinal Functions and Photoreceptor Viability. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:233-240. [PMID: 31249484 PMCID: PMC6585523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Circadian rhythms control many biochemical and physiological functions within the body of an organism. These circadian rhythms are generated by a molecular clock that is located in almost every cell of the body. Accumulating data indicate that dysfunction of the circadian clock negatively affects the health status of the tissue in which the circadian clock has been disabled. The eye also contains a complex circadian system that regulates many important functions such as the processing of light information, the release of neurotransmitters, and phagocytic activity by the retinal pigment epithelium, to name just a few. Emerging experimental evidence indicates that dysfunction of the circadian clock within the retina has severe consequence for retinal function and photoreceptor viability. The aim of this review is to provide the reader with a summary of current knowledge about the eye circadian system and what effects emerge with a disruption of this system.
Collapse
Affiliation(s)
| | | | - Gianluca Tosini
- To whom all correspondence should be addressed: Gianluca Tosini, PhD, Mailing address: 720 Westview Dr. SW, Atlanta, GA, 30310-1495; Tel: 404-756-5214, Fax: 404-752-1041,
| |
Collapse
|
30
|
Melatonin MT1 receptor as a novel target in neuropsychopharmacology: MT1 ligands, pathophysiological and therapeutic implications, and perspectives. Pharmacol Res 2019; 144:343-356. [DOI: 10.1016/j.phrs.2019.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/06/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
|
31
|
Felder-Schmittbuhl MP, Buhr ED, Dkhissi-Benyahya O, Hicks D, Peirson SN, Ribelayga CP, Sandu C, Spessert R, Tosini G. Ocular Clocks: Adapting Mechanisms for Eye Functions and Health. Invest Ophthalmol Vis Sci 2019; 59:4856-4870. [PMID: 30347082 PMCID: PMC6181243 DOI: 10.1167/iovs.18-24957] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vision is a highly rhythmic function adapted to the extensive changes in light intensity occurring over the 24-hour day. This adaptation relies on rhythms in cellular and molecular processes, which are orchestrated by a network of circadian clocks located within the retina and in the eye, synchronized to the day/night cycle and which, together, fine-tune detection and processing of light information over the 24-hour period and ensure retinal homeostasis. Systematic or high throughput studies revealed a series of genes rhythmically expressed in the retina, pointing at specific functions or pathways under circadian control. Conversely, knockout studies demonstrated that the circadian clock regulates retinal processing of light information. In addition, recent data revealed that it also plays a role in development as well as in aging of the retina. Regarding synchronization by the light/dark cycle, the retina displays the unique property of bringing together light sensitivity, clock machinery, and a wide range of rhythmic outputs. Melatonin and dopamine play a particular role in this system, being both outputs and inputs for clocks. The retinal cellular complexity suggests that mechanisms of regulation by light are diverse and intricate. In the context of the whole eye, the retina looks like a major determinant of phase resetting for other tissues such as the retinal pigmented epithelium or cornea. Understanding the pathways linking the cell-specific molecular machineries to their cognate outputs will be one of the major challenges for the future.
Collapse
Affiliation(s)
- Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, Washington, United States
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
32
|
Vancura P, Csicsely E, Leiser A, Iuvone PM, Spessert R. Rhythmic Regulation of Photoreceptor and RPE Genes Important for Vision and Genetically Associated With Severe Retinal Diseases. Invest Ophthalmol Vis Sci 2019; 59:3789-3799. [PMID: 30073352 PMCID: PMC6071477 DOI: 10.1167/iovs.18-24558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of the present study was to identify candidate genes for mediating daily adjustment of vision. Methods Genes important for vision and genetically associated with severe retinal diseases were tested for 24-hour rhythms in transcript levels in neuronal retina, microdissected photoreceptors, photoreceptor-related pinealocytes, and retinal pigment epithelium-choroid (RPE-choroid) complex by using quantitative PCR. Results Photoreceptors of wildtype mice display circadian clock-dependent regulation of visual arrestins (Arr1, Arr4) and the visual cycle gene Rdh12, whereas cells of the RPE-choroid exhibit light-dependent regulation of the visual cycle key genes Lrat, Rpe65, and Rdh5. Clock-driven rhythmicity of Arr1, Arr4, and Rdh12 was observed also in rat pinealocytes, to persist in a mouse model of diabetic retinopathy (db/db) and, in the case of Arr1, to be abolished in retinae of mice deficient for dopamine D4 receptors. Therefore, the expression rhythms appear to be evolutionary conserved, to be unaffected in diabetic retinopathy, and, for Arr1, to require dopamine signaling via dopamine D4 receptors. Conclusions The data of the present study suggest that daily adjustment of retinal function combines clock-dependent regulation of genes responsible for phototransduction termination (Arr1, Arr4) and detoxification (Rdh12) in photoreceptors with light-dependent regulation of genes responsible for retinoid recycling (Lrat, Rpe65, and Rdh5) in RPE. Furthermore, they indicate circadian and light-dependent regulation of genes genetically associated with severe retinal diseases.
Collapse
Affiliation(s)
- Patrick Vancura
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Erika Csicsely
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Annalisa Leiser
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
33
|
Jilg A, Bechstein P, Saade A, Dick M, Li TX, Tosini G, Rami A, Zemmar A, Stehle JH. Melatonin modulates daytime-dependent synaptic plasticity and learning efficiency. J Pineal Res 2019; 66:e12553. [PMID: 30618149 PMCID: PMC6405292 DOI: 10.1111/jpi.12553] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/27/2018] [Accepted: 12/25/2018] [Indexed: 12/15/2022]
Abstract
Mechanisms of hippocampus-related memory formation are time-of-day-dependent. While the circadian system and clock genes are related to timing of hippocampal mnemonic processes (acquisition, consolidation, and retrieval of long-term memory [LTM]) and long-term potentiation (LTP), little is known about temporal gating mechanisms. Here, the role of the neurohormone melatonin as a circadian time cue for hippocampal signaling and memory formation was investigated in C3H/He wildtype (WT) and melatonin receptor-knockout ( MT 1 / 2 - / - ) mice. Immunohistochemical and immunoblot analyses revealed the presence of melatonin receptors on mouse hippocampal neurons. Temporal patterns of time-of-day-dependent clock gene protein levels were profoundly altered in MT 1 / 2 - / - mice compared to WT animals. On the behavioral level, WT mice displayed better spatial learning efficiency during daytime as compared to nighttime. In contrast, high error scores were observed in MT 1 / 2 - / - mice during both, daytime and nighttime acquisition. Day-night difference in LTP, as observed in WT mice, was absent in MT 1 / 2 - / - mice and in WT animals, in which the sympathetic innervation of the pineal gland was surgically removed to erase rhythmic melatonin synthesis. In addition, treatment of melatonin-deficient C57BL/6 mice with melatonin at nighttime significantly improved their working memory performance at daytime. These results illustrate that melatonin shapes time-of-day-dependent learning efficiency in parallel to consolidating expression patterns of clock genes in the mouse hippocampus. Our data suggest that melatonin imprints a time cue on mouse hippocampal signaling and gene expression to foster better learning during daytime.
Collapse
Affiliation(s)
- Antje Jilg
- Juha Hernesniemi International Neurosurgery Center, Henan Provincial People’s Hospital, School of Medicine, Henan University, Zhengzhou 450003, China
- Institute of Cellular and Molecular Anatomy, Goethe-University Frankfurt, Germany
| | - Philipp Bechstein
- Institute of Cellular and Molecular Anatomy, Goethe-University Frankfurt, Germany
| | - Anastasia Saade
- Institute of Cellular and Molecular Anatomy, Goethe-University Frankfurt, Germany
| | - Moritz Dick
- Institute of Cellular and Molecular Anatomy, Goethe-University Frankfurt, Germany
| | - Tian Xiao Li
- Juha Hernesniemi International Neurosurgery Center, Henan Provincial People’s Hospital, School of Medicine, Henan University, Zhengzhou 450003, China
| | - Gianluca Tosini
- Morehouse School of Medicine, Pharmacology & Toxicology, 720 Westview Drive SW, Atlanta, GA 30310-1495, USA
| | - Abdelhaq Rami
- Institute of Cellular and Molecular Anatomy, Goethe-University Frankfurt, Germany
| | - Ajmal Zemmar
- Juha Hernesniemi International Neurosurgery Center, Henan Provincial People’s Hospital, School of Medicine, Henan University, Zhengzhou 450003, China
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Biology and Department of Health Sciences and Technology, ETH Zurich, CH-8057 Zurich, Switzerland
| | - Jörg H. Stehle
- Juha Hernesniemi International Neurosurgery Center, Henan Provincial People’s Hospital, School of Medicine, Henan University, Zhengzhou 450003, China
- Institute of Cellular and Molecular Anatomy, Goethe-University Frankfurt, Germany
| |
Collapse
|
34
|
Cecon E, Ivanova A, Luka M, Gbahou F, Friederich A, Guillaume JL, Keller P, Knoch K, Ahmad R, Delagrange P, Solimena M, Jockers R. Detection of recombinant and endogenous mouse melatonin receptors by monoclonal antibodies targeting the C-terminal domain. J Pineal Res 2019; 66:e12540. [PMID: 30475390 DOI: 10.1111/jpi.12540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/04/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Abstract
Melatonin receptors play important roles in the regulation of circadian and seasonal rhythms, sleep, retinal functions, the immune system, depression, and type 2 diabetes development. Melatonin receptors are approved drug targets for insomnia, non-24-hour sleep-wake disorders, and major depressive disorders. In mammals, two melatonin receptors (MTRs) exist, MT1 and MT2 , belonging to the G protein-coupled receptor (GPCR) superfamily. Similar to most other GPCRs, reliable antibodies recognizing melatonin receptors proved to be difficult to obtain. Here, we describe the development of the first monoclonal antibodies (mABs) for mouse MT1 and MT2 . Purified antibodies were extensively characterized for specific reactivity with mouse, rat, and human MT1 and MT2 by Western blot, immunoprecipitation, immunofluorescence, and proximity ligation assay. Several mABs were specific for either mouse MT1 or MT2 . None of the mABs cross-reacted with rat MTRs, and some were able to react with human MTRs. The specificity of the selected mABs was validated by immunofluorescence microscopy in three established locations (retina, suprachiasmatic nuclei, pituitary gland) for MTR expression in mice using MTR-KO mice as control. MT2 expression was not detected in mouse insulinoma MIN6 cells or pancreatic beta-cells. Collectively, we report the first monoclonal antibodies recognizing recombinant and native mouse melatonin receptors that will be valuable tools for future studies.
Collapse
Affiliation(s)
- Erika Cecon
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| | - Anna Ivanova
- Molecular Diabetology, Faculty of Medicine, University Hospital, TU Dresden, Dresden, Germany
- Faculty of Medicine, Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Marine Luka
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| | - Florence Gbahou
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| | - Anne Friederich
- Molecular Diabetology, Faculty of Medicine, University Hospital, TU Dresden, Dresden, Germany
- Faculty of Medicine, Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Jean-Luc Guillaume
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| | - Patrick Keller
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Klaus Knoch
- Molecular Diabetology, Faculty of Medicine, University Hospital, TU Dresden, Dresden, Germany
- Faculty of Medicine, Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Raise Ahmad
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| | - Philippe Delagrange
- Pôle d'Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Servier, Croissy, France
| | - Michele Solimena
- Molecular Diabetology, Faculty of Medicine, University Hospital, TU Dresden, Dresden, Germany
- Faculty of Medicine, Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Ralf Jockers
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| |
Collapse
|
35
|
Piano I, Baba K, Claudia Gargini, Tosini G. Heteromeric MT 1/MT 2 melatonin receptors modulate the scotopic electroretinogram via PKCζ in mice. Exp Eye Res 2018; 177:50-54. [PMID: 30059666 PMCID: PMC6261696 DOI: 10.1016/j.exer.2018.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 01/12/2023]
Abstract
Melatonin plays an important role in the regulation of retinal functions, and previous studies have also reported that the action of melatonin on photoreceptors is mediated by melatonin receptor heterodimers. Furthermore, it has been reported that the melatonin-induced increase in the amplitude of the a- and b-wave is significantly blunted by inhibition of PKC. Previous work has also shown that PKCζ is present in the photoreceptors, thus suggesting that PCKζ may be implicated in the modulation of melatonin signaling in photoreceptors. To investigate the role PKCζ plays in the modulation of the melatonin effect on the scotopic ERG, mice were injected with melatonin and with specific inhibitors of different PKC isoforms. PKCζ knockout mice were also used in this study. PKCζ activation in photoreceptors following melatonin injection was also investigated with immunocytochemistry. Inhibition of PKCζ by PKCζ-pseudosubstrate inhibitor (20 μM) significantly reduced the melatonin-induced increase in the amplitude of the a- and b-wave. To further investigate the role of different PKCs in the modulation of the ERGs, we tested whether intra-vitreal injection of Enzastaurin (a potent inhibitor of PCKα, PKCβ, PKCγ, and PKCε) has any effect on the melatonin-induced increase in the a- and b-wave of the scotopic ERGs. Enzastaurin (100 nM) did not prevent the melatonin-induced increase in the amplitude of the a-wave, thus suggesting that PCKα, PKCβ, PKCγ, and PKCε are not involved in this phenomenon. Finally, our data indicated that, in mice lacking PKCζ, melatonin injection failed to increase the amplitude of the a- and b-waves of the scotopic ERGs. An increase in PKCζ phosphorylation in the photoreceptors was also observed by immunocytochemistry. Our data indicate that melatonin signaling does indeed use the PKCζ pathway to increase the amplitude of the a- and b-wave of the scotopic ERG.
Collapse
Affiliation(s)
- Ilaria Piano
- Neuroscience Institute, Department of Pharmacology and Toxicology Morehouse School of Medicine, Atlanta, GA, USA; Dipartimento di Farmacia, Universita di Pisa, Pisa, Italy
| | - Kenkichi Baba
- Neuroscience Institute, Department of Pharmacology and Toxicology Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Gianluca Tosini
- Neuroscience Institute, Department of Pharmacology and Toxicology Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
36
|
Gnaz couples the circadian and dopaminergic system to G protein-mediated signaling in mouse photoreceptors. PLoS One 2017; 12:e0187411. [PMID: 29088301 PMCID: PMC5663513 DOI: 10.1371/journal.pone.0187411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023] Open
Abstract
The mammalian retina harbors a circadian clockwork that regulates vision and promotes healthiness of retinal neurons, mainly through directing the rhythmic release of the neurohormones dopamine—acting on dopamine D4 receptors—and melatonin—acting on MT1 and MT2 receptors. The gene Gnaz—a unique Gi/o subfamily member—was seen in the present study to be expressed in photoreceptors where its protein product Gαz shows a daily rhythm in its subcellular localization. Apart from subcellular localization, Gnaz displays a daily rhythm in expression—with peak values at night—in preparations of the whole retina, microdissected photoreceptors and photoreceptor-related pinealocytes. In retina, Gnaz rhythmicity was observed to persist under constant darkness and to be abolished in retina deficient for Clock or dopamine D4 receptors. Furthermore, circadian regulation of Gnaz was disturbed in the db/db mouse, a model of diabetic retinopathy. The data of the present study suggest that Gnaz links the circadian clockwork—via dopamine acting on D4 receptors—to G protein-mediated signaling in intact but not diabetic retina.
Collapse
|
37
|
Laurent V, Sengupta A, Sánchez-Bretaño A, Hicks D, Tosini G. Melatonin signaling affects the timing in the daily rhythm of phagocytic activity by the retinal pigment epithelium. Exp Eye Res 2017; 165:90-95. [PMID: 28941766 DOI: 10.1016/j.exer.2017.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 11/30/2022]
Abstract
Earlier studies in Xenopus have indicated a role for melatonin in the regulation of retinal disk shedding, but the role of melatonin in the regulation of daily rhythm in mammalian disk shedding and phagocytosis is still unclear. We recently produced a series of transgenic mice lacking melatonin receptor type 1 (MT1) or type 2 (MT2) in a melatonin-proficient background and have shown that removal of MT1 and MT2 receptors induces significant effects on daily and circadian regulation of the electroretinogram as well as on the viability of photoreceptor cells during aging. In this study we investigated the daily rhythm of phagocytic activity by the retinal pigment epithelium in MT1 and MT2 knock-out mice. Our data indicate that in MT1 and MT2 knock-out mice the peak of phagocytosis is advanced by 3 h with respect to wild-type mice and occurred in dark rather than after the onset of light, albeit the mean phagocytic activity over the 24-h period did not change among the three genotypes. Nevertheless, this small change in the profile of daily phagocytic rhythms may produce a significant effect on retinal health since MT1 and MT2 knock-out mice showed a significant increase in lipofuscin accumulation in the retinal pigment epithelium.
Collapse
Affiliation(s)
- Virgine Laurent
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Anamika Sengupta
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, USA
| | - Aída Sánchez-Bretaño
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, USA
| | - David Hicks
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Gianluca Tosini
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, USA.
| |
Collapse
|
38
|
Dopamine 2 Receptor Activation Entrains Circadian Clocks in Mouse Retinal Pigment Epithelium. Sci Rep 2017; 7:5103. [PMID: 28698578 PMCID: PMC5505969 DOI: 10.1038/s41598-017-05394-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/24/2017] [Indexed: 01/11/2023] Open
Abstract
Many of the physiological, cellular, and molecular rhythms that are present within the eye are under the control of circadian clocks. Experimental evidence suggests that the retinal circadian clock, or its output signals (e.g., dopamine and melatonin), may contribute to eye disease and pathology. We recently developed a retinal pigment ephithelium (RPE)-choroid preparation to monitor the circadian clock using PERIOD2 (PER2)::LUC knock-in mouse. In this study we report that dopamine, but not melatonin, is responsible for entrainment of the PER2::LUC bioluminescence rhythm in mouse RPE-choroid. Dopamine induced phase-advances of the PER2::LUC bioluminescence rhythm during the subjective day and phase-delays in the late subjective night. We found that dopamine acts exclusively through Dopamine 2 Receptors to entrain the circadian rhythm in PER2::LUC bioluminescence. Finallly, we found that DA-induced expression of core circadian clock genes Period1 and Period2 accompanied both phase advances and phase delays of the RPE-choroid clock, thus suggesting that - as in other tissues - the rapid induction of these circadian clock genes drives the resetting process. Since the RPE cells persist for the entire lifespan of an organism, we believe that RPE-choroid preparation may represent a new and unique tool to study the effects of circadian disruption during aging.
Collapse
|
39
|
Mendoza-Vargas L, Báez-Saldaña A, Alvarado R, Fuentes-Pardo B, Flores-Soto E, Solís-Chagoyán H. Circadian rhythm in melatonin release as a mechanism to reinforce the temporal organization of the circadian system in crayfish. INVERTEBRATE NEUROSCIENCE 2017; 17:6. [PMID: 28540583 DOI: 10.1007/s10158-017-0199-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/12/2017] [Indexed: 01/25/2023]
Abstract
Melatonin (MEL) is a conserved molecule with respect to its synthesis pathway and functions. In crayfish, MEL content in eyestalks (Ey) increases at night under the photoperiod, and this indoleamine synchronizes the circadian rhythm of electroretinogram amplitude, which is expressed by retinas and controlled by the cerebroid ganglion (CG). The aim of this study was to determine whether MEL content in eyestalks and CG or circulating MEL in hemolymph (He) follows a circadian rhythm under a free-running condition; in addition, it was tested whether MEL might directly influence the spontaneous electrical activity of the CG. Crayfish were maintained under constant darkness and temperature, a condition suitable for studying the intrinsic properties of circadian systems. MEL was quantified in samples obtained from He, Ey, and CG by means of an enzyme-linked immunosorbent assay, and the effect of exogenous MEL on CG spontaneous activity was evaluated by electrophysiological recording. Variation of MEL content in He, Ey, and CG followed a circadian rhythm that peaked at the same circadian time (CT). In addition, a single dose of MEL injected into the crayfish at different CTs reduced the level of spontaneous electrical activity in the CG. Results suggest that the circadian increase in MEL content directly affects the CG, reducing its spontaneous electrical activity, and that MEL might act as a periodical signal to reinforce the organization of the circadian system in crayfish.
Collapse
Affiliation(s)
- Leonor Mendoza-Vargas
- Departamento El Hombre Y Su Ambiente, Universidad Autónoma Metropolitana Unidad Xochimilco, CP 04960, Mexico, Mexico
| | - Armida Báez-Saldaña
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Nueva Sede, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Ramón Alvarado
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Beatriz Fuentes-Pardo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, CP 14370, Mexico, D.F, Mexico.
| |
Collapse
|
40
|
Hou B, Fu Y, Weng C, Liu W, Zhao C, Yin ZQ. Homeostatic Plasticity Mediated by Rod-Cone Gap Junction Coupling in Retinal Degenerative Dystrophic RCS Rats. Front Cell Neurosci 2017; 11:98. [PMID: 28473754 PMCID: PMC5397418 DOI: 10.3389/fncel.2017.00098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/22/2017] [Indexed: 11/14/2022] Open
Abstract
Rod-cone gap junctions open at night to allow rod signals to pass to cones and activate the cone-bipolar pathway. This enhances the ability to detect large, dim objects at night. This electrical synaptic switch is governed by the circadian clock and represents a novel form of homeostatic plasticity that regulates retinal excitability according to network activity. We used tracer labeling and ERG recording in the retinae of control and retinal degenerative dystrophic RCS rats. We found that in the control animals, rod-cone gap junction coupling was regulated by the circadian clock via the modulation of the phosphorylation of the melatonin synthetic enzyme arylalkylamine N-acetyltransferase (AANAT). However, in dystrophic RCS rats, AANAT was constitutively phosphorylated, causing rod-cone gap junctions to remain open. A further b/a-wave ratio analysis revealed that dystrophic RCS rats had stronger synaptic strength between photoreceptors and bipolar cells, possibly because rod-cone gap junctions remained open. This was despite the fact that a decrease was observed in the amplitude of both a- and b-waves as a result of the progressive loss of rods during early degenerative stages. These results suggest that electric synaptic strength is increased during the day to allow cone signals to pass to the remaining rods and to be propagated to rod bipolar cells, thereby partially compensating for the weak visual input caused by the loss of rods.
Collapse
Affiliation(s)
- Baoke Hou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Department of Ophthalmology, Chinese PLA General HospitalBeijing, China
| | - Yan Fu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of ChongqingChongqing, China
| | - Chuanhuang Weng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of ChongqingChongqing, China
| | - Weiping Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of ChongqingChongqing, China
| | - Congjian Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of ChongqingChongqing, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of ChongqingChongqing, China
| |
Collapse
|
41
|
Melatonin in Retinal Physiology and Pathology: The Case of Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6819736. [PMID: 27688828 PMCID: PMC5027321 DOI: 10.1155/2016/6819736] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/09/2016] [Indexed: 12/16/2022]
Abstract
Melatonin, an indoleamine, is synthesized mainly in the pineal gland in a circadian fashion, but it is produced in many other organs, including the retina, which seems to be especially important as the eye is a primary recipient of circadian signals. Melatonin displays strong antioxidative properties, which predispose it to play a protective role in many human pathologies associated with oxidative stress, including premature aging and degenerative disease. Therefore, melatonin may play a role in age-related macular degeneration (AMD), a disease affecting photoreceptors, and retinal pigment epithelium (RPE) with an established role of oxidative stress in its pathogenesis. Several studies have shown that melatonin could exert the protective effect against damage to RPE cells evoked by reactive oxygen species (ROS), but it has also been reported to increase ROS-induced damage to photoreceptors and RPE. Melatonin behaves like synthetic mitochondria-targeted antioxidants, which concentrate in mitochondria at relatively high levels; thus, melatonin may prevent mitochondrial damage in AMD. The retina contains telomerase, an enzyme implicated in maintaining the length of telomeres, and oxidative stress inhibits telomere synthesis, while melatonin overcomes this effect. These features support considering melatonin as a preventive and therapeutic agent in the treatment of AMD.
Collapse
|
42
|
Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G, Cecon E, Zlotos DP. Update on melatonin receptors: IUPHAR Review 20. Br J Pharmacol 2016; 173:2702-25. [PMID: 27314810 DOI: 10.1111/bph.13536] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023] Open
Abstract
Melatonin receptors are seven transmembrane-spanning proteins belonging to the GPCR superfamily. In mammals, two melatonin receptor subtypes exist - MT1 and MT2 - encoded by the MTNR1A and MTNR1B genes respectively. The current review provides an update on melatonin receptors by the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology. We will highlight recent developments of melatonin receptor ligands, including radioligands, and give an update on the latest phenotyping results of melatonin receptor knockout mice. The current status and perspectives of the structure of melatonin receptor will be summarized. The physiological importance of melatonin receptor dimers and biologically important and type 2 diabetes-associated genetic variants of melatonin receptors will be discussed. The role of melatonin receptors in physiology and disease will be further exemplified by their functions in the immune system and the CNS. Finally, antioxidant and free radical scavenger properties of melatonin and its relation to melatonin receptors will be critically addressed.
Collapse
Affiliation(s)
- Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Paris, France
| | | | - Margarita L Dubocovich
- Department Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Science, University at Buffalo (SUNY), Buffalo, USA
| | - Regina P Markus
- Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, The German University in Cairo, New Cairo City, Cairo, Egypt
| |
Collapse
|
43
|
Aydin E, Sahin S. Increased melatonin levels in aqueous humor of patients with proliferative retinopathy in type 2 diabetes mellitus. Int J Ophthalmol 2016; 9:721-4. [PMID: 27275429 DOI: 10.18240/ijo.2016.05.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/13/2015] [Indexed: 11/23/2022] Open
Abstract
AIM To report the association between melatonin levels in aqueous humor and serum, and diabetic retinopathy (DR) grade in type 2 diabetic patients. METHODS Aqueous humor and plasma samples from 26 patients with DR (in nonproliferative and proliferative stages) and 14 control subjects were collected during cataract surgery after 6 p.m. Melatonin concentrations were determined using an enzyme-linked immunosorbent assay (ELISA). RESULTS Melatonin levels were significantly higher in the aqueous humor of patients with proliferative diabetic retinopathy (PDR) [18.57±2.67 pg/mL (range 15.20-23.06) vs 13.63±2.71 pg/mL (range 10.20-20.20), P=0.0001], but not in those with nonproliferative retinopathy (NPDR) [13.79±2.56 pg/mL (range 9.80-20.10) vs 13.63±2.71 pg/mL (range 10.20-20.20), P=0.961] compared to controls. There was decrement in the plasma melatonin level of patients with PDR, but no significant differences between the plasma melatonin levels of the study groups [5.37±1.74 pg/mL (range 2.85-8.65) vs 6.11±1.90 pg/mL (range 3.13-9.41), P=0.293], or between control and DR groups [NPDR 6.11±1.90 pg/mL (range 3.13-9.41) vs control 6.15±1.91 pg/mL (range 2.18-9.86); PDR (5.37±1.74 pg/mL (range 2.85-8.65) vs control 6.15±1.91 pg/mL (range 2.18-9.86), P=0.808, P=0.264]. CONCLUSION Elevated melatonin levels in aqueous humor in PDR may indicate the level to be associated with DR severity.
Collapse
Affiliation(s)
- Erdinc Aydin
- Izmir Katip Celebi University, Faculty of Medicine, Ophthalmology, Izmir 35620, Turkey
| | - Semsettin Sahin
- Gaziosmanpasa University Faculty of Medicine, Biochemistry, Tokat 60250, Turkey
| |
Collapse
|
44
|
Gianesini C, Hiragaki S, Laurent V, Hicks D, Tosini G. Cone Viability Is Affected by Disruption of Melatonin Receptors Signaling. Invest Ophthalmol Vis Sci 2016; 57:94-104. [PMID: 26780313 PMCID: PMC4727519 DOI: 10.1167/iovs.15-18235] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Previous studies have demonstrated that melatonin has an important role in the modulation of photoreceptor viability during aging and may be involved in the pathogenesis of age-related macular degeneration.This hormone exerts its influence by binding to G-protein coupled receptors named melatonin receptor 1 (MT1) and 2 (MT2). Melatonin receptors 1 and 2 activate a wide variety of signaling pathways. Methods Melatonin-proficient mice (C3H/f+/+) and melatonin-proficient mice lacking MT1 or MT2 receptors (MT1−/− and MT2−/−) were used in this study. Mice were killed at the ages of 3 and 18 months, and photoreceptor viability was determined by counting nuclei number in the outer nuclear layer (ONL). Cones were identified by immunohistochemistry using peanut agglutinin (PNA) and green/red and blue opsin antibodies. Protein kinase B (AKT) and forkhead box O (FOXO1) were assessed by Western blotting and immunohistochemistry. Results The number of nuclei in the ONL was significantly reduced in C3Hf+/+, MT1−/−, and MT2−/− mice at 18 months of age with respect to 3-month-old animals. In 18-month-old MT1−/− and MT2−/− mice, but not in C3H/f+/+, the number of cones was significantly reduced with respect to young MT1−/− and MT2−/− mice or age-matched C3H/f+/+. In C3H/f+/+, activation of the AKT-FOXO1 pathway in the photoreceptors showed a significant difference between night and day. Conclusions Our data indicate that disruption of MT1/MT2 heteromer signaling induces a reduction in the number of photoreceptors during aging and also suggest that the AKT-FOXO1 survival pathway may be involved in the mechanism by which melatonin protects photoreceptors.
Collapse
Affiliation(s)
- Coralie Gianesini
- Department of Pharmacology and Toxicology and Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia, United States 2Centre National de la Recherche Scientifique Unités Propres de Recherche 3212, Institute for Cellular and Integrative Neuro
| | - Susumu Hiragaki
- Department of Pharmacology and Toxicology and Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Virginie Laurent
- Centre National de la Recherche Scientifique Unités Propres de Recherche 3212, Institute for Cellular and Integrative Neurosciences, Strasbourg, France
| | - David Hicks
- Centre National de la Recherche Scientifique Unités Propres de Recherche 3212, Institute for Cellular and Integrative Neurosciences, Strasbourg, France
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology and Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
45
|
Abstract
Ocular clocks, first identified in the retina, are also found in the retinal pigment epithelium (RPE), cornea, and ciliary body. The retina is a complex tissue of many cell types and considerable effort has gone into determining which cell types exhibit clock properties. Current data suggest that photoreceptors as well as inner retinal neurons exhibit clock properties with photoreceptors dominating in nonmammalian vertebrates and inner retinal neurons dominating in mice. However, these differences may in part reflect the choice of circadian output, and it is likely that clock properties are widely dispersed among many retinal cell types. The phase of the retinal clock can be set directly by light. In nonmammalian vertebrates, direct light sensitivity is commonplace among body clocks, but in mice only the retina and cornea retain direct light-dependent phase regulation. This distinguishes the retina and possibly other ocular clocks from peripheral oscillators whose phase depends on the pace-making properties of the hypothalamic central brain clock, the suprachiasmatic nuclei (SCN). However, in mice, retinal circadian oscillations dampen quickly in isolation due to weak coupling of its individual cell-autonomous oscillators, and there is no evidence that retinal clocks are directly controlled through input from other oscillators. Retinal circadian regulation in both mammals and nonmammalian vertebrates uses melatonin and dopamine as dark- and light-adaptive neuromodulators, respectively, and light can regulate circadian phase indirectly through dopamine signaling. The melatonin/dopamine system appears to have evolved among nonmammalian vertebrates and retained with modification in mammals. Circadian clocks in the eye are critical for optimum visual function where they play a role fine tuning visual sensitivity, and their disruption can affect diseases such as glaucoma or retinal degeneration syndromes.
Collapse
Affiliation(s)
- Joseph C Besharse
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
46
|
Protective Effects of Melatonin on Retinal Inflammation and Oxidative Stress in Experimental Diabetic Retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3528274. [PMID: 27143993 PMCID: PMC4837288 DOI: 10.1155/2016/3528274] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 12/11/2022]
Abstract
Oxidative stress and inflammation are important pathogenic factors contributing to the etiology of diabetic retinopathy (DR). Melatonin is an endogenous hormone that exhibits a variety of biological effects including antioxidant and anti-inflammatory functions. The goals of this study were to determine whether melatonin could ameliorate retinal injury and to explore the potential mechanisms. Diabetes was induced by a single intraperitoneal (i.p.) injection of STZ (60 mg/kg) in Sprague-Dawley rats. Melatonin (10 mg kg(-1) daily, i.p.) was administered from the induction of diabetes and continued for up to 12 weeks, after which the animals were sacrificed and retinal samples were collected. The retina of diabetic rats showed depletion of glutathione and downregulation of glutamate cysteine ligase (GCL). Melatonin significantly upregulated GCL by retaining Nrf2 in the nucleus and stimulating Akt phosphorylation. The production of proinflammatory cytokines and proteins, including interleukin 1β, TNF-α, and inducible nitric oxide synthase (iNOS), was inhibited by melatonin through the NF-κB pathway. At 12 weeks, melatonin prevented the significant decrease in the ERG a- and b-wave amplitudes under the diabetic condition. Our results suggest potent protective functions of melatonin in diabetic retinopathy. In addition to being a direct antioxidant, melatonin can exert receptor-mediated signaling effects to attenuate inflammation and oxidative stress of the retina.
Collapse
|
47
|
Kunst S, Wolloscheck T, Kelleher DK, Wolfrum U, Sargsyan SA, Iuvone PM, Baba K, Tosini G, Spessert R. Pgc-1α and Nr4a1 Are Target Genes of Circadian Melatonin and Dopamine Release in Murine Retina. Invest Ophthalmol Vis Sci 2016; 56:6084-94. [PMID: 26393668 DOI: 10.1167/iovs.15-17503] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE The neurohormones melatonin and dopamine mediate clock-dependent/circadian regulation of inner retinal neurons and photoreceptor cells and in this way promote their functional adaptation to time of day and their survival. To fulfill this function they act on melatonin receptor type 1 (MT1 receptors) and dopamine D4 receptors (D4 receptors), respectively. The aim of the present study was to screen transcriptional regulators important for retinal physiology and/or pathology (Dbp, Egr-1, Fos, Nr1d1, Nr2e3, Nr4a1, Pgc-1α, Rorβ) for circadian regulation and dependence on melatonin signaling/MT1 receptors or dopamine signaling/D4 receptors. METHODS This was done by gene profiling using quantitative polymerase chain reaction in mice deficient in MT1 or D4 receptors. RESULTS The data obtained determined Pgc-1α and Nr4a1 as transcriptional targets of circadian melatonin and dopamine signaling, respectively. CONCLUSIONS The results suggest that Pgc-1α and Nr4a1 represent candidate genes for linking circadian neurohormone release with functional adaptation and healthiness of retina and photoreceptor cells.
Collapse
Affiliation(s)
- Stefanie Kunst
- Institute of Functional and Clinical Anatomy University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany 2Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University, Mainz, Germany
| | - Tanja Wolloscheck
- Institute of Functional and Clinical Anatomy University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Debra K Kelleher
- Institute of Functional and Clinical Anatomy University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University, Mainz, Germany
| | - S Anna Sargsyan
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - P Michael Iuvone
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Kenkichi Baba
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
48
|
Pack W, Hill DD, Wong KY. Melatonin modulates M4-type ganglion-cell photoreceptors. Neuroscience 2015; 303:178-88. [PMID: 26141846 PMCID: PMC4532552 DOI: 10.1016/j.neuroscience.2015.06.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/30/2015] [Accepted: 06/23/2015] [Indexed: 11/21/2022]
Abstract
In the retina, melatonin is secreted at night by rod/cone photoreceptors and serves as a dark-adaptive signal. Melatonin receptors have been found in many retinal neurons including melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs), suggesting it could modulate the physiology of these inner retinal photoreceptors. Here, we investigated whether melatonin modulates the alpha-like M4-type ipRGCs, which are believed to mediate image-forming vision as well as non-image-forming photoresponses. Applying melatonin during daytime (when endogenous melatonin secretion is low) caused whole-cell-recorded M4 cells' rod/cone-driven depolarizing photoresponses to become broader and larger, whereas the associated elevation in spike rate was reduced. Melanopsin-based light responses were not affected significantly. Nighttime application of the melatonin receptor antagonist luzindole also altered M4 cells' rod/cone-driven light responses but in the opposite ways: the duration and amplitude of the graded depolarization were reduced, whereas the accompanying spiking increase was enhanced. These luzindole-induced changes confirmed that M4 cells are modulated by endogenous melatonin. Melatonin could induce the above effects by acting directly on M4 cells because immunohistochemistry detected MT1 receptors in these cells, although it could also act presynaptically. Interestingly, the daytime and nighttime recordings showed significant differences in resting membrane potential, spontaneous spike rate and rod/cone-driven light responses, suggesting that M4 cells are under circadian control. This is the first report of a circadian variation in ipRGCs' resting properties and synaptic input, and of melatoninergic modulation of ipRGCs.
Collapse
Affiliation(s)
- W Pack
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, United States
| | - D D Hill
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, United States
| | - K Y Wong
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, United States; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48105, United States.
| |
Collapse
|
49
|
Attenuation of morphine physical dependence and blood levels of cortisol by central and systemic administration of ramelteon in rat. IRANIAN JOURNAL OF MEDICAL SCIENCES 2015; 40:240-7. [PMID: 25999624 PMCID: PMC4430886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/12/2014] [Accepted: 07/27/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chronic administration of morphine cause physical dependence but the exact mechanism of this phenomenon remains unclear. The aim of this study is the assessment of systemic and intracerebroventricular (icv) administration of ramelteon (a melatonin receptor agonist) on morphine physical dependence. METHODS 88 adult male rats were divided into 2 major groups, namely "systematic" and "central" administration of ramelteon. In the first category, systemic administration of ramelteon at various dosages (10, 20, and 40 mg/kg) was assessed on dependent animals and withdrawal signs were compared with positive (received morphine and saline as systemic administration), negative control (saline) and group under treatment by ramelteon (40 mg/kg) groups. In the second category, central administration of ramelteon at various dosages (25, 50, or 100 μg,) was assessed on dependent animals and withdrawal signs were compared with the positive control (received morphine and saline as icv) and negative control (saline) groups, and the group under treatment by ramelteon (50 μg/5 μl/rat). On the test day, all animals received naloxone (3 mg/kg) and were observed for withdrawal signs. Total withdrawal score (TWS) was also determined. Finally, to evaluate the stress level of dependent rats, blood cortisols were measured. RESULTS Central administration of ramelteon in all doses and systemic administration in high doses attenuate withdrawal syndrome in comparison with the dependent positive control group (P<0.05). Both central and systemic administrations of ramelteon can attenuate the blood cortisol level in comparison with the dependent positive control group (P<0.05). CONCLUSION In conclusion, we found that central administration of ramelteon attenuated morphine withdrawal symptoms and cortisol level as a stress marker.
Collapse
|
50
|
Co-expression of two subtypes of melatonin receptor on rat M1-type intrinsically photosensitive retinal ganglion cells. PLoS One 2015; 10:e0117967. [PMID: 25714375 PMCID: PMC4340921 DOI: 10.1371/journal.pone.0117967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 12/15/2014] [Indexed: 12/15/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in circadian and other non-image forming visual responses. An open question is whether the activity of these neurons may also be under the regulation mediated by the neurohormone melatonin. In the present work, by double-staining immunohistochemical technique, we studied the expression of MT1 and MT2, two known subtypes of mammalian melatonin receptors, in rat ipRGCs. A single subset of retinal ganglion cells labeled by the specific antibody against melanopsin exhibited the morphology typical of M1-type ipRGCs. Immunoreactivity for both MT1 and MT2 receptors was clearly seen in the cytoplasm of all labeled ipRGCs, indicating that these two receptors were co-expressed in each of these neurons. Furthermore, labeling for both the receptors were found in neonatal M1 cells as early as the day of birth. It is therefore highly plausible that retinal melatonin may directly modulate the activity of ipRGCs, thus regulating non-image forming visual functions.
Collapse
|