1
|
Jeong DE, Lee HS, Ku B, Kim CH, Kim SJ, Shin HC. Insights into the recognition mechanism in the UBR box of UBR4 for its specific substrates. Commun Biol 2023; 6:1214. [PMID: 38030679 PMCID: PMC10687169 DOI: 10.1038/s42003-023-05602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
The N-end rule pathway is a proteolytic system involving the destabilization of N-terminal amino acids, known as N-degrons, which are recognized by N-recognins. Dysregulation of the N-end rule pathway results in the accumulation of undesired proteins, causing various diseases. The E3 ligases of the UBR subfamily recognize and degrade N-degrons through the ubiquitin-proteasome system. Herein, we investigated UBR4, which has a distinct mechanism for recognizing type-2 N-degrons. Structural analysis revealed that the UBR box of UBR4 differs from other UBR boxes in the N-degron binding sites. It recognizes type-2 N-terminal amino acids containing an aromatic ring and type-1 N-terminal arginine through two phenylalanines on its hydrophobic surface. We also characterized the binding mechanism for the second ligand residue. This is the report on the structural basis underlying the recognition of type-2 N-degrons by the UBR box with implications for understanding the N-end rule pathway.
Collapse
Affiliation(s)
- Da Eun Jeong
- Critical Disease Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bioscience & Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, Daejeon, 34141, Republic of Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, Daejeon, 34141, Republic of Korea
| | - Cheol-Hee Kim
- Department of Bioscience & Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seung Jun Kim
- Critical Disease Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Ho-Chul Shin
- Critical Disease Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Li Y, Chitturi J, Yu B, Zhang Y, Wu J, Ti P, Hung W, Zhen M, Gao S. UBR-1 ubiquitin ligase regulates the balance between GABAergic and glutamatergic signaling. EMBO Rep 2023; 24:e57014. [PMID: 37811674 PMCID: PMC10626437 DOI: 10.15252/embr.202357014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Excitation/inhibition (E/I) balance is carefully maintained by the nervous system. The neurotransmitter GABA has been reported to be co-released with its sole precursor, the neurotransmitter glutamate. The genetic and circuitry mechanisms to establish the balance between GABAergic and glutamatergic signaling have not been fully elucidated. Caenorhabditis elegans DVB is an excitatory GABAergic motoneuron that drives the expulsion step in the defecation motor program. We show here that in addition to UNC-47, the vesicular GABA transporter, DVB also expresses EAT-4, a vesicular glutamate transporter. UBR-1, a conserved ubiquitin ligase, regulates DVB activity by suppressing a bidirectional inhibitory glutamate signaling. Loss of UBR-1 impairs DVB Ca2+ activity and expulsion frequency. These impairments are fully compensated by the knockdown of EAT-4 in DVB. Further, glutamate-gated chloride channels GLC-3 and GLC-2/4 receive DVB's glutamate signals to inhibit DVB and enteric muscle activity, respectively. These results implicate an intrinsic cellular mechanism that promotes the inherent asymmetric neural activity. We propose that elevated glutamate in ubr-1 mutants, being the cause of the E/I shift, potentially contributes to Johanson Blizzard syndrome.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jyothsna Chitturi
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Bin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Yongning Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jing Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Panpan Ti
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Wesley Hung
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Mei Zhen
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
3
|
Hang SMT, Hegele RA, Berberich AJ. Genetic determinants of pancreatitis: relevance in severe hypertriglyceridemia. Curr Opin Lipidol 2023; 34:59-69. [PMID: 36752614 PMCID: PMC10069755 DOI: 10.1097/mol.0000000000000866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
PURPOSE OF REVIEW Not all patients with severe hypertriglyceridemia develop acute pancreatitis. We surveyed recent literature on inter-individual genetic variation in susceptibility to pancreatitis. RECENT FINDINGS Genetic determinants of pancreatitis include: rare Mendelian disorders caused by highly penetrant pathogenic variants in genes involved in trypsinogen activation; uncommon susceptibility variants in genes involved in trypsinogen activation, protein misfolding as well as calcium metabolism and cystic fibrosis, that have variable penetrance and show a range of odds ratios for pancreatitis; and common polymorphisms in many of the same genes that have only a small effect on risk. The role of these genetic variants in modulating pancreatitis risk in hypertriglyceridemia is unclear. However, among genetic determinants of plasma triglycerides, those predisposing to more severe hypertriglyceridemia associated with chylomicronemia appear to have higher pancreatitis risk. SUMMARY Currently, among patients with severe hypertriglyceridemia, the most consistent predictor of pancreatitis risk is the triglyceride level. Furthermore, pancreatitis risk appears to be modulated by a higher genetic burden of factors associated with greater magnitude of triglyceride elevation. The role of common and rare genetic determinants of pancreatitis itself in this metabolic context is unclear.
Collapse
Affiliation(s)
- Shyann M T Hang
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | | |
Collapse
|
4
|
Müller F, Bange T. Identification of N-degrons and N-recognins using peptide pull-downs combined with quantitative mass spectrometry. Methods Enzymol 2023; 686:67-97. [PMID: 37532409 DOI: 10.1016/bs.mie.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Regulated protein degradation controls protein levels of all short-lived proteins to ensure cellular homeostasis and also protects cells from misfolded or other abnormal proteins. The most important players in the degradation system are E3 ubiquitin ligases which recognize exposed sequence motifs, so-called degrons, of target proteins and mark them through the attachment of ubiquitin for degradation. N-terminal (Nt) sequences are extensively used as degrons (N-degrons) and all 20 amino acids are able to feed proteins in 1 of the 5 known N-degron pathways. Studies have mainly focused on characterizing systematically the role of the starting amino acid on protein stability and less on the identification of the E3 ligases involved. Recent data from our lab and literature suggest that there is an extensive interplay of N-recognins and Nt-modifying enzymes like Nt-acetyltransferases (NATs) or N-myristoyltransferases which only starts to be elucidated. It suggests that improperly modified or unexpectedly unmodified proteins become rapidly removed after synthesis ensuring protein maturation and quality control of specific subsets of proteins. Here, we describe a peptide pull-down and down-stream bioinformatics workflow conducted in the MaxQuant and Perseus computational environment to identify N-recognin candidates in an unbiased way using quantitative mass spectrometry (MS)-based proteomics. Our workflow allows the identification of N-recognin candidates for specific N-degrons, to determine their sequence specificity and it can be applied as well more general to identify binding partners of N-terminal modifications. This method paves the way to identify pathways involved in protein quality control and stability acting at the N-terminus.
Collapse
Affiliation(s)
- Franziska Müller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Tanja Bange
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
5
|
Demir D, Kendir Demirkol Y, Gerenli N, Aktaş Karabay E. Johanson–Blizzard's Syndrome with a Novel UBR1 Mutation. J Pediatr Genet 2022; 11:147-150. [DOI: 10.1055/s-0040-1716331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
AbstractJohanson–Blizzard syndrome (JBS) is a rare autosomal recessive genetic disorder, characterized by exocrine pancreatic insufficiency, a distinct abnormal facial appearance and varying degrees of growth retardation. Ubiquitin protein ligase E3 component n-recognin 1 (UBR1) gene mutations are responsible for the syndrome. Here, we describe a 2-month-old female infant, who presented with oily diarrhea, facial dysmorphia, scalp defect, hearing defects, and growth impairment. Molecular genetic testing revealed a novel frameshift mutation in UBR1, c.4027_4028 del (p.Leu1343Valfs*7), which was not previously described in JBS in the literature.
Collapse
Affiliation(s)
- Damla Demir
- Department of Dermatology, Ümraniye Training and Research Hospital, University of Health Science, Istanbul, Turkey
| | - Yasemin Kendir Demirkol
- Department of Pediatrics Genetics, Ümraniye Training and Research Hospital, University of Health Science, Istanbul, Turkey
| | - Nelgin Gerenli
- Department of Pediatrics Gastroenterology, Ümraniye Training and Research Hospital, University of Health Science, Istanbul, Turkey
| | - Ezgi Aktaş Karabay
- Department of Dermatology, Faculty of Medicine, Bahçeşehir University, Istanbul, Turkey
| |
Collapse
|
6
|
Bracci N, de la Fuente C, Saleem S, Pinkham C, Narayanan A, García-Sastre A, Balaraman V, Richt JA, Wilson W, Kehn-Hall K. Rift Valley fever virus Gn V5-epitope tagged virus enables identification of UBR4 as a Gn interacting protein that facilitates Rift Valley fever virus production. Virology 2022; 567:65-76. [PMID: 35032865 PMCID: PMC8877469 DOI: 10.1016/j.virol.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/15/2021] [Accepted: 12/31/2021] [Indexed: 02/03/2023]
Abstract
Rift Valley fever virus (RVFV) is an arbovirus that was first reported in the Rift Valley of Kenya which causes significant disease in humans and livestock. RVFV is a tri-segmented, negative-sense RNA virus consisting of a L, M, and S segments with the M segment encoding the glycoproteins Gn and Gc. Host factors that interact with Gn are largely unknown. To this end, two viruses containing an epitope tag (V5) on the Gn protein in position 105 or 229 (V5Gn105 and V5Gn229) were generated using the RVFV MP-12 vaccine strain as a backbone. The V5-tag insertion minimally impacted Gn functionality as measured by replication kinetics, Gn localization, and antibody neutralization assays. A proteomics-based approach was used to identify novel Gn-binding host proteins, including the E3 ubiquitin-protein ligase, UBR4. Depletion of UBR4 resulted in a significant decrease in RVFV titers and a reduction in viral RNA production.
Collapse
Affiliation(s)
- Nicole Bracci
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University,National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University
| | - Cynthia de la Fuente
- The National Institutes of Health, National Institute of Allergy and Infectious Diseases, DEA,National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University
| | - Sahar Saleem
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University
| | - Chelsea Pinkham
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University
| | | | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University
| | - William Wilson
- National Bio and Agro-Defense Facility, Agricultural Research Service, USDA
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University,National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University,Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University,Corresponding Author: Kylene Kehn-Hall, Ph.D., Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Sciences Building, 1981 Kraft Drive, Blacksburg, VA 24060 USA,
| |
Collapse
|
7
|
Runnebohm AM, Evans MD, Richardson AE, Turk SM, Olesen JB, Smaldino PJ, Rubenstein EM. Loss of protein quality control gene UBR1 sensitizes Saccharomyces cerevisiae to the aminoglycoside hygromycin B. ACTA ACUST UNITED AC 2020; 6:76-83. [PMID: 33554225 DOI: 10.33043/ff.6.1.76-83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ubr1 is a conserved ubiquitin ligase involved in the degradation of aberrant proteins in eukaryotic cells. The human enzyme is found mutated in patients with Johanson-Blizzard syndrome. We hypothesized that Ubr1 is necessary for optimal cellular fitness in conditions associated with elevated abundance of aberrant and misfolded proteins. Indeed, we found that loss of Ubr1 in the model eukaryotic microorganism Saccharomyces cerevisiae strongly sensitizes cells to hygromycin B, which reduces translational fidelity by causing ribosome A site distortion. Our results are consistent with a prominent role for Ubr1 in protein quality control. We speculate that disease manifestations in patients with Johanson-Blizzard syndrome are linked, at least in part, to defects in protein quality control caused by loss of Ubr1 function.
Collapse
Affiliation(s)
- Avery M Runnebohm
- Ball State University, Department of Biology, Muncie, IN 47306.,These authors contributed equally to this work
| | - Melissa D Evans
- Ball State University, Department of Biology, Muncie, IN 47306.,These authors contributed equally to this work
| | | | - Samantha M Turk
- Ball State University, Department of Biology, Muncie, IN 47306
| | - James B Olesen
- Ball State University, Department of Biology, Muncie, IN 47306
| | | | | |
Collapse
|
8
|
Vu TTM, Varshavsky A. The ATF3 Transcription Factor Is a Short-Lived Substrate of the Arg/N-Degron Pathway. Biochemistry 2020; 59:2796-2812. [PMID: 32692156 DOI: 10.1021/acs.biochem.0c00514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Arg/N-degron pathway targets proteins for degradation by recognizing their specific N-terminal residues or, alternatively, their non-N-terminal degrons. In mammals, this pathway is mediated by the UBR1, UBR2, UBR4, and UBR5 E3 ubiquitin ligases, and by the p62 regulator of autophagy. UBR1 and UBR2 are sequelogous, functionally overlapping, and dominate the targeting of Arg/N-degron substrates in examined cell lines. We constructed, here, mouse strains in which the double mutant [UBR1-/- UBR2-/-] genotype can be induced conditionally, in adult mice. We also constructed human [UBR1-/- UBR2-/-] HEK293T cell lines that unconditionally lack UBR1/UBR2. ATF3 is a basic leucine zipper transcription factor that regulates hundreds of genes and can act as either a repressor or an activator of transcription. Using the above double-mutant mice and human cells, we found that the levels of endogenous, untagged ATF3 were significantly higher in both of these [UBR1-/- UBR2-/-] settings than in wild-type cells. We also show, through chase-degradation assays with [UBR1-/- UBR2-/-] and wild-type human cells, that the Arg/N-degron pathway mediates a large fraction of ATF3 degradation. Furthermore, we used split-ubiquitin and another protein interaction assay to detect the binding of ATF3 to both UBR1 and UBR2, in agreement with the UBR1/UBR2-mediated degradation of endogenous ATF3. Full-length 24 kDa ATF3 binds to ∼100 kDa fragments of 200 kDa UBR1 and UBR2 but does not bind (in the setting of interaction assays) to full-length UBR1/UBR2. These and other binding patterns, whose mechanics remain to be understood, may signify a conditional (regulated) degradation of ATF3 by the Arg/N-degron pathway.
Collapse
Affiliation(s)
- Tri T M Vu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Leboeuf D, Abakumova T, Prikazchikova T, Rhym L, Anderson DG, Zatsepin TS, Piatkov KI. Downregulation of the Arg/N-degron Pathway Sensitizes Cancer Cells to Chemotherapy In Vivo. Mol Ther 2020; 28:1092-1104. [PMID: 32087767 DOI: 10.1016/j.ymthe.2020.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
The N-degron pathway is an emerging target for anti-tumor therapies, because of its capacity to positively regulate many hallmarks of cancer, including angiogenesis, cell proliferation, motility, and survival. Thus, inhibition of the N-degron pathway offers the potential to be a highly effective anti-cancer treatment. With the use of a small interfering RNA (siRNA)-mediated approach for selective downregulation of the four Arg/N-degron-dependent ubiquitin ligases, UBR1, UBR2, UBR4, and UBR5, we demonstrated decreased cell migration and proliferation and increased spontaneous apoptosis in cancer cells. Chronic treatment with lipid nanoparticles (LNPs) loaded with siRNA in mice efficiently downregulates the expression of UBR-ubiquitin ligases in the liver without any significant toxic effects but engages the immune system and causes inflammation. However, when used in a lower dose, in combination with a chemotherapeutic drug, downregulation of the Arg/N-degron pathway E3 ligases successfully reduced tumor load by decreasing proliferation and increasing apoptosis in a mouse model of hepatocellular carcinoma, while avoiding the inflammatory response. Our study demonstrates that UBR-ubiquitin ligases of the Arg/N-degron pathway are promising targets for the development of improved therapies for many cancer types.
Collapse
Affiliation(s)
| | | | | | - Luke Rhym
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
10
|
Kim L, Kwon DH, Heo J, Park MR, Song HK. Use of the LC3B-fusion technique for biochemical and structural studies of proteins involved in the N-degron pathway. J Biol Chem 2020; 295:2590-2600. [PMID: 31919097 DOI: 10.1074/jbc.ra119.010912] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/19/2019] [Indexed: 11/06/2022] Open
Abstract
The N-degron pathway, formerly the N-end rule pathway, is a protein degradation process that determines the half-life of proteins based on their N-terminal residues. In contrast to the well-established in vivo studies over decades, in vitro studies of this pathway, including biochemical characterization and high-resolution structures, are relatively limited. In this study, we have developed a unique fusion technique using microtubule-associated protein 1A/1B light chain 3B, a key marker protein of autophagy, to tag the N terminus of the proteins involved in the N-degron pathway, which enables high yield of homogeneous target proteins with variable N-terminal residues for diverse biochemical studies including enzymatic and binding assays and substrate identification. Intriguingly, crystallization showed a markedly enhanced probability, even for the N-degron complexes. To validate our results, we determined the structures of select proteins in the N-degron pathway and compared them with the Protein Data Bank-deposited proteins. Furthermore, several biochemical applications of this technique were introduced. Therefore, this technique can be used as a general tool for the in vitro study of the N-degron pathway.
Collapse
Affiliation(s)
- Leehyeon Kim
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Do Hoon Kwon
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Jiwon Heo
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Mi Rae Park
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
11
|
Frints SGM, Ozanturk A, Rodríguez Criado G, Grasshoff U, de Hoon B, Field M, Manouvrier-Hanu S, E Hickey S, Kammoun M, Gripp KW, Bauer C, Schroeder C, Toutain A, Mihalic Mosher T, Kelly BJ, White P, Dufke A, Rentmeester E, Moon S, Koboldt DC, van Roozendaal KEP, Hu H, Haas SA, Ropers HH, Murray L, Haan E, Shaw M, Carroll R, Friend K, Liebelt J, Hobson L, De Rademaeker M, Geraedts J, Fryns JP, Vermeesch J, Raynaud M, Riess O, Gribnau J, Katsanis N, Devriendt K, Bauer P, Gecz J, Golzio C, Gontan C, Kalscheuer VM. Pathogenic variants in E3 ubiquitin ligase RLIM/RNF12 lead to a syndromic X-linked intellectual disability and behavior disorder. Mol Psychiatry 2019; 24:1748-1768. [PMID: 29728705 DOI: 10.1038/s41380-018-0065-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/28/2018] [Indexed: 12/25/2022]
Abstract
RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.
Collapse
Affiliation(s)
- Suzanna G M Frints
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, Maastricht, 6202 AZ, The Netherlands. .,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, GROW, FHML, Maastricht University, Maastricht, 6200 MD, The Netherlands.
| | - Aysegul Ozanturk
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA
| | | | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Bas de Hoon
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands.,Department of Gynaecology and Obstetrics, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Michael Field
- GOLD (Genetics of Learning and Disability) Service, Hunter Genetics, Waratah, NSW, 2298, Australia
| | - Sylvie Manouvrier-Hanu
- Clinique de Génétique médicale Guy Fontaine, Centre de référence maladies rares Anomalies du développement Hôpital Jeanne de Flandre, Lille, 59000, France.,EA 7364 RADEME Maladies Rares du Développement et du Métabolisme, Faculté de Médecine, Université de Lille, Lille, 59000, France
| | - Scott E Hickey
- Division of Molecular & Human Genetics, Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| | - Molka Kammoun
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Karen W Gripp
- Alfred I. duPont Hospital for Children Nemours, Wilmington, DE, 19803, USA
| | - Claudia Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Annick Toutain
- Service de Génétique, Hôpital Bretonneau, CHU de Tours, Tours, 37044, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, 37032, France
| | - Theresa Mihalic Mosher
- Division of Molecular & Human Genetics, Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Benjamin J Kelly
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Peter White
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Eveline Rentmeester
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Sungjin Moon
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA
| | - Daniel C Koboldt
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Kees E P van Roozendaal
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, Maastricht, 6202 AZ, The Netherlands.,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, GROW, FHML, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Hao Hu
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Stefan A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Hans-Hilger Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Lucinda Murray
- GOLD (Genetics of Learning and Disability) Service, Hunter Genetics, Waratah, NSW, 2298, Australia
| | - Eric Haan
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia.,South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), North Adelaide, SA, 5006, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Renee Carroll
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Kathryn Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, 5006, Australia
| | - Jan Liebelt
- South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), North Adelaide, SA, 5006, Australia
| | - Lynne Hobson
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, 5006, Australia
| | - Marjan De Rademaeker
- Centre for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), UZ Brussel, 1090, Brussels, Belgium
| | - Joep Geraedts
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, Maastricht, 6202 AZ, The Netherlands.,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, GROW, FHML, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Jean-Pierre Fryns
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Joris Vermeesch
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Martine Raynaud
- Service de Génétique, Hôpital Bretonneau, CHU de Tours, Tours, 37044, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, 37032, France
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Nicholas Katsanis
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA
| | - Koen Devriendt
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Christelle Golzio
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics; Centre National de la Recherche Scientifique, UMR7104; Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, 67400, Illkirch, France
| | - Cristina Gontan
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany.
| |
Collapse
|
12
|
Insights into degradation mechanism of N-end rule substrates by p62/SQSTM1 autophagy adapter. Nat Commun 2018; 9:3291. [PMID: 30120248 PMCID: PMC6098011 DOI: 10.1038/s41467-018-05825-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
p62/SQSTM1 is the key autophagy adapter protein and the hub of multi-cellular signaling. It was recently reported that autophagy and N-end rule pathways are linked via p62. However, the exact recognition mode of degrading substrates and regulation of p62 in the autophagic pathway remain unknown. Here, we present the complex structures between the ZZ-domain of p62 and various type-1 and type-2 N-degrons. The binding mode employed in the interaction of the ZZ-domain with N-degrons differs from that employed by classic N-recognins. It was also determined that oligomerization via the PB1 domain can control functional affinity to the R-BiP substrate. Unexpectedly, we found that self-oligomerization and disassembly of p62 are pH-dependent. These findings broaden our understanding of the functional repertoire of the N-end rule pathway and provide an insight into the regulation of p62 during the autophagic pathway. The autophagy adapter p62/SQSTM1 plays a key role in selective autophagy and also recognizes N-end rule substrates. Here the authors provide molecular insights into p62 N-end rule substrate recognition by solving the structures of the p62 ZZ-domain in complex with various type 1 and type 2 degrons and also show the pH dependent oligomerization of p62.
Collapse
|
13
|
The UBR-1 ubiquitin ligase regulates glutamate metabolism to generate coordinated motor pattern in Caenorhabditis elegans. PLoS Genet 2018; 14:e1007303. [PMID: 29649217 PMCID: PMC5931689 DOI: 10.1371/journal.pgen.1007303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/02/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022] Open
Abstract
UBR1 is an E3 ubiquitin ligase best known for its ability to target protein degradation by the N-end rule. The physiological functions of UBR family proteins, however, remain not fully understood. We found that the functional loss of C. elegans UBR-1 leads to a specific motor deficit: when adult animals generate reversal movements, A-class motor neurons exhibit synchronized activation, preventing body bending. This motor deficit is rescued by removing GOT-1, a transaminase that converts aspartate to glutamate. Both UBR-1 and GOT-1 are expressed and critically required in premotor interneurons of the reversal motor circuit to regulate the motor pattern. ubr-1 and got-1 mutants exhibit elevated and decreased glutamate level, respectively. These results raise an intriguing possibility that UBR proteins regulate glutamate metabolism, which is critical for neuronal development and signaling. Ubiquitin-mediated protein degradation is central to diverse biological processes. The selection of substrates for degradation is carried out by the E3 ubiquitin ligases, which target specific groups of proteins for ubiquitination. The human genome encodes hundreds of E3 ligases; many exhibit sequence conservation across animal species, including one such ligase called UBR1. Patients carrying mutations in UBR1 exhibit severe systemic defects, but the biology behinds UBR1’s physiological function remains elusive. Here we found that the C. elegans UBR-1 regulates glutamate level. When UBR-1 is defective, C. elegans exhibits increased glutamate; this leads to synchronization of motor neuron activity, hence defective locomotion when animals reach adulthood. UBR1-mediated glutamate metabolism may contribute to the physiological defects of UBR1 mutations.
Collapse
|
14
|
Eldeeb MA, Leitao LCA, Fahlman RP. Emerging branches of the N-end rule pathways are revealing the sequence complexities of N-termini dependent protein degradation. Biochem Cell Biol 2017; 96:289-294. [PMID: 29253354 DOI: 10.1139/bcb-2017-0274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The N-end rule links the identity of the N-terminal amino acid of a protein to its in vivo half-life, as some N-terminal residues confer metabolic instability to a protein via their recognition by the cellular machinery that targets them for degradation. Since its discovery, the N-end rule has generally been defined as set of rules of whether an N-terminal residue is stabilizing or not. However, recent studies are revealing that the N-terminal code of amino acids conferring protein instability is more complex than previously appreciated, as recent investigations are revealing that the identity of adjoining downstream residues can also influence the metabolic stability of N-end rule substrate. This is exemplified by the recent discovery of a new branch of N-end rule pathways that target proteins bearing N-terminal proline. In addition, recent investigations are demonstrating that the molecular machinery in N-termini dependent protein degradation may also target proteins for lysosomal degradation, in addition to proteasome-dependent degradation. Herein, we describe some of the recent advances in N-end rule pathways and discuss some of the implications regarding the emerging additional sequence requirements.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,b Department of Chemistry, Faculty of Science, Cairo University, Giza, Cairo, Egypt
| | - Luana C A Leitao
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Richard P Fahlman
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,c Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
15
|
Muñoz-Escobar J, Matta-Camacho E, Cho C, Kozlov G, Gehring K. Bound Waters Mediate Binding of Diverse Substrates to a Ubiquitin Ligase. Structure 2017; 25:719-729.e3. [PMID: 28392261 DOI: 10.1016/j.str.2017.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/03/2017] [Accepted: 03/09/2017] [Indexed: 11/16/2022]
Abstract
The N-end rule pathway controls the half-life of proteins based on their N-terminal residue. Positively charged type 1 N-degrons are recognized by a negatively charged pocket on the Zn finger named the UBR box. Here, we show that the UBR box is rigid, but bound water molecules in the pocket provide the structural plasticity required to bind different positively charged amino acids. Ultra-high-resolution crystal structures of arginine, histidine, and methylated arginine reveal that water molecules mediate the binding of N-degron peptides. Using a high-throughput binding assay and isothermal titration calorimetry, we demonstrate that the UBR box is able to bind methylated arginine and lysine peptides with high affinity and measure the preference for hydrophobic residues in the second position in the N-degron peptide. Finally, we show that the V122L mutation present in Johanson-Blizzard syndrome patients changes the specificity for the second position due to occlusion of the secondary pocket.
Collapse
Affiliation(s)
- Juliana Muñoz-Escobar
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Edna Matta-Camacho
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Cordelia Cho
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Guennadi Kozlov
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Kalle Gehring
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
16
|
Physiological functions and clinical implications of the N-end rule pathway. Front Med 2016; 10:258-70. [PMID: 27492620 DOI: 10.1007/s11684-016-0458-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/06/2016] [Indexed: 01/19/2023]
Abstract
The N-end rule pathway is a unique branch of the ubiquitin-proteasome system in which the determination of a protein's half-life is dependent on its N-terminal residue. The N-terminal residue serves as the degradation signal of a protein and thus called N-degron. N-degron can be recognized and modifed by several steps of post-translational modifications, such as oxidation, deamination, arginylation or acetylation, it then polyubiquitinated by the N-recognin for degradation. The molecular basis of the N-end rule pathway has been elucidated and its physiological functions have been revealed in the past 30 years. This pathway is involved in several biological aspects, including transcription, differentiation, chromosomal segregation, genome stability, apoptosis, mitochondrial quality control, cardiovascular development, neurogenesis, carcinogenesis, and spermatogenesis. Disturbance of this pathway often causes the failure of these processes, resulting in some human diseases. This review summarized the physiological functions of the N-end rule pathway, introduced the related biological processes and diseases, with an emphasis on the inner link between this pathway and certain symptoms.
Collapse
|
17
|
Wadas B, Piatkov KI, Brower CS, Varshavsky A. Analyzing N-terminal Arginylation through the Use of Peptide Arrays and Degradation Assays. J Biol Chem 2016; 291:20976-20992. [PMID: 27510035 DOI: 10.1074/jbc.m116.747956] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 01/29/2023] Open
Abstract
Nα-terminal arginylation (Nt-arginylation) of proteins is mediated by the Ate1 arginyltransferase (R-transferase), a component of the Arg/N-end rule pathway. This proteolytic system recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. The definitively identified ("canonical") residues that are Nt-arginylated by R-transferase are N-terminal Asp, Glu, and (oxidized) Cys. Over the last decade, several publications have suggested (i) that Ate1 can also arginylate non-canonical N-terminal residues; (ii) that Ate1 is capable of arginylating not only α-amino groups of N-terminal residues but also γ-carboxyl groups of internal (non-N-terminal) Asp and Glu; and (iii) that some isoforms of Ate1 are specific for substrates bearing N-terminal Cys residues. In the present study, we employed arrays of immobilized 11-residue peptides and pulse-chase assays to examine the substrate specificity of mouse R-transferase. We show that amino acid sequences immediately downstream of a substrate's canonical (Nt-arginylatable) N-terminal residue, particularly a residue at position 2, can affect the rate of Nt-arginylation by R-transferase and thereby the rate of degradation of a substrate protein. We also show that the four major isoforms of mouse R-transferase have similar Nt-arginylation specificities in vitro, contrary to the claim about the specificity of some Ate1 isoforms for N-terminal Cys. In addition, we found no evidence for a significant activity of the Ate1 R-transferase toward previously invoked non-canonical N-terminal or internal amino acid residues. Together, our results raise technical concerns about earlier studies that invoked non-canonical arginylation specificities of Ate1.
Collapse
Affiliation(s)
- Brandon Wadas
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Konstantin I Piatkov
- the Center for Biotechnology and Biomedicine, Skolkovo Institute of Science and Technology, Moscow 143026, Russia, and
| | | | - Alexander Varshavsky
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125,
| |
Collapse
|
18
|
Masamune A, Nakano E, Niihori T, Hamada S, Nagasaki M, Aoki Y, Shimosegawa T. Variants in the UBR1 gene are not associated with chronic pancreatitis in Japan. Pancreatology 2016; 16:814-8. [PMID: 27397733 DOI: 10.1016/j.pan.2016.06.662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES The UBR1 gene encodes the enzyme ubiquitin-protein ligase E3 component n-recognin 1. Loss-of-function mutations in the UBR1 gene cause Johanson-Blizzard syndrome, which involves pancreatic exocrine insufficiency. No previous studies have examined an association of UBR1 variants with pancreatitis, in part due to the large size of the gene. This study aimed to clarify whether UBR1 variants are associated with chronic pancreatitis (CP) by the application of targeted next generation sequencing. METHODS Exon sequences of the UBR1 gene from 389 Japanese patients with CP (188 idiopathic, 172 alcoholic, 20 hereditary, 9 familial) were captured by the HaloPlex target enrichment technology and subjected to next generation sequencing. RESULTS Ninety nine point two % of the coding regions of the UBR1 gene could be sequenced by ≥ 20 reads with a mean read depth of 595 and a median depth of 399. Fifteen non-synonymous variants including three novel ones [c.4514T > C (p.I1505T), c.4828C > G (p.H1610D) and c.4856A > T (p.D1619V)] and two synonymous variants were identified in the exonic regions. The frequency of any non-synonymous or synonymous variants was not different between the patients with CP and controls. CONCLUSIONS Variants in the UBR1 gene were not associated with CP in Japan.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Eriko Nakano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Division of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoko Aoki
- Division of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
19
|
Lee KE, Heo JE, Kim JM, Hwang CS. N-Terminal Acetylation-Targeted N-End Rule Proteolytic System: The Ac/N-End Rule Pathway. Mol Cells 2016; 39:169-78. [PMID: 26883906 PMCID: PMC4794598 DOI: 10.14348/molcells.2016.2329] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
Although Nα-terminal acetylation (Nt-acetylation) is a pervasive protein modification in eukaryotes, its general functions in a majority of proteins are poorly understood. In 2010, it was discovered that Nt-acetylation creates a specific protein degradation signal that is targeted by a new class of the N-end rule proteolytic system, called the Ac/N-end rule pathway. Here, we review recent advances in our understanding of the mechanism and biological functions of the Ac/N-end rule pathway, and its crosstalk with the Arg/N-end rule pathway (the classical N-end rule pathway).
Collapse
Affiliation(s)
- Kang-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790–784,
Korea
| | - Ji-Eun Heo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790–784,
Korea
| | - Jeong-Mok Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790–784,
Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790–784,
Korea
| |
Collapse
|
20
|
Kaur G, Subramanian S. The UBR-box and its relationship to binuclear RING-like treble clef zinc fingers. Biol Direct 2015; 10:36. [PMID: 26185100 PMCID: PMC4506424 DOI: 10.1186/s13062-015-0066-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/02/2015] [Indexed: 11/30/2022] Open
Abstract
Background The N-end rule pathway is a part of the ubiquitin–dependent proteolytic system wherein N-recognin proteins recognize the amino terminal degradation signals (N-degrons) of the substrate. The type 1 N-degron recognizing UBR-box domain of the eukaryotic Arg/N-end rule pathway is known to possess a novel three-zinc-stabilized heart-shaped fold. Results Using sequence and structure analysis we argue that the UBR-box fold emerged from a binuclear RING-like treble clef zinc finger. The RING-like core is preserved in the UBR-box and the metal-chelating motifs display significant sequence and structural similarity to B-box and ZZ domains. UBR-box domains retrieved in our analysis co-occur with a variety of other protein domains, suggestive of its involvement in diverse biological roles. The UBR-box is a unique family of RING-like treble clefs as it displays a distinct circular permutation at the zinc-knuckle of the first zinc-binding site unlike other documented permutations of the RING-like domains which occur at the second zinc-binding site. The circular permutation of the RING-like treble clef scaffold has possibly aided the gain of a novel and relatively deep cleft suited for binding N-degrons. The N- and C-terminal extensions to the circularly permuted RING-like region bind a third zinc ion, which likely provides additional stability to the domain by keeping the two halves of the permuted zinc-knuckle together. Conclusions Structural modifications and extensions to the RING-like core have resulted in a novel UBR-box fold, which can recognize and target the type 1 N-degron containing proteins for ubiquitin-mediated proteolysis. The UBR-box appears to have emerged during the expansion of ubiquitin system pathway-related functions in eukaryotes, but is also likely to have other non-N-recognin functions as well. Reviewers This article was reviewed by Eugene Koonin, Balaji Santhanam, Kira S. Makarova. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0066-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gurmeet Kaur
- CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, 160036, India.
| | - Srikrishna Subramanian
- CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, 160036, India.
| |
Collapse
|
21
|
Zhao C, Wang L, Ma X, Zhu W, Yao L, Cui Y, Liu Y, Li J, Liang X, Sun Y, Li L, Chen YH. Cardiac Nav 1.5 is modulated by ubiquitin protein ligase E3 component n-recognin UBR3 and 6. J Cell Mol Med 2015; 19:2143-52. [PMID: 26059563 PMCID: PMC4568919 DOI: 10.1111/jcmm.12588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/03/2015] [Indexed: 11/29/2022] Open
Abstract
The voltage-gated Na+ channel Nav1.5 is essential for action potential (AP) formation and electrophysiological homoeostasis in the heart. The ubiquitin–proteasome system (UPS) is a major degradative system for intracellular proteins including ion channels. The ubiquitin protein ligase E3 component N-recognin (UBR) family is a part of the UPS; however, their roles in regulating cardiac Nav1.5 channels remain elusive. Here, we found that all of the UBR members were expressed in cardiomyocytes. Individual knockdown of UBR3 or UBR6, but not of other UBR members, significantly increased Nav1.5 protein levels in neonatal rat ventricular myocytes, and this effect was verified in HEK293T cells expressing Nav1.5 channels. The UBR3/6-dependent regulation of Nav1.5 channels was not transcriptionally mediated, and pharmacological inhibition of protein biosynthesis failed to counteract the increase in Nav1.5 protein caused by UBR3/6 reduction, suggesting a degradative modulation of UBR3/6 on Nav1.5. Furthermore, the effects of UBR3/6 knockdown on Nav1.5 proteins were abolished under the inhibition of proteasome activity, and UBR3/6 knockdown reduced Nav1.5 ubiquitylation. The double UBR3–UBR6 knockdown resulted in comparable increases in Nav1.5 proteins to that observed for single knockdown of either UBR3 or UBR6. Electrophysiological recordings showed that UBR3/6 reduction-mediated increase in Nav1.5 protein enhanced the opening of Nav1.5 channels and thereby the amplitude of the AP. Thus, our findings indicate that UBR3/6 regulate cardiomyocyte Nav1.5 channel protein levels via the ubiquitin–proteasome pathway. It is likely that UBR3/6 have the potential to be a therapeutic target for cardiac arrhythmias.
Collapse
Affiliation(s)
- Chunxia Zhao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lijie Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiue Ma
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weidong Zhu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Lei Yao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yingyu Cui
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Yi Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Jun Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Xingqun Liang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Yunfu Sun
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Yi-Han Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Park SE, Kim JM, Seok OH, Cho H, Wadas B, Kim SY, Varshavsky A, Hwang CS. Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science 2015; 347:1249-1252. [PMID: 25766235 PMCID: PMC4748709 DOI: 10.1126/science.aaa3844] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rgs2, a regulator of G proteins, lowers blood pressure by decreasing signaling through Gαq. Human patients expressing Met-Leu-Rgs2 (ML-Rgs2) or Met-Arg-Rgs2 (MR-Rgs2) are hypertensive relative to people expressing wild-type Met-Gln-Rgs2 (MQ-Rgs2). We found that wild-type MQ-Rgs2 and its mutant, MR-Rgs2, were destroyed by the Ac/N-end rule pathway, which recognizes N(α)-terminally acetylated (Nt-acetylated) proteins. The shortest-lived mutant, ML-Rgs2, was targeted by both the Ac/N-end rule and Arg/N-end rule pathways. The latter pathway recognizes unacetylated N-terminal residues. Thus, the Nt-acetylated Ac-MX-Rgs2 (X = Arg, Gln, Leu) proteins are specific substrates of the mammalian Ac/N-end rule pathway. Furthermore, the Ac/N-degron of Ac-MQ-Rgs2 was conditional, and Teb4, an endoplasmic reticulum (ER) membrane-embedded ubiquitin ligase, was able to regulate G protein signaling by targeting Ac-MX-Rgs2 proteins for degradation through their N(α)-terminal acetyl group.
Collapse
Affiliation(s)
- Sang-Eun Park
- Department of Life Sciences, Pohang University of Science and
Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Jeong-Mok Kim
- Department of Life Sciences, Pohang University of Science and
Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Ok-Hee Seok
- Department of Life Sciences, Pohang University of Science and
Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Hanna Cho
- Department of Life Sciences, Pohang University of Science and
Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Brandon Wadas
- Division of Biology and Biological Engineering, California Institute
of Technology, Pasadena, CA 91125, USA
| | - Seon-Young Kim
- Medical Genomics Research Center, KRIBB, Daejeon, South Korea
- Department of Functional Genomics, University of Science and
Technology, Daejeon, South Korea
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute
of Technology, Pasadena, CA 91125, USA
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and
Technology, Pohang, Gyeongbuk 790-784, South Korea
| |
Collapse
|
23
|
Gibbs DJ, Bacardit J, Bachmair A, Holdsworth MJ. The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends Cell Biol 2014; 24:603-11. [DOI: 10.1016/j.tcb.2014.05.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 12/30/2022]
|
24
|
Sukalo M, Fiedler A, Guzmán C, Spranger S, Addor MC, McHeik JN, Oltra Benavent M, Cobben JM, Gillis LA, Shealy AG, Deshpande C, Bozorgmehr B, Everman DB, Stattin EL, Liebelt J, Keller KM, Bertola DR, van Karnebeek CDM, Bergmann C, Liu Z, Düker G, Rezaei N, Alkuraya FS, Oğur G, Alrajoudi A, Venegas-Vega CA, Verbeek NE, Richmond EJ, Kirbiyik O, Ranganath P, Singh A, Godbole K, Ali FAM, Alves C, Mayerle J, Lerch MM, Witt H, Zenker M. Mutations in the human UBR1 gene and the associated phenotypic spectrum. Hum Mutat 2014; 35:521-31. [PMID: 24599544 DOI: 10.1002/humu.22538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/24/2014] [Indexed: 11/08/2022]
Abstract
Johanson-Blizzard syndrome (JBS) is a rare, autosomal recessive disorder characterized by exocrine pancreatic insufficiency, typical facial features, dental anomalies, hypothyroidism, sensorineural hearing loss, scalp defects, urogenital and anorectal anomalies, short stature, and cognitive impairment of variable degree. This syndrome is caused by a defect of the E3 ubiquitin ligase UBR1, which is part of the proteolytic N-end rule pathway. Herein, we review previously reported (n = 29) and a total of 31 novel UBR1 mutations in relation to the associated phenotype in patients from 50 unrelated families. Mutation types include nonsense, frameshift, splice site, missense, and small in-frame deletions consistent with the hypothesis that loss of UBR1 protein function is the molecular basis of JBS. There is an association of missense mutations and small in-frame deletions with milder physical abnormalities and a normal intellectual capacity, thus suggesting that at least some of these may represent hypomorphic UBR1 alleles. The review of clinical data of a large number of molecularly confirmed JBS cases allows us to define minimal clinical criteria for the diagnosis of JBS. For all previously reported and novel UBR1 mutations together with their clinical data, a mutation database has been established at LOVD.
Collapse
Affiliation(s)
- Maja Sukalo
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Srivastava AK, Schwartz CE. Intellectual disability and autism spectrum disorders: causal genes and molecular mechanisms. Neurosci Biobehav Rev 2014; 46 Pt 2:161-74. [PMID: 24709068 DOI: 10.1016/j.neubiorev.2014.02.015] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/30/2014] [Accepted: 02/12/2014] [Indexed: 12/19/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are the most common developmental disorders present in humans. Combined, they affect between 3 and 5% of the population. Additionally, they can be found together in the same individual thereby complicating treatment. The causative factors (genes, epigenetic and environmental) are quite varied and likely interact so as to further complicate the assessment of an individual patient. Nonetheless, much valuable information has been gained by identifying candidate genes for ID or ASD. Understanding the etiology of either ID or ASD is of utmost importance for families. It allows a determination of the risk of recurrence, the possibility of other comorbidity medical problems, the molecular and cellular nature of the pathobiology and hopefully potential therapeutic approaches.
Collapse
Affiliation(s)
- Anand K Srivastava
- J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC, USA
| | - Charles E Schwartz
- J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC, USA.
| |
Collapse
|
26
|
Singh A, Chaudhary N, Dhingra D, Sukalo M, Zenker M, Kapoor S. Johanson-Blizzard syndrome: hepatic and hematological features with novel genotype. Indian J Gastroenterol 2014; 33:82-4. [PMID: 24052374 DOI: 10.1007/s12664-013-0391-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 08/20/2013] [Indexed: 02/04/2023]
Abstract
Johanson-Blizzard syndrome (JBS); (OMIM: 243800) presents with features of malabsorption and dysmorphic features with onset of symptoms in infantile age group. The disorder was first described in the year 1971 with report of the first Indian case in 2004. We discuss two rare phenotypes (hepatitis and anemia) in a molecularly confirmed case of JBS.
Collapse
Affiliation(s)
- Ankur Singh
- Division of Genetics, Department of Pediatrics, Maulana Azad Medical College, New Delhi, 110 002, India
| | | | | | | | | | | |
Collapse
|
27
|
Kim HK, Kim RR, Oh JH, Cho H, Varshavsky A, Hwang CS. The N-terminal methionine of cellular proteins as a degradation signal. Cell 2013; 156:158-69. [PMID: 24361105 DOI: 10.1016/j.cell.2013.11.031] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 09/26/2013] [Accepted: 11/20/2013] [Indexed: 11/28/2022]
Abstract
The Arg/N-end rule pathway targets for degradation proteins that bear specific unacetylated N-terminal residues while the Ac/N-end rule pathway targets proteins through their N(α)-terminally acetylated (Nt-acetylated) residues. Here, we show that Ubr1, the ubiquitin ligase of the Arg/N-end rule pathway, recognizes unacetylated N-terminal methionine if it is followed by a hydrophobic residue. This capability of Ubr1 expands the range of substrates that can be targeted for degradation by the Arg/N-end rule pathway because virtually all nascent cellular proteins bear N-terminal methionine. We identified Msn4, Sry1, Arl3, and Pre5 as examples of normal or misfolded proteins that can be destroyed through the recognition of their unacetylated N-terminal methionine. Inasmuch as proteins bearing the Nt-acetylated N-terminal methionine residue are substrates of the Ac/N-end rule pathway, the resulting complementarity of the Arg/N-end rule and Ac/N-end rule pathways enables the elimination of protein substrates regardless of acetylation state of N-terminal methionine in these substrates.
Collapse
Affiliation(s)
- Heon-Ki Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Ryu-Ryun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Jang-Hyun Oh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hanna Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW In this article, we will consider the failure of thyroid hormone replacement therapy to normalize serum thyroid stimulating hormone concentrations. We will review circumstances and causes for failures, discuss pertinent unpublished personal cases of didactical value, and provide practical suggestions for providers encountering patients with similar presentations. RECENT FINDINGS Recent data are available on the benefit of novel formulations of levothyroxine therapy on malabsorption. SUMMARY Most frequently, reasons for ineffectiveness are noncompliance, inappropriate administration of levothyroxine, gastrointestinal disorders, and drug interactions. The diagnostic work-up should include careful history to elucidate the potential reasons for the ineffective therapy.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
29
|
Comyn SA, Chan GT, Mayor T. False start: cotranslational protein ubiquitination and cytosolic protein quality control. J Proteomics 2013; 100:92-101. [PMID: 23954725 DOI: 10.1016/j.jprot.2013.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 12/18/2022]
Abstract
UNLABELLED Maintaining proteostasis is crucial to cells given the toxic potential of misfolded proteins and aggregates. To this end, cells rely on a number of quality control pathways that survey proteins both during, as well as after synthesis to prevent protein aggregation, promote protein folding, and to target terminally misfolded proteins for degradation. In eukaryotes, the ubiquitin proteasome system plays a critical role in protein quality control by selectively targeting proteins for degradation. Recent studies have added to our understanding of cytosolic protein quality control, particularly in the area of cotranslational protein ubiquitination, and suggest that overlap exists across co- and post-translational protein quality control networks. Here, we review recent advances made in the area of cytoplasmic protein quality control with an emphasis on the pathways involved in cotranslational degradation of eukaryotic cytosolic proteins. BIOLOGICAL SIGNIFICANCE Protein homeostasis, or proteostasis, encompasses the systems required by the cell for the generation and maintenance of the correct levels, conformational state, distribution, and degradation of its proteome. One of the challenges faced by the cell in maintaining proteostasis is the presence of misfolded proteins. Cells therefore have a number of protein quality control pathways to aid in folding or mediate the degradation of misfolded proteins. The ubiquitin proteasome system in particular plays a critical role in protein quality control by selectively targeting proteins for degradation. Nascent polypeptides can be ubiquitinated cotranslationally, however to what extent and how this is used by the cell as a quality control mechanism has, until recently, remained relatively unclear. The picture now emerging is one of two quality control networks: one that recognizes nascent polypeptides on stalled ribosomes and another that targets actively translating polypeptides that misfold, failing to attain their native conformation. These studies underscore the important balance between cotranslational protein folding and degradation in the maintenance of protein homeostasis. In this review we summarize recent advances made in the area of cytoplasmic protein quality control with an emphasis on pathways involved in cotranslational degradation of eukaryotic cytosolic proteins. This article is part of a Special Issue entitled: Can Proteomics Fill the Gap Between Genomics and Phenotypes?
Collapse
Affiliation(s)
- Sophie A Comyn
- Department of Biochemistry and Molecular Biology, Center for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Gerard T Chan
- Department of Biochemistry and Molecular Biology, Center for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Center for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
30
|
|
31
|
Verma R, Oania RS, Kolawa NJ, Deshaies RJ. Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. eLife 2013; 2:e00308. [PMID: 23358411 PMCID: PMC3552423 DOI: 10.7554/elife.00308] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 12/21/2012] [Indexed: 12/20/2022] Open
Abstract
Ubiquitin-dependent proteolysis can initiate at ribosomes for myriad reasons including misfolding of a nascent chain or stalling of the ribosome during translation of mRNA. Clearance of a stalled complex is required to recycle the ribosome for future use. Here we show that the ubiquitin (Ub) pathway segregase Cdc48/p97 and its adaptors Ufd1-Npl4 participate in ribosome-associated degradation (RAD) by mediating the clearance of ubiquitinated, tRNA-linked nascent peptides from ribosomes. Through characterization of both endogenously-generated and heterologous model substrates for the RAD pathway, we conclude that budding yeast Cdc48 functions downstream of the Ub ligases Ltn1 and Ubr1 to release nascent proteins from the ribosome so that they can be degraded by the proteasome. Defective RAD could contribute to the pathophysiology of human diseases caused by mutations in p97. DOI:http://dx.doi.org/10.7554/eLife.00308.001 Ribosomes are complex molecular machines that translate the sequence of bases in a messenger RNA (mRNA) transcript into a polypeptide that subsequently folds to form a protein. Each ribosome is composed of two major subunits: the small subunit reads the mRNA transcript, and the large subunit joins amino acids together to form the polypeptide. This process stops when the ribosome encounters a stop codon and releases the completed polypeptide. It is critical that cells perform some form of quality control on the polypeptides as they are translated to prevent a build up of incomplete, incorrect or toxic proteins in cells. Problems can occur if a ribosome stalls while translating the mRNA transcript, or if the mRNA transcript is defective. For example, most mRNA transcripts contain a stop codon, but some do not, and these non-stop mRNA transcripts result in a non-stop polypeptide that remains tethered to the ribosome. It is important that the cell identifies and removes these faulty polypeptides so as to leave the ribosome free to translate other (non-faulty) mRNA transcripts. A regulatory protein called ubiquitin is responsible for marking and sending proteins that are faulty, or are no longer needed by the cell, to a molecular machine called the proteasome, where they are degraded by a process called proteolysis. In 2010 researchers identified Ltn1 as the enzyme that attaches ubiquitin to non-stop proteins in yeast. Now, building on this work, Verma et al. identify additional proteins involved in this process. In particular, an ATPase enzyme called Cdc48 (known as p97 or VCP in human cells) and two co-factors—Ufd1 and Npl4—promote release of the ubiquitinated non-stop polypeptides from the ribosomes, thus committing the marked polypeptide to destruction by the proteasome. Verma et al. also show that the Cdc48-Ufd1-Npl4 complex is involved in other aspects of quality control of newly synthesized proteins within cells. Collectively these processes are known as ribosome-associated degradation. Mutations of the gene that codes for human p97 can cause a number of diseases, including Paget's disease of the bone and frontotemporal dementia, so an improved understanding of ribosome-associated degradation could provide new insights into these diseases. DOI:http://dx.doi.org/10.7554/eLife.00308.002
Collapse
Affiliation(s)
- Rati Verma
- Division of Biology , California Institute of Technology , Pasadena , United States ; Howard Hughes Medical Institute, California Institute of Technology , Pasadena , United States
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
33
|
The N-end rule pathway counteracts cell death by destroying proapoptotic protein fragments. Proc Natl Acad Sci U S A 2012; 109:E1839-47. [PMID: 22670058 DOI: 10.1073/pnas.1207786109] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the course of apoptosis, activated caspases cleave ∼500 to ∼1,000 different proteins in a mammalian cell. The dynamics of apoptosis involve a number of previously identified, caspase-generated proapoptotic protein fragments, defined as those that increase the probability of apoptosis. In contrast to activated caspases, which can be counteracted by inhibitor of apoptosis proteins, there is little understanding of antiapoptotic responses to proapoptotic protein fragments. One possibility is the regulation of proapoptotic fragments through their selective degradation. The previously identified proapoptotic fragments Cys-RIPK1, Cys-TRAF1, Asp-BRCA1, Leu-LIMK1, Tyr-NEDD9, Arg-BID, Asp-BCL(XL), Arg-BIM(EL), Asp-EPHA4, and Tyr-MET bear destabilizing N-terminal residues. Tellingly, the destabilizing nature (but not necessarily the actual identity) of N-terminal residues of proapoptotic fragments was invariably conserved in evolution. Here, we show that these proapoptotic fragments are short-lived substrates of the Arg/N-end rule pathway. Metabolic stabilization of at least one such fragment, Cys-RIPK1, greatly augmented the activation of the apoptosis-inducing effector caspase-3. In agreement with this understanding, even a partial ablation of the Arg/N-end rule pathway in two specific N-end rule mutants is shown to sensitize cells to apoptosis. We also found that caspases can inactivate components of the Arg/N-end rule pathway, suggesting a mutual suppression between this pathway and proapoptotic signaling. Together, these results identify a mechanistically specific and functionally broad antiapoptotic role of the Arg/N-end rule pathway. In conjunction with other apoptosis-suppressing circuits, the Arg/N-end rule pathway contributes to thresholds that prevent a transient or otherwise weak proapoptotic signal from reaching the point of commitment to apoptosis.
Collapse
|
34
|
Abstract
Many intracellular proteins are metabolically unstable or can become unstable during their lifetime in a cell. The in vivo half-lives of specific proteins range from less than a minute to many days. Among the functions of intracellular proteolysis are the elimination of misfolded or otherwise abnormal proteins; maintenance of amino acid pools in cells affected by stresses such as starvation; and generation of protein fragments that act as hormones, antigens, or other effectors. One major function of proteolytic pathways is the selective destruction of proteins whose concentrations must vary with time and alterations in the state of a cell. Short in vivo half-lives of such proteins provide a way to generate their spatial gradients and to rapidly adjust their concentration or subunit composition through changes in the rate of their degradation. The regulated (and processive) degradation of intracellular proteins is carried out largely by the ubiquitin-proteasome system (Ub system), in conjunction with autophagy-lysosome pathways. Other contributors to intracellular proteolysis include cytosolic and nuclear proteases, such as caspases, calpains, and separases. They often function as "upstream" components of the Ub system, which destroys protein fragments that had been produced by these (nonprocessive) proteases. Ub, a 76-residue protein, mediates selective proteolysis through its enzymatic conjugation to proteins that contain primary degradation signals (degrons (1)), thereby marking such proteins for degradation by the 26S proteasome, an ATP-dependent multisubunit protease. Ub conjugation involves the formation of a poly-Ub chain that is linked (in most cases) to the ε-amino group of an internal Lys residue in a substrate protein. Ub is a "secondary" degron, in that Ub is conjugated to proteins that contain primary degradation signals.
Collapse
|