1
|
Doll-Nikutta K, Weber SC, Mikolai C, Denis H, Behrens W, Szafrański SP, Ehlert N, Stiesch M. Gradual Acidification at the Oral Biofilm-Implant Material Interface. J Dent Res 2025; 104:164-171. [PMID: 39629932 DOI: 10.1177/00220345241290147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
The colonization of dental implants by oral biofilms causes inflammatory reactions that can ultimately lead to implant loss. Therefore, safety-integrated implant surfaces are under development that aim to detect bacterial attachment at an early stage and subsequently release antibacterial compounds to prevent their accumulation. Since primary oral colonizers ferment carbohydrates leading to local acidification, pH is considered a promising trigger for these surfaces. As a prerequisite for such systems, the present study aimed at specifically analyzing the pH at the interface between implant material and oral biofilms. For this purpose, in vitro-grown Streptococcus oralis monospecies biofilms and an established multispecies biofilm on titanium discs as well as in situ-grown biofilms from orally exposed titanium-equipped splints were used. Mature biofilm morphology was characterized by live/dead fluorescence staining, revealing improved growth from in vitro to in situ biofilms as well as a general decreasing membrane permeability over time due to the static incubation conditions. For pH analysis, the pH-sensitive dye C-SNARF-4 combined with 3-dimensional imaging by confocal laser-scanning microscopy and digital image analysis were used to detect extracellular pH values in different biofilm layers. All mature biofilms showed a pH gradient, with the lowest values at the material interface. Interestingly, the exact values depicted a time- and nutrient-dependent gradual acidification independently of the biofilm source and for in situ biofilms also independently of the sample donor. After short incubation times, a mild acidification to approximately pH 6.3 could be observed. But when sufficient nutrients were processed for a longer period of time, acidification intensified, leading to approximately pH 5.0. This not only defines the required turning point of pH-triggered implant release systems but also reveals the opportunity for a tailored release at different stages of biofilm formation.
Collapse
Affiliation(s)
- K Doll-Nikutta
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - S C Weber
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - C Mikolai
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - H Denis
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - W Behrens
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - S P Szafrański
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - N Ehlert
- Institute of Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - M Stiesch
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
2
|
Chi H, Wu W, Bao H, Wu Y, Hu N. Self-Driven Janus Ga/Mg Micromotors for Reducing Deep Bacterial Infection in the Treatment of Periodontitis. Adv Healthc Mater 2024:e2404303. [PMID: 39648545 DOI: 10.1002/adhm.202404303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/28/2024] [Indexed: 12/10/2024]
Abstract
A self-propulsion Janus gallium (Ga)/magnesium (Mg) bimetallic micromotor is designed with favorable biocompatibility and antimicrobial properties as a therapeutic strategy for periodontitis. The Janus Ga/Mg micromotors are fabricated by microcontact printing technique to asymmetrically modify liquid metallic gallium onto magnesium microspheres. Hydrogen bubbles produced by the magnesium-water reaction can provide the driving performance of up to 31.03 µm s-1 (pH 6.8), prompting the micromotor to actively breakthrough the biological barrier of saliva and gingival crevice fluid (GCF) into the bottom of periodontal pockets. In addition, the Janus Ga/Mg micromotors are effectively converted by degradation into the built-in antimicrobial ion Ga(III) to eliminate deep-seated Porphyromonas gingivalis (P.gingivalis), with bactericidal efficiencies of over 99.8%. The developed Janus Ga/Mg micromotors have demonstrated potent antimicrobial and anti-inflammatory activity both in vitro and in vivo studies. Crucially, it reduces alveolar bone resorption, demonstrating the superior efficacy of liquid metal gallium in treating periodontitis. Therefore, Ga/Mg bimetallic micromotors hold great promise to be an innovative and translational drug delivery system to treat periodontitis or other inflammation-related diseases in the near future.
Collapse
Affiliation(s)
- Hang Chi
- Hard Tissue Development and Regeneration Laboratory, Harbin Medical University, Harbin, 150086, China
| | - Wei Wu
- Hard Tissue Development and Regeneration Laboratory, Harbin Medical University, Harbin, 150086, China
| | - Hongxia Bao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Narisu Hu
- Hard Tissue Development and Regeneration Laboratory, Harbin Medical University, Harbin, 150086, China
- Oral Implant Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| |
Collapse
|
3
|
Meyer F, Schulze zur Wiesche E, Amaechi BT, Limeback H, Enax J. Caries Etiology and Preventive Measures. Eur J Dent 2024; 18:766-776. [PMID: 38555649 PMCID: PMC11290927 DOI: 10.1055/s-0043-1777051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Caries is a widespread disease in both children and adults. Caries is caused by the conversion of fermentable carbohydrates by plaque bacteria into acids on the tooth surface. Thus, it is important to focus on sugar reduction and plaque control. For efficient plaque removal/control, state-of-the-art toothpastes contain various active ingredients such as antimicrobial agents (e.g., chlorhexidine, stannous salts, and zinc salts), abrasives (e.g., calcium carbonate, calcium phosphates, and hydrated silica), surfactants (e.g., sodium lauryl sulfate and sodium methyl cocoyl taurate), and natural compounds (e.g., polyphenols and xylitol). Agents with pH-buffering and calcium-releasing properties (e.g., calcium carbonate and calcium phosphates) and biomimetic actives (e.g., hydroxyapatite) reverse the effects of the acids. Additionally, modern toothbrushes (i.e., electric toothbrushes) as well as dental floss and interdental brushes significantly help remove plaque from dental surfaces including interproximal surfaces. In conclusion, modern concepts in caries prevention should focus not only on tooth remineralization alone but also on the control of all the key factors involved in caries development.
Collapse
Affiliation(s)
- Frederic Meyer
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | | | - Bennett T. Amaechi
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas, United States
| | - Hardy Limeback
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| |
Collapse
|
4
|
Kristensen MF, Lund MB, Schramm A, Lau EF, Schlafer S. Determinants of Microscale pH in In Situ-Grown Dental Biofilms. J Dent Res 2023; 102:1348-1355. [PMID: 37697830 DOI: 10.1177/00220345231190563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Dental biofilm pH is the most important determinant of virulence for the development of caries lesions. Confocal microscopy-based pH ratiometry allows monitoring biofilm pH with high spatial resolution. Experiments performed on simplified biofilm models under static conditions identified steep pH gradients as well as localized acidogenic foci that promote enamel demineralization. The present work used pH ratiometry to perform a comprehensive analysis of the effect of whole saliva flow on the microscale pH in complex, in situ-grown 48-h and 96-h biofilms (n = 54) from 9 healthy participants. pH was monitored in 12 areas at the biofilm bottom and top, and saliva flow with film thicknesses corresponding to those in the oral cavity was provided by an additively manufactured microfluidic flow cell. Biofilm pH was correlated to the bacterial composition, as determined by 16S rRNA gene sequencing. Biofilm acidogenicity varied considerably between participants and individual biofilms but also between different areas inside one biofilm, with pH gradients of up to 2 units. pH drops were more pronounced in 96-h than in 48-h biofilms (P = 0.0121) and virtually unaffected by unstimulated saliva flow (0.8 mm/min). Stimulated flow (8 mm/min) raised average biofilm pH to near-neutral values but it did not equilibrate vertical and horizontal pH gradients in the biofilms. pH was significantly lower at the biofilm base than at the top (P < 0.0001) and lower downstream than upstream (P = 0.0046), due to an accumulation of acids along the flow path. pH drops were positively correlated with biofilm thickness and negatively with the thickness of the saliva film covering the biofilm. Bacterial community composition was significantly different between biofilms with strong and weak pH responses but not their species richness. The present experimental study demonstrates that stimulated saliva flow, saliva film thickness, biofilm age, biofilm thickness, and bacterial composition are important modulators of microscale pH in dental biofilms.
Collapse
Affiliation(s)
- M F Kristensen
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - M B Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - A Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - E Frandsen Lau
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - S Schlafer
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Chen B, Liu H, Wang Z, Ma J, Shen Y. Effects of DJK-5 and chlorhexidine on exopolysaccharide volume and pH in oral biofilms. BMC Oral Health 2023; 23:705. [PMID: 37777729 PMCID: PMC10544135 DOI: 10.1186/s12903-023-03381-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/01/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Exopolysaccharides (EPS) are essential constituents of the extracellular matrix within oral biofilms and are significantly influenced by the local microenvironment. This study aimed to investigate the impact of two distinct antimicrobial agents, DJK-5 and chlorhexidine (CHX), on the EPS volume and pH levels in oral biofilms. METHODS Oral biofilms obtained from two donors were cultured on hydroxyapatite discs for durations of 3 days, 1 week, 2 weeks, 3 weeks, and 4 weeks. Subsequently, these biofilms were subjected to treatment with 10 µg/mL DJK-5 or 2% CHX for 3 min. The impact of these antimicrobial treatments on factors such as the proportion of dead bacterial, in situ pH, and EPS volume within the biofilms was assessed using corresponding fluorescent probes. The examination was carried out utilizing confocal laser scanning microscopy, and the resulting images were analyzed with a focus on the upper and lower layers of the biofilm, respectively. RESULTS DJK-5 exhibited a more potent bactericidal effect compared to CHX across the 3-day to 4-week duration of the biofilm (P < 0.05). The biofilms were acidic, with the upper layer being less acidic than the lower layer (P < 0.05). Both antimicrobial agents increased the pH, but DJK-5 had a greater effect than CHX (P < 0.05). The volume of EPS was significantly lower in DJK-5 treated biofilms compared to that of CHX, regardless of age or layer (P < 0.05). CONCLUSION DJK-5 exhibited superior effectiveness in reducing viable bacteria and EPS volume, as well as in raising extracellular pH, as compared to chlorhexidine.
Collapse
Affiliation(s)
- Binwen Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - He Liu
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Zhejun Wang
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| | - Ya Shen
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
6
|
He Y, Vasilev K, Zilm P. pH-Responsive Biomaterials for the Treatment of Dental Caries-A Focussed and Critical Review. Pharmaceutics 2023; 15:1837. [PMID: 37514024 PMCID: PMC10385394 DOI: 10.3390/pharmaceutics15071837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Dental caries is a common and costly multifactorial biofilm disease caused by cariogenic bacteria that ferment carbohydrates to lactic acid, demineralizing the inorganic component of teeth. Therefore, low pH (pH 4.5) is a characteristic signal of the localised carious environment, compared to a healthy oral pH range (6.8 to 7.4). The development of pH-responsive delivery systems that release antibacterial agents in response to low pH has gained attention as a targeted therapy for dental caries. Release is triggered by high levels of acidogenic species and their reduction may select for the establishment of health-associated biofilm communities. Moreover, drug efficacy can be amplified by the modification of the delivery system to target adhesion to the plaque biofilm to extend the retention time of antimicrobial agents in the oral cavity. In this review, recent developments of different pH-responsive nanocarriers and their biofilm targeting mechanisms are discussed. This review critically discusses the current state of the art and innovations in the development and use of smart delivery materials for dental caries treatment. The authors' views for the future of the field are also presented.
Collapse
Affiliation(s)
- Yanping He
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
7
|
Zheng A, Wang X, Xin X, Peng L, Su T, Cao L, Jiang X. Promoting lacunar bone regeneration with an injectable hydrogel adaptive to the microenvironment. Bioact Mater 2023; 21:403-421. [PMID: 36185741 PMCID: PMC9483602 DOI: 10.1016/j.bioactmat.2022.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/07/2022] [Accepted: 08/14/2022] [Indexed: 11/25/2022] Open
Abstract
Injectable hydrogel is suitable for the repair of lacunar bone deficiency. This study fabricated an injectable, self-adaptive silk fibroin/mesoporous bioglass/sodium alginate (SMS) composite hydrogel system. With controllable and adjustable physical and chemical properties, the SMS hydrogel could be easily optimized adaptively to different clinical applications. The SMS hydrogel effectively showed great injectability and shapeability, allowing defect filling with no gap. Moreover, the SMS hydrogel displayed self-adaptability in mechanical reinforcement and degradation, responsive to the concentration of Ca2+ and inflammatory-like pH value in the microenvironment of bone deficiency, respectively. In vitro biological studies indicated that SMS hydrogel could promote osteogenic differentiation of bone marrow mesenchymal stem cells by activation of the MAPK signaling pathway. The SMS hydrogel also could improve migration and tube formation of human umbilical vein endothelial cells. Investigations of the crosstalk between osteoblasts and macrophages confirmed that SMS hydrogel could regulate macrophage polarization from M1 to M2, which could create a specific favorable environment to induce new bone formation and angiogenesis. Meanwhile, SMS hydrogel was proved to be antibacterial, especially for gram-negative bacteria. Furthermore, in vivo study indicated that SMS could be easily applied for maxillary sinus elevation, inducing sufficient new bone formation. Thus, it is convincing that SMS hydrogel could be potent in a simple, minimally invasive and efficient treatment for the repair of lacunar bone deficiency. Mesoporous bioglass was used as the crosslinking agent and in-situ porogen to form a porous injectable hydrogel. The composite hydrogel had suitable injectability and self-adaptability for lacunar bone regeneration. The composite hydrogel can simultaneously regulate macrophage polarization and osteogenic differentiation.
Collapse
|
8
|
Behbahani SB, Kiridena SD, Wijayaratna UN, Taylor C, Anker JN, Tzeng TRJ. pH variation in medical implant biofilms: Causes, measurements, and its implications for antibiotic resistance. Front Microbiol 2022; 13:1028560. [PMID: 36386694 PMCID: PMC9659913 DOI: 10.3389/fmicb.2022.1028560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023] Open
Abstract
The advent of implanted medical devices has greatly improved the quality of life and increased longevity. However, infection remains a significant risk because bacteria can colonize device surfaces and form biofilms that are resistant to antibiotics and the host's immune system. Several factors contribute to this resistance, including heterogeneous biochemical and pH microenvironments that can affect bacterial growth and interfere with antibiotic biochemistry; dormant regions in the biofilm with low oxygen, pH, and metabolites; slow bacterial growth and division; and poor antibody penetration through the biofilm, which may also be regions with poor acid product clearance. Measuring pH in biofilms is thus key to understanding their biochemistry and offers potential routes to detect and treat latent infections. This review covers the causes of biofilm pH changes and simulations, general findings of metabolite-dependent pH gradients, methods for measuring pH in biofilms, effects of pH on biofilms, and pH-targeted antimicrobial-based approaches.
Collapse
Affiliation(s)
| | | | | | - Cedric Taylor
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Jeffrey N. Anker
- Department of Chemistry, Clemson University, Clemson, SC, United States
| | | |
Collapse
|
9
|
Nguyen AT, Goswami S, Ferracane J, Koley D. Real-time monitoring of the pH microenvironment at the interface of multispecies biofilm and dental composites. Anal Chim Acta 2022; 1201:339589. [PMID: 35300800 PMCID: PMC9167049 DOI: 10.1016/j.aca.2022.339589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Bacterial-mediated local pH change plays an important role in altering the integrity of resin dental composite materials in a dynamic environment such as the oral cavity. To address this, we developed a 300-μm-diameter, flexible, solid-state potentiometric pH microsensor capable of detecting and quantifying the local pH microenvironment at the interface of multispecies biofilm and dental resin in real time over 10 days. We used fluorinated poly(3,4-ethylenedioxythiophene) as the back contact in our newly developed pH sensor, along with a PVC-based ion-selective membrane and PTFE-AF coating. The high temporal resolution pH data demonstrated pH changes from 7 to 6 and 7 to 5.8 for the first 2 days and then fluctuated between 6.5 to 6 and 6 to 5.5 for the remaining 8 days with the resin composite or glass slide substrate respectively. We could observe the fluctuations in pH mediated by lactic acid production within the biofilm and the re-establishment of pH back to 7. However, acid production started to overwhelm buffering capacity with the continuous feed of sucrose cycles and reduced the local pH nearer to 5.5. No such changes or fluctuations were observed above the biofilm, as the pH remained at 7.0 ± 0.2 for 10 days. The localized real-time monitoring of the pH within the biofilm showed that the pH shift underneath the biofilm could lead to damage to the underlying material and their interface but cannot be sensed external to the biofilm.
Collapse
|
10
|
Wang Z, Liu X, Duan Y, Huang Y. Infection microenvironment-related antibacterial nanotherapeutic strategies. Biomaterials 2021; 280:121249. [PMID: 34801252 DOI: 10.1016/j.biomaterials.2021.121249] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
The emergence and spread of antibiotic resistance is one of the biggest challenges in public health. There is an urgent need to discover novel agents against the occurrence of multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. The drug-resistant pathogens are able to grow and persist in infected sites, including biofilms, phagosomes, or phagolysosomes, which are more difficult to eradicate than planktonic ones and also foster the development of drug resistance. For years, various nano-antibacterial agents have been developed in the forms of antibiotic nanocarriers. Inorganic nanoparticles with intrinsic antibacterial activity and inert nanoparticles assisted by external stimuli, including heat, photon, magnetism, or sound, have also been discovered. Many of these strategies are designed to target the unique microenvironment of bacterial infections, which have shown potent antibacterial effects in vitro and in vivo. This review summarizes ongoing efforts on antibacterial nanotherapeutic strategies related to bacterial infection microenvironments, including targeted antibacterial therapy and responsive antibiotic delivery systems. Several grand challenges and future directions for the development and translation of effective nano-antibacterial agents are also discussed. The development of innovative nano-antibacterial agents could provide powerful weapons against drug-resistant bacteria in systemic or local bacterial infections in the foreseeable future.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Xingyun Liu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan, 410011, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| |
Collapse
|
11
|
Kristensen MF, Frandsen Lau E, Schlafer S. Ratiometric imaging of extracellular pH in Streptococcus mutans biofilms exposed to different flow velocities and saliva film thicknesses. J Oral Microbiol 2021; 13:1949427. [PMID: 34349890 PMCID: PMC8291056 DOI: 10.1080/20002297.2021.1949427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction: Fluid flow has a prominent influence on the metabolism of surface-attached biofilms. Dental biofilms are covered by a thin saliva film that flows at different rates in different locations under stimulated and unstimulated conditions. Methods:The present study employed pH ratiometry to study the impact of different flow velocities, saliva film thicknesses and saliva concentrations on microscale pH developments in Streptococcus mutans biofilms of different age. Results:While saliva flow at a velocity of 0.8 mm/min (unstimulated flow) had little impact on biofilm pH, stimulated flow (8 mm/min; 80 mm/min) affected vertical pH gradients in the biofilms and raised the average pH in 48-h biofilms, but not in 72-h and 168-h biofilms. The saliva film thickness had a strong impact on biofilm pH under both static and dynamic conditions. pH drops were significantly higher in biofilms exposed to a thin saliva film (≤ 50 µm) than a thick saliva film (> 50 µm). pH drops in the biofilms were also strongly dependent on the saliva concentration and thus the buffer capacity of the salivary medium. For 48-h and 72-h biofilms, but not for 168-h biofilms, pH drops in distinct microenvironments were more pronounced when the local biofilm thickness was high.
Collapse
Affiliation(s)
| | - Ellen Frandsen Lau
- Section for Periodontology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Sebastian Schlafer
- Department of Dentistry and oral health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Ostadhossein F, Moitra P, Altun E, Dutta D, Sar D, Tripathi I, Hsiao SH, Kravchuk V, Nie S, Pan D. Function-adaptive clustered nanoparticles reverse Streptococcus mutans dental biofilm and maintain microbiota balance. Commun Biol 2021; 4:846. [PMID: 34267305 PMCID: PMC8282845 DOI: 10.1038/s42003-021-02372-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/16/2021] [Indexed: 01/16/2023] Open
Abstract
Dental plaques are biofilms that cause dental caries by demineralization with acidogenic bacteria. These bacteria reside inside a protective sheath which makes any curative treatment challenging. We propose an antibiotic-free strategy to disrupt the biofilm by engineered clustered carbon dot nanoparticles that function in the acidic environment of the biofilms. In vitro and ex vivo studies on the mature biofilms of Streptococcus mutans revealed >90% biofilm inhibition associated with the contact-mediated interaction of nanoparticles with the bacterial membrane, excessive reactive oxygen species generation, and DNA fragmentation. An in vivo examination showed that these nanoparticles could effectively suppress the growth of S. mutans. Importantly, 16S rRNA analysis of the dental microbiota showed that the diversity and richness of bacterial species did not substantially change with nanoparticle treatment. Overall, this study presents a safe and effective approach to decrease the dental biofilm formation without disrupting the ecological balance of the oral cavity.
Collapse
Affiliation(s)
- Fatemeh Ostadhossein
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Parikshit Moitra
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, Health Sciences Facility III, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Esra Altun
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Debapriya Dutta
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Dinabandhu Sar
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Indu Tripathi
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Shih-Hsuan Hsiao
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Valeriya Kravchuk
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Shuming Nie
- Departments of Bioengineering, Carle Illinois College of Medicine, Beckman Institute, Department of Chemistry, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA.
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, Health Sciences Facility III, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA.
- Department of Diagnostic Radiology and Nuclear Medicine, Health Sciences Facility III, University of Maryland Baltimore, Baltimore, MD, USA.
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, Baltimore, MD, USA.
| |
Collapse
|
13
|
Hollmann B, Perkins M, Chauhan VM, Aylott JW, Hardie KR. Fluorescent nanosensors reveal dynamic pH gradients during biofilm formation. NPJ Biofilms Microbiomes 2021; 7:50. [PMID: 34140515 PMCID: PMC8211749 DOI: 10.1038/s41522-021-00221-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the dynamic environmental microniches of biofilms will permit us to detect, manage and exploit these communities. The components and architecture of biofilms have been interrogated in depth; however, little is known about the environmental microniches present. This is primarily because of the absence of tools with the required measurement sensitivity and resolution to detect these changes. We describe the application of ratiometric fluorescent pH-sensitive nanosensors, as a tool, to observe physiological pH changes in biofilms in real time. Nanosensors comprised two pH-sensitive fluorophores covalently encapsulated with a reference pH-insensitive fluorophore in an inert polyacrylamide nanoparticle matrix. The nanosensors were used to analyse the real-time three-dimensional pH variation for two model biofilm formers: (i) opportunistic pathogen Pseudomonas aeruginosa and (ii) oral pathogen Streptococcus mutans. The detection of sugar metabolism in real time by nanosensors provides a potential application to identify therapeutic solutions to improve oral health.
Collapse
Affiliation(s)
- Birte Hollmann
- Biodiscovery Institute, School of Life Sciences, University Park, University of Nottingham, Nottingham, UK
- Advanced Materials & Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Mark Perkins
- Biodiscovery Institute, School of Life Sciences, University Park, University of Nottingham, Nottingham, UK
- Advanced Materials & Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Veeren M Chauhan
- Advanced Materials & Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Jonathan W Aylott
- Advanced Materials & Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Kim R Hardie
- Biodiscovery Institute, School of Life Sciences, University Park, University of Nottingham, Nottingham, UK.
| |
Collapse
|
14
|
Mosselhy DA, Assad M, Sironen T, Elbahri M. Nanotheranostics: A Possible Solution for Drug-Resistant Staphylococcus aureus and their Biofilms? NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E82. [PMID: 33401760 PMCID: PMC7824312 DOI: 10.3390/nano11010082] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a notorious pathogen that colonizes implants (orthopedic and breast implants) and wounds with a vicious resistance to antibiotic therapy. Methicillin-resistant S. aureus (MRSA) is a catastrophe mainly restricted to hospitals and emerged to community reservoirs, acquiring resistance and forming biofilms. Treating biofilms is problematic except via implant removal or wound debridement. Nanoparticles (NPs) and nanofibers could combat superbugs and biofilms and rapidly diagnose MRSA. Nanotheranostics combine diagnostics and therapeutics into a single agent. This comprehensive review is interpretative, utilizing mainly recent literature (since 2016) besides the older remarkable studies sourced via Google Scholar and PubMed. We unravel the molecular S. aureus resistance and complex biofilm. The diagnostic properties and detailed antibacterial and antibiofilm NP mechanisms are elucidated in exciting stories. We highlight the challenges of bacterial infections nanotheranostics. Finally, we discuss the literature and provide "three action appraisals". (i) The first appraisal consists of preventive actions (two wings), avoiding unnecessary hospital visits, hand hygiene, and legislations against over-the-counter antibiotics as the general preventive wing. Our second recommended preventive wing includes preventing the adverse side effects of the NPs from resistance and toxicity by establishing standard testing procedures. These standard procedures should provide breakpoints of bacteria's susceptibility to NPs and a thorough toxicological examination of every single batch of synthesized NPs. (ii) The second appraisal includes theranostic actions, using nanotheranostics to diagnose and treat MRSA, such as what we call "multifunctional theranostic nanofibers. (iii) The third action appraisal consists of collaborative actions.
Collapse
Affiliation(s)
- Dina A. Mosselhy
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
- Microbiological Unit, Fish Diseases Department, Animal Health Research Institute, Dokki, Giza 12618, Egypt
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland;
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Mhd Assad
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland;
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Mady Elbahri
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
- Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Center for Nanotechnology, Zewail City of Science and Technology, Sheikh Zayed District, Giza 12588, Egypt
| |
Collapse
|
15
|
Argandoña Valdez RM, Ximenez-Fyvie LA, Caiaffa KS, Rodrigues Dos Santos V, Gonzales Cervantes RM, Almaguer-Flores A, Duque C. Antagonist effect of probiotic bifidobacteria on biofilms of pathogens associated with periodontal disease. Microb Pathog 2020; 150:104657. [PMID: 33278515 DOI: 10.1016/j.micpath.2020.104657] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022]
Abstract
The in vitro antagonist growth effect of bifidobacteria were evaluated on periodontal bacteria. Bifidobacterium longum, Bifidobacterium lactis and Bifidobacterium infantis biofilms were grown in single, double or triple combinations with putative periodontal pathogens P. gingivalis and F. nucleatum or beneficial bacteria S. oralis for 24, 72 and 168 h and the total counts were analyzed by checkerboard DNA-DNA hybridization. The results showed that B. infantis and B. lactis, as single species, demonstrated the best antagonist effect on F. nucleatum and P. gingivalis and no influence on S. oralis growth at 168 h. All the double combinations of bifidobacteria tested demonstrated an inhibitory effect on F. nucleatum (72 h) and P. gingivalis (168 h) and did not affect S. oralis counts at any time. In conclusion, B. lactis and B. infantis alone or in double combinations have antagonist effect on periodontopathogens biofilms, at different time points, and minimal influence on S. oralis growth.
Collapse
Affiliation(s)
- Remberto Marcelo Argandoña Valdez
- São Paulo State University (UNESP), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, Araçatuba, São Paulo, Brazil.
| | - Laurie Ann Ximenez-Fyvie
- Universidad Nacional Autónoma de México, Faculty of Dentistry, Department of Postgraduate Studies and Research, Ciudad Universitaria, México D.F., Mexico.
| | - Karina Sampaio Caiaffa
- São Paulo State University (UNESP), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, Araçatuba, São Paulo, Brazil.
| | - Vanessa Rodrigues Dos Santos
- São Paulo State University (UNESP), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, Araçatuba, São Paulo, Brazil.
| | - Rina Maria Gonzales Cervantes
- Universidad Autónoma Metropolitana, División de Ciencias Biológicas y de la Salud, Unidad Lerma, México D.F., Mexico.
| | - Argelia Almaguer-Flores
- Universidad Nacional Autónoma de México, Faculty of Dentistry, Department of Postgraduate Studies and Research, Ciudad Universitaria, México D.F., Mexico.
| | - Cristiane Duque
- São Paulo State University (UNESP), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
16
|
Kristensen MF, Leonhardt D, Neland MLB, Schlafer S. A 3D printed microfluidic flow-cell for microscopy analysis of in situ-grown biofilms. J Microbiol Methods 2020; 171:105876. [PMID: 32087186 DOI: 10.1016/j.mimet.2020.105876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Biofilm phenomena ranging from metabolic processes to attachment, detachment and quorum sensing are influenced by the fluid flow across the biofilm. A number of commercially available flow-cells allow for microscopy analysis of laboratory biofilms under flow, but there is a lack of shear controlled microfluidic devices that accommodate biofilms grown in situ on carriers or tissue samples. Therefore, we developed a flow-cell with adjustable geometry for microscopy analysis of in situ-grown biofilm samples under shear-controlled flow. The flow-cells were designed as one-piece disposable models, 3D-printed in resin and sealed with a coverslip after insertion of the biofilm sample. As a proof of concept, we studied the impact of stimulated saliva flow on pH developments in in situ-grown dental biofilms exposed to sucrose. Under static conditions, pH dropped in the biofilms, with pronounced differences between individual biofilms, but also between different microscopic fields of view within one biofilm. pH in the top layer of the biofilms tended to be lower than pH in the bottom layer. Under conditions of stimulated saliva flow (5 mm/min), pH rose to neutral or slightly alkaline values in all biofilms, and the vertical gradients were reversed, with the biofilm bottom becoming more acidic than the top. Hence, the present work demonstrates the importance of flow for the study of pH in dental biofilms.
Collapse
Affiliation(s)
- Mathilde Frost Kristensen
- Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark..
| | - Dirk Leonhardt
- Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark..
| | | | - Sebastian Schlafer
- Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark..
| |
Collapse
|
17
|
Brown JL, Johnston W, Delaney C, Short B, Butcher MC, Young T, Butcher J, Riggio M, Culshaw S, Ramage G. Polymicrobial oral biofilm models: simplifying the complex. J Med Microbiol 2019; 68:1573-1584. [PMID: 31524581 DOI: 10.1099/jmm.0.001063] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past century, numerous studies have used oral biofilm models to investigate growth kinetics, biofilm formation, structure and composition, antimicrobial susceptibility and host-pathogen interactions. In vivo animal models provide useful models of some oral diseases; however, these are expensive and carry vast ethical implications. Oral biofilms grown or maintained in vitro offer a useful platform for certain studies and have the advantages of being inexpensive to establish and easy to reproduce and manipulate. In addition, a wide range of variables can be monitored and adjusted to mimic the dynamic environmental changes at different sites in the oral cavity, such as pH, temperature, salivary and gingival crevicular fluid flow rates, or microbial composition. This review provides a detailed insight for early-career oral science researchers into how the biofilm models used in oral research have progressed and improved over the years, their advantages and disadvantages, and how such systems have contributed to our current understanding of oral disease pathogenesis and aetiology.
Collapse
Affiliation(s)
- Jason L Brown
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - William Johnston
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Christopher Delaney
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Bryn Short
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Mark C Butcher
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Tracy Young
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - John Butcher
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK.,Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Marcello Riggio
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Shauna Culshaw
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
18
|
Niu J, Guo J, Ding R, Li X, Li Y, Xiao D, Zhou C. An electrospun fibrous platform for visualizing the critical pH point inducing tooth demineralization. J Mater Chem B 2019. [DOI: 10.1039/c9tb00392d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The BCG–PS/PVP electrospun fibrous membrane can rapidly, sensitively and conveniently sense the critical pH point of 5.5 of dental caries.
Collapse
Affiliation(s)
- Jingjing Niu
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Jia Guo
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Ruolin Ding
- West China School of Stomatology
- Sichuan University
- Chengdu
- China
| | - Xiaoling Li
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Dan Xiao
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Cuisong Zhou
- College of Chemistry
- Sichuan University
- Chengdu
- China
| |
Collapse
|
19
|
Genomic, Phenotypic, and Virulence Analysis of Streptococcus sanguinis Oral and Infective-Endocarditis Isolates. Infect Immun 2018; 87:IAI.00703-18. [PMID: 30396893 DOI: 10.1128/iai.00703-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
Streptococcus sanguinis, an abundant and benign inhabitant of the oral cavity, is an important etiologic agent of infective endocarditis (IE), particularly in people with predisposing cardiac valvular damage. Although commonly isolated from patients with IE, little is known about the factors that make any particular S. sanguinis isolate more virulent than another or, indeed, whether significant differences in virulence exist among isolates. In this study, we compared the genomes of a collection of S. sanguinis strains comprised of both oral isolates and bloodstream isolates from patients diagnosed with IE. Oral and IE isolates could not be distinguished by phylogenetic analyses, and we did not succeed in identifying virulence genes unique to the IE strains. We then investigated the virulence of these strains in a rabbit model of IE using a variation of the Bar-seq (barcode sequencing) method wherein we pooled the strains and used Illumina sequencing to count unique barcodes that had been inserted into each isolate at a conserved intergenic region. After we determined that several of the genome sequences were misidentified in GenBank, our virulence results were used to inform our bioinformatic analyses, identifying genes that may explain the heterogeneity in virulence. We further characterized these strains by assaying for phenotypes potentially contributing to virulence. Neither strain competition via bacteriocin production nor biofilm formation showed any apparent relationship with virulence. Increased cell-associated manganese was, however, correlated with blood isolates. These results, combined with additional phenotypic assays, suggest that S. sanguinis virulence is highly variable and results from multiple genetic factors.
Collapse
|
20
|
In Vitro Community Synergy between Bacterial Soil Isolates Can Be Facilitated by pH Stabilization of the Environment. Appl Environ Microbiol 2018; 84:AEM.01450-18. [PMID: 30143509 DOI: 10.1128/aem.01450-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/19/2018] [Indexed: 01/01/2023] Open
Abstract
The composition and development of naturally occurring microbial communities are defined by a complex interplay between the community and the surrounding environment and by interactions between community members. Intriguingly, these interactions can in some cases cause synergies, where the community is able to outperform its single-species constituents. However, the underlying mechanisms driving community interactions are often unknown and difficult to identify due to high community complexity. Here, we show how opposite pH drift induced by specific community members leads to pH stabilization of the microenvironment, acting as a positive interspecies interaction, driving in vitro community synergy in a model consortium of four coisolated soil bacteria, Microbacterium oxydans, Xanthomonas retroflexus, Stenotrophomonas rhizophila, and Paenibacillus amylolyticus We use microsensor pH measurements to show how individual species change the local pH microenvironment and how cocultivation leads to a stabilized pH regime over time. Specifically, in vitro acid production from P. amylolyticus and alkali production primarily from X. retroflexus led to an overall pH stabilization of the local environment over time, which in turn resulted in enhanced community growth. This specific type of interspecies interaction was found to be highly dependent on medium type and concentration; however, similar pH drift from the individual species could be observed across medium variants.IMPORTANCE Understanding interspecies interactions in bacterial communities is important for unraveling species dynamics in naturally occurring communities. These dynamics are fundamental for identifying evolutionary drivers and for the development of efficient biotechnological industry applications. Recently, pH interplay among community members has been identified as a factor affecting community development, and pH stabilization has been demonstrated to result in enhanced community growth. The use of model communities in which the effect of changing pH level can be attributed to specific species contributes to the investigation of community developmental drivers. This contributes to assessment of the extent of emergent behavior and members' contributions to community development. Here, we show that pH stabilization of the microenvironment in vitro in a synthetic coisolated model community results in synergistic growth. This observation adds to the growing diversity of community interactions leading to enhanced community growth and hints toward pH as a strong driver for community development in diverse environments.
Collapse
|
21
|
Schlafer S, Baelum V, Dige I. Improved pH-ratiometry for the three-dimensional mapping of pH microenvironments in biofilms under flow conditions. J Microbiol Methods 2018; 152:194-200. [PMID: 30144480 DOI: 10.1016/j.mimet.2018.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
Confocal microscopy-based monitoring of pH in biofilms is gaining increasing interest, as it allows for a quick assessment of horizontal pH gradients without mechanically perturbing the biofilm. Ratiometric monitoring of pH with the fluorescent dye C-SNARF-4 has been used to reliably map extracellular pH in the basal layers of biofilms, but only under static conditions. Here, we expand this methodology to measurements of vertical gradients in multispecies in vitro-grown and in situ-grown dental biofilms of different age, and to pH measurements in in vitro-grown biofilms under flow conditions. After static incubation with glucose, young in vitro-grown biofilms (30h) were more acidogenic than older biofilms (120h). However, under dynamic conditions mimicking the oral salivary flow, low pH was only preserved in older biofilms. As both types of biofilm were of similar thickness (~20 μm), these findings highlight the importance of cell density and biofilm matrix maturation for pH developments. In both in vitro-grown and in in situ-grown biofilms, horizontal and vertical pH gradients were observed. Under static conditions, the surface layer of the biofilms tended to be more acidic, whereas the bottom layer became more acidic under dynamic conditions. Compared to in vitro-grown biofilms, 120 h in situ-grown biofilms showed higher acidogenicity during static incubation. This study shows that pH ratiometry with C-SNARF-4 is well-suited to monitor extracellular pH in thin biofilms in all three dimensions. The different pH dynamics observed under static and dynamic conditions argue for the implementation of flow during real-time assessment of biofilm pH.
Collapse
Affiliation(s)
- Sebastian Schlafer
- Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark.
| | - Vibeke Baelum
- Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark.
| | - Irene Dige
- Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark.
| |
Collapse
|
22
|
Premnath P, Reck M, Wittstein K, Stadler M, Wagner-Döbler I. Screening for inhibitors of mutacin synthesis in Streptococcus mutans using fluorescent reporter strains. BMC Microbiol 2018; 18:24. [PMID: 29580208 PMCID: PMC5870221 DOI: 10.1186/s12866-018-1170-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/20/2018] [Indexed: 01/22/2023] Open
Abstract
Background Within the polymicrobial dental plaque biofilm, bacteria kill competitors by excreting mixtures of bacteriocins, resulting in improved fitness and survival. Inhibiting their bacteriocin synthesis might therefore be a useful strategy to eliminate specific pathogens. We used Streptococcus mutans, a highly acidogenic inhabitant of dental plaque, as a model and searched for natural products that reduced mutacin synthesis. To this end we fused the promoter of mutacin VI to the GFP+ gene and integrated the construct into the genome of S. mutans UA159 by single homologous recombination. Results The resulting reporter strain 423p - gfp + was used to screen 297 secondary metabolites from different sources, mainly myxobacteria and fungi, for their ability to reduce the fluorescence of the fully induced reporter strain by > 50% while growth was almost unaffected (> 90% of control). Seven compounds with different chemical structures and different modes of action were identified. Erinacine C was subsequently validated and shown to inhibit transcription of all three mutacins of S. mutans. The areas of the inhibition zones of the sensor strains S. sanguinis and Lactococcus lactis were reduced by 35% to 61% in comparison to controls in the presence of erinacine C, demonstrating that the amount of active mutacins in the culture supernatants of S. mutans was reduced. Erinacines are cyathane diterpenes that were extracted from cultures of the edible mushroom Hericium erinaceus. They have anti-inflammatory, antimicrobial and neuroprotective effects. For erinacine C, a new biological activity was found here. Conclusions We demonstrate the successful development of a whole-cell fluorescent reporter for the screening of natural compounds and report that erinacine C suppresses mutacin synthesis in S. mutans without affecting cell viability. Electronic supplementary material The online version of this article (10.1186/s12866-018-1170-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priyanka Premnath
- Helmholtz-Center for Infection Research, Group Microbial Communication, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Michael Reck
- Helmholtz-Center for Infection Research, Group Microbial Communication, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Kathrin Wittstein
- Helmholtz-Center for Infection Research, Department of Microbial Drugs, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Marc Stadler
- Helmholtz-Center for Infection Research, Department of Microbial Drugs, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Helmholtz-Center for Infection Research, Group Microbial Communication, Inhoffenstr. 7, 38124, Braunschweig, Germany.
| |
Collapse
|
23
|
Xiao J, Hara AT, Kim D, Zero DT, Koo H, Hwang G. Biofilm three-dimensional architecture influences in situ pH distribution pattern on the human enamel surface. Int J Oral Sci 2017; 9:74-79. [PMID: 28452377 PMCID: PMC5518976 DOI: 10.1038/ijos.2017.8] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2017] [Indexed: 02/06/2023] Open
Abstract
To investigate how the biofilm three-dimensional (3D) architecture influences in situ pH distribution patterns on the enamel surface. Biofilms were formed on human tooth enamel in the presence of 1% sucrose or 0.5% glucose plus 0.5% fructose. At specific time points, biofilms were exposed to a neutral pH buffer to mimic the buffering of saliva and subsequently pulsed with 1% glucose to induce re-acidification. Simultaneous 3D pH mapping and architecture of intact biofilms was performed using two-photon confocal microscopy. The enamel surface and mineral content characteristics were examined successively via optical profilometry and microradiography analyses. Sucrose-mediated biofilm formation created spatial heterogeneities manifested by complex networks of bacterial clusters (microcolonies). Acidic regions (pH<5.5) were found only in the interior of microcolonies, which impedes rapid neutralization (taking more than 120 min for neutralization). Glucose exposure rapidly re-created the acidic niches, indicating formation of diffusion barriers associated with microcolonies structure. Enamel demineralization (white spots), rougher surface, deeper lesion and more mineral loss appeared to be associated with the localization of these bacterial clusters at the biofilm-enamel interface. Similar 3D architecture was observed in plaque-biofilms formed in vivo in the presence of sucrose. The formation of complex 3D architectures creates spatially heterogeneous acidic microenvironments in close proximity of enamel surface, which might correlate with the localized pattern of the onset of carious lesions (white spot like) on teeth.
Collapse
Affiliation(s)
- Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, USA
| | - Anderson T Hara
- Department of Cariology, Operative Dentistry and Dental Public Health, Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, USA
| | - Dongyeop Kim
- Biofilm Research Laboratories, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry &Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Domenick T Zero
- Department of Cariology, Operative Dentistry and Dental Public Health, Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, USA
| | - Hyun Koo
- Biofilm Research Laboratories, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry &Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Geelsu Hwang
- Biofilm Research Laboratories, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry &Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
24
|
Klug B, Santigli E, Westendorf C, Tangl S, Wimmer G, Grube M. From Mouth to Model: Combining in vivo and in vitro Oral Biofilm Growth. Front Microbiol 2016; 7:1448. [PMID: 27708626 PMCID: PMC5030783 DOI: 10.3389/fmicb.2016.01448] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/30/2016] [Indexed: 11/13/2022] Open
Abstract
Background: Oral biofilm studies based on simplified experimental setups are difficult to interpret. Models are limited mostly by the number of bacterial species observed and the insufficiency of artificial media. Few studies have attempted to overcome these limitations and to cultivate native oral biofilm. Aims: This study aimed to grow oral biofilm in vivo before transfer to a biofilm reactor for ex situ incubation. The in vitro survival of this oral biofilm and the changes in bacterial composition over time were observed. Methods: Six human enamel-dentin slabs embedded buccally in dental splints were used as biofilm carriers. Fitted individually to the upper jaw of 25 non-smoking male volunteers, the splints were worn continuously for 48 h. During this time, tooth-brushing and alcohol-consumption were not permitted. The biofilm was then transferred on slabs into a biofilm reactor and incubated there for 48 h while being nourished in BHI medium. Live/dead staining and confocal laser scanning microscopy were used to observe bacterial survival over four points in time: directly after removal (T0) and after 1 (T1), 24 (T2), and 48 h (T3) of incubation. Bacterial diversity at T0 and T3 was compared with 454-pyrosequencing. Fluorescence in situ hybridization (FISH) was performed to show specific taxa. Survival curves were calculated with a specially designed MATLAB script. Acacia and QIIME 1.9.1 were used to process pyrosequencing data. SPSS 21.0 and R 3.3.1 were used for statistical analysis. Results: After initial fluctuations at T1, survival curves mostly showed approximation of the bacterial numbers to the initial level at T3. Pyrosequencing analysis resulted in 117 OTUs common to all samples. The genera Streptococcus and Veillonella (both Firmicutes) dominated at T0 and T3. They make up two thirds of the biofilm. Genera with lower relative abundance had grown significantly at T3. FISH analysis confirmed the pyrosequencing results, i.e., the predominant staining of Firmicutes. Conclusion: We demonstrate the in vitro survival of native primary oral biofilm in its natural complexity over 48 h. Our results offer a baseline for cultivation studies of native oral biofilms in (phyto-) pharmacological and dental materials research. Further investigations and validation of culturing conditions could also facilitate the study of biofilm-induced diseases.
Collapse
Affiliation(s)
- Barbara Klug
- Institute of Plant Sciences, University of GrazGraz, Austria; Department of Dental Medicine and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of GrazGraz, Austria
| | - Elisabeth Santigli
- Department of Dental Medicine and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz Graz, Austria
| | | | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery, Medical University of ViennaVienna, Austria; Austrian Cluster for Tissue RegenerationVienna, Austria
| | - Gernot Wimmer
- Department of Dental Medicine and Oral Health, Division of Preventive and Operative Dentistry, Periodontology, Prosthodontics and Restorative Dentistry, Medical University of Graz Graz, Austria
| | - Martin Grube
- Institute of Plant Sciences, University of Graz Graz, Austria
| |
Collapse
|
25
|
In Vitro Adherence of Oral Bacteria to Different Types of Tongue Piercings. ScientificWorldJournal 2016; 2016:7349371. [PMID: 27725949 PMCID: PMC5048054 DOI: 10.1155/2016/7349371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/27/2016] [Indexed: 11/25/2022] Open
Abstract
The purpose of this work was to verify in vitro adherence of E. corrodens and S. oralis to the surface of tongue piercings made of surgical steel, titanium, Bioplast, and Teflon. For this, 160 piercings were used for the count of Colony Forming Units (CFU) and 32 piercings for analysis under scanning electron microscopy. Of these, 96 (24 of each type) were individually incubated in 5 mL of BHI broth and 50 μL of inoculum at 37°C/24 h. The other 96 piercings formed the control group and were individually incubated in 5 mL of BHI broth at 37°C/24 h. Plates were incubated at 37°C/48 h for counting of CFU/mL and data were submitted to statistical analysis (p value <0.05). For E. corrodens, difference among types of material was observed (p < 0.001) and titanium and surgical steel showed lower bacterial adherence. The adherence of S. oralis differed among piercings, showing lower colonization (p < 0.007) in titanium and surgical steel piercings. The four types of piercings were susceptible to colonization by E. corrodens and S. oralis, and bacterial adhesion was more significant in those made of Bioplast and Teflon. The piercings presented bacterial colonies on their surface, being higher in plastic piercings probably due to their uneven and rough surface.
Collapse
|
26
|
Hwang G, Liu Y, Kim D, Sun V, Aviles-Reyes A, Kajfasz JK, Lemos JA, Koo H. Simultaneous spatiotemporal mapping of in situ pH and bacterial activity within an intact 3D microcolony structure. Sci Rep 2016; 6:32841. [PMID: 27604325 PMCID: PMC5015094 DOI: 10.1038/srep32841] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
Biofilms are comprised of bacterial-clusters (microcolonies) enmeshed in an extracellular matrix. Streptococcus mutans can produce exopolysaccharides (EPS)-matrix and assemble microcolonies with acidic microenvironments that can cause tooth-decay despite the surrounding neutral-pH found in oral cavity. How the matrix influences the pH and bacterial activity locally remains unclear. Here, we simultaneously analyzed in situ pH and gene expression within intact biofilms and measured the impact of damage to the surrounding EPS-matrix. The spatiotemporal changes of these properties were characterized at a single-microcolony level following incubation in neutral-pH buffer. The middle and bottom-regions as well as inner-section within the microcolony 3D structure were resistant to neutralization (vs. upper and peripheral-region), forming an acidic core. Concomitantly, we used a green fluorescent protein (GFP) reporter to monitor expression of the pH-responsive atpB (PatpB::gfp) by S. mutans within microcolonies. The atpB expression was induced in the acidic core, but sharply decreased at peripheral/upper microcolony regions, congruent with local pH microenvironment. Enzymatic digestion of the surrounding matrix resulted in nearly complete neutralization of microcolony interior and down-regulation of atpB. Altogether, our data reveal that biofilm matrix facilitates formation of an acidic core within microcolonies which in turn activates S. mutans acid-stress response, mediating both the local environment and bacterial activity in situ.
Collapse
Affiliation(s)
- Geelsu Hwang
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry &Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuan Liu
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry &Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dongyeop Kim
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry &Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victor Sun
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry &Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandro Aviles-Reyes
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Jessica K Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Jose A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry &Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
France DC. Anticorrosive influence of Acetobacter aceti biofilms on carbon steel. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE 2016; 25:3580-3589. [PMID: 28082824 PMCID: PMC5220434 DOI: 10.1007/s11665-016-2231-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments, and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.
Collapse
|
28
|
Zhang T, Zhu J, Wei S, Luo Q, Li L, Li S, Tucker A, Shao H, Zhou R. The roles of RelA/(p)ppGpp in glucose-starvation induced adaptive response in the zoonotic Streptococcus suis. Sci Rep 2016; 6:27169. [PMID: 27255540 PMCID: PMC4891663 DOI: 10.1038/srep27169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/16/2016] [Indexed: 01/02/2023] Open
Abstract
The (p)ppGpp signal molecules play a central role in the stringent response (SR) to adapt to nutrient starvation in bacteria, yet the carbohydrate starvation induced adaptive response and the roles of SR in this response is not well characterized, especially in Gram-positives. Here, two (p)ppGpp synthetases RelA and RelQ are identified in Streptococcus suis, an important emerging zoonotic Gram-positive bacterium, while only RelA is functional under glucose starvation. To characterize the roles of RelA/(p)ppGpp in glucose starvation response in S. suis, the growth curves and transcriptional profiles were compared between the mutant strain ΔrelA [a (p)ppGpp0 strain under glucose starvation] and its parental strain SC-19 [(p)ppGpp+]. The results showed great difference between SC-19 and ΔrelA on adaptive responses when suffering glucose starvation, and demonstrated that RelA/(p)ppGpp plays important roles in adaptation to glucose starvation. Besides the classic SR including inhibition of growth and related macromolecular synthesis, the extended adaptive response also includes inhibited glycolysis, and carbon catabolite repression (CCR)-mediated carbohydrate-dependent metabolic switches. Collectively, the pheno- and genotypic characterization of the glucose starvation induced adaptive response in S. suis makes a great contribution to understanding better the mechanism of SR.
Collapse
Affiliation(s)
- Tengfei Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Veterinary Diagnosis (Ministry of Agriculture), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jiawen Zhu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Veterinary Diagnosis (Ministry of Agriculture), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shun Wei
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Veterinary Diagnosis (Ministry of Agriculture), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingping Luo
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Veterinary Diagnosis (Ministry of Agriculture), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Shengqing Li
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Alexander Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Huabin Shao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Veterinary Diagnosis (Ministry of Agriculture), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
29
|
Schlafer S, Meyer RL. Confocal microscopy imaging of the biofilm matrix. J Microbiol Methods 2016; 138:50-59. [PMID: 26979645 DOI: 10.1016/j.mimet.2016.03.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 11/28/2022]
Abstract
The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens. Confocal microscopes are held by many research groups, and a number of methods for qualitative and quantitative imaging of the matrix have emerged in recent years. This review provides an overview and a critical discussion of techniques used to visualize different matrix compounds, to determine the concentration of solutes and the diffusive properties of the biofilm matrix.
Collapse
Affiliation(s)
- Sebastian Schlafer
- Department of Dentistry, HEALTH, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark.
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Bioscience, Science and Technology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark.
| |
Collapse
|
30
|
Abstract
The pH in bacterial biofilms on teeth is of central importance for dental caries, a disease with a high worldwide prevalence. Nutrients and metabolites are not distributed evenly in dental biofilms. A complex interplay of sorption to and reaction with organic matter in the biofilm reduces the diffusion paths of solutes and creates steep gradients of reactive molecules, including organic acids, across the biofilm. Quantitative fluorescent microscopic methods, such as fluorescence life time imaging or pH ratiometry, can be employed to visualize pH in different microenvironments of dental biofilms. pH ratiometry exploits a pH-dependent shift in the fluorescent emission of pH-sensitive dyes. Calculation of the emission ratio at two different wavelengths allows determining local pH in microscopic images, irrespective of the concentration of the dye. Contrary to microelectrodes the technique allows monitoring both vertical and horizontal pH gradients in real-time without mechanically disturbing the biofilm. However, care must be taken to differentiate accurately between extra- and intracellular compartments of the biofilm. Here, the ratiometric dye, seminaphthorhodafluor-4F 5-(and-6) carboxylic acid (C-SNARF-4) is employed to monitor extracellular pH in in vivo grown dental biofilms of unknown species composition. Upon exposure to glucose the dye is up-concentrated inside all bacterial cells in the biofilms; it is thus used both as a universal bacterial stain and as a marker of extracellular pH. After confocal microscopic image acquisition, the bacterial biomass is removed from all pictures using digital image analysis software, which permits to exclusively calculate extracellular pH. pH ratiometry with the ratiometric dye is well-suited to study extracellular pH in thin biofilms of up to 75 µm thickness, but is limited to the pH range between 4.5 and 7.0.
Collapse
Affiliation(s)
| | - Irene Dige
- Department of Dentistry, Aarhus University
| |
Collapse
|
31
|
Dige I, Baelum V, Nyvad B, Schlafer S. Monitoring of extracellular pH in young dental biofilms grown in vivo in the presence and absence of sucrose. J Oral Microbiol 2016; 8:30390. [PMID: 26894480 PMCID: PMC4759832 DOI: 10.3402/jom.v8.30390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 02/01/2023] Open
Abstract
Background and objective pH in dental biofilms is of central importance for the development of caries. We used the ratiometric pH-sensitive dye C-SNARF-4 in combination with digital image analysis to monitor extracellular pH in dental biofilms grown in situ with and without sucrose supply. Design Dental biofilms (48 h) from 10 individuals were collected on glass slabs mounted on intra-oral appliances. During growth, appliances were immersed extra-orally in either physiological saline or 4% sucrose for 2 min, eight times per day. Fluorescence emissions of C-SNARF-4 in deep layers of the biofilms were recorded ex vivo with confocal microscopy for 15 min or for 1 h after exposure to 0.4% glucose. Extracellular pH was determined ratiometrically using digital image analysis. Results Extracellular pH dropped rapidly in most examined sites after addition of glucose. Distinct pH microenvironments were observed within single biofilms. The variation in pH was similar between sites within the same biofilm and sites from different individuals. pH drop patterns did not differ between biofilms exposed to sucrose-free and sucrose-rich environments. Conclusion The present study is the first of its kind to apply the combination of pH ratiometry and digital image analysis to systematically record extracellular pH in intact dental biofilms from several individuals for up to 1 h. We observed highly heterogeneous pH landscapes and the presence of acidogenic microenvironments – ‘acidogenic hotspots’ – within the biofilms. The data suggest that pH drops in young (48 h) dental biofilms are independent of the sucrose supply during growth.
Collapse
Affiliation(s)
- Irene Dige
- Department of Dentistry, HEALTH, Aarhus University, Aarhus, Denmark;
| | - Vibeke Baelum
- Department of Dentistry, HEALTH, Aarhus University, Aarhus, Denmark
| | - Bente Nyvad
- Department of Dentistry, HEALTH, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
32
|
Ratiometric imaging of extracellular pH in bacterial biofilms with C-SNARF-4. Appl Environ Microbiol 2016; 81:1267-73. [PMID: 25501477 DOI: 10.1128/aem.02831-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
pH in the extracellular matrix of bacterial biofilms is of central importance for microbial metabolism. Biofilms possess a complex three-dimensional architecture characterized by chemically different microenvironments in close proximity. For decades, pH measurements in biofilms have been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit the monitoring of horizontal pH gradients in biofilms in real time. Quantitative fluorescence microscopy can overcome these problems, but none of the hitherto employed methods differentiated accurately between extracellular and intracellular microbial pH and visualized extracellular pH in all areas of the biofilms. Here, we developed a method to reliably monitor extracellular biofilm pH microscopically with the ratiometric pH-sensitive dye C-SNARF-4, choosing dental biofilms as an example. Fluorescent emissions of C-SNARF-4 can be used to calculate extracellular pH irrespective of the dye concentration. We showed that at pH values of <6, C-SNARF-4 stained 15 bacterial species frequently isolated from dental biofilm and visualized the entire bacterial biomass in in vivo-grown dental biofilms with unknown species composition. We then employed digital image analysis to remove the bacterial biomass from the microscopic images and adequately calculate extracellular pH values. As a proof of concept, we monitored the extracellular pH drop in in vivo-grown dental biofilms fermenting glucose. The combination of pH ratiometry with C-SNARF-4 and digital image analysis allows the accurate monitoring of extracellular pH in bacterial biofilms in three dimensions in real time and represents a significant improvement to previously employed methods of biofilm pH measurement.
Collapse
|
33
|
Schlafer S, Birkedal H, Olsen J, Skovgaard J, Sutherland DS, Wejse PL, Nyvad B, Meyer RL. Calcium-phosphate-osteopontin particles for caries control. BIOFOULING 2016; 32:349-357. [PMID: 26923119 DOI: 10.1080/08927014.2016.1141199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Caries is caused by acid production in biofilms on dental surfaces. Preventing caries therefore involves control of microorganisms and/or the acid produced. Here, calcium-phosphate-osteopontin particles are presented as a new approach to caries control. The particles are made by co-precipitation and designed to bind to bacteria in biofilms, impede biofilm build-up without killing the microflora, and release phosphate ions to buffer bacterial acid production if the pH decreases below 6. Analysis of biofilm formation and pH in a five-species biofilm model for dental caries showed that treatment with particles or pure osteopontin led to less biofilm formation compared to untreated controls or biofilms treated with osteopontin-free particles. The anti-biofilm effect can thus be ascribed to osteopontin. The particles also led to a slower acidification of the biofilm after exposure to glucose, and the pH always remained above 5.5. Hence, calcium-phosphate-osteopontin particles show potential for applications in caries control.
Collapse
Affiliation(s)
- Sebastian Schlafer
- a Science and Technology , iNANO Interdisciplinary Nanoscience Center, Aarhus University , Aarhus C , Denmark
- b Department of Dentistry, Health , Aarhus University , Aarhus C , Denmark
| | - Henrik Birkedal
- a Science and Technology , iNANO Interdisciplinary Nanoscience Center, Aarhus University , Aarhus C , Denmark
- c Department of Chemistry, Science and Technology , Aarhus University , Aarhus C , Denmark
| | - Jakob Olsen
- a Science and Technology , iNANO Interdisciplinary Nanoscience Center, Aarhus University , Aarhus C , Denmark
- c Department of Chemistry, Science and Technology , Aarhus University , Aarhus C , Denmark
| | - Jonas Skovgaard
- a Science and Technology , iNANO Interdisciplinary Nanoscience Center, Aarhus University , Aarhus C , Denmark
- c Department of Chemistry, Science and Technology , Aarhus University , Aarhus C , Denmark
| | - Duncan S Sutherland
- a Science and Technology , iNANO Interdisciplinary Nanoscience Center, Aarhus University , Aarhus C , Denmark
| | | | - Bente Nyvad
- b Department of Dentistry, Health , Aarhus University , Aarhus C , Denmark
| | - Rikke L Meyer
- a Science and Technology , iNANO Interdisciplinary Nanoscience Center, Aarhus University , Aarhus C , Denmark
- e Microbiology, Department of Bioscience, Science and Technology , Aarhus University , Aarhus C , Denmark
| |
Collapse
|
34
|
Kim D, Hwang G, Liu Y, Wang Y, Singh AP, Vorsa N, Koo H. Cranberry Flavonoids Modulate Cariogenic Properties of Mixed-Species Biofilm through Exopolysaccharides-Matrix Disruption. PLoS One 2015; 10:e0145844. [PMID: 26713438 PMCID: PMC4699891 DOI: 10.1371/journal.pone.0145844] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022] Open
Abstract
The exopolysaccharides (EPS) produced by Streptococcus mutans-derived glucosyltransferases (Gtfs) are essential virulence factors associated with the initiation of cariogenic biofilms. EPS forms the core of the biofilm matrix-scaffold, providing mechanical stability while facilitating the creation of localized acidic microenvironments. Cranberry flavonoids, such as A-type proanthocyanidins (PACs) and myricetin, have been shown to inhibit the activity of Gtfs and EPS-mediated bacterial adhesion without killing the organisms. Here, we investigated whether a combination of cranberry flavonoids disrupts EPS accumulation and S. mutans survival using a mixed-species biofilm model under cariogenic conditions. We also assessed the impact of cranberry flavonoids on mechanical stability and the in situ pH at the biofilm-apatite interface. Topical application of an optimized combination of PACs oligomers (100-300 μM) with myricetin (2 mM) twice daily was used to simulate treatment regimen experienced clinically. Treatments with cranberry flavonoids effectively reduced the insoluble EPS content (>80% reduction vs. vehicle-control; p<0.001), while hindering S. mutans outgrowth within mixed-species biofilms. As a result, the 3D architecture of cranberry-treated biofilms was severely compromised, showing a defective EPS-matrix and failure to develop microcolonies on the saliva-coated hydroxyapatite (sHA) surface. Furthermore, topical applications of cranberry flavonoids significantly weaken the mechanical stability of the biofilms; nearly 90% of the biofilm was removed from sHA surface after exposure to a shear stress of 0.449 N/m2 (vs. 36% removal in vehicle-treated biofilms). Importantly, in situ pH measurements in cranberry-treated biofilms showed significantly higher pH values (5.2 ± 0.1) at the biofilm-apatite interface vs. vehicle-treated biofilms (4.6 ± 0.1). Altogether, the data provide important insights on how cranberry flavonoids treatments modulate virulence properties by disrupting the biochemical and ecological changes associated with cariogenic biofilm development, which could lead to new alternative or adjunctive antibiofilm/anticaries chemotherapeutic formulations.
Collapse
Affiliation(s)
- Dongyeop Kim
- Biofilm Research Labs, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Geelsu Hwang
- Biofilm Research Labs, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yuan Liu
- Biofilm Research Labs, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yifei Wang
- Department of Plant Biology and Plant Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Ajay P. Singh
- Department of Plant Biology and Plant Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Nicholi Vorsa
- Department of Plant Biology and Plant Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
- Philip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, Chatsworth, New Jersey, United States of America
| | - Hyun Koo
- Biofilm Research Labs, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
35
|
Zhou J, Horev B, Hwang G, Klein MI, Koo H, Benoit DSW. Characterization and optimization of pH-responsive polymer nanoparticles for drug delivery to oral biofilms. J Mater Chem B 2015; 4:3075-3085. [PMID: 27429754 DOI: 10.1039/c5tb02054a] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We previously reported on cationic, pH-responsive p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA) block copolymer micelles with high affinity for dental and biofilm surfaces and efficient anti-bacterial drug release in response to acidic pH, characteristic of cariogenic (tooth-decay causing) biofilm microenvironments. Here, we show that micelle pH-responsive behaviors can be enhanced through alterations in corona:core molecular weight ratios (CCR). Although similarly stable at physiological pH, upon exposure to acidic pH, micelles with CCR of 4.1 were less stable than other CCR examined. Specifically, a ~1.5-fold increase in critical micelle concentration (CMC) and ~50% decrease in micelle diameters were observed for micelles with CCR of 4.1, compared to no changes in micelles with CCR of 0.8. While high CCR was shown to enhance pH-responsive drug release, it did not alter drug loading and dental surface binding of micelles. Diblocks were shown to encapsulate the antibacterial drug, farnesol, at maximal loading capacities of up to ~27 wt% and at >94% efficiencies, independent of CCR or core size, resulting in micelle diameter increases due to contributions of drug volume. Additionally, micelles with small diameters (~17 nm) show high binding capacity to hydroxyapatite and dental pellicle emulating surfaces based on Langmuir fit analyses of binding data. Finally, micelles with high CCR that have enhanced pH-responsive drug release and binding were shown to exhibit greater antibiofilm efficacy in situ. Overall, these data demonstrate how factors essential for nanoparticle carrier (NPC)-mediated drug deliverycan be enhanced via modification of diblock characteristics, resulting in greater antibiofilm efficacy in situ.
Collapse
Affiliation(s)
- Jiayi Zhou
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Benjamin Horev
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Geelsu Hwang
- Biofilm Research Lab, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marlise I Klein
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, Univ Estadual Paulista, UNESP, Sao Paulo, Brazil
| | - Hyun Koo
- Biofilm Research Lab, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
36
|
Horev B, Klein MI, Hwang G, Li Y, Kim D, Koo H, Benoit DS. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS NANO 2015; 9:2390-404. [PMID: 25661192 PMCID: PMC4395463 DOI: 10.1021/nn507170s] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Development of effective therapies to control oral biofilms is challenging, as topically introduced agents must avoid rapid clearance from biofilm-tooth interfaces while targeting biofilm microenvironments. Additionally, exopolysaccharides-matrix and acidification of biofilm microenvironments are associated with cariogenic (caries-producing) biofilm virulence. Thus, nanoparticle carriers capable of binding to hydroxyapatite (HA), saliva-coated HA (sHA), and exopolysaccharides with enhanced drug release at acidic pH were developed. Nanoparticles are formed from diblock copolymers composed of 2-(dimethylamino)ethyl methacrylate (DMAEMA), butyl methacrylate (BMA), and 2-propylacrylic acid (PAA) (p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA)) that self-assemble into ∼21 nm cationic nanoparticles. Nanoparticles exhibit outstanding adsorption affinities (∼244 L-mmol(-1)) to negatively charged HA, sHA, and exopolysaccharide-coated sHA due to strong electrostatic interactions via multivalent tertiary amines of p(DMAEMA). Owing to hydrophobic cores, nanoparticles load farnesol, a hydrophobic antibacterial drug, at ∼22 wt %. Farnesol release is pH-dependent with t1/2 = 7 and 15 h for release at pH 4.5 and 7.2, as nanoparticles undergo core destabilization at acidic pH, characteristic of cariogenic biofilm microenvironments. Importantly, topical applications of farnesol-loaded nanoparticles disrupted Streptococcus mutans biofilms 4-fold more effectively than free farnesol. Mechanical stability of biofilms treated with drug-loaded nanoparticles was compromised, resulting in >2-fold enhancement in biofilm removal under shear stress compared to free farnesol and controls. Farnesol-loaded nanoparticles effectively attenuated biofilm virulence in vivo using a clinically relevant topical treatment regimen (2×/day) in a rodent dental caries disease model. Strikingly, treatment with farnesol-loaded nanoparticles reduced both the number and severity of carious lesions, while free farnesol had no effect. Nanoparticle carriers have great potential to enhance the efficacy of antibiofilm agents through multitargeted binding and pH-responsive drug release due to microenvironmental triggers.
Collapse
Affiliation(s)
- Benjamin Horev
- Department of Biomedical Engineering, University of Rochester, NY 14627, United States
| | - Marlise I. Klein
- Center for Oral Biology, University of Rochester, NY 14627, United States
| | - Geelsu Hwang
- Biofilm Research Lab, Levy Center for Oral Health, University of Pennsylvania, PA 19104, United States
| | - Yong Li
- Biofilm Research Lab, Levy Center for Oral Health, University of Pennsylvania, PA 19104, United States
| | - Dongyeop Kim
- Biofilm Research Lab, Levy Center for Oral Health, University of Pennsylvania, PA 19104, United States
| | - Hyun Koo
- Center for Oral Biology, University of Rochester, NY 14627, United States
- Biofilm Research Lab, Levy Center for Oral Health, University of Pennsylvania, PA 19104, United States
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, PA 19104, United States
- Address correspondence to: ;
| | - Danielle S.W. Benoit
- Department of Biomedical Engineering, University of Rochester, NY 14627, United States
- Department of Chemical Engineering, University of Rochester, NY 14627, United States
- Center of Musculoskeletal Research, University of Rochester, NY 14627, United States
| |
Collapse
|
37
|
De Campos PH, Sanabe ME, Rodrigues JA, Duarte DA, Santos MTBR, Guaré RO, Duque C, Lussi A, Diniz MB. Different bacterial models forin vitroinduction of non-cavitated enamel caries-like lesions: Microhardness and polarized light miscroscopy analyses. Microsc Res Tech 2015; 78:444-51. [DOI: 10.1002/jemt.22493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/01/2015] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mariane Emi Sanabe
- Department of Pediatric Dentistry; Camilo Castelo Branco University-UNICATELO; São Paulo-SP 04204-002 Brazil
| | - Jonas Almeida Rodrigues
- Department of Pediatric Dentistry, School of Dentistry; Rio Grande Do Sul Federal University-UFRGS; Porto Alegre RS 90035-003 Brazil
| | - Danilo Antonio Duarte
- Department of Pediatric Dentistry; Cruzeiro Do Sul University-UNICSUL; São Paulo-SP 01506-000 Brazil
| | | | - Renata Oliveira Guaré
- Department of Pediatric Dentistry; Cruzeiro Do Sul University-UNICSUL; São Paulo-SP 01506-000 Brazil
| | - cristiane Duque
- Department of Pediatric Dentistry, Araçatuba School of Dentistry; São Paulo State University - UNESP; Araçatuba SP 16015-050 Brazil
| | - Adrian Lussi
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine; University of Bern-UNIBE; Bern CH 3010 Switzerland
| | - Michele Baffi Diniz
- Department of Pediatric Dentistry; Cruzeiro Do Sul University-UNICSUL; São Paulo-SP 01506-000 Brazil
| |
Collapse
|
38
|
Salli KM, Ouwehand AC. The use of in vitro model systems to study dental biofilms associated with caries: a short review. J Oral Microbiol 2015; 7:26149. [PMID: 25740099 PMCID: PMC4349908 DOI: 10.3402/jom.v7.26149] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 11/14/2022] Open
Abstract
A dental biofilm forms a distinct environment where microorganisms live in a matrix of extracellular polysaccharides. The biofilm favors certain bacteria and creates a habitat that functions differently compared to planktonic bacteria. Reproducible model systems which help to address various questions related to biofilm formation, the process of caries development, and its prevention are needed and are continuously developed. Recent research using both batch culture, continuous culture and flow cells in caries biofilm formation is presented. The development of new techniques and equipment has led to a deeper understanding of how caries biofilms function. Biofilm models have also been used in the development of materials inhibiting secondary caries. This short review summarizes available models to study these questions.
Collapse
Affiliation(s)
- Krista M Salli
- DuPont Nutrition and Health, Kantvik Active Nutrition, Kirkkonummi, Finland;
| | - Arthur C Ouwehand
- DuPont Nutrition and Health, Kantvik Active Nutrition, Kirkkonummi, Finland
| |
Collapse
|
39
|
Park JH, Lee JK, Um HS, Chang BS, Lee SY. A periodontitis-associated multispecies model of an oral biofilm. J Periodontal Implant Sci 2014; 44:79-84. [PMID: 24778902 PMCID: PMC3999356 DOI: 10.5051/jpis.2014.44.2.79] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/20/2014] [Indexed: 12/03/2022] Open
Affiliation(s)
- Jong Hwa Park
- Department of Periodontology, Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Jae-Kwan Lee
- Department of Periodontology, Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Heung-Sik Um
- Department of Periodontology, Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Beom-Seok Chang
- Department of Periodontology, Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| | - Si-Young Lee
- Department of Microbiology and Immunology, Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Korea
| |
Collapse
|
40
|
Simón-Soro A, Belda-Ferre P, Cabrera-Rubio R, Alcaraz LD, Mira A. A tissue-dependent hypothesis of dental caries. Caries Res 2013; 47:591-600. [PMID: 24080530 DOI: 10.1159/000351663] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/18/2013] [Indexed: 11/19/2022] Open
Abstract
Current understanding of dental caries considers this disease a demineralization of the tooth tissues due to the acid produced by sugar-fermenting microorganisms. Thus, caries is considered a diet- and pH-dependent process. We present here the first metagenomic analysis of the bacterial communities present at different stages of caries development, with the aim of determining whether the bacterial composition and biochemical profile are specific to the tissue affected. The data show that microbial composition at the initial, enamel-affecting stage of caries is significantly different from that found at subsequent stages, as well as from dental plaque of sound tooth surfaces. Although the relative proportion of Streptococcus mutans increased from 0.12% in dental plaque to 0.72% in enamel caries, Streptococcus mitis and Streptococcus sanguinis were the dominant streptococci in these lesions. The functional profile of caries-associated bacterial communities indicates that genes involved in acid stress tolerance and dietary sugar fermentation are overrepresented only at the initial stage (enamel caries), whereas other genes coding for osmotic stress tolerance as well as collagenases and other proteases enabling dentin degradation are significantly overrepresented in dentin cavities. The results support a scenario in which pH and diet are determinants of the disease during the degradation of enamel, but in dentin caries lesions not only acidogenic but also proteolytic bacteria are involved. We propose that caries disease is a process of varying etiology, in which acid-producing bacteria are the vehicle to penetrate enamel and allow dentin degrading microorganisms to expand the cavity.
Collapse
Affiliation(s)
- A Simón-Soro
- Department of Genomics and Health, Center for Advanced Research in Public Health, Valencia, Spain
| | | | | | | | | |
Collapse
|
41
|
Yoneda S, Kawarai T, Narisawa N, Tuna E, Sato N, Tsugane T, Saeki Y, Ochiai K, Senpuku H. Effects of short-chain fatty acids onActinomyces naeslundiibiofilm formation. Mol Oral Microbiol 2013; 28:354-65. [DOI: 10.1111/omi.12029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Affiliation(s)
- S. Yoneda
- Department of Bacteriology; National Institute of Infectious Diseases; Tokyo; Japan
| | - T. Kawarai
- Department of Bacteriology; National Institute of Infectious Diseases; Tokyo; Japan
| | - N. Narisawa
- Department of Bacteriology; National Institute of Infectious Diseases; Tokyo; Japan
| | | | - N. Sato
- Department of Bacteriology; National Institute of Infectious Diseases; Tokyo; Japan
| | - T. Tsugane
- Oral Science Section Basic Research Department; Lotte Co., Ltd.; Saitama; Japan
| | - Y. Saeki
- Oral Science Section Basic Research Department; Lotte Co., Ltd.; Saitama; Japan
| | - K. Ochiai
- Department of Microbiology; Nihon University of Dentistry; Tokyo; Japan
| | - H. Senpuku
- Department of Bacteriology; National Institute of Infectious Diseases; Tokyo; Japan
| |
Collapse
|
42
|
A combined pharmacodynamic quantitative and qualitative model reveals the potent activity of daptomycin and delafloxacin against Staphylococcus aureus biofilms. Antimicrob Agents Chemother 2013; 57:2726-37. [PMID: 23571532 DOI: 10.1128/aac.00181-13] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biofilms are associated with persistence of Staphylococcus aureus infections and therapeutic failures. Our aim was to set up a pharmacodynamic model comparing antibiotic activities against biofilms and examining in parallel their effects on viability and biofilm mass. Biofilms of S. aureus ATCC 25923 (methicillin-sensitive S. aureus [MSSA]) or ATCC 33591 (methicillin-resistant S. aureus [MRSA]) were obtained by culture in 96-well plates for 6 h/24 h. Antibiotic activities were assessed after 24/48 h of exposure to concentrations ranging from 0.5 to 512 times the MIC. Biofilm mass and bacterial viability were quantified using crystal violet and the redox indicator resazurin. Biofilms stained with Live/Dead probes were observed by using confocal microscopy. Concentration-effect curves fitted sigmoidal regressions, with a 50% reduction toward both matrix and viability obtained at sub-MIC or low multiples of MICs against young biofilms for all antibiotics tested. Against mature biofilms, maximal efficacies and potencies were reduced, with none of the antibiotics being able to completely destroy the matrix. Delafloxacin and daptomycin were the most potent, reducing viability by more than 50% at clinically achievable concentrations against both strains, as well as reducing biofilm depth, as observed in confocal microscopy. Rifampin, tigecycline, and moxifloxacin were effective against mature MRSA biofilms, while oxacillin demonstrated activity against MSSA. Fusidic acid, vancomycin, and linezolid were less potent overall. Antibiotic activity depends on biofilm maturity and bacterial strain. The pharmacodynamic model developed allows ranking of antibiotics with respect to efficacy and potency at clinically achievable concentrations and highlights the potential utility of daptomycin and delafloxacin for the treatment of biofilm-related infections.
Collapse
|
43
|
Schlafer S, Meyer RL, Sutherland DS, Städler B. Effect of osteopontin on the initial adhesion of dental bacteria. JOURNAL OF NATURAL PRODUCTS 2012; 75:2108-2112. [PMID: 23167781 DOI: 10.1021/np300514z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bacterial biofilms are involved in numerous infections of the human body, including dental caries. While conventional therapy of biofilm diseases aims at eradication and mechanical removal of the biofilms, recent therapeutic approaches target the mechanisms of biofilm formation and bacterial adhesion in particular. The effect of bovine milk osteopontin, a highly phosphorylated whey protein, on adhesion of Streptococcus mitis, Streptococcus sanguinis, and Actinomyces naeslundii, three prominent colonizers in dental biofilms, to saliva-coated surfaces was investigated. While adhesion of A. naeslundii was not affected by osteopontin, a strong, dose-dependent reduction in the number of adhering S. mitis was shown. No difference in bacterial adhesion was observed for caseinoglycomacropeptide, another phosphorylated milk protein. Osteopontin did not affect bacterial viability, but changed bacterial surface hydrophobicity, and may be suggested to prevent the adhesins of S. mitis from interacting with their salivary receptors. The antiadhesive effect of osteopontin may be useful for caries prevention.
Collapse
Affiliation(s)
- Sebastian Schlafer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | | | | | | |
Collapse
|
44
|
Schlafer S, Raarup MK, Wejse PL, Nyvad B, Städler BM, Sutherland DS, Birkedal H, Meyer RL. Osteopontin reduces biofilm formation in a multi-species model of dental biofilm. PLoS One 2012; 7:e41534. [PMID: 22879891 PMCID: PMC3413689 DOI: 10.1371/journal.pone.0041534] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/21/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Combating dental biofilm formation is the most effective means for the prevention of caries, one of the most widespread human diseases. Among the chemical supplements to mechanical tooth cleaning procedures, non-bactericidal adjuncts that target the mechanisms of bacterial biofilm formation have gained increasing interest in recent years. Milk proteins, such as lactoferrin, have been shown to interfere with bacterial colonization of saliva-coated surfaces. We here study the effect of bovine milk osteopontin (OPN), a highly phosphorylated whey glycoprotein, on a multispecies in vitro model of dental biofilm. While considerable research effort focuses on the interaction of OPN with mammalian cells, there are no data investigating the influence of OPN on bacterial biofilms. METHODOLOGY/PRINCIPAL FINDINGS Biofilms consisting of Streptococcus oralis, Actinomyces naeslundii, Streptococcus mitis, Streptococcus downei and Streptococcus sanguinis were grown in a flow cell system that permitted in situ microscopic analysis. Crystal violet staining showed significantly less biofilm formation in the presence of OPN, as compared to biofilms grown without OPN or biofilms grown in the presence of caseinoglycomacropeptide, another phosphorylated milk protein. Confocal microscopy revealed that OPN bound to the surface of bacterial cells and reduced mechanical stability of the biofilms without affecting cell viability. The bacterial composition of the biofilms, determined by fluorescence in situ hybridization, changed considerably in the presence of OPN. In particular, colonization of S. mitis, the best biofilm former in the model, was reduced dramatically. CONCLUSIONS/SIGNIFICANCE OPN strongly reduces the amount of biofilm formed in a well-defined laboratory model of acidogenic dental biofilm. If a similar effect can be observed in vivo, OPN might serve as a valuable adjunct to mechanical tooth cleaning procedures.
Collapse
Affiliation(s)
- Sebastian Schlafer
- The Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Department of Dentistry, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Bioscience, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- * E-mail: (SS); (RLM)
| | - Merete K. Raarup
- Stereology and Electron Microscopy Research Laboratory and MIND Center, Aarhus University, Aarhus, Denmark
| | | | - Bente Nyvad
- Department of Dentistry, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Brigitte M. Städler
- The Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
| | - Duncan S. Sutherland
- The Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
| | - Henrik Birkedal
- Department of Chemistry, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
| | - Rikke L. Meyer
- The Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Department of Bioscience, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- * E-mail: (SS); (RLM)
| |
Collapse
|
45
|
French S, Puddephatt D, Habash M, Glasauer S. The dynamic nature of bacterial surfaces: Implications for metal–membrane interaction. Crit Rev Microbiol 2012; 39:196-217. [DOI: 10.3109/1040841x.2012.702098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|