1
|
Vertyshev AY, Akberdin IR, Kolpakov FA. Numerous Trigger-like Interactions of Kinases/Protein Phosphatases in Human Skeletal Muscles Can Underlie Transient Processes in Activation of Signaling Pathways during Exercise. Int J Mol Sci 2023; 24:11223. [PMID: 37446402 DOI: 10.3390/ijms241311223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Optimizing physical training regimens to increase muscle aerobic capacity requires an understanding of the internal processes that occur during exercise that initiate subsequent adaptation. During exercise, muscle cells undergo a series of metabolic events that trigger downstream signaling pathways and induce the expression of many genes in working muscle fibers. There are a number of studies that show the dependence of changes in the activity of AMP-activated protein kinase (AMPK), one of the mediators of cellular signaling pathways, on the duration and intensity of single exercises. The activity of various AMPK isoforms can change in different directions, increasing for some isoforms and decreasing for others, depending on the intensity and duration of the load. This review summarizes research data on changes in the activity of AMPK, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and other components of the signaling pathways in skeletal muscles during exercise. Based on these data, we hypothesize that the observed changes in AMPK activity may be largely related to metabolic and signaling transients rather than exercise intensity per se. Probably, the main events associated with these transients occur at the beginning of the exercise in a time window of about 1-10 min. We hypothesize that these transients may be partly due to putative trigger-like kinase/protein phosphatase interactions regulated by feedback loops. In addition, numerous dynamically changing factors, such as [Ca2+], metabolite concentration, and reactive oxygen and nitrogen species (RONS), can shift the switching thresholds and change the states of these triggers, thereby affecting the activity of kinases (in particular, AMPK and CaMKII) and phosphatases. The review considers the putative molecular mechanisms underlying trigger-like interactions. The proposed hypothesis allows for a reinterpretation of the experimental data available in the literature as well as the generation of ideas to optimize future training regimens.
Collapse
Affiliation(s)
| | - Ilya R Akberdin
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Biosoft.Ru, Ltd., 630058 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Fedor A Kolpakov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Biosoft.Ru, Ltd., 630058 Novosibirsk, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Oyama N, Vaneynde P, Reynhout S, Pao EM, Timms A, Fan X, Foss K, Derua R, Janssens V, Chung W, Mirzaa GM. Clinical, neuroimaging and molecular characteristics of PPP2R5D-related neurodevelopmental disorders: an expanded series with functional characterisation and genotype-phenotype analysis. J Med Genet 2022; 60:511-522. [PMID: 36216457 DOI: 10.1136/jmg-2022-108713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Variants in PPP2R5D, affecting the regulatory B56δ subunit of protein phosphatase 2A (PP2A), have been identified in individuals with neurodevelopmental abnormalities. However, the molecular and clinical spectra remain incompletely understood. METHODS Individuals with PPP2R5D variants were enrolled through Simons Variation in Individuals Project/Simons Searchlight. Data were collected from medical history interviews, medical record review, online validated instruments and neuroimaging review. Genetic variants were biochemically characterised. RESULTS We studied 76 individuals with PPP2R5D variants, including 68 with pathogenic de novo variants, four with a variant of uncertain significance (VUS) and four siblings with a novel dominantly inherited pathogenic variant. Among 13 pathogenic variants, eight were novel and two (p.Glu198Lys and p.Glu200Lys) were highly recurrent. Functional analysis revealed impaired PP2A A/C-subunit binding, decreased short linear interaction motif-dependent substrate binding or both-with the most severe phenotypes associated with variants that completely retained one of these binding characteristics and lost the other-further supporting a dominant-negative disease mechanism. p.Glu198Lys showed the highest C-binding defect and a more severe clinical phenotype. The inherited p.Glu197Gly variant had a mild substrate binding defect, and three of four VUS had no biochemical impact. Common clinical phenotypes were language, intellectual or learning disabilities (80.6%), hypotonia (75.0%), macrocephaly (66.7%), seizures (45.8%) and autism spectrum disorder (26.4%). The mean composite Vineland score was 59.8, and most participants were in the 'moderate to low' and 'low' adaptive levels in all domains. CONCLUSION Our study delineates the most common features of PPP2R5D-related neurodevelopmental disorders, expands the clinical and molecular spectrum and identifies genotype-phenotype correlations.
Collapse
Affiliation(s)
- Nora Oyama
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Pieter Vaneynde
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Sara Reynhout
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Emily M Pao
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Andrew Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Xiao Fan
- Department of Pediatrics, Columbia University, New York City, New York, USA
| | - Kimberly Foss
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,SyBioMa, University of Leuven (KU Leuven), Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Wendy Chung
- Department of Pediatrics, Columbia University, New York City, New York, USA.,Department of Medicine, Columbia University, New York City, New York, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA .,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Pilo CA, Baffi TR, Kornev AP, Kunkel MT, Malfavon M, Chen DH, Rossitto LA, Chen DX, Huang LC, Longman C, Kannan N, Raskind WH, Gonzalez DJ, Taylor SS, Gorrie G, Newton AC. Mutations in protein kinase Cγ promote spinocerebellar ataxia type 14 by impairing kinase autoinhibition. Sci Signal 2022; 15:eabk1147. [PMID: 36166510 PMCID: PMC9810342 DOI: 10.1126/scisignal.abk1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spinocerebellar ataxia type 14 (SCA14) is a neurodegenerative disease caused by germline variants in the diacylglycerol (DAG)/Ca2+-regulated protein kinase Cγ (PKCγ), leading to Purkinje cell degeneration and progressive cerebellar dysfunction. Most of the identified mutations cluster in the DAG-sensing C1 domains. Here, we found with a FRET-based activity reporter that SCA14-associated PKCγ mutations, including a previously undescribed variant, D115Y, enhanced the basal activity of the kinase by compromising its autoinhibition. Unlike other mutations in PKC that impair its autoinhibition but lead to its degradation, the C1 domain mutations protected PKCγ from such down-regulation. This enhanced basal signaling rewired the brain phosphoproteome, as revealed by phosphoproteomic analysis of cerebella from mice expressing a human SCA14-associated H101Y mutant PKCγ transgene. Mutations that induced a high basal activity in vitro were associated with earlier average age of onset in patients. Furthermore, the extent of disrupted autoinhibition, but not agonist-stimulated activity, correlated with disease severity. Molecular modeling indicated that almost all SCA14 variants not within the C1 domain were located at interfaces with the C1B domain, suggesting that mutations in and proximal to the C1B domain are a susceptibility for SCA14 because they uniquely enhance PKCγ basal activity while protecting the enzyme from down-regulation. These results provide insight into how PKCγ activation is modulated and how deregulation of the cerebellar phosphoproteome by SCA14-associated mutations affects disease progression.
Collapse
Affiliation(s)
- Caila A. Pilo
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, CA 92037, USA
| | - Timothy R. Baffi
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexandr P. Kornev
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Maya T. Kunkel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Mario Malfavon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Dong-Hui Chen
- Department of Neurology, University of Washington Seattle, WA 98195, USA
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, CA 92037, USA
| | - Daniel X. Chen
- Department of Neurology, University of Washington Seattle, WA 98195, USA
| | - Liang-Chin Huang
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Cheryl Longman
- Queen Elizabeth University Hospital, Glasgow, Scotland G51 4TF, United Kingdom
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wendy H. Raskind
- Department of Medicine/Medical Genetics, University of Washington Seattle, WA 98195, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington Seattle, WA 98195, USA
- Mental Illness Research, Education and Clinical Center, Department of Veterans Affairs, Seattle, WA 98108, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - George Gorrie
- Queen Elizabeth University Hospital, Glasgow, Scotland G51 4TF, United Kingdom
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Protein Phosphatase 2A (PP2A) mutations in brain function, development, and neurologic disease. Biochem Soc Trans 2021; 49:1567-1588. [PMID: 34241636 DOI: 10.1042/bst20201313] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
By removing Ser/Thr-specific phosphorylations in a multitude of protein substrates in diverse tissues, Protein Phosphatase type 2A (PP2A) enzymes play essential regulatory roles in cellular signalling and physiology, including in brain function and development. Here, we review current knowledge on PP2A gene mutations causally involved in neurodevelopmental disorders and intellectual disability, focusing on PPP2CA, PPP2R1A and PPP2R5D. We provide insights into the impact of these mutations on PP2A structure, substrate specificity and potential function in neurobiology and brain development.
Collapse
|
5
|
Sandal P, Jong CJ, Merrill RA, Song J, Strack S. Protein phosphatase 2A - structure, function and role in neurodevelopmental disorders. J Cell Sci 2021; 134:270819. [PMID: 34228795 DOI: 10.1242/jcs.248187] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID), autism and schizophrenia, have high socioeconomic impact, yet poorly understood etiologies. A recent surge of large-scale genome or exome sequencing studies has identified a multitude of mostly de novo mutations in subunits of the protein phosphatase 2A (PP2A) holoenzyme that are strongly associated with NDDs. PP2A is responsible for at least 50% of total Ser/Thr dephosphorylation in most cell types and is predominantly found as trimeric holoenzymes composed of catalytic (C), scaffolding (A) and variable regulatory (B) subunits. PP2A can exist in nearly 100 different subunit combinations in mammalian cells, dictating distinct localizations, substrates and regulatory mechanisms. PP2A is well established as a regulator of cell division, growth, and differentiation, and the roles of PP2A in cancer and various neurodegenerative disorders, such as Alzheimer's disease, have been reviewed in detail. This Review summarizes and discusses recent reports on NDDs associated with mutations of PP2A subunits and PP2A-associated proteins. We also discuss the potential impact of these mutations on the structure and function of the PP2A holoenzymes and the etiology of NDDs.
Collapse
Affiliation(s)
- Priyanka Sandal
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Chian Ju Jong
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jianing Song
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
6
|
Li J, An R, Lai S, Li L, Liu S, Xu H. Dysregulation of PP2A-Akt interaction contributes to Sucrose non-fermenting related kinase (SNRK) deficiency induced insulin resistance in adipose tissue. Mol Metab 2019; 28:26-35. [PMID: 31420304 PMCID: PMC6822176 DOI: 10.1016/j.molmet.2019.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Objective We previously identified Sucrose non-fermenting related kinase (SNRK) as a regulator of adipose inflammation and energy homeostasis. In this study, we aimed to investigate the role of SNRK in insulin signaling in white (WAT) and brown adipose tissue (BAT). Methods Adipose tissue specific (SNRK deficiency in both WAT and BAT) and BAT specific knockout mouse models were employed. Phosphoproteomic studies were conducted to identify the novel SNRK pathway regulating insulin signaling in adipose tissue. Results SNRK ablation is sufficient to inhibit insulin-stimulated AKT phosphorylation and glucose uptake in both WAT and BAT. Phosphoproteomic study using SNRK deficient versus wild type BAT samples revealed 99% reduction of phosphorylation on Serine 80 of PPP2R5D, the regulatory subunit of Protein phosphatase 2A (PP2A). Drastic (142.5-fold) induction of phosphorylation on Serine 80 of PPP2R5D was observed in SNRK-deficient primary brown adipocytes overexpressing SNRK compared to control protein. In vitro phosphorylation reaction followed by targeted phosphoproteomic detection further confirms that human recombinant SNRK is able to phosphorylate human recombinant PPP2R5D. Dephosphorylated PPP2R5D promotes constitutive assembly of PP2A-AKT complex, therefore inhibits insulin-induced AKT phosphorylation and subsequent glucose uptake in both BAT and WAT. Knockdown of PPP2R5D in adipocytes can improve insulin sensitivity in adipocytes without SNRK expression. Conclusions Our findings demonstrate that SNRK regulates insulin signaling through controlling PPP2R5D phosphorylation, which subsequently impacts PP2A activity and then AKT phosphorylation in both WAT and BAT. SNRK may represent a promising potential target for treating insulin resistance-related metabolic disorders. SNRK is essential for insulin-stimulated AKT phosphorylation in adipose tissue. SNRK ablation causes insulin resistance in both white and brown adipose tissue. Phosphoproteomic studies identify PPP2R5D as a novel substrate of SNRK. SNRK regulates PP2A-AKT interaction through PPP2R5D phosphorylation. Enhanced PP2A activity by SNRK ablation inhibits AKT phosphorylation.
Collapse
Affiliation(s)
- Jie Li
- Department of Epidemiology, Brown University, Providence, RI, USA; Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA; National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Ran An
- Department of Epidemiology, Brown University, Providence, RI, USA; Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Epidemiology, Brown University, Providence, RI, USA; Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Linlin Li
- Department of Epidemiology, Brown University, Providence, RI, USA; Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA; Department of Epidemiology & Biostatistics, School of Public Health, Zhengzhou University, China
| | - Simin Liu
- Department of Epidemiology, Brown University, Providence, RI, USA; Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Haiyan Xu
- Department of Epidemiology, Brown University, Providence, RI, USA; Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA.
| |
Collapse
|
7
|
Siposova K, Kozar T, Huntosova V, Tomkova S, Musatov A. Inhibition of amyloid fibril formation and disassembly of pre-formed fibrils by natural polyphenol rottlerin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:259-274. [DOI: 10.1016/j.bbapap.2018.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/18/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
|
8
|
Milovanovic D, Wu Y, Bian X, De Camilli P. A liquid phase of synapsin and lipid vesicles. Science 2018; 361:604-607. [PMID: 29976799 DOI: 10.1126/science.aat5671] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
Abstract
Neurotransmitter-containing synaptic vesicles (SVs) form tight clusters at synapses. These clusters act as a reservoir from which SVs are drawn for exocytosis during sustained activity. Several components associated with SVs that are likely to help form such clusters have been reported, including synapsin. Here we found that synapsin can form a distinct liquid phase in an aqueous environment. Other scaffolding proteins could coassemble into this condensate but were not necessary for its formation. Importantly, the synapsin phase could capture small lipid vesicles. The synapsin phase rapidly disassembled upon phosphorylation by calcium/calmodulin-dependent protein kinase II, mimicking the dispersion of synapsin 1 that occurs at presynaptic sites upon stimulation. Thus, principles of liquid-liquid phase separation may apply to the clustering of SVs at synapses.
Collapse
Affiliation(s)
- Dragomir Milovanovic
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Yumei Wu
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Xin Bian
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Pietro De Camilli
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Nakatsumi H, Oka T, Higa T, Shirane M, Nakayama KI. Nuclear-cytoplasmic shuttling protein PP2A B56 contributes to mTORC1-dependent dephosphorylation of FOXK1. Genes Cells 2018; 23:599-605. [PMID: 29845697 DOI: 10.1111/gtc.12597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) kinase is a master regulator of the cellular response to nutrition-related signals such as insulin and amino acids. mTORC1 is activated on the lysosomal membrane and induces phosphorylation of a variety of downstream molecules. We previously showed that activated mTORC1 induces protein phosphatase 2A (PP2A)-mediated dephosphorylation of the transcription factor forkhead box K1 (FOXK1). The mechanism underlying the signal transduction from the cytoplasmic mTORC1 to the nuclear FOXK1 has remained unclear, however, we now show that a nuclear-cytoplasmic transport system is necessary for the mTORC1-FOXK1 signal transduction. This reaction is mediated by a shuttling protein B56, which is a regulatory subunit of PP2A and plays an essential role in the mTORC1-dependent dephosphorylation of FOXK1. These results suggest that PP2AB56 phosphatase contributes to the signaling for mTORC1-dependent transcriptional regulation.
Collapse
Affiliation(s)
- Hirokazu Nakatsumi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takeru Oka
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tsunaki Higa
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Michiko Shirane
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Beg M, Srivastava A, Shankar K, Varshney S, Rajan S, Gupta A, Kumar D, Gaikwad AN. PPP2R5B, a regulatory subunit of PP2A, contributes to adipocyte insulin resistance. Mol Cell Endocrinol 2016; 437:97-107. [PMID: 27521959 DOI: 10.1016/j.mce.2016.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/04/2016] [Accepted: 08/09/2016] [Indexed: 12/29/2022]
Abstract
Insulin resistance is associated with deregulation of insulin signaling owing to the chronic exposure of insulin (hyperinsulinemia) to the tissues. Phosphorylation and dephosphorylation events in insulin signaling pathway play an essential role in signal transduction and glucose uptake. Amongst all, Akt protein is considered to be central to the overall insulin signaling proteins. In glucose responsive tissues like adipose and muscles, activation of Akt is responsible for triggering GLUT4 translocation and glucose transport. Several phosphatases such as PTEN, PP2A have been reported to be involved in dephosphorylation and inactivation of Akt protein. We have identified increased PP2A activity during state of chronic hyperinsulinemia exposure along-with development of adipocyte insulin resistance. This increased phosphatase activity leads activation of cAMP/PKA axis, which in turn increased cAMP levels in insulin resistant (IR) adipocytes. Okadaic acid, an inhibitor of PP2A restored and increased insulin stimulated glucose uptake in insulin resistant (IR) and insulin sensitive (IS) adipocytes respectively. In IS adipocyte, chemical activation of PP2A through MG132 and FTY720 showed decreased insulin sensitivity corroborated with decreased Akt phosphorylation and glucose uptake. We also observed an increased expression of PP2A-B (regulatory) subunit in IR adipocytes. We found PPP2R5B, a regulatory subunit of PP2A is responsible for the dephosphorylation and inactivation of Akt protein. Increased expression of PPP2R5B was also confirmed in white adipose tissue of high fat diet induced IR mice model. Overexpression and suppression strategies confirmed the role of PPP2R5B in regulating insulin signaling. Thus, we conclude that PPP2R5B, a B subunit of PP2A is a negative regulator of Akt phosphorylation contributing partly to the chronic hyperinsulinemia induced insulin resistance in adipocytes.
Collapse
Affiliation(s)
- Muheeb Beg
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Anil N Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India.
| |
Collapse
|
11
|
Houge G, Haesen D, Vissers LELM, Mehta S, Parker MJ, Wright M, Vogt J, McKee S, Tolmie JL, Cordeiro N, Kleefstra T, Willemsen MH, Reijnders MRF, Berland S, Hayman E, Lahat E, Brilstra EH, van Gassen KLI, Zonneveld-Huijssoon E, de Bie CI, Hoischen A, Eichler EE, Holdhus R, Steen VM, Døskeland SO, Hurles ME, FitzPatrick DR, Janssens V. B56δ-related protein phosphatase 2A dysfunction identified in patients with intellectual disability. J Clin Invest 2015; 125:3051-62. [PMID: 26168268 DOI: 10.1172/jci79860] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/27/2015] [Indexed: 12/17/2022] Open
Abstract
Here we report inherited dysregulation of protein phosphatase activity as a cause of intellectual disability (ID). De novo missense mutations in 2 subunits of serine/threonine (Ser/Thr) protein phosphatase 2A (PP2A) were identified in 16 individuals with mild to severe ID, long-lasting hypotonia, epileptic susceptibility, frontal bossing, mild hypertelorism, and downslanting palpebral fissures. PP2A comprises catalytic (C), scaffolding (A), and regulatory (B) subunits that determine subcellular anchoring, substrate specificity, and physiological function. Ten patients had mutations within a highly conserved acidic loop of the PPP2R5D-encoded B56δ regulatory subunit, with the same E198K mutation present in 6 individuals. Five patients had mutations in the PPP2R1A-encoded scaffolding Aα subunit, with the same R182W mutation in 3 individuals. Some Aα cases presented with large ventricles, causing macrocephaly and hydrocephalus suspicion, and all cases exhibited partial or complete corpus callosum agenesis. Functional evaluation revealed that mutant A and B subunits were stable and uncoupled from phosphatase activity. Mutant B56δ was A and C binding-deficient, while mutant Aα subunits bound B56δ well but were unable to bind C or bound a catalytically impaired C, suggesting a dominant-negative effect where mutant subunits hinder dephosphorylation of B56δ-anchored substrates. Moreover, mutant subunit overexpression resulted in hyperphosphorylation of GSK3β, a B56δ-regulated substrate. This effect was in line with clinical observations, supporting a correlation between the ID degree and biochemical disturbance.
Collapse
|
12
|
MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein phosphatase 2A activity. J Allergy Clin Immunol 2015; 136:462-73. [PMID: 25772595 DOI: 10.1016/j.jaci.2014.11.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Steroid-resistant asthma is a major clinical problem that is linked to activation of innate immune cells. Levels of IFN-γ and LPS are often increased in these patients. Cooperative signaling between IFN-γ/LPS induces macrophage-dependent steroid-resistant airway hyperresponsiveness (AHR) in mouse models. MicroRNAs (miRs) are small noncoding RNAs that regulate the function of innate immune cells by controlling mRNA stability and translation. Their role in regulating glucocorticoid responsiveness and AHR remains unexplored. OBJECTIVE IFN-γ and LPS synergistically increase the expression of miR-9 in macrophages and lung tissue, suggesting a role in the mechanisms of steroid resistance. Here we demonstrate the role of miR-9 in IFN-γ/LPS-induced inhibition of dexamethasone (DEX) signaling in macrophages and in induction of steroid-resistant AHR. METHODS MiRNA-9 expression was assessed by means of quantitative RT-PCR. Putative miR-9 targets were determined in silico and confirmed in luciferase reporter assays. miR-9 function was inhibited with sequence-specific antagomirs. The efficacy of DEX was assessed by quantifying glucocorticoid receptor (GR) cellular localization, protein phosphatase 2A (PP2A) activity, and AHR. RESULTS Exposure of pulmonary macrophages to IFN-γ/LPS synergistically induced miR-9 expression; reduced levels of its target transcript, protein phosphatase 2 regulatory subunit B (B56) δ isoform; attenuated PP2A activity; and inhibited DEX-induced GR nuclear translocation. Inhibition of miR-9 increased both PP2A activity and GR nuclear translocation in macrophages and restored steroid sensitivity in multiple models of steroid-resistant AHR. Pharmacologic activation of PP2A restored DEX efficacy and inhibited AHR. MiR-9 expression was increased in sputum of patients with neutrophilic but not those with eosinophilic asthma. CONCLUSION MiR-9 regulates GR signaling and steroid-resistant AHR. Targeting miR-9 function might be a novel approach for the treatment of steroid-resistant asthma.
Collapse
|
13
|
Complex molecular regulation of tyrosine hydroxylase. J Neural Transm (Vienna) 2014; 121:1451-81. [PMID: 24866693 DOI: 10.1007/s00702-014-1238-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/04/2014] [Indexed: 12/16/2022]
Abstract
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is strictly controlled by several interrelated regulatory mechanisms. Enzyme synthesis is controlled by epigenetic factors, transcription factors, and mRNA levels. Enzyme activity is regulated by end-product feedback inhibition. Phosphorylation of the enzyme is catalyzed by several protein kinases and dephosphorylation is mediated by two protein phosphatases that establish a sensitive process for regulating enzyme activity on a minute-to-minute basis. Interactions between tyrosine hydroxylase and other proteins introduce additional layers to the already tightly controlled production of catecholamines. Tyrosine hydroxylase degradation by the ubiquitin-proteasome coupled pathway represents yet another mechanism of regulation. Here, we revisit the myriad mechanisms that regulate tyrosine hydroxylase expression and activity and highlight their physiological importance in the control of catecholamine biosynthesis.
Collapse
|
14
|
Gray EE, Guglietta R, Khakh BS, O'Dell TJ. Inhibitory interactions between phosphorylation sites in the C terminus of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor GluA1 subunits. J Biol Chem 2014; 289:14600-11. [PMID: 24706758 DOI: 10.1074/jbc.m114.553537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The C terminus of AMPA-type glutamate receptor (AMPAR) GluA1 subunits contains several phosphorylation sites that regulate AMPAR activity and trafficking at excitatory synapses. Although many of these sites have been extensively studied, little is known about the signaling mechanisms regulating GluA1 phosphorylation at Thr-840. Here, we report that neuronal depolarization in hippocampal slices induces a calcium and protein phosphatase 1/2A-dependent dephosphorylation of GluA1 at Thr-840 and a nearby site at Ser-845. Despite these similarities, inhibitors of NMDA-type glutamate receptors and protein phosphatase 2B prevented depolarization-induced Ser-845 dephosphorylation but had no effect on Thr-840 dephosphorylation. Instead, depolarization-induced Thr-840 dephosphorylation was prevented by blocking voltage-gated calcium channels, indicating that distinct Ca(2+) sources converge to regulate GluA1 dephosphorylation at Thr-840 and Ser-845 in separable ways. Results from immunoprecipitation/depletion assays indicate that Thr-840 phosphorylation inhibits protein kinase A (PKA)-mediated increases in Ser-845 phosphorylation. Consistent with this, PKA-mediated increases in AMPAR currents, which are dependent on Ser-845 phosphorylation, were inhibited in HEK-293 cells expressing a Thr-840 phosphomimetic version of GluA1. Conversely, mimicking Ser-845 phosphorylation inhibited protein kinase C phosphorylation of Thr-840 in vitro, and PKA activation inhibited Thr-840 phosphorylation in hippocampal slices. Together, the regulation of Thr-840 and Ser-845 phosphorylation by distinct sources of Ca(2+) influx and the presence of inhibitory interactions between these sites highlight a novel mechanism for conditional regulation of AMPAR phosphorylation and function.
Collapse
Affiliation(s)
- Erin E Gray
- From the Department of Physiology and Interdepartmental Ph.D. Program for Neuroscience at UCLA, and
| | - Ryan Guglietta
- From the Department of Physiology and Interdepartmental Ph.D. Program for Neuroscience at UCLA, and
| | - Baljit S Khakh
- From the Department of Physiology and Department of Neurobiology, David Geffen School of Medicine at UCLA
| | - Thomas J O'Dell
- From the Department of Physiology and UCLA Integrative Center for Learning and Memory, Los Angeles, California 90095
| |
Collapse
|
15
|
Yu UY, Yoo BC, Ahn JH. Regulatory B Subunits of Protein Phosphatase 2A Are Involved in Site-specific Regulation of Tau Protein Phosphorylation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:155-61. [PMID: 24757378 PMCID: PMC3994303 DOI: 10.4196/kjpp.2014.18.2.155] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/12/2014] [Accepted: 02/28/2014] [Indexed: 11/15/2022]
Abstract
Overexpression of amyloid precursor protein with the Swedish mutation causes abnormal hyperphosphorylation of the microtubule-associated protein tau. Hyperphosphorylated isoforms of tau are major components of neurofibrillary tangles, which are histopathological hallmarks of Alzheimer's disease. Protein phosphatase 2A (PP2A), a major tau protein phosphatase, consists of a structural A subunit, catalytic C subunit, and a variety of regulatory B subunits. The B subunits have been reported to modulate function of the PP2A holoenzyme by regulating substrate binding, enzyme activity, and subcellular localization. In the current study, we characterized regulatory B subunit-specific regulation of tau protein phosphorylation. We showed that the PP2A B subunit PPP2R2A mediated dephosphorylation of tau protein at Ser-199, Ser-202/Thr-205, Thr-231, Ser-262, and Ser-422. Down-regulation of PPP2R5D expression decreased tau phosphorylation at Ser-202/Thr-205, Thr-231, and Ser-422, which indicates activation of the tau kinase glycogen synthase kinase 3 beta (GSK3β) by PP2A with PPP2R5D subunit. The level of activating phosphorylation of the GSK3β kinase Akt at Thr-308 and Ser-473 were both increased by PPP2R5D knockdown. We also characterized B subunit-specific phosphorylation sites in tau using mass spectrometric analysis. Liquid chromatography-mass spectrometry revealed that the phosphorylation status of the tau protein may be affected by PP2A, depending on the specific B subunits. These studies further our understanding of the function of various B subunits in mediating site-specific regulation of tau protein phosphorylation.
Collapse
Affiliation(s)
- Un Young Yu
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul 158-710, Korea
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang 410-768, Korea
| | - Jung-Hyuck Ahn
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul 158-710, Korea
| |
Collapse
|
16
|
Kirchhefer U, Heinick A, König S, Kristensen T, Müller FU, Seidl MD, Boknik P. Protein phosphatase 2A is regulated by protein kinase Cα (PKCα)-dependent phosphorylation of its targeting subunit B56α at Ser41. J Biol Chem 2013; 289:163-76. [PMID: 24225947 DOI: 10.1074/jbc.m113.507996] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a family of multifunctional serine/threonine phosphatases consisting of a catalytic C, a structural A, and a regulatory B subunit. The substrate and therefore the functional specificity of PP2A are determined by the assembly of the enzyme complex with the appropriate regulatory B subunit families, namely B55, B56, PR72, or PR93/PR110. It has been suggested that additional levels of regulating PP2A function may result from the phosphorylation of B56 isoforms. In this study, we identified a novel phosphorylation site at Ser(41) of B56α. This phosphoamino acid residue was efficiently phosphorylated in vitro by PKCα. We detected a 7-fold higher phosphorylation of B56α in failing human hearts compared with nonfailing hearts. Purified PP2A dimeric holoenzyme (subunits C and A) was able to dephosphorylate PKCα-phosphorylated B56α. The potency of B56α for PP2A inhibition was markedly increased by PKCα phosphorylation. PP2A activity was also reduced in HEK293 cells transfected with a B56α mutant, where serine 41 was replaced by aspartic acid, which mimics phosphorylation. More evidence for a functional role of PKCα-dependent phosphorylation of B56α was derived from Fluo-4 fluorescence measurements in phenylephrine-stimulated Flp293 cells. The endoplasmic reticulum Ca(2+) release was increased by 23% by expression of the pseudophosphorylated form compared with wild-type B56α. Taken together, our results suggest that PKCα can modify PP2A activity by phosphorylation of B56α at Ser(41). This interplay between PKCα and PP2A represents a new mechanism to regulate important cellular functions like cellular Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Uwe Kirchhefer
- From the Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, 48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Toledo A, Zolessi FR, Arruti C. A novel effect of MARCKS phosphorylation by activated PKC: the dephosphorylation of its serine 25 in chick neuroblasts. PLoS One 2013; 8:e62863. [PMID: 23634231 PMCID: PMC3636281 DOI: 10.1371/journal.pone.0062863] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/25/2013] [Indexed: 12/31/2022] Open
Abstract
MARCKS (Myristoylated Alanine-Rich C Kinase Substrate) is a peripheral membrane protein, especially abundant in the nervous system, and functionally related to actin organization and Ca-calmodulin regulation depending on its phosphorylation by PKC. However, MARCKS is susceptible to be phosphorylated by several different kinases and the possible interactions between these phosphorylations have not been fully studied in intact cells. In differentiating neuroblasts, as well as some neurons, there is at least one cell-type specific phosphorylation site: serine 25 (S25) in the chick. We demonstrate here that S25 is included in a highly conserved protein sequence which is a Cdk phosphorylatable region, located far away from the PKC phosphorylation domain. S25 phosphorylation was inhibited by olomoucine and roscovitine in neuroblasts undergoing various states of cell differentiation in vitro. These results, considered in the known context of Cdks activity in neuroblasts, suggest that Cdk5 is the enzyme responsible for this phosphorylation. We find that the phosphorylation by PKC at the effector domain does not occur in the same molecules that are phosphorylated at serine 25. The in situ analysis of the subcellular distribution of these two phosphorylated MARCKS variants revealed that they are also segregated in different protein clusters. In addition, we find that a sustained stimulation of PKC by phorbol-12-myristate-13-acetate (PMA) provokes the progressive disappearance of phosphorylation at serine 25. Cells treated with PMA, but in the presence of several Ser/Thr phosphatase (PP1, PP2A and PP2B) inhibitors indicated that this dephosphorylation is achieved via a phosphatase 2A (PP2A) form. These results provide new evidence regarding the existence of a novel consequence of PKC stimulation upon the phosphorylated state of MARCKS in neural cells, and propose a link between PKC and PP2A activity on MARCKS.
Collapse
Affiliation(s)
- Andrea Toledo
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Flavio R. Zolessi
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Cristina Arruti
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
18
|
Protein phosphatase 2A dephosphorylates SNAP-25 through two distinct mechanisms in mouse brain synaptosomes. Neurosci Res 2013; 75:184-9. [DOI: 10.1016/j.neures.2013.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 01/03/2023]
|
19
|
B56α subunit of protein phosphatase 2A mediates retinoic acid-induced decreases in phosphorylation of endothelial nitric oxide synthase at serine 1179 and nitric oxide production in bovine aortic endothelial cells. Biochem Biophys Res Commun 2013; 430:476-81. [DOI: 10.1016/j.bbrc.2012.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/04/2012] [Indexed: 11/22/2022]
|
20
|
Abstract
Protein phosphatases of the type 2A family (PP2A) represent a major fraction of cellular Ser/Thr phosphatase activity in any given human tissue. In this review, we describe how the holoenzymic nature of PP2A and the existence of several distinct PP2A composing subunits allow for the generation of multiple structurally and functionally different PP2A complexes, explaining why PP2A is involved in the regulation of so many diverse cell biological and physiological processes. Moreover, in human disease, most notably in several cancers and Alzheimer's Disease, PP2A expression and/or activity have been found significantly decreased, underscoring its important functions as a major tumor suppressor and tau phosphatase. Hence, several recent preclinical studies have demonstrated that pharmacological restoration of PP2A activity, as well as pharmacological PP2A inhibition, under certain conditions, may be of significant future therapeutic value.
Collapse
|