1
|
Sangani KA, Parker ME, Anderson HD, Chen L, Pandey SP, Pierre JF, Meisel M, Riesenfeld SJ, Hinterleitner R, Jabri B. Epigenetic control of commensal induced Th2 Responses and Intestinal immunopathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610485. [PMID: 39257820 PMCID: PMC11383986 DOI: 10.1101/2024.08.30.610485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Understanding the initiation of T-helper (Th)-2 immunity is crucial for addressing allergic diseases that have been linked to the commensal microbiota. However, Th2 responses are notably absent from known host-microbiota intestinal immune circuits. Notably, the commensal protist Tritrichomonas induces a transient innate ILC2 circuit rather than a chronic Th2 circuit. Canonical Th2 responses rely on the induction of IL-4 production by innate cells. This study shows that the absence of Tet2 , a DNA demethylase, reprograms naïve T cells to autonomously produce IL-4 upon T cell receptor stimulation, bypassing the need for IL-4 from innate cells for Th2 differentiation. Loss of this checkpoint induces chronic Th2 responses to Tritrichomonas , associated with IL-25-dependent barrier dysfunction and increased susceptibility to allergic pathology in response to dietary antigens. Sentence Summary Regulation of cell autonomous IL-4 in T cells is critical to prevent dysregulated Th2 immunity to commensals and predisposition to allergy.
Collapse
|
2
|
Huang M, Shao H, Zhang X, Yang F, Wang J, Tan S, Chen H, Li X. Comparison of cow's milk allergy models highlighted higher humoral and Th2 immune responses in BALB/c than C3H/HeNCrl mice. Food Chem Toxicol 2024; 184:114315. [PMID: 38081529 DOI: 10.1016/j.fct.2023.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023]
Abstract
Cow's milk allergy (CMA) is common in early childhood and the incidence is increasing. However, its mechanisms of action are still not fully understood due to the range of different clinical symptoms. So far, the development of different mouse models has been the best choice to study the molecular mechanisms triggering allergy. However, the selection of suitable strains for the establishment of animal models truly representative of associated human pathologies is still a challenge. Hence, we focused on both C3H/HeNCrl and BALB/c mice to characterize their susceptibility to CMA. After intraperitoneal sensitization, BALB/c and C3H/HeNCrl strains were challenged with β-lactoglobulin (BLG), and compared in allergic symptoms and active immune response, which assessed by specific antibody production and cytokine release. At first, both groups exhibited anaphylaxis, showed specific BLG-related IgE, Th2 response and seemed both suitable for the development of CMA models. However, a detailed analysis revealed that BALB/c had both stronger humoral and Th2 immune responses, producing more antibodies (IgE and IgG/IgG1/IgG2a), and releasing higher levels of Th2-associated cytokines (IL-4, IL-5, IL-13) compared to C3H/HeNCrl mice. Therefore, BALB/c strain would represent a preferential choice in the establishment of CMA models. This study highlights the subtle differences and major outcomes in the selection of mouse strains for the development of suitable food allergy models.
Collapse
Affiliation(s)
- Meijia Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Huming Shao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Fan Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Jingshu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Shuijie Tan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, Jiangxi, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, PR China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, PR China.
| |
Collapse
|
3
|
Gertie JA, Zhang B, Liu EG, Hoyt LR, Yin X, Xu L, Long LL, Soldatenko A, Gowthaman U, Williams A, Eisenbarth SC. Oral anaphylaxis to peanut in a mouse model is associated with gut permeability but not with Tlr4 or Dock8 mutations. J Allergy Clin Immunol 2022; 149:262-274. [PMID: 34051223 PMCID: PMC8626534 DOI: 10.1016/j.jaci.2021.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The etiology of food allergy is poorly understood; mouse models are powerful systems to discover immunologic pathways driving allergic disease. C3H/HeJ mice are a widely used model for the study of peanut allergy because, unlike C57BL/6 or BALB/c mice, they are highly susceptible to oral anaphylaxis. However, the immunologic mechanism of this strain's susceptibility is not known. OBJECTIVE We aimed to determine the mechanism underlying the unique susceptibility to anaphylaxis in C3H/HeJ mice. We tested the role of deleterious Toll-like receptor 4 (Tlr4) or dedicator of cytokinesis 8 (Dock8) mutations in this strain because both genes have been associated with food allergy. METHODS We generated C3H/HeJ mice with corrected Dock8 or Tlr4 alleles and sensitized and challenged them with peanut. We then characterized the antibody response to sensitization, anaphylaxis response to both oral and systemic peanut challenge, gut microbiome, and biomarkers of gut permeability. RESULTS In contrast to C3H/HeJ mice, C57BL/6 mice were resistant to anaphylaxis after oral peanut challenge; however, both strains undergo anaphylaxis with intraperitoneal challenge. Restoring Tlr4 or Dock8 function in C3H/HeJ mice did not protect from anaphylaxis. Instead, we discovered enhanced gut permeability resulting in ingested allergens in the bloodstream in C3H/HeJ mice compared to C57BL/6 mice, which correlated with an increased number of goblet cells in the small intestine. CONCLUSIONS Our work highlights the potential importance of gut permeability in driving anaphylaxis to ingested food allergens; it also indicates that genetic loci outside of Tlr4 and Dock8 are responsible for the oral anaphylactic susceptibility of C3H/HeJ mice.
Collapse
Affiliation(s)
- Jake A Gertie
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Biyan Zhang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Singapore Immunology Network (SIgN), Singapore
| | - Elise G Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, Conn
| | - Laura R Hoyt
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Xiangyun Yin
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Lan Xu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Lauren L Long
- The Jackson Laboratory for Genomic Medicine, Farmington, Conn
| | - Arielle Soldatenko
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Uthaman Gowthaman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Department of Pathology, University of Massachusetts Medical School, Worcester, Mass
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, Conn; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Conn.
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, Conn.
| |
Collapse
|
4
|
Achour J, Guinot M, Guillon B, Kapel R, Galet O, Adel‐Patient K, Hazebrouck S, Bernard H. Sensitization Potency of Sunflower Seed Protein in a Mouse Model: Identification of 2S-Albumins More Allergenic Than SFA-8. Mol Nutr Food Res 2021; 65:e2100369. [PMID: 34331387 PMCID: PMC9285957 DOI: 10.1002/mnfr.202100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/23/2021] [Indexed: 11/12/2022]
Abstract
SCOPE Food allergy to sunflower seed (SFS) protein is not frequent and only non-specific lipid transfert protein (nsLTP) Hel a 3 is officially recognized as a food allergen. Out of the eleven seed storage 2S-albumins (SESA) detected in SFS, only SFA-8 allergenicity has been investigated so far. The study aimed then to evaluate SFS protein allergenicity and particularly, to compare the sensitization potency of SESA in a mouse model. METHODS AND RESULTS The most abundant SESA and nsLTP were isolated from SFS through a combination of chromatographic methods. Purified proteins were then used to measure specific IgG1 and IgE responses in BALB/c mice orally sensitized to different SFS protein isolates. The study, thus, confirmed the allergenicity of SFA-8 and Hel a 3 but mice were also highly sensitized to other SESA such as SESA2-1 or SESA20-2. Furthermore, competitive inhibition of IgE-binding revealed that SFA-8 IgE-reactivity was due to cross-reactivity with other SESA. 11S-globulins were weakly immunogenic and were rapidly degraded in an in vitro model of gastroduodenal digestion. In contrast, Hel a 3, SESA2-1 and SFA-8 were more resistant to proteolysis and gastroduodenal digestion did not affect their IgE-reactivity. CONCLUSIONS SESA2-1 or SESA20-2 were more potent allergens than SFA-8 in this mouse model. Allergenicity of SESA must be now confirmed in SFS-allergic patients.
Collapse
Affiliation(s)
- Jihana Achour
- CEAINRAEDépartement Médicaments et Technologies pour la Santé (DMTS)/Service de Pharmacologie et d'ImmunoanalyseUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Marine Guinot
- CEAINRAEDépartement Médicaments et Technologies pour la Santé (DMTS)/Service de Pharmacologie et d'ImmunoanalyseUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Blanche Guillon
- CEAINRAEDépartement Médicaments et Technologies pour la Santé (DMTS)/Service de Pharmacologie et d'ImmunoanalyseUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Romain Kapel
- Laboratoire Réactions et Génie des ProcédésCNRSLRGPUniversité de LorraineNancyFrance
| | | | - Karine Adel‐Patient
- CEAINRAEDépartement Médicaments et Technologies pour la Santé (DMTS)/Service de Pharmacologie et d'ImmunoanalyseUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Stéphane Hazebrouck
- CEAINRAEDépartement Médicaments et Technologies pour la Santé (DMTS)/Service de Pharmacologie et d'ImmunoanalyseUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Hervé Bernard
- CEAINRAEDépartement Médicaments et Technologies pour la Santé (DMTS)/Service de Pharmacologie et d'ImmunoanalyseUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| |
Collapse
|
5
|
Alberca RW, Gomes E, Moretti EH, Russo M, Steiner AA. Naturally occurring hypothermia promotes survival in severe anaphylaxis. Immunol Lett 2021; 237:27-32. [PMID: 34245741 DOI: 10.1016/j.imlet.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/24/2022]
Abstract
Although hypothermia has received substantial attention as an indicator of severity in anaphylaxis, it has been neglected from the perspective of whether it could act as a disease-modifying factor in this condition. Here, the impact of naturally occurring (spontaneous) hypothermia on anaphylaxis was evaluated in a murine model of ovalbumin (OVA)-induced allergy. Nonextreme changes in the ambient temperature (Ta) were used to modulate the magnitude of spontaneous hypothermia. At a Ta of 24°C, challenge with OVA intraperitoneally or intravenously resulted in a rapid, transient fall in body core temperature, which reached its nadir 4-6°C below baseline in 30 min. This hypothermic response was largely attenuated when the mice were kept at a Ta of 34°C. The Ta-dependent attenuation of hypothermia resulted in a survival rate of only 30%, as opposed to survival of 100% in the condition that favored the development of hypothermia. The protective effect of hypothermia did not involve changes in the rate of mast cell degranulation, as assessed by the concentration of mast cell protease-1 in bodily fluids. On the other hand, hypothermia improved oxygenation of the brain and kidneys, as indicated by higher NAD+/NADH ratios. Therefore, it is plausible to propose that naturally occurring hypothermia makes organs more resistant to the anaphylactic insult.
Collapse
Affiliation(s)
- Ricardo W Alberca
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508, Brazil
| | - Eliane Gomes
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508, Brazil
| | - Eduardo H Moretti
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508, Brazil
| | - Momtchilo Russo
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508, Brazil
| | - Alexandre A Steiner
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508, Brazil.
| |
Collapse
|
6
|
Benedé S, Berin MC. Applications of Mouse Models to the Study of Food Allergy. Methods Mol Biol 2021; 2223:1-17. [PMID: 33226583 DOI: 10.1007/978-1-0716-1001-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mouse models of allergic disease offer numerous advantages when compared to the models of other animals. However, selection of appropriate mouse models is critical to advance the field of food allergy by revealing mechanisms of allergy and for testing novel therapeutic approaches. All current mouse models for food allergy have weaknesses that may limit their applicability to human disease. Aspects such as the genetic predisposition to allergy or tolerance from the strain of mouse used, allergen dose, route of exposure (oral, intranasal, intraperitoneal, or epicutaneous), damage of the epithelial barrier, use of adjuvants, food matrix effects, or composition of the microbiota should be considered prior to the selection of a specific murine model and contemplated according to the intended purpose of the study. This chapter reviews our current knowledge on the application of mouse models to food allergy research and the variables that may influence the successful development of each type of model.
Collapse
Affiliation(s)
- Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Induction of Hypersensitivity with Purified Beta-Lactoglobulin as a Mouse Model of Cow's Milk Allergy. Methods Mol Biol 2021; 2223:67-78. [PMID: 33226587 DOI: 10.1007/978-1-0716-1001-5_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cow's milk allergy is one of the most prevalent food allergies in both children and adults. As dairy products are common dietary ingredients and the prevalence of chronic conditions is on the rise, milk allergy is a growing public health concern. To elucidate underlying mechanisms and develop therapeutic strategies, reliable animal models are essential research tools. Sensitization to a milk protein is the principal procedure for establishing animal models of cow's milk allergy. However, the methods of sensitization vary from laboratory to laboratory, using different milk proteins with different amounts, routes, and durations of allergen exposure during sensitization of varying sex and strains of mice, likely resulting in diverse immunological and physical responses. Furthermore, the sources and potential impurities of milk protein may also produce variable responses. Thus, standardization of sensitization protocol is important, particularly when results are compared across studies. Here, we describe a method to generate a mouse model of cow's milk allergy using purified β-lactoglobulin as the milk allergen with cholera toxin as an adjuvant in a 5-week oral sensitization protocol.
Collapse
|
8
|
Adel-Patient K, Guinot M, Guillon B, Bernard H, Chikhi A, Hazebrouck S, Junot C. Administration of Extensive Hydrolysates From Caseins and Lactobacillus rhamnosus GG Probiotic Does Not Prevent Cow's Milk Proteins Allergy in a Mouse Model. Front Immunol 2020; 11:1700. [PMID: 33042105 PMCID: PMC7516991 DOI: 10.3389/fimmu.2020.01700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/25/2020] [Indexed: 11/18/2022] Open
Abstract
Background Early nutrition may influence the development of food allergies later in life. In the absence of breastfeeding, hydrolysates from cow's milk proteins (CMP) were indicated as a prevention strategy in at risk infants, but their proof of effectiveness in clinical and pre-clinical studies is still insufficient. Thanks to a validated mouse model, we then assessed specific and nonspecific preventive effects of administration of extensive hydrolysates from caseins (eHC) on the development of food allergy to CMP. The additional nonspecific effect of the probiotic Lactobacillus GG (LGG), commonly used in infant formula, was also assessed. Methods Groups of young BALB/cByJ female mice were pretreated by repeated gavage either with PBS (control mice), or with PBS solution containing non-hydrolyzed milk protein isolate (MPI), eHC or eHC+LGG (eq. of 10 mg of protein/gavage). All mice were then experimentally sensitized to CMP by gavage with whole CM mixed with the Th2 mucosal adjuvant Cholera toxin. All mice were further chronically exposed to cow's milk. A group of mice was kept naïve. Sensitization to both caseins and to the non-related whey protein β-lactoglobulin (BLG) was evaluated by measuring specific antibodies in plasma and specific ex vivo Th2/Th1/Th17 cytokine secretion. Elicitation of the allergic reaction was assessed by measuring mMCP1 in plasma obtained after oral food challenge (OFC) with CMP. Th/Treg cell frequencies in gut-associated lymphoid tissue and spleen were analyzed by flow cytometry at the end of the protocol. Robust statistical procedure combining non-supervised and supervised multivariate analyses and univariate analyses, was conducted to reveal any effect of the pretreatments. Results PBS pretreated mice were efficiently sensitized and demonstrated elicitation of allergic reaction after OFC, whereas mice pretreated with MPI were durably protected from allergy to CMP. eHC+/-LGG pretreatments had no protective effect on sensitization to casein (specific) or BLG (non-specific), nor on CMP-induced allergic reactions. Surprisingly, eHC+LGG mice demonstrated significantly enhanced humoral and cellular immune responses after sensitization with CMP. Only some subtle changes were evidenced by flow cytometry. Conclusion Neither specific nor nonspecific preventive effects of administration of casein-derived peptides on the development of CMP food allergy were evidenced in our experimental setup. Further studies should be conducted to delineate the mechanisms involved in the immunostimulatory potential of LGG and to clarify its significance in clinical use.
Collapse
Affiliation(s)
- Karine Adel-Patient
- Service de Pharmacologie et d’Immunoanalyse, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marine Guinot
- Service de Pharmacologie et d’Immunoanalyse, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Blanche Guillon
- Service de Pharmacologie et d’Immunoanalyse, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hervé Bernard
- Service de Pharmacologie et d’Immunoanalyse, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Amina Chikhi
- Service de Pharmacologie et d’Immunoanalyse, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire, Université d’Oran 1 Ahmed Ben Bella, Oran, Algeria
| | - Stéphane Hazebrouck
- Service de Pharmacologie et d’Immunoanalyse, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christophe Junot
- Service de Pharmacologie et d’Immunoanalyse, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Evaluating the potential allergenicity of dietary proteins using model strong to non-allergenic proteins in germ-free mice. Food Chem Toxicol 2020; 141:111398. [PMID: 32437892 DOI: 10.1016/j.fct.2020.111398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
Currently no validated animal model is predictive of human responses in ranking purified dietary proteins in the prevalence or potency of food allergy in humans. Since the gastrointestinal microbiota is thought to influence oral tolerance, we hypothesize that a germ-free mouse model will more accurately predict atopic human responses than conventional mice. Germ-free C3H/HeN mice were immunized with 60 μg Ara h 2, BLG, or LOX by three weekly intraperitoneal (IP) injections with alum adjuvant. One week following the final immunization an IP challenge of 500 μg of Ara h 2, BLG, or LOX was administered. Thirty minutes post-challenge clinical scores were graded and body temperatures recorded. The presence of protein-specific IgE and mast cell protease concentrations in mouse sera were determined using ELISA. Upon challenge germ-free mice sensitized with Ara h 2 and BLG exhibited significantly more severe clinical scores compared to germ-free mice immunized with LOX. Hypothermic responses in challenged mice differed between the three proteins post-challenge. Results indicate that this model can differentiate between potent and non-allergens based on temperature drop, clinical scores, and biomarkers. Additional proteins with known human exposure and allergenicity are needed to confirm the predictive accuracy.
Collapse
|
10
|
Hong J, Gao Q, Xiao X, Cao H, Yuan R, Liu Z, Chen T. T cell epitope of arginine kinase with CpG co-encapsulated nanoparticles attenuates a shrimp allergen-induced Th2-bias food allergy. Biosci Biotechnol Biochem 2019; 84:804-814. [PMID: 31795812 DOI: 10.1080/09168451.2019.1699395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
T cell peptide-based immunotherapy (PIT) is an appealing therapeutic strategy for modulating allergic responses without IgE cross-linking. We propose a novel PIT that combines a T-cell epitope of the shrimp allergen arginine kinase (AKp) with TLR9 agonist CpG-ODN in nanoparticles (CpG-AKp NPs) to attenuate a shrimp allergen-induced food allergy. Treatment with CpG-AKp NPs demonstrated the attenuation of anaphylaxis responses such as the reduced incidence of diarrhea and hypothermia, lower levels of specific IgE and the induction of IgG2a in serum. Th2 cytokines were suppressed and higher Th1 cytokines were detected in the splenocyte culture supernatants. Treatment of CpG-AKp NPs also enhanced the protein expression of Foxp3 and IL-10 in small intestine but decreased the activation of STAT6 and GATA3 expression, which are related to differentiation of Th2. Our data indicated that CpG-AKp NPs may represent a promising PIT against shrimp allergy.
Collapse
Affiliation(s)
- Jingyi Hong
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518055, China.,Department of Allergy, the Third Affiliated Hospital of Shenzhen University, Shenzhen, 518020, China
| | - Qichan Gao
- Department of Histology and Embryology, Gannan medical University, Ganzhou,341000, China.,Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Xiaojun Xiao
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Hui Cao
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Ruyi Yuan
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Zhigang Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518055, China.,Department of Allergy, the Third Affiliated Hospital of Shenzhen University, Shenzhen, 518020, China
| | - Tongqiang Chen
- Department of Histology and Embryology, Gannan medical University, Ganzhou,341000, China
| |
Collapse
|
11
|
FcεRI-HDAC3-MCP1 Signaling Axis Promotes Passive Anaphylaxis Mediated by Cellular Interactions. Int J Mol Sci 2019; 20:ijms20194964. [PMID: 31597362 PMCID: PMC6801807 DOI: 10.3390/ijms20194964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022] Open
Abstract
Anaphylaxis is an acute and life-threatening systemic reaction. Food, drug, aero-allergen and insect sting are known to induce anaphylaxis. Mast cells and basophils are known to mediate Immunoglobulin E (IgE)-dependent anaphylaxis, while macrophages, neutrophils and basophils mediate non IgE-dependent anaphylaxis. Histone deacetylases (HDACs) play various roles in biological processes by deacetylating histones and non-histones proteins. HDAC inhibitors can increase the acetylation of target proteins and affect various inflammatory diseases such as cancers and allergic diseases. HDAC3, a class I HDAC, is known to act as epigenetic and transcriptional regulators. It has been shown that HDAC3 can interact with the high-affinity Immunoglobulin E receptor (FcεRI), to mediate passive anaphylaxis and cellular interactions during passive anaphylaxis. Effects of HDAC3 on anaphylaxis, cellular interactions involving mast cells and macrophages during anaphylaxis, and any tumorigenic potential of cancer cells enhanced by mast cells will be discussed in this review. Roles of microRNAs that form negative feedback loops with hallmarks of anaphylaxis such as HDAC3 in anaphylaxis and cellular interactions will also be discussed. The roles of MCP1 regulated by HDAC3 in cellular interactions during anaphylaxis are discussed. Roles of exosomes in cellular interactions mediated by HDAC3 during anaphylaxis are also discussed. Thus, review might provide clues for development of drugs targeting passive anaphylaxis.
Collapse
|
12
|
Kleij HPM, Warmenhoven HJM, Ree R, Versteeg SA, Pieters RHH, Dreskin SC, Knulst AC, Hoffen E, Opstelten DJE, Koppelman SJ, Smit JJ. Chemically modified peanut extract shows increased safety while maintaining immunogenicity. Allergy 2019; 74:986-995. [PMID: 30506686 DOI: 10.1111/all.13687] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/28/2018] [Accepted: 11/16/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Peanuts are most responsible for food-induced anaphylaxis in adults in developed countries. An effective and safe immunotherapy is urgently needed. The aim of this study was to investigate the immunogenicity, allergenicity, and immunotherapeutic efficacy of a well-characterized chemically modified peanut extract (MPE) adsorbed to Al(OH)3 . METHODS Peanut extract (PE) was modified by reduction and alkylation. Using sera of peanut-allergic patients, competitive IgE-binding assays and mediator release assays were performed. The immunogenicity of MPE was evaluated by measuring activation of human PE-specific T-cell lines and the induction of PE-specific IgG in mice. The safety and efficacy of MPE adsorbed to Al(OH)3 was tested in two mouse models by measuring allergic manifestations upon peanut challenge in peanut-allergic mice. RESULTS Compared to PE, the IgE-binding and capacity to induce allergic symptoms of MPE were lower in all patients. PE and MPE displayed similar immunogenicity in vivo and in vitro. In mice sensitized to PE, the threshold for anaphylaxis (drop in BT) upon subcutaneous challenge with PE was 0.01 mg, while at 0.3 mg MPE no allergic reaction occurred. Anaphylaxis was not observed when PE and MPE were fully adsorbed to Al(OH)3 . Both PE and MPE + Al(OH)3 showed to be efficacious in a model for immunotherapy. CONCLUSION In our studies, an Al(OH)3 adsorbed MPE showed reduced allergenicity compared to unmodified PE, while the efficacy of immunotherapy is maintained. The preclinical data presented in this study supports further development of modified peanut allergens for IT.
Collapse
Affiliation(s)
| | | | - Ronald Ree
- Department of Experimental Immunology Academic Medical Center University of Amsterdam Amsterdam The Netherlands
- Department of Otorhinolaryngology Academic Medical Center University of Amsterdam AmsterdamThe Netherlands
| | - Serge A. Versteeg
- Department of Experimental Immunology Academic Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Raymond H. H. Pieters
- Institute for Risk Assessment Sciences Immunotoxicology Utrecht University Utrecht The Netherlands
| | - Stephen C. Dreskin
- Division of Allergy and Clinical Immunology Department of Medicine Denver School of Medicine University of Colorado Aurora Colorado
| | - André C. Knulst
- Department Dermatology/Allergology University Medical Center Utrecht Utrecht University Utrecht The Netherlands
| | - Els Hoffen
- Department Dermatology/Allergology University Medical Center Utrecht Utrecht University Utrecht The Netherlands
| | | | | | - Joost J. Smit
- Institute for Risk Assessment Sciences Immunotoxicology Utrecht University Utrecht The Netherlands
| |
Collapse
|
13
|
van Bilsen JHM, Verschuren L, Wagenaar L, Vonk MM, van Esch BCAM, Knippels LMJ, Garssen J, Smit JJ, Pieters RHH, van den Broek TJ. A network-based approach for identifying suitable biomarkers for oral immunotherapy of food allergy. BMC Bioinformatics 2019; 20:206. [PMID: 31014233 PMCID: PMC6480866 DOI: 10.1186/s12859-019-2802-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Oral immunotherapy (OIT) is a promising therapeutic approach to treat food allergic patients. However, concerns with regards to safety and long-term efficacy of OIT remain. There is a need to identify biomarkers that predict, monitor and/or evaluate the effects of OIT. Here we present a method to select candidate biomarkers for efficacy and safety assessment of OIT using the computational approaches Bayesian networks (BN) and Topological Data Analysis (TDA). RESULTS Data were used from fructo-oligosaccharide diet-supported OIT experiments performed in 3 independent cow's milk allergy (CMA) and 2 independent peanut allergy (PNA) experiments in mice. Bioinformatical approaches were used to understand the data structure. The BN predicted the efficacy of OIT in the CMA with 86% and indicated a clear effect of scFOS/lcFOS on allergy parameters. For the PNA model, this BN (trained on CMA data) predicted an efficacy of OIT with 76% accuracy and shows similar effects of the allergen, treatment and diet as compared to the CMA model. The TDA identified clusters of biomarkers closely linked to biologically relevant clinical symptoms and also unrelated and redundant parameters within the network. CONCLUSIONS Here we provide a promising application of computational approaches to a) compare mechanistic features of two different food allergies during OIT b) determine the biological relevance of candidate biomarkers c) generate new hypotheses to explain why CMA has a different disease pattern than PNA and d) select relevant biomarkers for future studies.
Collapse
Affiliation(s)
| | | | - Laura Wagenaar
- Institute of Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marlotte M Vonk
- Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Betty C A M van Esch
- Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Léon M J Knippels
- Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Johan Garssen
- Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Joost J Smit
- Institute of Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Raymond H H Pieters
- Institute of Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
14
|
Wagenaar L, Bol‐Schoenmakers MW, Giustarini G, Garssen J, Smit JJ, Pieters RH. Mouse strain differences in response to oral immunotherapy for peanut allergy. Immun Inflamm Dis 2019; 7:41-51. [PMID: 30838819 PMCID: PMC6416762 DOI: 10.1002/iid3.242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/19/2019] [Accepted: 01/27/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Promising therapies for food allergy are emerging, mostly based on animal experimentation. However, different mouse strains are used, which may make it hard to compare experiments. The current study investigated whether the immunological differences between C3H/HeOuJ (C3H) and BALB/c mice lead to differences in efficacy of peanut-specific immunotherapy. METHODS After sensitization using peanut extract (PE), C3H and BALB/c mice received oral immunotherapy (OIT) by intragastric dosing for three weeks. Hereafter, mice were exposed to PE via the intradermal, intragastric and intraperitoneal route, to determine allergic outcomes. Furthermore, PE-specific antibody and cytokine production were determined and the number of various immune cells at different time points during the study were measured. RESULTS OIT protected C3H mice against anaphylaxis, whereas no anaphylaxis was seen in BALB/c mice. In contrast, OIT induced an increase in MMCP-1 levels in BALB/c mice but not in C3H mice. No effect of OIT on the acute allergic skin response was observed in either strain. Specific antibody responses showed similar patterns in both strains for IgA and IgG1. IgE levels were a tenfold higher in BALB/c mice and after the intragastric challenge (day 70) OIT-treated BALB/c mice showed induced IgE levels. Moreover, in C3H mice IgG2a levels were higher and increased in response to OIT and challenges. After the final challenge, but not at other timepoints MLN-derived lymphocytes from OIT-treated BALB/c mice produced less IL-13 and IL-5 compared to control-treated mice, whereas no differences were seen in case of C3H mice. CONCLUSIONS Taken together, these results show that the C3H strain is more suitable to study clinical outcomes of OIT, whereas the BALB/c strain is more optimal to study T cell responses.
Collapse
Affiliation(s)
- Laura Wagenaar
- Faculty of Veterinary MedicineDepartment of ImmunotoxicologyInstitute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Marianne W.H.C. Bol‐Schoenmakers
- Faculty of Veterinary MedicineDepartment of ImmunotoxicologyInstitute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Giulio Giustarini
- Faculty of Veterinary MedicineDepartment of ImmunotoxicologyInstitute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Johan Garssen
- Faculty of Science, Department of Pharmacology, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Department of ImmunologyNutricia ResearchUtrechtThe Netherlands
| | - Joost J. Smit
- Faculty of Veterinary MedicineDepartment of ImmunotoxicologyInstitute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Raymond H.H. Pieters
- Faculty of Veterinary MedicineDepartment of ImmunotoxicologyInstitute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
15
|
Chaaban MR, Warren Z, Baillargeon JG, Baillargeon G, Resto V, Kuo Y. Epidemiology and trends of anaphylaxis in the United States, 2004‐2016. Int Forum Allergy Rhinol 2019; 9:607-614. [DOI: 10.1002/alr.22293] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/04/2018] [Accepted: 12/13/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Mohamad R. Chaaban
- Department of OtolaryngologyUniversity of Texas Medical Branch Galveston TX
| | - Zachary Warren
- Department of OtolaryngologyUniversity of Texas Medical Branch Galveston TX
| | - Jacques G. Baillargeon
- Office of Biostatistics, Department of Preventive Medicine and Community HealthUniversity of Texas Medical Branch Galveston TX
| | - Gwen Baillargeon
- Office of Biostatistics, Department of Preventive Medicine and Community HealthUniversity of Texas Medical Branch Galveston TX
| | - Vicente Resto
- Department of OtolaryngologyUniversity of Texas Medical Branch Galveston TX
| | - Yong‐Fang Kuo
- Office of Biostatistics, Department of Preventive Medicine and Community HealthUniversity of Texas Medical Branch Galveston TX
| |
Collapse
|
16
|
Grace JO, Malik A, Reichman H, Munitz A, Barski A, Fulkerson PC. Reuse of public, genome-wide, murine eosinophil expression data for hypotheses development. J Leukoc Biol 2018; 104:185-193. [PMID: 29758095 DOI: 10.1002/jlb.1ma1117-444r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/12/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022] Open
Abstract
The eosinophil (Eos) surface phenotype and activation state is altered after recruitment into tissues and after exposure to pro-inflammatory cytokines. In addition, distinct Eos functional subsets have been described, suggesting that tissue-specific responses for Eos contribute to organ homeostasis. Understanding the mechanisms by which Eos subsets achieve their tissue-specific identity is currently an unmet goal for the eosinophil research community. Publicly archived expression data can be used to answer original questions, test and generate new hypotheses, and serve as a launching point for experimental design. With these goals in mind, we investigated the effect of genetic background, culture methods, and tissue residency on murine Eos gene expression using publicly available, genome-wide expression data. Eos differentiated from cultures have a gene expression profile that is distinct from that of native homeostatic Eos; thus, researchers can repurpose published expression data to aid in selecting the appropriate culture method to study their gene of interest. In addition, we identified Eos lung- and gastrointestinal-specific transcriptomes, highlighting the profound effect of local tissue environment on gene expression in a terminally differentiated granulocyte even at homeostasis. Expanding the "toolbox" of Eos researchers to include public-data reuse can reduce redundancy, increase research efficiency, and lead to new biological insights.
Collapse
Affiliation(s)
- Jillian O Grace
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Astha Malik
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hadar Reichman
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Patricia C Fulkerson
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
17
|
Germundson DL, Smith NA, Vendsel LP, Kelsch AV, Combs CK, Nagamoto-Combs K. Oral sensitization to whey proteins induces age- and sex-dependent behavioral abnormality and neuroinflammatory responses in a mouse model of food allergy: a potential role of mast cells. J Neuroinflammation 2018; 15:120. [PMID: 29685134 PMCID: PMC5913881 DOI: 10.1186/s12974-018-1146-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Growing evidence has strengthened the association of food allergy with neuropsychiatric symptoms such as depression, anxiety, and autism. However, underlying mechanisms by which peripheral allergic responses lead to behavioral dysfunction are yet to be determined. Allergen-activated mast cells may serve as mediators by releasing histamine and other inflammatory factors that could adversely affect brain function. We hypothesized that eliciting food allergy in experimental animals would result in behavioral changes accompanied by mast cell accumulation in the brain. Our hypothesis was tested in a mouse model of milk allergy using bovine milk whey proteins (WP) as the allergen. METHODS Male and female C57BL/6 mice at 4 weeks (young) and 10 months (old) of age underwent 5-week WP sensitization with weekly intragastric administration of 20 mg WP and 10 μg cholera toxin as an adjuvant. Age-matched sham animals were given the vehicle containing only the adjuvant. All animals were orally challenged with 50 mg WP in week 6 and their intrinsic digging behavior was assessed the next day. Animals were sacrificed 3 days after the challenge, and WP-specific serum IgE, intestinal and brain mast cells, glial activation, and epigenetic DNA modification in the brain were examined. RESULTS WP-sensitized males showed significantly less digging activity than the sham males in both age groups while no apparent difference was observed in females. Mast cells and their activities were evident in the intestines in an age- and sex-dependent manner. Brain mast cells were predominantly located in the region between the lateral midbrain and medial hippocampus, and their number increased in the WP-sensitized young, but not old, male brains. Noticeable differences in for 5-hydroxymethylcytosine immunoreactivity were observed in WP mice of both age groups in the amygdala, suggesting epigenetic regulation. Increased microglial Iba1 immunoreactivity and perivascular astrocytes hypertrophy were also observed in the WP-sensitized old male mice. CONCLUSIONS Our results demonstrated that food allergy induced behavioral abnormality, increases in the number of mast cells, epigenetic DNA modification in the brain, microgliosis, and astrocyte hypertrophy in a sex- and age-dependent manner, providing a potential mechanism by which peripheral allergic responses evoke behavioral dysfunction.
Collapse
Affiliation(s)
- Danielle L Germundson
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA
| | - Nicholas A Smith
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA
| | - Lane P Vendsel
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA
| | - Andrea V Kelsch
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA
| | - Colin K Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA
| | - Kumi Nagamoto-Combs
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA.
| |
Collapse
|
18
|
O'Konek JJ, Landers JJ, Janczak KW, Goel RR, Mondrusov AM, Wong PT, Baker JR. Nanoemulsion adjuvant-driven redirection of T H2 immunity inhibits allergic reactions in murine models of peanut allergy. J Allergy Clin Immunol 2018; 141:2121-2131. [PMID: 29655584 DOI: 10.1016/j.jaci.2018.01.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/17/2018] [Accepted: 01/27/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Immunotherapy for food allergies involves progressive increased exposures to food that result in desensitization to food allergens in some subjects but not tolerance to the food. Therefore new approaches to suppress allergic immunity to food are necessary. Previously, we demonstrated that intranasal immunization with a nanoemulsion (NE) adjuvant induces robust mucosal antibody and TH17-polarized immunity, as well as systemic TH1-biased cellular immunity with suppression of pre-existing TH2-biased immunity. OBJECTIVE We hypothesized that immunization with food in conjunction with the nanoemulsion adjuvant could lead to modulation of allergic reactions in food allergy by altering pre-existing allergic immunity and enhancing mucosal immunity. METHODS Mice were sensitized to peanut with aluminum hydroxide or cholera toxin. The animals were then administered 3 monthly intranasal immunizations with peanut in the nanoemulsion adjuvant or saline. Mice were then challenged with peanut to examine allergen reactivity. RESULTS The NE intranasal immunizations resulted in marked decreases in TH2 cytokine, IgG1, and IgE levels, whereas TH1 and mucosal TH17 immune responses were increased. After allergen challenge, these mice showed significant reductions in allergic hypersensitivity. Additionally, the NE immunizations significantly increased antigen-specific IL-10 production and regulatory T-cell counts, and the protection induced by NE was dependent in part on IL-10. Control animals immunized with intranasal peanut in saline had no modulation of their allergic response. CONCLUSIONS NE adjuvant-mediated induction of mucosal TH17 and systemic TH1-biased immunity can suppress TH2-mediated allergy through multiple mechanisms and protect against anaphylaxis. These results suggest the potential therapeutic utility of this approach in the setting of food allergy.
Collapse
Affiliation(s)
- Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich.
| | - Jeffrey J Landers
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | | | - Rishi R Goel
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Anna M Mondrusov
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Pamela T Wong
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - James R Baker
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
19
|
Vonk MM, Wagenaar L, Pieters RHH, Knippels LMJ, Willemsen LEM, Smit JJ, van Esch BCAM, Garssen J. The efficacy of oral and subcutaneous antigen-specific immunotherapy in murine cow's milk- and peanut allergy models. Clin Transl Allergy 2017; 7:35. [PMID: 29021893 PMCID: PMC5622477 DOI: 10.1186/s13601-017-0170-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 09/14/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Antigen-specific immunotherapy (AIT) is a promising therapeutic approach for both cow's milk allergy (CMA) and peanut allergy (PNA), but needs optimization in terms of efficacy and safety. AIM Compare oral immunotherapy (OIT) and subcutaneous immunotherapy (SCIT) in murine models for CMA and PNA and determine the dose of allergen needed to effectively modify parameters of allergy. METHODS Female C3H/HeOuJ mice were sensitized intragastrically (i.g.) to whey or peanut extract with cholera toxin. Mice were treated orally (5 times/week) or subcutaneously (3 times/week) for three consecutive weeks. Hereafter, the acute allergic skin response, anaphylactic shock symptoms and body temperature were measured upon intradermal (i.d.) and intraperitoneal (i.p.) challenge, and mast cell degranulation was measured upon i.g. challenge. Allergen-specific IgE, IgG1 and IgG2a were measured in serum at different time points. Single cell suspensions derived from lymph organs were stimulated with allergen to induce cytokine production and T cell phenotypes were assessed using flow cytometry. RESULTS Both OIT and SCIT decreased clinically related signs upon challenge in the CMA and PNA model. Interestingly, a rise in allergen-specific IgE was observed during immunotherapy, hereafter, treated mice were protected against the increase in IgE caused by allergen challenge. Allergen-specific IgG1 and IgG2a increased due to both types of AIT. In the CMA model, SCIT and OIT reduced the percentage of activated Th2 cells and increased the percentage of activated Th1 cells in the spleen. OIT increased the percentage of regulatory T cells (Tregs) and activated Th2 cells in the MLN. Th2 cytokines IL-5, IL-13 and IL-10 were reduced after OIT, but not after SCIT. In the PNA model, no differences were observed in percentages of T cell subsets. SCIT induced Th2 cytokines IL-5 and IL-10, whereas OIT had no effect. CONCLUSION We have shown clinical protection against allergic manifestations after OIT and SCIT in a CMA and PNA model. Although similar allergen-specific antibody patterns were observed, differences in T cell and cytokine responses were shown. Whether these findings are related to a different mechanism of AIT in CMA and PNA needs to be elucidated.
Collapse
Affiliation(s)
- Marlotte M Vonk
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Immunology Platform, Nutricia Research, Utrecht, The Netherlands
| | - Laura Wagenaar
- Department of Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands
| | - Raymond H H Pieters
- Department of Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands.,Yalelaan 104, 3594 CM Utrecht, The Netherlands
| | - Leon M J Knippels
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Immunology Platform, Nutricia Research, Utrecht, The Netherlands
| | - Linette E M Willemsen
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Joost J Smit
- Department of Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands
| | - Betty C A M van Esch
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Immunology Platform, Nutricia Research, Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Immunology Platform, Nutricia Research, Utrecht, The Netherlands
| |
Collapse
|
20
|
Bednar KJ, Shanina E, Ballet R, Connors EP, Duan S, Juan J, Arlian BM, Kulis MD, Butcher EC, Fung-Leung WP, Rao TS, Paulson JC, Macauley MS. Human CD22 Inhibits Murine B Cell Receptor Activation in a Human CD22 Transgenic Mouse Model. THE JOURNAL OF IMMUNOLOGY 2017; 199:3116-3128. [PMID: 28972089 DOI: 10.4049/jimmunol.1700898] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/28/2017] [Indexed: 01/12/2023]
Abstract
CD22, a sialic acid-binding Ig-type lectin (Siglec) family member, is an inhibitory coreceptor of the BCR with established roles in health and disease. The restricted expression pattern of CD22 on B cells and most B cell lymphomas has made CD22 a therapeutic target for B cell-mediated diseases. Models to better understand how in vivo targeting of CD22 translates to human disease are needed. In this article, we report the development of a transgenic mouse expressing human CD22 (hCD22) in B cells and assess its ability to functionally substitute for murine CD22 (mCD22) for regulation of BCR signaling, Ab responses, homing, and tolerance. Expression of hCD22 on transgenic murine B cells is comparable to expression on human primary B cells, and it colocalizes with mCD22 on the cell surface. Murine B cells expressing only hCD22 have identical calcium (Ca2+) flux responses to anti-IgM as mCD22-expressing wild-type B cells. Furthermore, hCD22 transgenic mice on an mCD22-/- background have restored levels of marginal zone B cells and Ab responses compared with deficiencies observed in CD22-/- mice. Consistent with these observations, hCD22 transgenic mice develop normal humoral responses in a peanut allergy oral sensitization model. Homing of B cells to Peyer's patches was partially rescued by expression of hCD22 compared with CD22-/- B cells, although not to wild-type levels. Notably, Siglec-engaging antigenic liposomes formulated with an hCD22 ligand were shown to prevent B cell activation, increase cell death, and induce tolerance in vivo. This hCD22 transgenic mouse will be a valuable model for investigating the function of hCD22 and preclinical studies targeting hCD22.
Collapse
Affiliation(s)
- Kyle J Bednar
- Immunology Team, Janssen Research and Development, LLC, Raritan, NJ 08869.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Elena Shanina
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Romain Ballet
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305.,Palo Alto Veterans Institute for Research, Palo Alto, CA 94304.,The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Edward P Connors
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Shiteng Duan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037.,Department of Immunology and Microbial Sciences, The Scripps Research Institute; La Jolla, CA 92037; and
| | - Joana Juan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Britni M Arlian
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037.,Department of Immunology and Microbial Sciences, The Scripps Research Institute; La Jolla, CA 92037; and
| | - Michael D Kulis
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305.,Palo Alto Veterans Institute for Research, Palo Alto, CA 94304.,The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | | | - Tadimeti S Rao
- Immunology Team, Janssen Research and Development, LLC, Raritan, NJ 08869
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037; .,Department of Immunology and Microbial Sciences, The Scripps Research Institute; La Jolla, CA 92037; and
| | - Matthew S Macauley
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
21
|
Epidemiology of severe anaphylaxis: can we use population-based data to understand anaphylaxis? Curr Opin Allergy Clin Immunol 2017; 16:441-50. [PMID: 27490124 DOI: 10.1097/aci.0000000000000305] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The observed increase in incidence of allergic disease in many regions over the past 3 decades has intensified interest in understanding the epidemiology of severe allergic reactions. We discuss the issues in collecting and interpreting these data and highlight current deficiencies in the current methods of data gathering. RECENT FINDINGS Anaphylaxis, as measured by hospital admission rates, is not uncommon and has increased in the United Kingdom, the United States, Canada, and Australia over the last 10-20 years. All large datasets are hampered by a large proportion of uncoded, 'unspecified' causes of anaphylaxis. Fatal anaphylaxis remains a rare event, but appears to be increasing for medication in Australia, Canada, and the United States. The rate of fatal food anaphylaxis is stable in the United Kingdom and the United States, but has increased in Australia. The age distribution for fatal food anaphylaxis is different to other causes, with data suggesting an age-related predisposition to fatal outcomes in teenagers and adults to the fourth decade of life. SUMMARY The increasing rates of food and medication allergy (the latter exacerbated by an ageing population) has significant implications for future fatality trends. An improved ability to accurately gather and analyse population-level anaphylaxis data in a harmonized fashion is required, so as to ultimately minimize risk and improve management.
Collapse
|
22
|
Marco-Martín G, La Rotta Hernández A, Vázquez de la Torre M, Higaki Y, Zubeldia JM, Baeza ML. Differences in the Anaphylactic Response between C3H/HeOuJ and BALB/c Mice. Int Arch Allergy Immunol 2017; 173:204-212. [DOI: 10.1159/000478983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 06/26/2017] [Indexed: 01/14/2023] Open
|
23
|
Reber LL, Hernandez JD, Galli SJ. The pathophysiology of anaphylaxis. J Allergy Clin Immunol 2017; 140:335-348. [PMID: 28780941 PMCID: PMC5657389 DOI: 10.1016/j.jaci.2017.06.003] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 01/14/2023]
Abstract
Anaphylaxis is a severe systemic hypersensitivity reaction that is rapid in onset; characterized by life-threatening airway, breathing, and/or circulatory problems; and usually associated with skin and mucosal changes. Because it can be triggered in some persons by minute amounts of antigen (eg, certain foods or single insect stings), anaphylaxis can be considered the most aberrant example of an imbalance between the cost and benefit of an immune response. This review will describe current understanding of the immunopathogenesis and pathophysiology of anaphylaxis, focusing on the roles of IgE and IgG antibodies, immune effector cells, and mediators thought to contribute to examples of the disorder. Evidence from studies of anaphylaxis in human subjects will be discussed, as well as insights gained from analyses of animal models, including mice genetically deficient in the antibodies, antibody receptors, effector cells, or mediators implicated in anaphylaxis and mice that have been "humanized" for some of these elements. We also review possible host factors that might influence the occurrence or severity of anaphylaxis. Finally, we will speculate about anaphylaxis from an evolutionary perspective and argue that, in the context of severe envenomation by arthropods or reptiles, anaphylaxis might even provide a survival advantage.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale, Paris, France; Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Joseph D Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University School of Medicine, Stanford, Calif
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
24
|
Balbino B, Sibilano R, Starkl P, Marichal T, Gaudenzio N, Karasuyama H, Bruhns P, Tsai M, Reber LL, Galli SJ. Pathways of immediate hypothermia and leukocyte infiltration in an adjuvant-free mouse model of anaphylaxis. J Allergy Clin Immunol 2017; 139:584-596.e10. [PMID: 27555460 PMCID: PMC5241268 DOI: 10.1016/j.jaci.2016.05.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/16/2016] [Accepted: 05/31/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Conflicting results have been obtained regarding the roles of Fc receptors and effector cells in models of active systemic anaphylaxis (ASA). In part, this might reflect the choice of adjuvant used during sensitization because various adjuvants might differentially influence the production of particular antibody isotypes. OBJECTIVE We developed an "adjuvant-free" mouse model of ASA and assessed the contributions of components of the "classical" and "alternative" pathways in this model. METHODS Mice were sensitized intraperitoneally with ovalbumin at weekly intervals for 6 weeks and challenged intraperitoneally with ovalbumin 2 weeks later. RESULTS Wild-type animals had immediate hypothermia and late-phase intraperitoneal inflammation in this model. These features were reduced in mice lacking the IgE receptor FcεRI, the IgG receptor FcγRIII or the common γ-chain FcRγ. FcγRIV blockade resulted in a partial reduction of inflammation without any effect on hypothermia. Depletion of monocytes/macrophages with clodronate liposomes significantly reduced the hypothermia response. By contrast, depletion of neutrophils or basophils had no significant effects in this ASA model. Both the hypothermia and inflammation were dependent on platelet-activating factor and histamine and were reduced in 2 types of mast cell (MC)-deficient mice. Finally, engraftment of MC-deficient mice with bone marrow-derived cultured MCs significantly exacerbated the hypothermia response and restored inflammation to levels similar to those observed in wild-type mice. CONCLUSION Components of the classical and alternative pathways contribute to anaphylaxis in this adjuvant-free model, with key roles for MCs and monocytes/macrophages.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Anaphylaxis/immunology
- Animals
- Cell Movement
- Cells, Cultured
- Complement Pathway, Alternative
- Complement Pathway, Classical
- Disease Models, Animal
- Humans
- Hypothermia/immunology
- Immunization
- Leukocytes/immunology
- Macrophages/immunology
- Mast Cells/immunology
- Mast Cells/transplantation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, IgE/genetics
- Receptors, IgE/metabolism
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
Collapse
Affiliation(s)
- Bianca Balbino
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Riccardo Sibilano
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Philipp Starkl
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | - Nicolas Gaudenzio
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Hajime Karasuyama
- Department of Immune Regulation, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Pierre Bruhns
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Laurent L Reber
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France; Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif.
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
25
|
Moutsoglou DM, Dreskin SC. B cells establish, but do not maintain, long-lived murine anti-peanut IgE(a). Clin Exp Allergy 2016; 46:640-53. [PMID: 27021119 DOI: 10.1111/cea.12715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/25/2015] [Accepted: 01/05/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Peanut allergy (PNA) has been reported to be transferred to tolerant recipients through organ and bone marrow (BM) transplantation. The roles T and B cells play in establishing, and the roles B cell subsets play in maintaining lifelong anti-peanut IgE levels are unknown. OBJECTIVES To determine the cellular requirements for the transfer of murine PNA and to determine the role CD20(+) cells play in maintaining long-lived anti-peanut IgE levels. METHODS We developed a novel adoptive transfer model to investigate the cellular requirements for transferring murine PNA. We also treated peanut-allergic (PA) mice with anti-CD20 antibody and measured IgE levels throughout treatment. RESULTS Purified B220(+) cells from PA splenocytes and purified CD4(+) cells from naïve (NA) splenocytes are the minimal requirements for the adoptive transfer of PNA. Prolonged treatment of allergic mice with anti-CD20 antibody results in significant depletion of B cell subsets but does not affect anti-peanut IgE levels, symptoms, or numbers of IgE antibody secreting cells (ASCs) in the BM. Adoptive transfer of BM and spleen cells from allergic donors treated with anti-CD20 antibody does not result in the transfer of PNA in NA recipients, demonstrating that anti-CD20 antibody treatment depletes B cells capable of differentiating into peanut-specific IgE ASCs. CONCLUSIONS AND CLINICAL RELEVANCE Peanut allergy can be established in a NA hosts with B220(+) cells from PA donors and CD4(+) cells from peanut-NA donors. However, long-term depletion of B220(+) cells with anti-CD20 antibody does not affect anti-peanut IgE levels. These results highlight a novel role for B cells in the development of PNA and provide evidence that long-lived anti-peanut IgE levels may be maintained by long-lived ASCs.
Collapse
Affiliation(s)
- D M Moutsoglou
- Division of Allergy and Clinical Immunology, Departments of Medicine and Immunology, University of Colorado Denver, Aurora, CO, USA
| | - S C Dreskin
- Division of Allergy and Clinical Immunology, Departments of Medicine and Immunology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
26
|
Smit J, Zeeuw-Brouwer MLD, van Roest M, de Jong G, van Bilsen J. Evaluation of the sensitizing potential of food proteins using two mouse models. Toxicol Lett 2016; 262:62-69. [PMID: 27663974 DOI: 10.1016/j.toxlet.2016.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/30/2016] [Accepted: 09/11/2016] [Indexed: 01/01/2023]
Abstract
The current methodology to identify allergenic food proteins is effective in identifying those that are likely to cross-react with known allergens. However, most assays show false positive results for low/non-allergens. Therefore, an ex vivo/in vitro DC-T cell assay and an in vivo mouse model were used to distinguish known allergenic food proteins (Ara h 1, β-Lactoglobulin, Pan b 1, bovine serum albumin, whey protein isolate) from low/non allergenic food proteins (soy lipoxygenase, gelatin, beef tropomyosin, rubisco, Sola t 1). CD4+ T cells from protein/alum-immunized mice were incubated with corresponding protein-pulsed bone marrow-derived DC and analyzed for cytokine release. All known allergens induced Th2 responses in vitro, whereas soy lipoxygenase, gelatin or beef tropomyosin did not. Sola t 1 and rubisco induced a more generalized T cell response due to endotoxin contamination, indicating the endotoxin-sensitivity of the DC-T assay. To analyze responses in vivo, mice were orally sensitized on days 0 and 7. Known allergens induced IgE and mMCP-1 release upon oral challenge at day 16, whereas the low/non-allergens did not. Both the DC-T cell assay and the mouse model were able to distinguish 5 known allergens from 5 low/non-allergens and may be useful to identify novel allergenic food proteins.
Collapse
Affiliation(s)
- Joost Smit
- Institute for Risk Assessment Sciences, University Utrecht, Utrecht, The Netherlands; Utrecht Center for Food Allergy, Utrecht, The Netherlands.
| | | | - Manon van Roest
- Institute for Risk Assessment Sciences, University Utrecht, Utrecht, The Netherlands; Utrecht Center for Food Allergy, Utrecht, The Netherlands
| | - Govardus de Jong
- Utrecht Center for Food Allergy, Utrecht, The Netherlands; TNO, Zeist, The Netherlands
| | - Jolanda van Bilsen
- Utrecht Center for Food Allergy, Utrecht, The Netherlands; TNO, Zeist, The Netherlands
| |
Collapse
|
27
|
Tordesillas L, Rahman AH, Hartmann BM, Sampson HA, Berin MC. Mass cytometry profiling the response of basophils and the complete peripheral blood compartment to peanut. J Allergy Clin Immunol 2016; 138:1741-1744.e9. [PMID: 27531074 DOI: 10.1016/j.jaci.2016.06.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/21/2016] [Accepted: 06/02/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Leticia Tordesillas
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adeeb H Rahman
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Boris M Hartmann
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hugh A Sampson
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - M Cecilia Berin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
28
|
Srivastava KD, Siefert A, Fahmy TM, Caplan MJ, Li XM, Sampson HA. Investigation of peanut oral immunotherapy with CpG/peanut nanoparticles in a murine model of peanut allergy. J Allergy Clin Immunol 2016; 138:536-543.e4. [DOI: 10.1016/j.jaci.2016.01.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/14/2015] [Accepted: 01/21/2016] [Indexed: 01/25/2023]
|
29
|
Bøgh KL, van Bilsen J, Głogowski R, López-Expósito I, Bouchaud G, Blanchard C, Bodinier M, Smit J, Pieters R, Bastiaan-Net S, de Wit N, Untersmayr E, Adel-Patient K, Knippels L, Epstein MM, Noti M, Nygaard UC, Kimber I, Verhoeckx K, O'Mahony L. Current challenges facing the assessment of the allergenic capacity of food allergens in animal models. Clin Transl Allergy 2016; 6:21. [PMID: 27313841 PMCID: PMC4910256 DOI: 10.1186/s13601-016-0110-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/09/2016] [Indexed: 01/16/2023] Open
Abstract
Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutrition in a world with a growing population is also a significant problem. The introduction of new protein sources into the diet, such as newly developed innovative foods or foods produced using new technologies and production processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for development of new food allergies, and this in turn has driven the need to develop test methods capable of characterizing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant controls and endpoints measured.
Collapse
Affiliation(s)
| | | | | | - Iván López-Expósito
- Department of Bioactivity and Food Analysis, Institute for Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | | | | | | | - Joost Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Raymond Pieters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Shanna Bastiaan-Net
- Food and Biobased Research, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Nicole de Wit
- Food and Biobased Research, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Eva Untersmayr
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Karine Adel-Patient
- UMR-INRA-CEA, Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Leon Knippels
- Danone Nutricia Research, Utrecht, The Netherlands ; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michelle M Epstein
- Experimental Allergy Laboratory, DIAID, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Mario Noti
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Ian Kimber
- University of Manchester, Manchester, UK
| | | | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos Platz, Switzerland
| |
Collapse
|
30
|
Lee JB, Chen CY, Liu B, Mugge L, Angkasekwinai P, Facchinetti V, Dong C, Liu YJ, Rothenberg ME, Hogan SP, Finkelman FD, Wang YH. IL-25 and CD4(+) TH2 cells enhance type 2 innate lymphoid cell-derived IL-13 production, which promotes IgE-mediated experimental food allergy. J Allergy Clin Immunol 2016; 137:1216-1225.e5. [PMID: 26560039 PMCID: PMC4826796 DOI: 10.1016/j.jaci.2015.09.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Food-mediated allergic reactions have emerged as a major health problem. The underlying mechanisms that promote uncontrolled type 2 immune responses to dietary allergens in the gastrointestinal tract remain elusive. OBJECTIVE We investigated whether altering IL-25 signaling enhances or attenuates allergic responses to food allergens. METHODS Mice of an IL-25 transgenic mouse line (iIL-25Tg mice), which constitutively overexpress intestinal IL-25, and Il17rb(-/-) mice, in which Il17rb gene expression is disrupted, were sensitized and gavage fed with ovalbumin (OVA). We assessed symptomatic characteristics of experimental food allergy, including incidence of diarrhea, incidence of hypothermia, intestinal TH2 immune response, and serum OVA-specific IgE and mast cell protease 1 production. RESULTS Rapid induction of Il25 expression in the intestinal epithelium preceded onset of the anaphylactic response to ingested OVA antigen. iIL-25Tg mice were more prone and Il17rb(-/-) mice were more resistant to experimental food allergy. Resident intestinal type 2 innate lymphoid cells (ILC2s) were identified as the major producers of IL-5 and IL-13 in response to IL-25. Reconstituting irradiated wild-type mice with Rora(-/-) or Il17rb(-/-) bone marrow resulted in a deficiency or dysfunction of the ILC2 compartment, respectively, and resistance to experimental food allergy. Repeated intragastric antigen challenge induced a significant increase in numbers of CD4(+) TH2 cells, which enhance IL-25-stimulated IL-13 production by ILC2s ex vivo and in vivo. Finally, reconstituted IL-13-deficient ILC2s had reduced capability to promote allergic inflammation, resulting in increased resistance to experimental food allergy. CONCLUSION IL-25 and CD4(+) TH2 cells induced by ingested antigens enhance ILC2-derived IL-13 production, thereby promoting IgE-mediated experimental food allergy.
Collapse
Affiliation(s)
- Jee-Boong Lee
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chun-Yu Chen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Bo Liu
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Luke Mugge
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Bangkok, Thailand
| | - Valeria Facchinetti
- Department of Immunology, University of Texas and MD Anderson Cancer Center, Houston, Tex
| | - Chen Dong
- Department of Immunology, University of Texas and MD Anderson Cancer Center, Houston, Tex
| | | | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Fred D Finkelman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio; Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Yui-Hsi Wang
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
31
|
Pablos-Tanarro A, López-Expósito I, Lozano-Ojalvo D, López-Fandiño R, Molina E. Antibody Production, Anaphylactic Signs, and T-Cell Responses Induced by Oral Sensitization With Ovalbumin in BALB/c and C3H/HeOuJ Mice. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:239-45. [PMID: 26922934 PMCID: PMC4773212 DOI: 10.4168/aair.2016.8.3.239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/30/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022]
Abstract
Purpose Two mouse strains, BALB/c and C3H/HeOuJ, broadly used in the field of food allergy, were compared for the evaluation of the allergenic potential of ovalbumin (OVA). Methods Sensitization was made by administering 2 different OVA doses (1 and 5 mg), with cholera toxin as Th2-polarizing adjuvant. Antibody levels, severity of anaphylaxis, and Th1 and Th2 responses induced by the allergen were assessed. In addition, because the mice selected had functional toll-like receptor 4, the influence of contamination with lipopolysaccharide (LPS) on the immunostimulating capacity of OVA on spleen cells was also evaluated. Results Both strains exhibited similar susceptibility to OVA sensitization. The 2 protein doses generated similar OVA-specific IgE and IgG1 levels in both strains, whereas C3H/HeOuJ mice produced significantly more IgG2a. Oral challenge provoked more severe manifestations in C3H/HeOuJ mice as indicated by the drop in body temperature and the severity of the anaphylactic scores. Stimulation of splenocytes with OVA led to significantly higher levels of Th2 and Th1 cytokines in BALB/c, and these were less affected by protein contamination with LPS. Conclusions The antibody and cytokine levels induced by OVA in BALB/c mice and the observation that BALB/c spleen cell cultures were more resistant than those of C3H/HeOuJ mice to the stimulus of LPS make this strain prone to exhibit Th2-mediated food allergic reactions and very adequate for the study of the features of OVA that make it allergenic.
Collapse
Affiliation(s)
- Alba Pablos-Tanarro
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, Madrid, Spain
| | - Ivan López-Expósito
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, Madrid, Spain
| | - Daniel Lozano-Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, Madrid, Spain
| | - Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, Madrid, Spain
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, Madrid, Spain.
| |
Collapse
|
32
|
Abstract
Food allergy is a growing public health problem that is estimated to affect 4% to 8% of children and 5% of adults. In this review, we discuss our current understanding of the pathophysiology of food allergy, from oral tolerance, to sensitization, and lastly the elicitation of an allergic response. As much of the existing evidence for the mechanisms of food allergy is derived from animal models, we include these studies where relevant. In addition, whenever possible, we review similar evidence involved in human disease and provide applications for consideration in clinical practice.
Collapse
|
33
|
Induction of Interleukin-9-Producing Mucosal Mast Cells Promotes Susceptibility to IgE-Mediated Experimental Food Allergy. Immunity 2015; 43:788-802. [PMID: 26410628 DOI: 10.1016/j.immuni.2015.08.020] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 05/30/2015] [Accepted: 08/20/2015] [Indexed: 01/03/2023]
Abstract
Experimental IgE-mediated food allergy depends on intestinal anaphylaxis driven by interleukin-9 (IL-9). However, the primary cellular source of IL-9 and the mechanisms underlying the susceptibility to food-induced intestinal anaphylaxis remain unclear. Herein, we have reported the identification of multifunctional IL-9-producing mucosal mast cells (MMC9s) that can secrete prodigious amounts of IL-9 and IL-13 in response to IL-33, and mast cell protease-1 (MCPt-1) in response to antigen and IgE complex crosslinking, respectively. Repeated intragastric antigen challenge induced MMC9 development that required T cells, IL-4, and STAT6 transcription factor, but not IL-9 signals. Mice ablated of MMC9 induction failed to develop intestinal mastocytosis, which resulted in decreased food allergy symptoms that could be restored by adoptively transferred MMC9s. Finally, atopic patients that developed food allergy displayed increased intestinal expression of Il9- and MC-specific transcripts. Thus, the induction of MMC9s is a pivotal step to acquire the susceptibility to IgE-mediated food allergy.
Collapse
|
34
|
Chang LM, Song Y, Li XM, Sampson HA, Masilamani M. Dietary Elimination of Soybean Components Enhances Allergic Immune Response to Peanuts in BALB/c Mice. Int Arch Allergy Immunol 2015; 166:304-10. [PMID: 26044955 DOI: 10.1159/000430497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/15/2015] [Indexed: 12/16/2023] Open
Abstract
BACKGROUND Food allergy research is hampered by a lack of animal models that consistently mimic human food allergic responses. Laboratory mice are generally fed grain-based chow made with large amounts of soybeans rich in immunomodulatory isoflavones. We tested the role of dietary soy components in the induction of food allergic responses in the BALB/c mouse strain, which is known to be resistant to anaphylaxis when orally challenged by food allergens. METHODS Mice were fed a soy-free diet for 2 generations. After weaning, mice were maintained on the same diet or fed a diet containing soy isoflavones, i.e. genistein and daidzein, followed by weekly oral sensitizations with crude peanut extract plus cholera toxin and finally challenged at week 7. The anaphylactic symptoms, body temperature, peanut-specific antibodies and mast cell degranulation were assessed. RESULTS Soy-free diet mice showed significantly higher anaphylactic symptom scores and mast cell degranulation after challenge and higher peanut-specific antibody levels than mice fed regular chow. Introduction of a regular soy diet or an isoflavone diet to soy-free diet mice significantly suppressed the allergic reactions compared to the soy-free diet. CONCLUSION Rodent diet is an important variable and needs to be taken into consideration when designing experiments involving animal models. Our results indicate that elimination of soy components from the diet enhances peanut sensitization in BALB/c mice. In addition to serving as a valuable tool to mimic human food allergy, the dietary influence on the immune response could have far-reaching consequences in research involving animal models.
Collapse
Affiliation(s)
- Lisa M Chang
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, N.Y., USA
| | | | | | | | | |
Collapse
|
35
|
Reber LL, Sibilano R, Mukai K, Galli SJ. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol 2015; 8:444-63. [PMID: 25669149 PMCID: PMC4739802 DOI: 10.1038/mi.2014.131] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/27/2014] [Indexed: 02/04/2023]
Abstract
Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs--such as secreting preformed and/or newly synthesized biologically active products--in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Riccardo Sibilano
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Kaori Mukai
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA,Department of Microbiology & Immunology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
36
|
Hogenkamp A, Knippels LMJ, Garssen J, van Esch BCAM. Supplementation of Mice with Specific Nondigestible Oligosaccharides during Pregnancy or Lactation Leads to Diminished Sensitization and Allergy in the Female Offspring. J Nutr 2015; 145:996-1002. [PMID: 25833889 DOI: 10.3945/jn.115.210401] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/11/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The maternal environment and early life exposure affect immune development in offspring. OBJECTIVE We investigated whether development of food allergy in offspring is affected by supplementing pregnant or lactating sensitized or nonsensitized mice with a mixture of nondigestible oligosaccharides. METHODS Dams were sensitized intragastrically with ovalbumin before mating, with use of cholera toxin (CT) as an adjuvant. Nonsensitized dams received CT only. Dams were fed a control diet or a diet supplemented with short-chain galacto oligosaccharides (scGOSs), long-chain fructo oligosaccharides (lcFOSs), and pectin-derived acidic oligosaccharides (pAOSs) in a ratio of 9:1:2 at a dose of 2% during pregnancy or lactation, resulting in 7 experimental groups. After weaning, offspring were fed a control diet and ovalbumin-CT sensitized. Acute allergic skin responses (ASRs), shock symptoms, body temperature, and specific plasma immunoglobulins were measured upon intradermal ovalbumin challenge. Th2/Th1- and regulatory T cells were analyzed with use of quantitative polymerase chain reaction and flow cytometric analysis in spleen, mesenteric lymph nodes, and blood. RESULTS Supplementing sensitized pregnant or lactating dams with scGOS/lcFOS/pAOS resulted in lower ASRs in the offspring [offspring of sensitized female mice fed experimental diet during pregnancy (S-Preg): 48 ± 2.1 μm; offspring of sensitized female mice fed experimental diet during lactation (S-Lact): 60 ± 6.2 μm] compared with the sensitized control group (119 ± 13.9 μm). In the S-Lact group, this coincided with an absence of shock symptoms compared with the offspring of sensitized female mice fed control food during pregnancy and lactation (S-Con) and S-Preg groups, and lower ovalbumin-IgG1 [S-Con: 3.8 ± 0.1 arbitrary units (AUs); S-Preg: 3.3 ± 0.1 AUs; S-Lact: 2.4 ± 0.1 AUs] and higher ovalbumin-IgG2a concentrations (S-Con: 1.1 ± 0.1 AUs; S-Preg: 0.8 ± 0.1 AUs; S-Lact: 2.0 ± 0.1 AUs). Supplementing nonsensitized pregnant or lactating dams with scGOS/lcFOS/pAOS resulted in lower plasma ovalbumin-IgE [offspring of nonsensitized female mice fed experimental diet during pregnancy (NS-Preg): 1.6 ± 0.4 AUs; offspring of nonsensitized female mice fed experimental diet during lactation (NS-Lact): 0.3 ± 0.1 AUs vs. offspring of nonsensitized female mice fed control food during pregnancy and lactation (NS-Con): 3.1 ± 0.6 AUs] and ovalbumin-IgG1 (NS-Lact: 2.3 ± 0.3 AUs vs. NS-Con: 3.4 ± 0.3 AUs) concentrations in offspring. Ovalbumin-IgG2a plasma concentrations were higher in offspring of scGOS/lcFOS/pAOS-supplemented dams (NS-Preg: 1.1 ± 0.1 AUs; NS-Lact: 1.1 ± 0.1 AUs) than in those of unsupplemented, nonsensitized controls (0.4 ± 0.0 AUs). CONCLUSIONS These data show impaired sensitization in offspring of scGOS/lcFOS/pAOS-supplemented mice. A number of the analyzed variables are differentially affected by whether supplementation occurs during pregnancy or lactation, and the outcome of dietary supplementation is affected by whether the mother has been sensitized to ovalbumin and CT.
Collapse
Affiliation(s)
- Astrid Hogenkamp
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and
| | - Leon M J Knippels
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and Nutricia Research, Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and Nutricia Research, Utrecht, The Netherlands
| | - Betty C A M van Esch
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and Nutricia Research, Utrecht, The Netherlands
| |
Collapse
|
37
|
Smit JJ, Pennings MT, Willemsen K, van Roest M, van Hoffen E, Pieters RH. Heterogeneous responses and cross reactivity between the major peanut allergens Ara h 1, 2,3 and 6 in a mouse model for peanut allergy. Clin Transl Allergy 2015; 5:13. [PMID: 25802736 PMCID: PMC4369825 DOI: 10.1186/s13601-015-0056-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/28/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The relative contribution and the relation between individual peanut allergens in peanut allergic responses is still matter of debate. We determined the individual contribution of peanut proteins to B, T cell and allergic effector responses in a mouse model for peanut allergy. METHODS Mice were immunized and challenged by oral gavage with peanut protein extract or isolated allergens Ara h 1, 2, 3 and 6 followed by assessment of food allergic manifestations. In addition, T cell responses to the individual proteins were measured by an in vitro dendritic cell-T cell assay. RESULTS Sensitization with the individual peanut proteins elicited IgE responses with specificity to the allergen used as expected. However, cross reactivity among Ara h 1, 2, 3 and 6 was observed. T cell re-stimulations with peanut extract and individual peanut proteins also showed cross reactivity between Ara h 1, 2, 3 and 6. Despite the cross reactivity at the IgE level, only Ara h 2 and 6 were able to elicit mast cell degranulation after an oral challenge. However, after systemic challenge, Ara h 1, 2 and 6 and to lesser extent Ara h 3 were able to elicit anaphylactic responses. CONCLUSIONS Ara h 1, 2, 3 and 6 sensitize via the intra-gastric route, but differ in their capacity to cause allergic effector responses. Interestingly, extensive cross reactivity at T cell and antibody level is observed among Ara h 1, 2, 3 and 6, which may have important implications for the diagnosis and therapy of peanut allergy. Awareness about the relative contribution of individual peanut allergens and cross reactivity between these allergens is of importance for current research in diagnostics and therapeutics for and the mechanism of peanut allergy.
Collapse
Affiliation(s)
- Joost J Smit
- Immunotoxicology group, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands ; Utrecht Centre for Food Allergy, Utrecht, The Netherlands
| | - Maarten T Pennings
- Utrecht Centre for Food Allergy, Utrecht, The Netherlands ; Utrecht University Medical Center, Utrecht, The Netherlands ; Current affiliation: HU University of Applied Sciences, Utrecht, The Netherlands
| | - Karina Willemsen
- Immunotoxicology group, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Manon van Roest
- Immunotoxicology group, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Els van Hoffen
- Utrecht University Medical Center, Utrecht, The Netherlands ; Current affiliation: NIZO food research BV, Ede, The Netherlands
| | - Raymond H Pieters
- Immunotoxicology group, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
38
|
Galli SJ, Tsai M, Marichal T, Tchougounova E, Reber LL, Pejler G. Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv Immunol 2015; 126:45-127. [PMID: 25727288 DOI: 10.1016/bs.ai.2014.11.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The roles of mast cells in health and disease remain incompletely understood. While the evidence that mast cells are critical effector cells in IgE-dependent anaphylaxis and other acute IgE-mediated allergic reactions seems unassailable, studies employing various mice deficient in mast cells or mast cell-associated proteases have yielded divergent conclusions about the roles of mast cells or their proteases in certain other immunological responses. Such "controversial" results call into question the relative utility of various older versus newer approaches to ascertain the roles of mast cells and mast cell proteases in vivo. This review discusses how both older and more recent mouse models have been used to investigate the functions of mast cells and their proteases in health and disease. We particularly focus on settings in which divergent conclusions about the importance of mast cells and their proteases have been supported by studies that employed different models of mast cell or mast cell protease deficiency. We think that two major conclusions can be drawn from such findings: (1) no matter which models of mast cell or mast cell protease deficiency one employs, the conclusions drawn from the experiments always should take into account the potential limitations of the models (particularly abnormalities affecting cell types other than mast cells) and (2) even when analyzing a biological response using a single model of mast cell or mast cell protease deficiency, details of experimental design are critical in efforts to define those conditions under which important contributions of mast cells or their proteases can be identified.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA.
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; GIGA-Research and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Elena Tchougounova
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
39
|
Smit JJ, Noti M, O’Mahony L. The use of animal models to discover immunological mechanisms underpinning sensitization to food allergens. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ddmod.2016.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Johnston LK, Chien KB, Bryce PJ. The immunology of food allergy. THE JOURNAL OF IMMUNOLOGY 2014; 192:2529-34. [PMID: 24610821 DOI: 10.4049/jimmunol.1303026] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Food allergies represent an increasingly prevalent human health problem, and therapeutic options remain limited, with avoidance being mainstay, despite its adverse effects on quality of life. A better understanding of the key immunological mechanisms involved in such responses likely will be vital for development of new therapies. This review outlines the current understanding of how the immune system is thought to contribute to prevention or development of food allergies. Drawing from animal studies, as well as clinical data when available, the importance of oral tolerance in sustaining immunological nonresponsiveness to food Ags, our current understanding of why oral tolerance may fail and sensitization may occur, and the knowledge of pathways that may lead to anaphylaxis and food allergy-associated responses are addressed.
Collapse
Affiliation(s)
- Laura K Johnston
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | | | | |
Collapse
|
41
|
Oyoshi MK, Oettgen HC, Chatila TA, Geha RS, Bryce PJ. Food allergy: Insights into etiology, prevention, and treatment provided by murine models. J Allergy Clin Immunol 2014; 133:309-17. [PMID: 24636470 DOI: 10.1016/j.jaci.2013.12.1045] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 12/15/2022]
Abstract
Food allergy is a rapidly growing public health concern because of its increasing prevalence and life-threatening potential. Animal models of food allergy have emerged as a tool for identifying mechanisms involved in the development of sensitization to normally harmless food allergens, as well as delineating the critical immune components of the effector phase of allergic reactions to food. However, the role animal models might play in understanding human diseases remains contentious. This review summarizes how animal models have provided insights into the etiology of human food allergy, experimental corroboration for epidemiologic findings that might facilitate prevention strategies, and validation for the utility of new therapies for food allergy. Improved understanding of food allergy from the study of animal models together with human studies is likely to contribute to the development of novel strategies to prevent and treat food allergy.
Collapse
Affiliation(s)
- Michiko K Oyoshi
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass.
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass
| | - Paul J Bryce
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Ill.
| |
Collapse
|
42
|
Ladics GS, Fry J, Goodman R, Herouet-Guicheney C, Hoffmann-Sommergruber K, Madsen CB, Penninks A, Pomés A, Roggen EL, Smit J, Wal JM. Allergic sensitization: screening methods. Clin Transl Allergy 2014; 4:13. [PMID: 24739743 PMCID: PMC3990213 DOI: 10.1186/2045-7022-4-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/09/2014] [Indexed: 11/10/2022] Open
Abstract
Experimental in silico, in vitro, and rodent models for screening and predicting protein sensitizing potential are discussed, including whether there is evidence of new sensitizations and allergies since the introduction of genetically modified crops in 1996, the importance of linear versus conformational epitopes, and protein families that become allergens. Some common challenges for predicting protein sensitization are addressed: (a) exposure routes; (b) frequency and dose of exposure; (c) dose-response relationships; (d) role of digestion, food processing, and the food matrix; (e) role of infection; (f) role of the gut microbiota; (g) influence of the structure and physicochemical properties of the protein; and (h) the genetic background and physiology of consumers. The consensus view is that sensitization screening models are not yet validated to definitively predict the de novo sensitizing potential of a novel protein. However, they would be extremely useful in the discovery and research phases of understanding the mechanisms of food allergy development, and may prove fruitful to provide information regarding potential allergenicity risk assessment of future products on a case by case basis. These data and findings were presented at a 2012 international symposium in Prague organized by the Protein Allergenicity Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute.
Collapse
Affiliation(s)
- Gregory S Ladics
- DuPont Pioneer Agricultural Biotechnology, DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE 19880-0400, USA
| | - Jeremy Fry
- ProImmune Limited, The Magdalen Centre, The Oxford Science Park, Robert Robinson Avenue, Oxford OX4 4GA, United Kingdom
| | - Richard Goodman
- Department of Food Science & Technology, Food Allergy Research and Resource Program, University of Nebraska–Lincoln, 143 Food Industry Complex, Lincoln, Nebraska, USA
| | | | - Karin Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Charlotte B Madsen
- Department of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, 19, Mørkhøj Bygade, DK-2860 Søborg, Denmark
| | - André Penninks
- TNO Triskelion BV, Utrechtseweg 48, 3700 AV Zeist, Netherlands
| | - Anna Pomés
- Indoor Biotechnologies, Inc, 1216 Harris Street, Charlottesville, Virginia, USA
| | - Erwin L Roggen
- Novozymes AS and 3Rs Management and Consultancy, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | - Joost Smit
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3508 TD Utrecht, Netherlands
| | - Jean-Michel Wal
- AgroParisTech, Department SVS, 16 rue Claude Bernard, F-75231, Paris Cedex 05, France
| |
Collapse
|
43
|
Abstract
Food allergy is prevalent, affecting approximately 4-8% of children. There is no currently approved treatment for food allergy, and while strict allergen avoidance is recommended it is difficult to achieve and therefore accidental exposures and reactions are common. There is an urgent need for the development of therapeutic approaches that will improve the health and quality of life of children with food allergy. The majority of current clinical research focus is on specific food allergen immunotherapy through oral, sublingual, or epicutaneous routes. Pre-clinical research has focused on making improvements to the safety and efficacy of allergen immunotherapy through modifications of allergen structure and addition of immuno-modulatory factors. The number of novel therapeutics for food allergy reaching the level of clinical trials remains disappointingly low, and there is a need for an expansion of pre-clinical research to provide safe, practical and novel approaches to the treatment of food allergy.
Collapse
Affiliation(s)
- M Cecilia Berin
- Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
44
|
Reber LL, Frossard N. Targeting mast cells in inflammatory diseases. Pharmacol Ther 2014; 142:416-35. [PMID: 24486828 DOI: 10.1016/j.pharmthera.2014.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/24/2022]
Abstract
Although mast cells have long been known to play a critical role in anaphylaxis and other allergic diseases, they also participate in some innate immune responses and may even have some protective functions. Data from the study of mast cell-deficient mice have facilitated our understanding of some of the molecular mechanisms driving mast cell functions during both innate and adaptive immune responses. This review presents an overview of the biology of mast cells and their potential involvement in various inflammatory diseases. We then discuss some of the current pharmacological approaches used to target mast cells and their products in several diseases associated with mast cell activation.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, Faculté de Pharmacie, France
| |
Collapse
|
45
|
Abstract
Food allergies are increasing in prevalence at a higher rate than can be explained by genetic factors, suggesting a role for as yet unidentified environmental factors. In this review, we summarize the state of knowledge about the healthy immune response to antigens in the diet and the basis of immune deviation that results in immunoglobulin E (IgE) sensitization and allergic reactivity to foods. The intestinal epithelium forms the interface between the external environment and the mucosal immune system, and emerging data suggest that the interaction between intestinal epithelial cells and mucosal dendritic cells is of particular importance in determining the outcome of immune responses to dietary antigens. Exposure to food allergens through non-oral routes, in particular through the skin, is increasingly recognized as a potentially important factor in the increasing rate of food allergy. There are many open questions on the role of environmental factors, such as dietary factors and microbiota, in the development of food allergy, but data suggest that both have an important modulatory effect on the mucosal immune system. Finally, we discuss recent developments in our understanding of immune mechanisms of clinical manifestations of food allergy. New experimental tools, particularly in the field of genomics and the microbiome, are likely to shed light on factors responsible for the growing clinical problem of food allergy.
Collapse
Affiliation(s)
- M Cecilia Berin
- Pediatric Allergy and Immunology, Box 1198, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
46
|
Reber LL, Marichal T, Mukai K, Kita Y, Tokuoka SM, Roers A, Hartmann K, Karasuyama H, Nadeau KC, Tsai M, Galli SJ. Selective ablation of mast cells or basophils reduces peanut-induced anaphylaxis in mice. J Allergy Clin Immunol 2013; 132:881-8.e1-11. [PMID: 23915716 DOI: 10.1016/j.jaci.2013.06.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/16/2013] [Accepted: 06/13/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Studies with c-kit mutant mast cell (MC)-deficient mice and antibody-mediated depletion of basophils suggest that both MCs and basophils can contribute to peanut-induced anaphylaxis (PIA). However, interpretation of data obtained by using such approaches is complicated because c-kit mutant mice have several phenotypic abnormalities in addition to MC deficiency and because basophil-depleting antibodies can also react with MCs. OBJECTIVE We analyzed (1) the changes in the features of PIA in mice after the selective and inducible ablation of MCs or basophils and (2) the possible importance of effector cells other than MCs and basophils in the PIA response. METHODS Wild-type and various mutant mice were orally sensitized with peanut extract and cholera toxin weekly for 4 weeks and challenged intraperitoneally with peanut extract 2 weeks later. RESULTS Peanut-challenged, MC-deficient Kit(W-sh/W-sh) mice had reduced immediate hypothermia, as well as a late-phase decrease in body temperature that was abrogated by antibody-mediated depletion of neutrophils. Diphtheria toxin-mediated selective depletion of MCs or basophils in Mcpt5-Cre;iDTR and Mcpt8(DTR) mice, respectively, and treatment of wild-type mice with the basophil-depleting antibody Ba103 significantly reduced peanut-induced hypothermia. Non-c-kit mutant MC- and basophil-deficient Cpa3-Cre;Mcl-1(fl/fl) mice had reduced but still significant responses to peanut. CONCLUSION Inducible and selective ablation of MCs or basophils in non-c-kit mutant mice can significantly reduce PIA, but partial responses to peanut can still be observed in the virtual absence of both cell types. The neutrophilia in Kit(W-sh/W-sh) mice might influence the responses of these mice in this PIA model.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Van Gramberg JL, de Veer MJ, O'Hehir RE, Meeusen ENT, Bischof RJ. Use of animal models to investigate major allergens associated with food allergy. J Allergy (Cairo) 2013; 2013:635695. [PMID: 23690797 PMCID: PMC3649177 DOI: 10.1155/2013/635695] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/24/2013] [Indexed: 12/17/2022] Open
Abstract
Food allergy is an emerging epidemic that affects all age groups, with the highest prevalence rates being reported amongst Western countries such as the United States (US), United Kingdom (UK), and Australia. The development of animal models to test various food allergies has been beneficial in allowing more rapid and extensive investigations into the mechanisms involved in the allergic pathway, such as predicting possible triggers as well as the testing of novel treatments for food allergy. Traditionally, small animal models have been used to characterise immunological pathways, providing the foundation for the development of numerous allergy models. Larger animals also merit consideration as models for food allergy as they are thought to more closely reflect the human allergic state due to their physiology and outbred nature. This paper will discuss the use of animal models for the investigation of the major food allergens; cow's milk, hen's egg, and peanut/other tree nuts, highlight the distinguishing features of each of these models, and provide an overview of how the results from these trials have improved our understanding of these specific allergens and food allergy in general.
Collapse
Affiliation(s)
- Jenna L. Van Gramberg
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Michael J. de Veer
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Robyn E. O'Hehir
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital and Monash University, Prahran, VIC 3181, Australia
| | - Els N. T. Meeusen
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Robert J. Bischof
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
48
|
Jönsson F, Mancardi DA, Albanesi M, Bruhns P. Neutrophils in local and systemic antibody-dependent inflammatory and anaphylactic reactions. J Leukoc Biol 2013; 94:643-56. [PMID: 23532517 DOI: 10.1189/jlb.1212623] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neutrophils are notorious for their efficacy in microbial killing. Various mechanisms, such as phagocytosis, production of ROS, cytokines/chemokines and lipid mediators, degranulation of antimicrobials and enzymes, as well as NETosis contribute to this capacity. However, every incidence of neutrophil activation bears a risk to cause damage to the host. Several distinct steps, i.e., adhesion to endothelial cells, transmigration, chemotaxis, cytokine stimulation, and TLR signaling, are thought to control the extent of neutrophil activation. In the absence of a microbial stimulus, other pathways can induce neutrophil activation, among which FcR-induced activation when neutrophils encounter ICs. In these situations (inflammation, autoimmunity, allergy), neutrophils may act as primary or secondary effectors of immune reactions. In the presence of circulating ICs, neutrophils can indeed get stimulated directly in the bloodstream and trigger an immune response. Upon deposition of antibody complexes inside of tissues, neutrophils are first recruited and primed before being highly activated to amplify the ongoing inflammation. This review focuses on the engagement, activation, and responses of neutrophils to antibody ICs, inside of tissues or in the vasculature.
Collapse
Affiliation(s)
- Friederike Jönsson
- 2.Département d'Immunologie, Institut Pasteur, Inserm U760, 25 rue du Docteur Roux, 75015 Paris, France. or
| | | | | | | |
Collapse
|
49
|
Schulz VJ, Smit JJ, Huijgen V, Bol-Schoenmakers M, van Roest M, Kruijssen LJW, Fiechter D, Hassing I, Bleumink R, Safe S, van Duursen MBM, van den Berg M, Pieters RHH. Non-dioxin-like AhR ligands in a mouse peanut allergy model. Toxicol Sci 2012; 128:92-102. [PMID: 22491429 DOI: 10.1093/toxsci/kfs131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recently, we have shown that AhR activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses sensitization to peanut at least in part by inducing a functional shift toward CD4(+)CD25(+)Foxp3(+) T cells. Next to TCDD, numerous other AhR ligands have been described. In this study, we investigated the effect of three structurally different non-dioxin-like AhR ligands, e.g., 6-formylindolo[3,2-b]carbazole (FICZ), β-naphthoflavone (β-NF), and 6-methyl-1,3,8-trichlorodibenzofuran (6-MCDF), on peanut sensitization. Female C57BL/6 mice were sensitized by administering peanut extract (PE) by gavage in the presence of cholera toxin. Before and during peanut sensitization, mice were treated with FICZ, β-NF, or 6-MCDF. AhR gene transcription in duodenum and liver was investigated on day 5, even as the effect of these AhR ligands on CD4(+)CD25(+)Foxp3(+) T(reg) cells in spleen and mesenteric lymph nodes (MLNs). Mice treated with TCDD were included as a positive control. Furthermore, the murine reporter cell line H1G1.1c3 (CAFLUX) was used to investigate the possible role of metabolism of TCDD, FICZ, β-NF, and 6-MCDF on AhR activation in vitro. TCDD, but not FICZ, β-NF, and 6-MCDF, suppressed sensitization to peanut (measured by PE-specific IgE, IgG1, IgG2a and PE-induced interleukin (IL)-5, IL-10, IL-13, IL-17a, IL-22, and interferon-γ). In addition, FICZ, β-NF, and 6-MCDF treatments less effectively induced AhR gene transcription (measured by gene expression of AhR, AhRR, CYP1A1, CYP1A2, CYP1B1) compared with TCDD-treated mice. Furthermore, FICZ, β-NF and 6-MCDF did not increase the percentage of CD4(+)CD25(+)Foxp3(+) T(reg) cells in spleen and mesenteric lymph nodes compared with PE-sensitized mice, in contrast to TCDD. Inhibition of metabolism in vitro increased AhR activation. Together, these data shows that TCDD, but not FICZ, β-NF, and 6-MCDF suppresses sensitization to peanut. Differences in metabolism, AhR binding and subsequent gene transcription might explain these findings and warrant further studies to investigate the role of the AhR in food allergic responses.
Collapse
Affiliation(s)
- Veronica J Schulz
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, 3508 TD Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|