1
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
2
|
Garneau L, Mulvihill EE, Smith SR, Sparks LM, Aguer C. Myokine Secretion following an Aerobic Exercise Intervention in Individuals with Type 2 Diabetes with or without Exercise Resistance. Int J Mol Sci 2024; 25:4889. [PMID: 38732106 PMCID: PMC11084395 DOI: 10.3390/ijms25094889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Type 2 diabetes (T2D) is characterized by muscle metabolic dysfunction that exercise can minimize, but some patients do not respond to an exercise intervention. Myokine secretion is intrinsically altered in patients with T2D, but the role of myokines in exercise resistance in this patient population has never been studied. We sought to determine if changes in myokine secretion were linked to the response to an exercise intervention in patients with T2D. The participants followed a 10-week aerobic exercise training intervention, and patients with T2D were grouped based on muscle mitochondrial function improvement (responders versus non-responders). We measured myokines in serum and cell-culture medium of myotubes derived from participants pre- and post-intervention and in response to an in vitro model of muscle contraction. We also quantified the expression of genes related to inflammation in the myotubes pre- and post-intervention. No significant differences were detected depending on T2D status or response to exercise in the biological markers measured, with the exception of modest differences in expression patterns for certain myokines (IL-1β, IL-8, IL-10, and IL-15). Further investigation into the molecular mechanisms involving myokines may explain exercise resistance with T2D; however, the role in metabolic adaptations to exercise in T2D requires further investigation.
Collapse
Affiliation(s)
- Léa Garneau
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (L.G.); (E.E.M.)
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
| | - Erin E. Mulvihill
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (L.G.); (E.E.M.)
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL 32804, USA; (S.R.S.); (L.M.S.)
| | - Lauren M. Sparks
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL 32804, USA; (S.R.S.); (L.M.S.)
| | - Céline Aguer
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (L.G.); (E.E.M.)
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
- Faculty of Medicine and Health Sciences, Department of Physiology, McGill University–Campus Outaouais, Gatineau, QC J8V 3T4, Canada
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
3
|
Glatz JFC, Heather LC, Luiken JJFP. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. Physiol Rev 2024; 104:727-764. [PMID: 37882731 DOI: 10.1152/physrev.00011.2023] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lisa C Heather
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
4
|
Mikłosz A, Łukaszuk B, Supruniuk E, Grubczak K, Kusaczuk M, Chabowski A. RabGAP AS160/TBC1D4 deficiency increases long-chain fatty acid transport but has little additional effect on obesity and metabolic syndrome in ADMSCs-derived adipocytes of morbidly obese women. Front Mol Biosci 2023; 10:1232159. [PMID: 37602323 PMCID: PMC10435366 DOI: 10.3389/fmolb.2023.1232159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The Akt substrate of 160 kDa (AS160), also known as TBC1 domain family member 4 (TBC1D4), represents a crucial regulator of insulin-stimulated glucose uptake in skeletal muscle and adipose tissue. Recent evidence suggests that AS160/TBC1D4 may also control the cellular entry of long-chain fatty acids (LCFAs), resulting in changes to the lipid profile of muscles and fat cells in lean subjects. However, there are virtually no data on AS160/TBC1D4 expression and its modulatory role in lipid metabolism in the adipocytes from morbidly obese individuals of different metabolic status. In this study, we evaluated the effect of the three main factors, i.e., AS160 silencing, obesity, and metabolic syndrome on lipid uptake and profile in fully differentiated adipocytes derived from mesenchymal stem cells (ADMSCs) of lean and obese (with/without metabolic syndrome) postmenopausal women. Additionally, we tested possible interactions between the explanatory variables. In general, obesity translated into a greater content of fatty acid transporters (especially CD36/SR-B2 and SLC27A4/FATP4) and boosted accumulation of all the examined lipid fractions, i.e., triacylglycerols (TAGs), diacylglycerols (DAGs), and free fatty acids (FFAs). The aforementioned were further enhanced by metabolic syndrome. Moreover, AS160 deficiency also increased the abundance of SLC27A4/FATP4 and CD36/SR-B2, especially on the cell surface of the adipocytes derived from ADMSCs of subcutaneous deposit. This was further accompanied by increased LCFA (palmitic acid) uptake. Despite the aforementioned, AS160 silencing seemed unable to significantly affect the phenotype of the adipocytes stemming from obese patients with respect to their cellular lipid profile as we observed virtually no changes in TAG, DAG, and FFA contents when compared to cells with the reference level of proteins. Nevertheless, knockdown of AS160 stimulated fatty acid oxidation, which may indicate that adaptive mechanisms counteract excessive lipid accumulation. At the same time, adipocytes of visceral origin were rather insensitive to the applied intervention.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Bartłomiej Łukaszuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Capozzi A, Saucier C, Bisbal C, Lambert K. Grape Polyphenols in the Treatment of Human Skeletal Muscle Damage Due to Inflammation and Oxidative Stress during Obesity and Aging: Early Outcomes and Promises. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196594. [PMID: 36235130 PMCID: PMC9573747 DOI: 10.3390/molecules27196594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Today, inactivity and high-calorie diets contribute to the development of obesity and premature aging. In addition, the population of elderly people is growing due to improvements in healthcare management. Obesity and aging are together key risk factors for non-communicable diseases associated with several co-morbidities and increased mortality, with a major impact on skeletal muscle defect and/or poor muscle mass quality. Skeletal muscles contribute to multiple body functions and play a vital role throughout the day, in all our activities. In our society, limiting skeletal muscle deterioration, frailty and dependence is not only a major public health challenge but also a major socio-economic issue. Specific diet supplementation with natural chemical compounds such as grape polyphenols had shown to play a relevant and direct role in regulating metabolic and molecular pathways involved in the prevention and treatment of obesity and aging and their related muscle comorbidities in cell culture and animal studies. However, clinical studies aiming to restore skeletal muscle mass and function with nutritional grape polyphenols supplementation are still very scarce. There is an urgent need for clinical studies to validate the very encouraging results observed in animal models.
Collapse
Affiliation(s)
- Adriana Capozzi
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- SPO, INRAE, Institute Agro, University of Montpellier, 34000 Montpellier, France
| | - Cédric Saucier
- SPO, INRAE, Institute Agro, University of Montpellier, 34000 Montpellier, France
| | - Catherine Bisbal
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- Correspondence: (C.B.); (K.L.); Tel.: +33-(0)4-1175-9891 (C.B. & K.L.)
| | - Karen Lambert
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- Correspondence: (C.B.); (K.L.); Tel.: +33-(0)4-1175-9891 (C.B. & K.L.)
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Transmembrane glycoprotein cluster of differentiation 36 (CD36) is a scavenger receptor class B protein (SR-B2) that serves various functions in lipid metabolism and signaling, in particular facilitating the cellular uptake of long-chain fatty acids. Recent studies have disclosed CD36 to play a prominent regulatory role in cellular fatty acid metabolism in both health and disease. RECENT FINDINGS The rate of cellular fatty acid uptake is short-term (i.e., minutes) regulated by the subcellular recycling of CD36 between endosomes and the plasma membrane. This recycling is governed by the activity of vacuolar-type H+-ATPase (v-ATPase) in the endosomal membrane via assembly and disassembly of two subcomplexes. The latter process is being influenced by metabolic substrates including fatty acids, glucose and specific amino acids, together resulting in a dynamic interplay to modify cellular substrate preference and uptake rates. Moreover, in cases of metabolic disease v-ATPase activity was found to be affected while interventions aimed at normalizing v-ATPase functioning had therapeutic potential. SUMMARY The emerging central role of CD36 in cellular lipid homeostasis and recently obtained molecular insight in the interplay among metabolic substrates indicate the applicability of CD36 as target for metabolic modulation therapy in disease. Experimental studies already have shown the feasibility of this approach.
Collapse
Affiliation(s)
- Jan F.C. Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University
- Department of Clinical Genetics, Maastricht University Medical Center+
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University
- Department of Clinical Genetics, Maastricht University Medical Center+
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Joost J.F.P. Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University
- Department of Clinical Genetics, Maastricht University Medical Center+
| |
Collapse
|
7
|
Acosta FM, Jia UTA, Stojkova K, Howland KK, Guda T, Pacelli S, Brey EM, Rathbone CR. Diabetic Conditions Confer Metabolic and Structural Modifications to Tissue-Engineered Skeletal Muscle. Tissue Eng Part A 2021; 27:549-560. [PMID: 32878567 PMCID: PMC8126424 DOI: 10.1089/ten.tea.2020.0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is a tissue that is directly involved in the progression and persistence of type 2 diabetes (T2D), a disease that is becoming increasingly common. Gaining better insight into the mechanisms that are affecting skeletal muscle dysfunction in the context of T2D has the potential to lead to novel treatments for a large number of patients. Through its ability to emulate skeletal muscle architecture while also incorporating aspects of disease, tissue-engineered skeletal muscle (TE-SkM) has the potential to provide a means for rapid high-throughput discovery of therapies to treat skeletal muscle dysfunction, to include that which occurs with T2D. Muscle precursor cells isolated from lean or obese male Zucker diabetic fatty rats were used to generate TE-SkM constructs. Some constructs were treated with adipogenic induction media to accentuate the presence of adipocytes that is a characteristic feature of T2D skeletal muscle. The maturity (compaction and creatine kinase activity), mechanical integrity (Young's modulus), organization (myotube orientation), and metabolic capacity (insulin-stimulated glucose uptake) were all reduced by diabetes. Treating constructs with adipogenic induction media increased the quantity of lipid within the diabetic TE-SkM constructs, and caused changes in construct compaction, cell orientation, and insulin-stimulated glucose uptake in both lean and diabetic samples. Collectively, the findings herein suggest that the recapitulation of structural and metabolic aspects of T2D can be accomplished by engineering skeletal muscle in vitro.
Collapse
Affiliation(s)
- Francisca M. Acosta
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
- UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, Texas, USA
| | - U-Ter Aonda Jia
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
- UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, Texas, USA
| | - Katerina Stojkova
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Kennedy K. Howland
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Settimio Pacelli
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Eric M. Brey
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Christopher R. Rathbone
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
8
|
Puchałowicz K, Rać ME. The Multifunctionality of CD36 in Diabetes Mellitus and Its Complications-Update in Pathogenesis, Treatment and Monitoring. Cells 2020; 9:cells9081877. [PMID: 32796572 PMCID: PMC7465275 DOI: 10.3390/cells9081877] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/08/2023] Open
Abstract
CD36 is a multiligand receptor contributing to glucose and lipid metabolism, immune response, inflammation, thrombosis, and fibrosis. A wide range of tissue expression includes cells sensitive to metabolic abnormalities associated with metabolic syndrome and diabetes mellitus (DM), such as monocytes and macrophages, epithelial cells, adipocytes, hepatocytes, skeletal and cardiac myocytes, pancreatic β-cells, kidney glomeruli and tubules cells, pericytes and pigment epithelium cells of the retina, and Schwann cells. These features make CD36 an important component of the pathogenesis of DM and its complications, but also a promising target in the treatment of these disorders. The detrimental effects of CD36 signaling are mediated by the uptake of fatty acids and modified lipoproteins, deposition of lipids and their lipotoxicity, alterations in insulin response and the utilization of energy substrates, oxidative stress, inflammation, apoptosis, and fibrosis leading to the progressive, often irreversible organ dysfunction. This review summarizes the extensive knowledge of the contribution of CD36 to DM and its complications, including nephropathy, retinopathy, peripheral neuropathy, and cardiomyopathy.
Collapse
|
9
|
Metzger JM, Matsoff HN, Zinnen AD, Fleddermann RA, Bondarenko V, Simmons HA, Mejia A, Moore CF, Emborg ME. Post mortem evaluation of inflammation, oxidative stress, and PPARγ activation in a nonhuman primate model of cardiac sympathetic neurodegeneration. PLoS One 2020; 15:e0226999. [PMID: 31910209 PMCID: PMC6946159 DOI: 10.1371/journal.pone.0226999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiac dysautonomia is a common nonmotor symptom of Parkinson’s disease (PD) associated with loss of sympathetic innervation to the heart and decreased plasma catecholamines. Disease-modifying strategies for PD cardiac neurodegeneration are not available, and biomarkers of target engagement are lacking. Systemic administration of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) recapitulates PD cardiac dysautonomia pathology. We recently used positron emission tomography (PET) to visualize and quantify cardiac sympathetic innervation, oxidative stress, and inflammation in adult male rhesus macaques (Macaca mulatta; n = 10) challenged with 6-OHDA (50mg/kg; i.v.). Twenty-four hours post-intoxication, the animals were blindly and randomly assigned to receive daily doses of the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone (n = 5; 5mg/kg p.o.) or placebo (n = 5). Quantification of PET radioligand uptake showed increased oxidative stress and inflammation one week after 6-OHDA which resolved to baseline levels by twelve weeks, at which time pioglitazone-treated animals showed regionally preserved sympathetic innervation. Here we report post mortem characterization of heart and adrenal tissue in these animals compared to age and sex matched normal controls (n = 5). In the heart, 6-OHDA-treated animals showed a significant loss of sympathetic nerve fibers density (tyrosine hydroxylase (TH)-positive fibers). The anatomical distribution of markers of sympathetic innervation (TH) and inflammation (HLA-DR) significantly correlated with respective in vivo PET findings across left ventricle levels and regions. No changes were found in alpha-synuclein immunoreactivity. Additionally, CD36 protein expression was increased at the cardiomyocyte intercalated discs following PPARγ-activation compared to placebo and control groups. Systemic 6-OHDA decreased adrenal medulla expression of catecholamine producing enzymes (TH and aromatic L-amino acid decarboxylase) and circulating levels of norepinephrine, which were attenuated by PPARγ-activation. Overall, these results validate in vivo PET findings of cardiac sympathetic innervation, oxidative stress, and inflammation and illustrate cardiomyocyte CD36 upregulation as a marker of PPARγ target engagement.
Collapse
Affiliation(s)
- Jeanette M. Metzger
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Helen N. Matsoff
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Alexandra D. Zinnen
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Rachel A. Fleddermann
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Viktoriya Bondarenko
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Colleen F. Moore
- Department of Psychology, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin–Madison, Madison, WI, United States of America
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
10
|
Zhu B, Li MY, Lin Q, Liang Z, Xin Q, Wang M, He Z, Wang X, Wu X, Chen GG, Tong PCY, Zhang W, Liu LZ. Lipid oversupply induces CD36 sarcolemmal translocation via dual modulation of PKCζ and TBC1D1: an early event prior to insulin resistance. Theranostics 2020; 10:1332-1354. [PMID: 31938068 PMCID: PMC6956797 DOI: 10.7150/thno.40021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/27/2019] [Indexed: 12/19/2022] Open
Abstract
Lipid oversupply may induce CD36 sarcolemmal translocation to facilitate fatty acid transport, which in turn causes dyslipidemia and type 2 diabetes. However, the underlying mechanisms of CD36 redistribution are still yet to be unraveled. Methods: High fat diet fed mice and palmitate/oleic acid-treated L6 cells were used to investigate the initial events of subcellular CD36 recycling prior to insulin resistance. The regulation of CD36 sarcolemmal translocation by lipid oversupply was assessed by insulin tolerance test (ITT), oral glucose tolerance test (OGTT), glucose/fatty acid uptake assay, surface CD36 and GLUT4 detection, and ELISA assays. To elucidate the underlying mechanisms, specific gene knockout, gene overexpression and/or gene inhibition were employed, followed by Western blot, co-immunoprecipitation, immunostaining, and kinase activity assay. Results: Upon lipid/fatty acid overload, PKCζ activity and TBC1D1 phosphorylation were enhanced along with increased sarcolemmal CD36. The inhibition of PKCζ or TBC1D1 was shown to block fatty acid-induced CD36 translocation and was synergistic in impairing CD36 redistribution. Mechanically, we revealed that AMPK was located upstream of PKCζ to control its activity whereas Rac1 facilitated PKCζ translocation to the dorsal surface of the cell to cause actin remodeling. Furthermore, AMPK phosphorylated TBC1D1 to release retained cytosolic CD36. The activated PKCζ and phosphorylated TBC1D1 resulted in a positive feedback regulation of CD36 sarcolemmal translocation. Conclusion: Collectively, our study demonstrated exclusively that lipid oversupply induced CD36 sarcolemmal translocation via dual modulation of PKCζ and TBC1D1, which was as an early event prior to insulin resistance. The acquired data may provide potential therapy targets to prevent lipid oversupply-induced insulin resistance.
Collapse
|
11
|
Garneau L, Aguer C. Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes. DIABETES & METABOLISM 2019; 45:505-516. [PMID: 30844447 DOI: 10.1016/j.diabet.2019.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/04/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Due to its mass, skeletal muscle is the major site of glucose uptake and an important tissue in the development of type 2 diabetes (T2D). Muscles of patients with T2D are affected with insulin resistance and mitochondrial dysfunction, which result in impaired glucose and fatty acid metabolism. A well-established method of managing the muscle metabolic defects occurring in T2D is physical exercise. During exercise, muscles contract and secrete factors called myokines which can act in an autocrine/paracrine fashion to improve muscle energy metabolism. In patients with T2D, plasma levels as well as muscle levels (mRNA and protein) of some myokines are upregulated, while others are downregulated. The signalling pathways of certain myokines are also altered in skeletal muscle of patients with T2D. Taken together, these findings suggest that myokine secretion is an important factor contributing to the development of muscle metabolic defects during T2D. It is also of interest considering that lack of physical activity is closely linked to the occurrence of this disease. The causal relationships between sedentary behavior, factors secreted by skeletal muscle at rest and during contraction and the development of T2D remain to be elucidated. Many myokines shown to influence muscle energy metabolism still have not been characterized in the context of T2D in skeletal muscle specifically. The purpose of this review is to highlight what is known and what remains to be determined regarding myokine secretion in patients with T2D to uncover potential therapeutic targets for the management of this disease.
Collapse
Affiliation(s)
- L Garneau
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada
| | - C Aguer
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada.
| |
Collapse
|
12
|
Glatz JFC, Luiken JJFP. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. J Lipid Res 2018; 59:1084-1093. [PMID: 29627764 PMCID: PMC6027920 DOI: 10.1194/jlr.r082933] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
The widely expressed transmembrane glycoprotein, cluster of differentiation 36 (CD36), a scavenger receptor class B protein (SR-B2), serves many functions in lipid metabolism and signaling. Here, we review CD36's role in facilitating cellular long-chain fatty acid uptake across the plasma membrane, particularly in heart and skeletal muscles. CD36 acts in concert with other membrane proteins, such as peripheral plasma membrane fatty acid-binding protein, and is an intracellular docking site for cytoplasmic fatty acid-binding protein. The cellular fatty-acid uptake rate is governed primarily by the presence of CD36 at the cell surface, which is regulated by the subcellular vesicular recycling of CD36 from endosomes to the plasma membrane. CD36 has been implicated in dysregulated fatty acid and lipid metabolism in pathophysiological conditions, particularly in high-fat diet-induced insulin resistance and diabetic cardiomyopathy. Current research is exploring signaling pathways and vesicular trafficking routes involving CD36 to identify metabolic targets to manipulate the cellular utilization of fatty acids. Because of its rate-controlling function in the use of fatty acids in the heart and muscle, CD36 would be a preferable target to protect myocytes against lipotoxicity. Despite a poor understanding of its mechanism of action, CD36 has emerged as a pivotal membrane protein involved in whole-body lipid homeostasis.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics and Cell Biology, Faculty of Health, Medicine & Life Sciences (FHML), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics and Cell Biology, Faculty of Health, Medicine & Life Sciences (FHML), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
13
|
Musutova M, Elkalaf M, Klubickova N, Koc M, Povysil S, Rambousek J, Volckaert B, Duska F, Trinh MD, Kalous M, Trnka J, Balusikova K, Kovar J, Polak J. The Effect of Hypoxia and Metformin on Fatty Acid Uptake, Storage, and Oxidation in L6 Differentiated Myotubes. Front Endocrinol (Lausanne) 2018; 9:616. [PMID: 30386299 PMCID: PMC6199370 DOI: 10.3389/fendo.2018.00616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/27/2018] [Indexed: 12/25/2022] Open
Abstract
Metabolic impairments associated with obstructive sleep apnea syndrome (OSA) are linked to tissue hypoxia, however, the explanatory molecular and endocrine mechanisms remain unknown. Using gas-permeable cultureware, we studied the chronic effects of mild and severe hypoxia on free fatty acid (FFA) uptake, storage, and oxidation in L6 myotubes under 20, 4, or 1% O2. Additionally, the impact of metformin and the peroxisome proliferator-activated receptor (PPAR) β/δ agonist, called GW501516, were investigated. Exposure to mild and severe hypoxia reduced FFA uptake by 37 and 32%, respectively, while metformin treatment increased FFA uptake by 39% under mild hypoxia. GW501516 reduced FFA uptake under all conditions. Protein expressions of CD36 (cluster of differentiation 36) and SCL27A4 (solute carrier family 27 fatty acid transporter, member 4) were reduced by 17 and 23% under severe hypoxia. Gene expression of UCP2 (uncoupling protein 2) was reduced by severe hypoxia by 81%. Metformin increased CD36 protein levels by 28% under control conditions and SCL27A4 levels by 56% under mild hypoxia. Intracellular lipids were reduced by mild hypoxia by 18%, while in controls only, metformin administration further reduced intracellular lipids (20% O2) by 36%. Finally, palmitate oxidation was reduced by severe hypoxia, while metformin treatment reduced non-mitochondrial O2 consumption, palmitate oxidation, and proton leak at all O2 levels. Hypoxia directly reduced FFA uptake and intracellular lipids uptake in myotubes, at least partially, due to the reduction in CD36 transporters. Metformin, but not GW501516, can increase FFA uptake and SCL27A4 expression under mild hypoxia. Described effects might contribute to elevated plasma FFA levels and metabolic derangements in OSA.
Collapse
Affiliation(s)
- Martina Musutova
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Moustafa Elkalaf
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Natalie Klubickova
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Michal Koc
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Stanislav Povysil
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Rambousek
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Beatriz Volckaert
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Frantisek Duska
- Department of Anesthesiology and Intensive Care, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Minh Duc Trinh
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Kalous
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Kamila Balusikova
- Division of Cell and Molecular Biology, Third Faculty of Medicine, Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Charles University, Prague, Czechia
| | - Jan Kovar
- Division of Cell and Molecular Biology, Third Faculty of Medicine, Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Charles University, Prague, Czechia
| | - Jan Polak
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Jan Polak
| |
Collapse
|
14
|
Supruniuk E, Mikłosz A, Chabowski A. The Implication of PGC-1α on Fatty Acid Transport across Plasma and Mitochondrial Membranes in the Insulin Sensitive Tissues. Front Physiol 2017; 8:923. [PMID: 29187824 PMCID: PMC5694779 DOI: 10.3389/fphys.2017.00923] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
PGC-1α coactivator plays a decisive role in the maintenance of lipid balance via engagement in numerous metabolic processes (i.e., Krebs cycle, β-oxidation, oxidative phosphorylation and electron transport chain). It constitutes a link between fatty acids import and their complete oxidation or conversion into bioactive fractions through the coordination of both the expression and subcellular relocation of the proteins involved in fatty acid transmembrane movement. Studies on cell lines and/or animal models highlighted the existence of an upregulation of the total and mitochondrial FAT/CD36, FABPpm and FATPs content in skeletal muscle in response to PGC-1α stimulation. On the other hand, the association between PGC-1α level or activity and the fatty acids transport in the heart and adipocytes is still elusive. So far, the effects of PGC-1α on the total and sarcolemmal expression of FAT/CD36, FATP1, and FABPpm in cardiomyocytes have been shown to vary in relation to the type of PPAR that was coactivated. In brown adipose tissue (BAT) PGC-1α knockdown was linked with a decreased level of lipid metabolizing enzymes and fatty acid transporters (FAT/CD36, FABP3), whereas the results obtained for white adipose tissue (WAT) remain contradictory. Furthermore, dysregulation in lipid turnover is often associated with insulin intolerance, which suggests the coactivator's potential role as a therapeutic target.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
15
|
From fat to FAT (CD36/SR-B2): Understanding the regulation of cellular fatty acid uptake. Biochimie 2017; 136:21-26. [DOI: 10.1016/j.biochi.2016.12.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/05/2016] [Accepted: 12/10/2016] [Indexed: 01/11/2023]
|
16
|
Yamamoto N, Yamashita Y, Yoshioka Y, Nishiumi S, Ashida H. Rapid Preparation of a Plasma Membrane Fraction: Western Blot Detection of Translocated Glucose Transporter 4 from Plasma Membrane of Muscle and Adipose Cells and Tissues. ACTA ACUST UNITED AC 2016; 85:29.18.1-29.18.12. [PMID: 27479506 DOI: 10.1002/cpps.13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Membrane proteins account for 70% to 80% of all pharmaceutical targets, indicating their clinical relevance and underscoring the importance of identifying differentially expressed membrane proteins that reflect distinct disease properties. The translocation of proteins from the bulk of the cytosol to the plasma membrane is a critical step in the transfer of information from membrane-embedded receptors or transporters to the cell interior. To understand how membrane proteins work, it is important to separate the membrane fraction of cells. This unit provides a protocol for rapidly obtaining plasma membrane fractions for western blot analysis. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Norio Yamamoto
- Research & Development Institute, House Wellness Foods Corporation, Itami, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yasukiyo Yoshioka
- Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
| | - Shin Nishiumi
- Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
17
|
Snook LA, Wright DC, Holloway GP. Postprandial control of fatty acid transport proteins' subcellular location is not dependent on insulin. FEBS Lett 2016; 590:2661-70. [PMID: 27311759 DOI: 10.1002/1873-3468.12260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/28/2016] [Accepted: 06/14/2016] [Indexed: 01/09/2023]
Abstract
Fatty acid transport proteins rapidly translocate to the plasma membrane in response to various stimuli, including insulin, influencing lipid uptake into muscle. However, our understanding of the mechanisms regulating postprandial fatty acid transporter subcellular location remains limited. We demonstrate that the response of fatty acid transporters to insulin stimulation is extremely brief and not temporally matched in the postprandial state. We further show that high-fat diet-induced accumulation of fatty acid transporters on the plasma membrane can occur in the absence of insulin. Altogether, these data suggest that insulin is not the primary signal regulating fatty acid transporter relocation in vivo.
Collapse
Affiliation(s)
- Laelie A Snook
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| |
Collapse
|
18
|
Georgiou DK, Dagnino-Acosta A, Lee CS, Griffin DM, Wang H, Lagor WR, Pautler RG, Dirksen RT, Hamilton SL. Ca2+ Binding/Permeation via Calcium Channel, CaV1.1, Regulates the Intracellular Distribution of the Fatty Acid Transport Protein, CD36, and Fatty Acid Metabolism. J Biol Chem 2015; 290:23751-65. [PMID: 26245899 DOI: 10.1074/jbc.m115.643544] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 01/08/2023] Open
Abstract
Ca(2+) permeation and/or binding to the skeletal muscle L-type Ca(2+) channel (CaV1.1) facilitates activation of Ca(2+)/calmodulin kinase type II (CaMKII) and Ca(2+) store refilling to reduce muscle fatigue and atrophy (Lee, C. S., Dagnino-Acosta, A., Yarotskyy, V., Hanna, A., Lyfenko, A., Knoblauch, M., Georgiou, D. K., Poché, R. A., Swank, M. W., Long, C., Ismailov, I. I., Lanner, J., Tran, T., Dong, K., Rodney, G. G., Dickinson, M. E., Beeton, C., Zhang, P., Dirksen, R. T., and Hamilton, S. L. (2015) Skelet. Muscle 5, 4). Mice with a mutation (E1014K) in the Cacna1s (α1 subunit of CaV1.1) gene that abolishes Ca(2+) binding within the CaV1.1 pore gain more body weight and fat on a chow diet than control mice, without changes in food intake or activity, suggesting that CaV1.1-mediated CaMKII activation impacts muscle energy expenditure. We delineate a pathway (Cav1.1→ CaMKII→ NOS) in normal skeletal muscle that regulates the intracellular distribution of the fatty acid transport protein, CD36, altering fatty acid metabolism. The consequences of blocking this pathway are decreased mitochondrial β-oxidation and decreased energy expenditure. This study delineates a previously uncharacterized CaV1.1-mediated pathway that regulates energy utilization in skeletal muscle.
Collapse
Affiliation(s)
- Dimitra K Georgiou
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Adan Dagnino-Acosta
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Chang Seok Lee
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Deric M Griffin
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Hui Wang
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - William R Lagor
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Robia G Pautler
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Robert T Dirksen
- the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Susan L Hamilton
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| |
Collapse
|
19
|
Factors influencing the eicosanoids synthesis in vivo. BIOMED RESEARCH INTERNATIONAL 2015; 2015:690692. [PMID: 25861641 PMCID: PMC4377373 DOI: 10.1155/2015/690692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/24/2015] [Indexed: 11/26/2022]
Abstract
External factors activate a sequence of reactions involving the reception, transduction, and transmission of signals to effector cells. There are two main phases of the body's reaction to harmful factors: the first aims to neutralize the harmful factor, while in the second the inflammatory process is reduced in size and resolved. Secondary messengers such as eicosanoids are active in both phases. The discovery of lipoxins and epi-lipoxins demonstrated that not all arachidonic acid (AA) derivatives have proinflammatory activity. It was also revealed that metabolites of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) such as resolvins, protectins, and maresins also take part in the resolution of inflammation. Knowledge of the above properties has stimulated several clinical trials on the influence of EPA and DHA supplementation on various diseases. However, the equivocal results of those trials prevent the formulation of guidelines on EPA and DHA supplementation. Prescription drugs are among the substances with the strongest influence on the profile and quantity of the synthesized eicosanoids. The lack of knowledge about their influence on the conversion of EPA and DHA into eicosanoids may lead to erroneous conclusions from clinical trials.
Collapse
|
20
|
Shu G, Lu NS, Zhu XT, Xu Y, Du MQ, Xie QP, Zhu CJ, Xu Q, Wang SB, Wang LN, Gao P, Xi QY, Zhang YL, Jiang QY. Phloretin promotes adipocyte differentiation in vitro and improves glucose homeostasis in vivo. J Nutr Biochem 2014; 25:1296-308. [PMID: 25283330 DOI: 10.1016/j.jnutbio.2014.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 07/03/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
Abstract
Adipocyte dysfunction is associated with many metabolic diseases such as obesity, insulin resistance and diabetes. Previous studies found that phloretin promotes 3T3-L1 cells differentiation, but the underlying mechanisms for phloretin's effects on adipogenesis remain unclear. In this study, we demonstrated that phloretin enhanced the lipid accumulation in porcine primary adipocytes in a time-dependent manner. Furthermore, phloretin increased the utilization of glucose and nonesterified fatty acid, while it decreased the lactate output. Microarray analysis revealed that genes associated with peroxisome proliferator-activated receptor-γ (PPARγ), mitogen-activated protein kinase and insulin signaling pathways were altered in response to phloretin. We further confirmed that phloretin enhanced expression of PPARγ, CAAT enhancer binding protein-α (C/EBPα) and adipose-related genes, such as fatty acids translocase and fatty acid synthase. In addition, phloretin activated the Akt (Thr308) and extracellular signal-regulated kinase, and therefore, inactivated Akt targets protein. Wortmannin effectively blocked the effect of phloretin on Akt activity and the protein levels of PPARγ, C/EBPα and fatty acid binding protein-4 (FABP4/aP2). Oral administration of 5 or 10 mg/kg phloretin to C57BL BKS-DB mice significantly decreased the serum glucose level and improved glucose tolerance. In conclusion, phloretin promotes the adipogenesis of porcine primary preadipocytes through Akt-associated signaling pathway. These findings suggested that phloretin might be able to increase insulin sensitivity and alleviate the metabolic diseases.
Collapse
Affiliation(s)
- Gang Shu
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Nai-Sheng Lu
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xiao-Tong Zhu
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Rm 8070, Houston, TX 77030, USA
| | - Min-Qing Du
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Qiu-Ping Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Can-Jun Zhu
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Qi Xu
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Song-Bo Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Li-Na Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Ping Gao
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Qian-Yun Xi
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Yong-Liang Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Qing-Yan Jiang
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; National Engineering Research Center For Breeding Swine Industry, Guangzhou, China.
| |
Collapse
|
21
|
Edmunds LR, Sharma L, Kang A, Lu J, Vockley J, Basu S, Uppala R, Goetzman ES, Beck ME, Scott D, Prochownik EV. c-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate. J Biol Chem 2014; 289:25382-92. [PMID: 25053415 DOI: 10.1074/jbc.m114.580662] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
myc(-/-) rat fibroblasts (KO cells) differ from myc(+/+) (WT) cells and KO cells with enforced Myc re-expression (KO-Myc cells) with respect to mitochondrial structure and function, utilization of glucose and glutamine as energy-generating substrates, and ATP levels. Specifically, KO cells demonstrate low levels of glycolysis and oxidative phosphorylation, dysfunctional mitochondria and electron transport chain complexes, and depleted ATP stores. We examined here how these cells adapt to their energy-deficient state and how they differ in their uptake and utilization of long- and medium-chain fatty acids such as palmitate and octanoate, respectively. Metabolic tracing of these molecules showed that KO cells preferentially utilize them as β-oxidation substrates and that, rather than directing them into phospholipids, preferentially store them as neutral lipids. KO cell transcriptional profiling and functional assays revealed a generalized up-regulation of pathways involved in fatty acid transport and catabolism as well as evidence that these cells attempt to direct acetyl-CoA into the tricarboxylic acid (TCA) cycle for ATP production rather than utilizing it for anabolic purposes. Additional evidence to support this idea included the finding that AMP-dependent protein kinase was constitutively activated in KO cells. The complex control of pyruvate dehydrogenase, which links glycolysis to the TCA cycle, was also maximized to ensure the conversion of pyruvate to acetyl-CoA. Despite these efforts to maximize acetyl-CoA for energy-generating purposes, its levels remained chronically low in KO cells. This suggests that tumor cells with Myc deregulation might be susceptible to novel therapies that limit acetyl-CoA availability.
Collapse
Affiliation(s)
| | | | - Audry Kang
- From the Divisions of Hematology/Oncology and
| | - Jie Lu
- From the Divisions of Hematology/Oncology and
| | - Jerry Vockley
- Medical Genetics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania 15224
| | - Shrabani Basu
- Medical Genetics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania 15224
| | - Radha Uppala
- Medical Genetics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania 15224
| | - Eric S Goetzman
- Medical Genetics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania 15224
| | - Megan E Beck
- Medical Genetics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania 15224
| | - Donald Scott
- the Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Mt. Sinai School of Medicine, New York, New York 10029
| | - Edward V Prochownik
- From the Divisions of Hematology/Oncology and the Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania 15219, and the University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15224
| |
Collapse
|
22
|
Pietka TA, Schappe T, Conte C, Fabbrini E, Patterson BW, Klein S, Abumrad NA, Love-Gregory L. Adipose and muscle tissue profile of CD36 transcripts in obese subjects highlights the role of CD36 in fatty acid homeostasis and insulin resistance. Diabetes Care 2014; 37:1990-7. [PMID: 24784828 PMCID: PMC4067395 DOI: 10.2337/dc13-2835] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Fatty acid (FA) metabolism is tightly regulated across several tissues and impacts insulin sensitivity. CD36 facilitates cellular FA uptake, and CD36 genetic variants associate with lipid abnormalities and susceptibility to metabolic syndrome. The objective of this study was to gain insight regarding the in vivo metabolic influence of muscle and adipose tissue CD36. For this, we determined the relationships between CD36 alternative transcripts, which can reflect tissue-specific CD36 regulation, and measures of FA metabolism and insulin resistance. RESEARCH DESIGN AND METHODS The relative abundance of alternative CD36 transcripts in adipose tissue and skeletal muscle from 53 nondiabetic obese subjects was measured and related to insulin sensitivity and FA metabolism assessed by hyperinsulinemic-euglycemic clamps and isotopic tracers for glucose and FA. RESULTS Transcript 1C, one of two major transcripts in adipose tissue, that is restricted to adipocytes predicted systemic and tissue (adipose, liver, and muscle) insulin sensitivity, suggesting adipocyte CD36 protects against insulin resistance. Transcripts 1B and 1A, the major transcripts in skeletal muscle, correlated with FA disposal rate and triglyceride clearance, supporting importance of muscle CD36 in clearance of circulating FA. Additionally, the common CD36 single nucleotide polymorphism rs1761667 selectively influenced CD36 transcripts and exacerbated insulin resistance of glucose disposal by muscle. CONCLUSIONS Alternative CD36 transcripts differentially influence tissue CD36 and consequently FA homeostasis and insulin sensitivity. Adipocyte CD36 appears to be metabolically protective, and its selective upregulation might have therapeutic potential in insulin resistance.
Collapse
Affiliation(s)
- Terri A Pietka
- Department of Medicine, Center for Human Nutrition, Washington University, St Louis, MO
| | - Timothy Schappe
- Department of Medicine, Center for Human Nutrition, Washington University, St Louis, MO
| | - Caterina Conte
- Department of Medicine, Center for Human Nutrition, Washington University, St Louis, MO
| | - Elisa Fabbrini
- Department of Medicine, Center for Human Nutrition, Washington University, St Louis, MO
| | - Bruce W Patterson
- Department of Medicine, Center for Human Nutrition, Washington University, St Louis, MO
| | - Samuel Klein
- Department of Medicine, Center for Human Nutrition, Washington University, St Louis, MO
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University, St Louis, MO
| | - Latisha Love-Gregory
- Department of Medicine, Center for Human Nutrition, Washington University, St Louis, MO
| |
Collapse
|
23
|
Sparks LM, Bosma M, Brouwers B, van de Weijer T, Bilet L, Schaart G, Moonen-Kornips E, Eichmann TO, Lass A, Hesselink MK, Schrauwen P. Reduced incorporation of fatty acids into triacylglycerol in myotubes from obese individuals with type 2 diabetes. Diabetes 2014; 63:1583-1593. [PMID: 24487026 PMCID: PMC4023412 DOI: 10.2337/db13-1123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Altered skeletal muscle lipid metabolism is a hallmark feature of type 2 diabetes (T2D). We investigated muscle lipid turnover in T2D versus BMI-matched control subjects (controls) and examined whether putative in vivo differences would be preserved in the myotubes. Male obese T2D individuals (n = 6) and BMI-matched controls (n = 6) underwent a hyperinsulinemic-euglycemic clamp, VO2max test, dual-energy X-ray absorptiometry scan, underwater weighing, and muscle biopsy of the vastus lateralis. (14)C-palmitate and (14)C-oleate oxidation rates and incorporation into lipids were measured in muscle tissue as well as in primary myotubes. Palmitate oxidation (controls: 0.99 ± 0.17 nmol/mg protein; T2D: 0.53 ± 0.07 nmol/mg protein; P = 0.03) and incorporation of fatty acids (FAs) into triacylglycerol (TAG) (controls: 0.45 ± 0.13 nmol/mg protein; T2D: 0.11 ± 0.02 nmol/mg protein; P = 0.047) were significantly reduced in muscle homogenates of T2D. These reductions were not retained for palmitate oxidation in primary myotubes (P = 0.38); however, incorporation of FAs into TAG was lower in T2D (P = 0.03 for oleate and P = 0.11 for palmitate), with a strong correlation of TAG incorporation between muscle tissue and primary myotubes (r = 0.848, P = 0.008). The data indicate that the ability to incorporate FAs into TAG is an intrinsic feature of human muscle cells that is reduced in individuals with T2D.
Collapse
Affiliation(s)
- Lauren M. Sparks
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL
| | - Madeleen Bosma
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Bram Brouwers
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Tineke van de Weijer
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lena Bilet
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gert Schaart
- Department of Human Movement Sciences, NUTRIM—School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Esther Moonen-Kornips
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Matthijs K.C. Hesselink
- Department of Human Movement Sciences, NUTRIM—School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
24
|
Bajpeyi S, Myrland CK, Covington JD, Obanda D, Cefalu WT, Smith SR, Rustan AC, Ravussin E. Lipid in skeletal muscle myotubes is associated to the donors' insulin sensitivity and physical activity phenotypes. Obesity (Silver Spring) 2014; 22:426-34. [PMID: 23818429 PMCID: PMC3883809 DOI: 10.1002/oby.20556] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 06/17/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study investigated the relationship between in vitro lipid content in myotubes and in vivo whole body phenotypes of the donors such as insulin sensitivity, intramyocellular lipids (IMCL), physical activity, and oxidative capacity. DESIGN AND METHODS Six physically active donors were compared to six sedentary lean and six T2DM. Lipid content was measured in tissues and myotubes by immunohistochemistry. Ceramides, triacylglycerols, and diacylglycerols (DAGs) were measured by LC-MS-MS and GC-FID. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp (80 mU min⁻¹ m⁻²), maximal mitochondrial capacity (ATPmax) by ³¹P-MRS, physical fitness by VO₂max and physical activity level (PAL) by accelerometers. RESULTS Myotubes cultured from physically active donors had higher lipid content (0.047 ± 0.003 vs. 0.032 ± 0.001 and 0.033 ± 0.001AU; P < 0.001) than myotubes from lean and T2DM donors. Lipid content in myotubes was not associated with IMCL in muscle tissue but importantly, correlated with in vivo measures of ATPmax (r = 0.74; P < 0.001), insulin sensitivity (r = 0.54; P < 0.05), type-I fibers (r = 0.50; P < 0.05), and PAL (r = 0.92; P < 0.0001). DAGs and ceramides in myotubes were inversely associated with insulin sensitivity (r = -0.55, r = -0.73; P < 0.05) and ATPmax (r = -0.74, r = -0.85; P < 0.01). CONCLUSIONS These results indicate that cultured human myotubes can be used in mechanistic studies to study the in vitro impact of interventions on phenotypes such as mitochondrial capacity, insulin sensitivity, and physical activity.
Collapse
MESH Headings
- Adult
- Biopsy
- Body Mass Index
- Cells, Cultured
- Ceramides/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diglycerides/metabolism
- Female
- Humans
- Insulin Resistance
- Lipid Metabolism
- Male
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Motor Activity
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Obesity, Morbid/complications
- Oxidative Phosphorylation
- Oxygen Consumption
- Physical Fitness
- Triglycerides/metabolism
- Young Adult
Collapse
Affiliation(s)
- Sudip Bajpeyi
- Pennington Biomedical Research Center, LSU System, 6400 Perkins Road, Baton Rouge, LA 70808
| | - Cassandra K. Myrland
- Dept. of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Jeffrey D. Covington
- Pennington Biomedical Research Center, LSU System, 6400 Perkins Road, Baton Rouge, LA 70808
| | - Diana Obanda
- Pennington Biomedical Research Center, LSU System, 6400 Perkins Road, Baton Rouge, LA 70808
| | - William T. Cefalu
- Pennington Biomedical Research Center, LSU System, 6400 Perkins Road, Baton Rouge, LA 70808
| | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital / Sanford-Burnham Medical Research Institute, 301 E. Princeton St. Orlando, FL 32804
| | - Arild C. Rustan
- Dept. of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Eric Ravussin
- Pennington Biomedical Research Center, LSU System, 6400 Perkins Road, Baton Rouge, LA 70808
| |
Collapse
|
25
|
Jenkins Y, Sun TQ, Markovtsov V, Foretz M, Li W, Nguyen H, Li Y, Pan A, Uy G, Gross L, Baltgalvis K, Yung SL, Gururaja T, Kinoshita T, Owyang A, Smith IJ, McCaughey K, White K, Godinez G, Alcantara R, Choy C, Ren H, Basile R, Sweeny DJ, Xu X, Issakani SD, Carroll DC, Goff DA, Shaw SJ, Singh R, Boros LG, Laplante MA, Marcotte B, Kohen R, Viollet B, Marette A, Payan DG, Kinsella TM, Hitoshi Y. AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes. PLoS One 2013; 8:e81870. [PMID: 24339975 PMCID: PMC3855387 DOI: 10.1371/journal.pone.0081870] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/19/2013] [Indexed: 12/28/2022] Open
Abstract
Modulation of mitochondrial function through inhibiting respiratory complex I activates a key sensor of cellular energy status, the 5'-AMP-activated protein kinase (AMPK). Activation of AMPK results in the mobilization of nutrient uptake and catabolism for mitochondrial ATP generation to restore energy homeostasis. How these nutrient pathways are affected in the presence of a potent modulator of mitochondrial function and the role of AMPK activation in these effects remain unclear. We have identified a molecule, named R419, that activates AMPK in vitro via complex I inhibition at much lower concentrations than metformin (IC50 100 nM vs 27 mM, respectively). R419 potently increased myocyte glucose uptake that was dependent on AMPK activation, while its ability to suppress hepatic glucose production in vitro was not. In addition, R419 treatment of mouse primary hepatocytes increased fatty acid oxidation and inhibited lipogenesis in an AMPK-dependent fashion. We have performed an extensive metabolic characterization of its effects in the db/db mouse diabetes model. In vivo metabolite profiling of R419-treated db/db mice showed a clear upregulation of fatty acid oxidation and catabolism of branched chain amino acids. Additionally, analyses performed using both 13C-palmitate and 13C-glucose tracers revealed that R419 induces complete oxidation of both glucose and palmitate to CO2 in skeletal muscle, liver, and adipose tissue, confirming that the compound increases mitochondrial function in vivo. Taken together, our results show that R419 is a potent inhibitor of complex I and modulates mitochondrial function in vitro and in diabetic animals in vivo. R419 may serve as a valuable molecular tool for investigating the impact of modulating mitochondrial function on nutrient metabolism in multiple tissues and on glucose and lipid homeostasis in diabetic animal models.
Collapse
Affiliation(s)
- Yonchu Jenkins
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Tian-Qiang Sun
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Vadim Markovtsov
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Marc Foretz
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris cité, Paris, France
| | - Wei Li
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Henry Nguyen
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Yingwu Li
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Alison Pan
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Gerald Uy
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Lisa Gross
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Kristen Baltgalvis
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Stephanie L. Yung
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Tarikere Gururaja
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Taisei Kinoshita
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Alexander Owyang
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Ira J. Smith
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Kelly McCaughey
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Kathy White
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Guillermo Godinez
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Raniel Alcantara
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Carmen Choy
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Hong Ren
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Rachel Basile
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - David J. Sweeny
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Xiang Xu
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Sarkiz D. Issakani
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - David C. Carroll
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Dane A. Goff
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Simon J. Shaw
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Rajinder Singh
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Laszlo G. Boros
- SiDMAP, LLC, Los Angeles, California, United States of America
- Department of Pediatrics, Los Angeles Biomedical Research Institute (LABIOMED) at the Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Marc-André Laplante
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
| | - Bruno Marcotte
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
| | - Rita Kohen
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
| | - Benoit Viollet
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris cité, Paris, France
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
| | - Donald G. Payan
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Todd M. Kinsella
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Yasumichi Hitoshi
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Heather LC, Pates KM, Atherton HJ, Cole MA, Ball DR, Evans RD, Glatz JF, Luiken JJ, Griffin JL, Clarke K. Differential translocation of the fatty acid transporter, FAT/CD36, and the glucose transporter, GLUT4, coordinates changes in cardiac substrate metabolism during ischemia and reperfusion. Circ Heart Fail 2013; 6:1058-66. [PMID: 23940308 DOI: 10.1161/circheartfailure.112.000342] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 07/30/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Fatty acid and glucose transporters translocate between the sarcolemma and intracellular compartments to regulate substrate metabolism acutely. We hypothesised that during ischemia fatty acid translocase (FAT/CD36) would translocate away from the sarcolemma to limit fatty acid uptake when fatty acid oxidation is inhibited. METHODS AND RESULTS Wistar rat hearts were perfused during preischemia, low-flow ischemia, and reperfusion, using (3)H-substrates for measurement of metabolic rates, followed by metabolomic analysis and subcellular fractionation. During ischemia, there was a 32% decrease in sarcolemmal FAT/CD36 accompanied by a 95% decrease in fatty acid oxidation rates, with no change in intramyocardial lipids. Concomitantly, the sarcolemmal content of the glucose transporter, GLUT4, increased by 90% during ischemia, associated with an 86% increase in glycolytic rates, 45% decrease in glycogen content, and a 3-fold increase in phosphorylated AMP-activated protein kinase. Following reperfusion, decreased sarcolemmal FAT/CD36 persisted, but fatty acid oxidation rates returned to preischemic levels, resulting in a 35% decrease in myocardial triglyceride content. Elevated sarcolemmal GLUT4 persisted during reperfusion; in contrast, glycolytic rates decreased to 30% of preischemic rates, accompanied by a 5-fold increase in intracellular citrate levels and restoration of glycogen content. CONCLUSIONS During ischemia, FAT/CD36 moved away from the sarcolemma as GLUT4 moved toward the sarcolemma, associated with a shift from fatty acid oxidation to glycolysis, while intramyocardial lipid accumulation was prevented. This relocation was maintained during reperfusion, which was associated with replenishing glycogen stores as a priority, occurring at the expense of glycolysis and mediated by an increase in citrate levels.
Collapse
Affiliation(s)
- Lisa C Heather
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy, and Genetics, University of Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hesaraki M, Saadati M, Honari H, Olad G, Heiat M, Malaei F, Ranjbar R. Molecular cloning and biologically active production of IpaD N-terminal region. Biologicals 2013; 41:269-74. [PMID: 23731655 DOI: 10.1016/j.biologicals.2013.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022] Open
Abstract
Shigella is known as pathogenic intestinal bacteria in high dispersion and pathogenic bacteria due to invasive plasmid antigen (Ipa). So far, a number of Ipa proteins have been studied to introduce a new candidate vaccine. Here, for the first time, we examined whether the N-terminal region of IpaD(72-162) could be a proper candidate for Shigella vaccine. Initially, the DNA sequence coding N-terminal region was isolated by PCR from Shigella dysenteriae type I and cloned into pET-28a expression vector. Then, the heterologous protein was expressed, optimized and purified by affinity Ni-NTA column. Western blot analysis using, His-tag and IpaD(72-162) polyclonal antibodies, confirmed the purity and specificity of the recombinant protein, respectively. Subsequently, the high immunogenicity of the antigen was shown by ELISA. The results of the sereny test in Guinea pigs showed that IpaD(72-162) provides a protective system against Shigella flexneri 5a and S. dysenteriae type I.
Collapse
Affiliation(s)
- Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
28
|
Bosma M, Sparks L, Hooiveld G, Jorgensen J, Houten S, Schrauwen P, Kersten S, Hesselink M. Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:844-52. [DOI: 10.1016/j.bbalip.2013.01.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/06/2013] [Accepted: 01/10/2013] [Indexed: 12/11/2022]
|
29
|
Chabowski A, Żendzian-Piotrowska M, Konstantynowicz K, Pankiewicz W, Mikłosz A, Łukaszuk B, Górski J. Fatty acid transporters involved in the palmitate and oleate induced insulin resistance in primary rat hepatocytes. Acta Physiol (Oxf) 2013; 207:346-57. [PMID: 23140342 DOI: 10.1111/apha.12022] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/25/2012] [Accepted: 09/18/2012] [Indexed: 12/12/2022]
Abstract
AIMS To determine the presence and possible involvement of FAT/CD36, FABPpm and FATP-2, transporters in (i) fatty acids movement across plasma membrane and (ii) an induction of insulin resistance by palmitic (PA) and oleic (OA) fatty acids in primary hepatocytes. METHODS Primary hepatocytes were treated with either PA and OA or combination of activators (AICAR, Insulin) or inhibitors (SSO, phloretin) of FA transport. Expression of FA and glucose transporters as well as insulin signalling proteins was determined using Western blot analyses. Palmitate and glucose transport was measured using radioactive isotopes. Intracellular lipid content [ceramide, diacylglycerols (DG) and triacylglycerols] and FA composition were estimated by GLC. RESULTS In primary hepatocytes, adding phloretin diminished insulin, and AICAR stimulated palmitate transport. Both PA and OA fatty acids induced the protein expression of FAT/CD36 and FATP-2 with concomitant: (i) reduction in GLUT-2 protein content, (ii) inhibition of insulin-stimulated glucose uptake, (iii) reduction in insulin-stimulated activation of AKT and GSK, (iv) accumulation of either DG (PA and OA) or ceramide (only PA). CONCLUSIONS FA transport into hepatocytes is, at least in part, protein-mediated process, and both PA and OA induce the protein expression of FAT/CD36 and FATP-2. Both saturated (PA) and unsaturated (OA) fatty acids induce insulin resistance in primary hepatocytes, associated with the accumulation of DG and/or ceramide.
Collapse
Affiliation(s)
- A. Chabowski
- Department of Physiology; Medical University of Bialystok; Bialystok; Poland
| | | | - K. Konstantynowicz
- Department of Physiology; Medical University of Bialystok; Bialystok; Poland
| | - W. Pankiewicz
- Department of Physiology; Medical University of Bialystok; Bialystok; Poland
| | - A. Mikłosz
- Department of Physiology; Medical University of Bialystok; Bialystok; Poland
| | - B. Łukaszuk
- Department of Physiology; Medical University of Bialystok; Bialystok; Poland
| | - J. Górski
- Department of Physiology; Medical University of Bialystok; Bialystok; Poland
| |
Collapse
|
30
|
Taube A, Lambernd S, van Echten-Deckert G, Eckardt K, Eckel J. Adipokines promote lipotoxicity in human skeletal muscle cells. Arch Physiol Biochem 2012; 118:92-101. [PMID: 22691105 DOI: 10.3109/13813455.2012.688751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Studies have shown the implication of specific adipokines or fatty acids (FA) in the pathogenesis of insulin resistance. However, the interplay of adipokines with FA remains poorly understood. This study aimed to investigate the combined effects of adipokines and low concentrations of palmitic acid (PA, 100 µmol/l) on skeletal muscle metabolism. Human skeletal muscle cells were incubated with adipocyte-conditioned medium (CM), PA or PA+CM, and FA transporter and FA metabolism were analysed. CM-incubation increased CD36 level (1.8 fold) and PA-uptake (1.4 fold). However, only co-application of PA+CM resulted in profound lipid accumulation (5.3 fold), 60% reduction of PA-oxidation and 3.5 fold increased diacylglycerol content. Our results support a novel role for adipokines in the pathogenesis of T2D by increasing the lipotoxic potential of PA, notably of low concentrations. This implies an increased lipotoxic risk already at an early stage of weight gain, when lipolysis has not yet contributed to increased plasma free FA levels.
Collapse
Affiliation(s)
- Annika Taube
- Paul-Langerhans-Group, Integrative Physiology, German Diabetes Center, Duesseldorf, Germany
| | | | | | | | | |
Collapse
|