1
|
Thompson SD, Barrett KL, Rugel CL, Redmond R, Rudofski A, Kurian J, Curtin JL, Dayanidhi S, Lavasani M. Sex-specific preservation of neuromuscular function and metabolism following systemic transplantation of multipotent adult stem cells in a murine model of progeria. GeroScience 2024; 46:1285-1302. [PMID: 37535205 PMCID: PMC10828301 DOI: 10.1007/s11357-023-00892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Onset and rates of sarcopenia, a disease characterized by a loss of muscle mass and function with age, vary greatly between sexes. Currently, no clinical interventions successfully arrest age-related muscle impairments since the decline is frequently multifactorial. Previously, we found that systemic transplantation of our unique adult multipotent muscle-derived stem/progenitor cells (MDSPCs) isolated from young mice-but not old-extends the health-span in DNA damage mouse models of progeria, a disease of accelerated aging. Additionally, induced neovascularization in the muscles and brain-where no transplanted cells were detected-strongly suggests a systemic therapeutic mechanism, possibly activated through circulating secreted factors. Herein, we used ZMPSTE24-deficient mice, a lamin A defect progeria model, to investigate the ability of young MDSPCs to preserve neuromuscular tissue structure and function. We show that progeroid ZMPST24-deficient mice faithfully exhibit sarcopenia and age-related metabolic dysfunction. However, systemic transplantation of young MDSPCs into ZMPSTE24-deficient progeroid mice sustained healthy function and histopathology of muscular tissues throughout their 6-month life span in a sex-specific manner. Indeed, female-but not male-mice systemically transplanted with young MDSPCs demonstrated significant preservation of muscle endurance, muscle fiber size, mitochondrial respirometry, and neuromuscular junction morphometrics. These novel findings strongly suggest that young MDSPCs modulate the systemic environment of aged animals by secreted rejuvenating factors to maintain a healthy homeostasis in a sex-specific manner and that the female muscle microenvironment remains responsive to exogenous regenerative cues in older age. This work highlights the age- and sex-related differences in neuromuscular tissue degeneration and the future prospect of preserving health in older adults with systemic regenerative treatments.
Collapse
Affiliation(s)
- Seth D Thompson
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.
- Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Northwestern University, Chicago, IL, 60611, USA.
| | - Kelsey L Barrett
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Chelsea L Rugel
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
- Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Northwestern University, Chicago, IL, 60611, USA
| | - Robin Redmond
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Alexia Rudofski
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Jacob Kurian
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611, USA
| | - Jodi L Curtin
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
| | - Mitra Lavasani
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.
- Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Steingruber L, Krabichler F, Franzmeier S, Wu W, Schlegel J, Koch M. ALDH1A1 and ALDH1A3 paralogues of aldehyde dehydrogenase 1 control myogenic differentiation of skeletal muscle satellite cells by retinoic acid-dependent and -independent mechanisms. Cell Tissue Res 2023; 394:515-528. [PMID: 37904003 DOI: 10.1007/s00441-023-03838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
ALDH1A1 and ALDH1A3 paralogues of aldehyde dehydrogenase 1 (ALDH1) control myogenic differentiation of skeletal muscle satellite cells (SC) by formation of retinoic acid (RA) and subsequent cell cycle adjustments. The respective relevance of each paralogue for myogenic differentiation and the mechanistic interaction of each paralogue within RA-dependent and RA-independent pathways remain elusive.We analysed the impact of ALDH1A1 and ALDH1A3 activity on myogenesis of murine C2C12 myoblasts. Both paralogues are pivotal factors in myogenic differentiation, since CRISPR/Cas9-edited single paralogue knock-out impaired serum withdrawal-induced myogenic differentiation, while successive recombinant re-expression of ALDH1A1 or ALDH1A3, respectively, in the corresponding ALDH1 paralogue single knock-out cell lines, recovered the differentiation potential. Loss of differentiation in single knock-out cell lines was restored by treatment with RA-analogue TTNPB, while RA-receptor antagonization by AGN 193109 inhibited differentiation of wildtype cell lines, supporting the idea that RA-dependent pathway is pivotal for myogenic differentiation which is accomplished by both paralogues.However, overexpression of ALDH1-paralogues or disulfiram-mediated inhibition of ALDH1 enzymatic activity not only increased ALDH1A1 and ALDH1A3 protein levels but also induced subsequent differentiation of C2C12 myoblasts independently from serum withdrawal, indicating that ALDH1-dependent myogenic differentiation relies on different cellular conditions. Remarkably, ALDH1-paralogue knock-out impaired the autophagic flux, namely autophagosome cargo protein p62 formation and LC3B-I to LC3B-II conversion, demonstrating that ALDH1-paralogues interact with autophagy in myogenesis. Together, ALDH1 paralogues play a crucial role in myogenesis by orchestration of complex RA-dependent and RA-independent pathways.
Collapse
Affiliation(s)
- Laura Steingruber
- Anatomy and Cell Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
- Department of Neuropathology, Institute of Pathology, Technical University Munich, Munich, Germany.
| | - Florian Krabichler
- Anatomy and Cell Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
- Department of Neuropathology, Institute of Pathology, Technical University Munich, Munich, Germany.
| | - Sophie Franzmeier
- Department of Neuropathology, Institute of Pathology, Technical University Munich, Munich, Germany
| | - Wei Wu
- Department of Neuropathology, Institute of Pathology, Technical University Munich, Munich, Germany
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Jürgen Schlegel
- Department of Neuropathology, Institute of Pathology, Technical University Munich, Munich, Germany
| | - Marco Koch
- Anatomy and Cell Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
3
|
Boesch J, Pierrel E, Lambert C, Doelemeyer A, Kreider J, Accart N, Summermatter S. Chemokine-like receptor 1 plays a critical role in modulating the regenerative and contractile properties of muscle tissue. Front Physiol 2022; 13:1044488. [PMID: 36467705 PMCID: PMC9713634 DOI: 10.3389/fphys.2022.1044488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/04/2022] [Indexed: 10/28/2023] Open
Abstract
Musculoskeletal diseases are a leading contributor to mobility disability worldwide. Since the majority of patients with musculoskeletal diseases present with associated muscle weakness, treatment approaches typically comprise an element of resistance training to restore physical strength. The health-promoting effects of resistance exercise are mediated via complex, multifarious mechanisms including modulation of systemic and local inflammation. Here we investigated whether targeted inhibition of the chemerin pathway, which largely controls inflammatory processes via chemokine-like receptor 1 (CMKLR1), can improve skeletal muscle function. Using genetically modified mice, we demonstrate that blockade of CMKLR1 transiently increases maximal strength during growth, but lastingly decreases strength endurance. In-depth analyses of the underlying long-term adaptations revealed microscopic alterations in the number of Pax7-positive satellite cells, as well as molecular changes in genes governing myogenesis and calcium handling. Taken together, these data provide evidence of a critical role for CMKLR1 in regulating skeletal muscle function by modulating the regenerative and contractile properties of muscle tissue. CMKLR1 antagonists are increasingly viewed as therapeutic modalities for a variety of diseases (e.g., psoriasis, metabolic disorders, and multiple sclerosis). Our findings thus have implications for the development of novel drug substances that aim at targeting the chemerin pathway for musculoskeletal or other diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Serge Summermatter
- Musculoskeletal Diseases, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
4
|
Yao S, Chen W, Zuo H, Bi Z, Zhang X, Pang L, Jing Y, Yin X, Cheng H. Comprehensive Analysis of Aldehyde Dehydrogenases (ALDHs) and Its Significant Role in Hepatocellular Carcinoma. Biochem Genet 2022; 60:1274-1297. [PMID: 34928471 PMCID: PMC9270301 DOI: 10.1007/s10528-021-10178-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Oxidative DNA damage is closely related to the occurrence and progression of cancer. Oxidative stress plays an important role in alcohol-induced hepatocellular carcinoma (HCC). Aldehyde dehydrogenase (ALDH) is a family of enzymes that plays an essential role in the reducing oxidative damage. However, how ALDHs family affects alcohol-related HCC remains obscure. We aimed to explore the correlation between the differential expression of ALDHs in patients with HCC and pathological features, as well as the relationship between ALDHs and prognosis, and finally analyze the possible mechanism of ALDHs in targeted therapy of HCC. The data of HCC were downloaded from The Cancer Genome Atlas (TCGA) database. This research explored the expression and prognostic values of ALDHs in HCC using Oncomine, UALCAN, Human Protein Atlas, cBioPortal, Kaplan-Meier plotter, GeneMANIA, Tumor Immune Estimation Resource, GEPIA databases, and WebGestalt. Low mRNA and protein expressions of ALDHs were found to be significantly associated with tumor grade and clinical cancer stages in HCC patients. In particular, the loss of ALDH expression is more obvious in Asians, and its effect on prognosis is far more significant than that in the White race. Our findings play an important role in the study of prognostic markers and anti-liver cancer therapeutic targets for the members of the ALDHs family, especially in patients with liver cancer in Asia.
Collapse
Affiliation(s)
- Senbang Yao
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, China
- Department of Oncology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Wenjun Chen
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, China
- Department of Oncology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - He Zuo
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, China
- Department of Oncology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Ziran Bi
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, China
- Department of Oncology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Xiuqing Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, China
- Department of Oncology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Lulian Pang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, China
- Department of Oncology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Yanyan Jing
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, China
- Department of Oncology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Xiangxiang Yin
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, China
- Department of Oncology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, China.
- Department of Oncology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
5
|
Lu A, Guo P, Pan H, Tseng C, Sinha KM, Yang F, Scibetta A, Cui Y, Huard M, Zhong L, Ravuri S, Huard J. Enhancement of myogenic potential of muscle progenitor cells and muscle healing during pregnancy. FASEB J 2021; 35:e21378. [PMID: 33565161 DOI: 10.1096/fj.202001914r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 11/11/2022]
Abstract
The decline of muscle regenerative potential with age has been attributed to a diminished responsiveness of muscle progenitor cells (MPCs). Heterochronic parabiosis has been used as a model to study the effects of aging on stem cells and their niches. These studies have demonstrated that, by exposing old mice to a young systemic environment, aged progenitor cells can be rejuvenated. One interesting idea is that pregnancy represents a unique biological model of a naturally shared circulatory system between developing and mature organisms. To test this hypothesis, we evaluated the muscle regeneration potential of pregnant mice using a cardiotoxin (CTX) injury mouse model. Our results indicate that the pregnant mice demonstrate accelerated muscle healing compared to nonpregnant control mice following muscle injury based on improved muscle histology, superior muscle regeneration, and a reduction in inflammation and necrosis. Additionally, we found that MPCs isolated from pregnant mice display a significant improvement of myogenic differentiation capacity in vitro and muscle regeneration in vivo when compared to the MPCs from nonpregnant mice. Furthermore, MPCs from nonpregnant mice display enhanced myogenic capacity when cultured in the presence of serum obtained from pregnant mice. Our proteomics data from these studies provides potential therapeutic targets to enhance the myogenic potential of progenitor cells and muscle repair.
Collapse
Affiliation(s)
- Aiping Lu
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Ping Guo
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Haiying Pan
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chieh Tseng
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Krishna M Sinha
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fan Yang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alex Scibetta
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Yan Cui
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Ling Zhong
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Johnny Huard
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
6
|
Thompson SD, Pichika R, Lieber RL, Lavasani M. Systemic transplantation of adult multipotent stem cells prevents articular cartilage degeneration in a mouse model of accelerated ageing. Immun Ageing 2021; 18:27. [PMID: 34098983 PMCID: PMC8183038 DOI: 10.1186/s12979-021-00239-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/26/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is one of the most prevalent joint diseases of advanced age and is a leading cause of disability worldwide. Ageing is a major risk factor for the articular cartilage (AC) degeneration that leads to OA, and the age-related decline in regenerative capacity accelerates OA progression. Here we demonstrate that systemic transplantation of a unique population of adult multipotent muscle-derived stem/progenitor cells (MDSPCs), isolated from young wild-type mice, into Zmpste24-/- mice (a model of Hutchinson-Gilford progeria syndrome, a condition marked by accelerated ageing), prevents ageing-related homeostatic decline of AC. RESULTS MDSPC treatment inhibited expression of cartilage-degrading factors such as pro-inflammatory cytokines and extracellular matrix-proteinases, whereas pro-regenerative markers associated with cartilage mechanical support and tensile strength, cartilage resilience, chondrocyte proliferation and differentiation, and cartilage growth, were increased. Notably, MDSPC transplantation also increased the expression level of genes known for their key roles in immunomodulation, autophagy, stress resistance, pro-longevity, and telomere protection. Our findings also indicate that MDSPC transplantation increased proteoglycan content by regulating chondrocyte proliferation. CONCLUSIONS Together, these findings demonstrate the ability of systemically transplanted young MDSPCs to preserve a healthy homeostasis and promote tissue regeneration at the molecular and tissue level in progeroid AC. These results highlight the therapeutic potential of systemically delivered multipotent adult stem cells to prevent age-associated AC degeneration.
Collapse
Affiliation(s)
- Seth D Thompson
- Shirley Ryan Abilitylab (Formerly the Rehabilitation Institute of Chicago), 355 E. Erie St, IL, 60611, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
- Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Northwestern University, Chicago, USA
| | - Rajeswari Pichika
- Shirley Ryan Abilitylab (Formerly the Rehabilitation Institute of Chicago), 355 E. Erie St, IL, 60611, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| | - Richard L Lieber
- Shirley Ryan Abilitylab (Formerly the Rehabilitation Institute of Chicago), 355 E. Erie St, IL, 60611, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| | - Mitra Lavasani
- Shirley Ryan Abilitylab (Formerly the Rehabilitation Institute of Chicago), 355 E. Erie St, IL, 60611, Chicago, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA.
- Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Northwestern University, Chicago, USA.
| |
Collapse
|
7
|
Tamaki T. Biomedical applications of muscle-derived stem cells: from bench to bedside. Expert Opin Biol Ther 2020; 20:1361-1371. [PMID: 32643444 DOI: 10.1080/14712598.2020.1793953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Skeletal muscle-derived stem cells (Sk-MDSCs) are considered promising sources of adult stem cell therapy. Skeletal muscle comprises approximately 40-50% of the total body mass with marked potential for postnatal adaptive response, such as muscle hypertrophy, hyperplasia, atrophy, and regenerative capacity. This strongly suggests that skeletal muscle contains various stem/progenitor cells related to muscle-nerve-vascular tissues, which would support the above postnatal events even in adulthood. AREA COVERED The focus of this review is the therapeutic potential of the Sk-MDSCs as an adult stem cell autograft. For this purpose, the validity of cell isolation and purification, tissue reconstitution capacity in vivo after transplantation, comparison of the results of basic mouse and preclinical human studies, potential problematic and beneficial aspects, and effective usage have been discussed following the history of clinical applications. EXPERT OPINION Although the clinical application of Sk-MDSCs began as a therapy for the systemic disease of Duchenne muscular dystrophy, here, through the unique local injection method, therapy for severely damaged peripheral nerves, particularly the long-gap nerve transection, has been introduced. The beneficial aspects of the use of Sk-MDSCs as the source of local tissue transplantation therapy have also been discussed.
Collapse
Affiliation(s)
- Tetsuro Tamaki
- Muscle Physiology and Cell Biology Unit, Department of Physiology, Tokai University School of Medicine , Isehara, Kanagawa ,Japan
| |
Collapse
|
8
|
Etienne J, Joanne P, Catelain C, Riveron S, Bayer AC, Lafable J, Punzon I, Blot S, Agbulut O, Vilquin JT. Aldehyde dehydrogenases contribute to skeletal muscle homeostasis in healthy, aging, and Duchenne muscular dystrophy patients. J Cachexia Sarcopenia Muscle 2020; 11:1047-1069. [PMID: 32157826 PMCID: PMC7432589 DOI: 10.1002/jcsm.12557] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/12/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) are key players in cell survival, protection, and differentiation via the metabolism and detoxification of aldehydes. ALDH activity is also a marker of stem cells. The skeletal muscle contains populations of ALDH-positive cells amenable to use in cell therapy, whose distribution, persistence in aging, and modifications in myopathic context have not been investigated yet. METHODS The Aldefluor® (ALDEF) reagent was used to assess the ALDH activity of muscle cell populations, whose phenotypic characterizations were deepened by flow cytometry. The nature of ALDH isoenzymes expressed by the muscle cell populations was identified in complementary ways by flow cytometry, immunohistology, and real-time PCR ex vivo and in vitro. These populations were compared in healthy, aging, or Duchenne muscular dystrophy (DMD) patients, healthy non-human primates, and Golden Retriever dogs (healthy vs. muscular dystrophic model, Golden retriever muscular dystrophy [GRMD]). RESULTS ALDEF+ cells persisted through muscle aging in humans and were equally represented in several anatomical localizations in healthy non-human primates. ALDEF+ cells were increased in dystrophic individuals in humans (nine patients with DMD vs. five controls: 14.9 ± 1.63% vs. 3.6 ± 0.39%, P = 0.0002) and dogs (three GRMD dogs vs. three controls: 10.9 ± 2.54% vs. 3.7 ± 0.45%, P = 0.049). In DMD patients, such increase was due to the adipogenic ALDEF+ /CD34+ populations (11.74 ± 1.5 vs. 2.8 ± 0.4, P = 0.0003), while in GRMD dogs, it was due to the myogenic ALDEF+ /CD34- cells (3.6 ± 0.6% vs. 1.03 ± 0.23%, P = 0.0165). Phenotypic characterization associated the ALDEF+ /CD34- cells with CD9, CD36, CD49a, CD49c, CD49f, CD106, CD146, and CD184, some being associated with myogenic capacities. Cytological and histological analyses distinguished several ALDH isoenzymes (ALDH1A1, 1A2, 1A3, 1B1, 1L1, 2, 3A1, 3A2, 3B1, 3B2, 4A1, 7A1, 8A1, and 9A1) expressed by different cell populations in the skeletal muscle tissue belonging to multinucleated fibres, or myogenic, endothelial, interstitial, and neural lineages, designing them as potential new markers of cell type or of metabolic activity. Important modifications were noted in isoenzyme expression between healthy and DMD muscle tissues. The level of gene expression of some isoenzymes (ALDH1A1, 1A3, 1B1, 2, 3A2, 7A1, 8A1, and 9A1) suggested their specific involvement in muscle stability or regeneration in situ or in vitro. CONCLUSIONS This study unveils the importance of the ALDH family of isoenzymes in the skeletal muscle physiology and homeostasis, suggesting their roles in tissue remodelling in the context of muscular dystrophies.
Collapse
Affiliation(s)
- Jessy Etienne
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France.,Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, USA
| | - Pierre Joanne
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Cyril Catelain
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Stéphanie Riveron
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Alexandra Clarissa Bayer
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Jérémy Lafable
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Isabel Punzon
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Stéphane Blot
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Onnik Agbulut
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Jean-Thomas Vilquin
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| |
Collapse
|
9
|
Przanowska RK, Sobierajska E, Su Z, Jensen K, Przanowski P, Nagdas S, Kashatus JA, Kashatus DF, Bhatnagar S, Lukens JR, Dutta A. miR-206 family is important for mitochondrial and muscle function, but not essential for myogenesis in vitro. FASEB J 2020; 34:7687-7702. [PMID: 32277852 DOI: 10.1096/fj.201902855rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/05/2023]
Abstract
miR-206, miR-1a-1, and miR-1a-2 are induced during differentiation of skeletal myoblasts and promote myogenesis in vitro. miR-206 is required for skeletal muscle regeneration in vivo. Although this miRNA family is hypothesized to play an essential role in differentiation, a triple knock-out (tKO) of the three genes has not been done to test this hypothesis. We report that tKO C2C12 myoblasts generated using CRISPR/Cas9 method differentiate despite the expected derepression of the miRNA targets. Surprisingly, their mitochondrial function is diminished. tKO mice demonstrate partial embryonic lethality, most likely due to the role of miR-1a in cardiac muscle differentiation. Two tKO mice survive and grow normally to adulthood with smaller myofiber diameter, diminished physical performance, and an increase in PAX7 positive satellite cells. Thus, unlike other miRNAs important in other differentiation pathways, the miR-206 family is not absolutely essential for myogenesis and is instead a modulator of optimal differentiation of skeletal myoblasts.
Collapse
Affiliation(s)
- Roza K Przanowska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ewelina Sobierajska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Zhangli Su
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kate Jensen
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Piotr Przanowski
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarbajeet Nagdas
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jennifer A Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David F Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sanchita Bhatnagar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - John R Lukens
- Department of Neuroscience, School of Medicine, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
10
|
Chen ZX, Lu HB, Jin XL, Feng WF, Yang XN, Qi ZL. Skeletal muscle-derived cells repair peripheral nerve defects in mice. Neural Regen Res 2020; 15:152-161. [PMID: 31535664 PMCID: PMC6862419 DOI: 10.4103/1673-5374.264462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle-derived cells have strong secretory function, while skeletal muscle-derived stem cells, which are included in muscle-derived cells, can differentiate into Schwann cell-like cells and other cell types. However, the effect of muscle-derived cells on peripheral nerve defects has not been reported. In this study, 5-mm-long nerve defects were created in the right sciatic nerves of mice to construct a peripheral nerve defect model. Adult female C57BL/6 mice were randomly divided into four groups. For the muscle-derived cell group, muscle-derived cells were injected into the catheter after the cut nerve ends were bridged with a polyurethane catheter. For external oblique muscle-fabricated nerve conduit and polyurethane groups, an external oblique muscle-fabricated nerve conduit or polyurethane catheter was used to bridge the cut nerve ends, respectively. For the sham group, the sciatic nerves on the right side were separated but not excised. At 8 and 12 weeks post-surgery, distributions of axons and myelin sheaths were observed, and the nerve diameter was calculated using immunofluorescence staining. The number, diameter, and thickness of myelinated nerve fibers were detected by toluidine blue staining and transmission electron microscopy. Muscle fiber area ratios were calculated by Masson’s trichrome staining of gastrocnemius muscle sections. Sciatic functional index was recorded using walking footprint analysis at 4, 8, and 12 weeks after operation. The results showed that, at 8 and 12 weeks after surgery, myelin sheaths and axons of regenerating nerves were evenly distributed in the muscle-derived cell group. The number, diameter, and myelin sheath thickness of myelinated nerve fibers, as well as gastrocnemius muscle wet weight and muscle area ratio, were significantly higher in the muscle-derived cell group compared with the polyurethane group. At 4, 8, and 12 weeks post-surgery, sciatic functional index was notably increased in the muscle-derived cell group compared with the polyurethane group. These criteria of the muscle-derived cell group were not significantly different from the external oblique muscle-fabricated nerve conduit group. Collectively, these data suggest that muscle-derived cells effectively accelerated peripheral nerve regeneration. This study was approved by the Animal Ethics Committee of Plastic Surgery Hospital, Chinese Academy of Medical Sciences (approval No. 040) on September 28, 2016.
Collapse
Affiliation(s)
- Zi-Xiang Chen
- The 16th Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Hai-Bin Lu
- The 16th Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Xiao-Lei Jin
- The 16th Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Wei-Feng Feng
- Yu Tian Cheng Plastic Surgery Clinic, Shanghai, China
| | - Xiao-Nan Yang
- The 16th Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Zuo-Liang Qi
- The 16th Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| |
Collapse
|
11
|
Tey SR, Robertson S, Lynch E, Suzuki M. Coding Cell Identity of Human Skeletal Muscle Progenitor Cells Using Cell Surface Markers: Current Status and Remaining Challenges for Characterization and Isolation. Front Cell Dev Biol 2019; 7:284. [PMID: 31828070 PMCID: PMC6890603 DOI: 10.3389/fcell.2019.00284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle progenitor cells (SMPCs), also called myogenic progenitors, have been studied extensively in recent years because of their promising therapeutic potential to preserve and recover skeletal muscle mass and function in patients with cachexia, sarcopenia, and neuromuscular diseases. SMPCs can be utilized to investigate the mechanisms of natural and pathological myogenesis via in vitro modeling and in vivo experimentation. While various types of SMPCs are currently available from several sources, human pluripotent stem cells (PSCs) offer an efficient and cost-effective method to derive SMPCs. As human PSC-derived cells often display varying heterogeneity in cell types, cell enrichment using cell surface markers remains a critical step in current procedures to establish a pure population of SMPCs. Here we summarize the cell surface markers currently being used to detect human SMPCs, describing their potential application for characterizing, identifying and isolating human PSC-derived SMPCs. To date, several positive and negative markers have been used to enrich human SMPCs from differentiated PSCs by cell sorting. A careful analysis of current findings can broaden our understanding and reveal potential uses for these surface markers with SMPCs.
Collapse
Affiliation(s)
- Sin-Ruow Tey
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Eileen Lynch
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
12
|
Isolation and characterization of myogenic precursor cells from human cremaster muscle. Sci Rep 2019; 9:3454. [PMID: 30837559 PMCID: PMC6401155 DOI: 10.1038/s41598-019-40042-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Human myogenic precursor cells have been isolated and expanded from a number of skeletal muscles, but alternative donor biopsy sites must be sought after in diseases where muscle damage is widespread. Biopsy sites must be relatively accessible, and the biopsied muscle dispensable. Here, we aimed to histologically characterize the cremaster muscle with regard number of satellite cells and regenerative fibres, and to isolate and characterize human cremaster muscle-derived stem/precursor cells in adult male donors with the objective of characterizing this muscle as a novel source of myogenic precursor cells. Cremaster muscle biopsies (or adjacent non-muscle tissue for negative controls; N = 19) were taken from male patients undergoing routine surgery for urogenital pathology. Myosphere cultures were derived and tested for their in vitro and in vivo myogenic differentiation and muscle regeneration capacities. Cremaster-derived myogenic precursor cells were maintained by myosphere culture and efficiently differentiated to myotubes in adhesion culture. Upon transplantation to an immunocompromised mouse model of cardiotoxin-induced acute muscle damage, human cremaster-derived myogenic precursor cells survived to the transplants and contributed to muscle regeneration. These precursors are a good candidate for cell therapy approaches of skeletal muscle. Due to their location and developmental origin, we propose that they might be best suited for regeneration of the rhabdosphincter in patients undergoing stress urinary incontinence after radical prostatectomy.
Collapse
|
13
|
Najar M, Crompot E, van Grunsven LA, Dollé L, Lagneaux L. Aldehyde dehydrogenase activity of Wharton jelly mesenchymal stromal cells: isolation and characterization. Cytotechnology 2019; 71:427-441. [PMID: 30610510 PMCID: PMC6368491 DOI: 10.1007/s10616-018-0283-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising tools in regenerative medicine and targeted therapies. Although different origins have been described, there is still huge need to find a valuable source harboring specific subpopulations of MSCs with precise therapeutic functions. Here, we isolated by fluorescence activated cell sorting technique, two populations of Wharton's jelly (WJ)-MSCs based on their aldehyde dehydrogenase (ALDH) activity. Two different ALDH activities (low vs. high) were thus observed. We then analyzed their gene expression profile for stemness, phenotype, response to hypoxia, angiogenesis, hematopoietic support, immunomodulation and multilineage differentiation abilities (osteogenesis, adipogenesis, and chondrogenesis). According to ALDH activity, many differences in the mRNA expression of these populations were noticed. In conclusion, we provide evidences that WJ harbors two distinct populations of MSCs with different ALDH activity. These populations seem to display specific functional competences that may be interesting for concise therapeutic applications.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik no 808, 1070, Brussels, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik no 808, 1070, Brussels, Belgium.
| | - Leo A van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurent Dollé
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik no 808, 1070, Brussels, Belgium
| |
Collapse
|
14
|
Najar M, Crompot E, van Grunsven LA, Dollé L, Lagneaux L. Aldehyde Dehydrogenase Activity in Adipose Tissue: Isolation and Gene Expression Profile of Distinct Sub-population of Mesenchymal Stromal Cells. Stem Cell Rev Rep 2018; 14:599-611. [PMID: 29333563 DOI: 10.1007/s12015-017-9777-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thanks to their relative abundance and easier collection, adipose tissue (AT) is considered an alternative source for the isolation of mesenchymal stromal cells (MSCs). MSCs have great therapeutic values and are thus under investigations for several clinical indications such as regenerative medicine and immunomodulation. In this work, we aimed to identify, isolate and characterize AT-MSCs based on their aldehyde dehydrogenase (ALDH) activity known to be a classical feature of stem cells. FACS technology allowed to isolate two different populations of AT-MSCs according to their ALDH activity (referred as ALDH+ and ALDH-). Depending on their ALDH activity, the transcriptome analysis of both cell populations demonstrated a differential pattern of genes related to the main properties of MSCs (proliferation, response to hypoxia, angiogenesis, phenotype, stemness, multilineage, hematopoiesis, immunomodulation). Based on these profiling, both AT-MSC populations could differ in terms of biological responses and functionalities. Collectively, the use of ALDH for isolating and identifying sub-populations of MSCs with specific gene profile may represent an alternative method to provide solutions for targeted therapeutic applications.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik n° 808, 1070, Brussels, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik n° 808, 1070, Brussels, Belgium.
| | - Leo A van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurent Dollé
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik n° 808, 1070, Brussels, Belgium
| |
Collapse
|
15
|
Musavi L, Brandacher G, Hoke A, Darrach H, Lee WPA, Kumar A, Lopez J. Muscle-derived stem cells: important players in peripheral nerve repair. Expert Opin Ther Targets 2018; 22:1009-1016. [PMID: 30347175 DOI: 10.1080/14728222.2018.1539706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Stem cell therapy for peripheral nerve repair is a rapidly evolving field in regenerative medicine. Although most studies to date have investigated stem cells originating from bone marrow or adipose, skeletal muscle has recently been recognized as an abundant and easily accessible source of stem cells. Muscle-derived stem cells (MDSCs) are a diverse population of multipotent cells with pronounced antioxidant and regenerative capacity. Areas covered: The current literature on the various roles MDSCs serve within the micro- and macro-environment of nerve injury. Furthermore, the exciting new research that is establishing MDSC-cellular therapy as an important therapeutic modality to improve peripheral nerve regeneration. Expert opinion: MDSCs are a promising therapeutic agent for the repair of peripheral nerves; MDSCs not only undergo gliogenesis and angiogenesis, but they also orchestrate larger pro-regenerative host responses. However, the isolation, transformation, and in-vivo behavior of MDSCs require further evaluation prior to clinical application.
Collapse
Affiliation(s)
- Leila Musavi
- a Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory , Johns Hopkins Hospital , Baltimore , Maryland
| | - Gerald Brandacher
- a Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory , Johns Hopkins Hospital , Baltimore , Maryland
| | - Ahmet Hoke
- b The Solomon H Snyder Department of Neuroscience , Johns Hopkins University , Baltimore , Maryland
| | - Halley Darrach
- a Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory , Johns Hopkins Hospital , Baltimore , Maryland
| | - W P Andrew Lee
- a Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory , Johns Hopkins Hospital , Baltimore , Maryland
| | - Anand Kumar
- c Department of Plastic & Reconstructive Surgery , Case Western Reserve University, Rainbow Babies Children's Hospital , Cleveland , OH , USA
| | - Joseph Lopez
- a Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory , Johns Hopkins Hospital , Baltimore , Maryland
| |
Collapse
|
16
|
Najar M, Crompot E, van Grunsven LA, Dollé L, Lagneaux L. Foreskin-derived mesenchymal stromal cells with aldehyde dehydrogenase activity: isolation and gene profiling. BMC Cell Biol 2018; 19:4. [PMID: 29625551 PMCID: PMC5889569 DOI: 10.1186/s12860-018-0157-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) become an attractive research topic because of their crucial roles in tissue repair and regenerative medicine. Foreskin is considered as a valuable tissue source containing immunotherapeutic MSCs (FSK-MSCs). Results In this work, we used aldehyde dehydrogenase activity (ALDH) assay (ALDEFLUOR™) to isolate and therefore characterize subsets of FSK-MSCs. According to their ALDH activity, we were able to distinguish and sort by fluorescence activated cell sorting (FACS) two subsets of FSK-MSCs (referred as ALDH+ and ALDH−). Consequently, these subsets were characterized by profiling the gene expression related to the main properties of MSCs (proliferation, response to hypoxia, angiogenesis, phenotype, stemness, multilineage, hematopoiesis and immunomodulation). We thus demonstrated by Real Time PCR several relevant differences in gene expression based on their ALDH activity. Conclusion Taken together, this preliminary study suggests that distinct subsets of FSK-MSCs with differential gene expression profiles depending of ALDH activity could be identified. These populations could differ in terms of biological functionalities involving the selection by ALDH activity as useful tool for potent therapeutic applications. However, functional studies should be conducted to confirm their therapeutic relevance. Electronic supplementary material The online version of this article (10.1186/s12860-018-0157-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik 808, 1070, Brussels, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik 808, 1070, Brussels, Belgium.
| | - Leo A van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurent Dollé
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik 808, 1070, Brussels, Belgium
| |
Collapse
|
17
|
Matthias N, Hunt SD, Wu J, Lo J, Smith Callahan LA, Li Y, Huard J, Darabi R. Volumetric muscle loss injury repair using in situ fibrin gel cast seeded with muscle-derived stem cells (MDSCs). Stem Cell Res 2018; 27:65-73. [PMID: 29331939 PMCID: PMC5851454 DOI: 10.1016/j.scr.2018.01.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/02/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
Volumetric muscle defect, caused by trauma or combat injuries, is a major health concern leading to severe morbidity. It is characterized by partial or full thickness loss of muscle and its bio-scaffold, resulting in extensive fibrosis and scar formation. Therefore, the ideal therapeutic option is to use stem cells combined with bio-scaffolds to restore muscle. For this purpose, muscle-derived stem cells (MDSCs) are a great candidate due to their unique multi-lineage differentiation potential. In this study, we evaluated the regeneration potential of MDSCs for muscle loss repair using a novel in situ fibrin gel casting. Muscle defect was created by a partial thickness wedge resection in the tibialis anterior (TA)muscles of NSG mice which created an average of 25% mass loss. If untreated, this defect leads to severe muscle fibrosis. Next, MDSCs were delivered using a novel in situ fibrin gel casting method. Our results demonstrated MDSCs are able to engraft and form new myofibers in the defect when casted along with fibrin gel. LacZ labeled MDSCs were able to differentiate efficiently into new myofibers and significantly increase muscle mass. This was also accompanied by significant reduction of fibrotic tissue in the engrafted muscles. Furthermore, transplanted cells also contributed to new vessel formation and satellite cell seeding. These results confirmed the therapeutic potential of MDSCs and feasibility of direct in situ casting of fibrin/MDSC mixture to repair muscle mass defects.
Collapse
Affiliation(s)
- Nadine Matthias
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States
| | - Samuel D Hunt
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States
| | - Jianbo Wu
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States
| | - Jonathan Lo
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States
| | - Laura A Smith Callahan
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States; The Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States; Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States; Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Yong Li
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States; Department of Pediatric Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Johnny Huard
- Department of Orthopedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States; The Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States.
| |
Collapse
|
18
|
Lardenois A, Jagot S, Lagarrigue M, Guével B, Ledevin M, Larcher T, Dubreil L, Pineau C, Rouger K, Guével L. Quantitative proteome profiling of dystrophic dog skeletal muscle reveals a stabilized muscular architecture and protection against oxidative stress after systemic delivery of MuStem cells. Proteomics 2017; 16:2028-42. [PMID: 27246553 DOI: 10.1002/pmic.201600002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/02/2016] [Accepted: 05/30/2016] [Indexed: 12/23/2022]
Abstract
Proteomic profiling plays a decisive role in the elucidation of molecular signatures representative of a specific clinical context. MuStem cell based therapy represents a promising approach for clinical applications to cure Duchenne muscular dystrophy (DMD). To expand our previous studies collected in the clinically relevant DMD animal model, we decided to investigate the skeletal muscle proteome 4 months after systemic delivery of allogenic MuStem cells. Quantitative proteomics with isotope-coded protein labeling was used to compile quantitative changes in the protein expression profiles of muscle in transplanted Golden Retriever muscular dystrophy (GRMD) dogs as compared to Golden Retriever muscular dystrophy dogs. A total of 492 proteins were quantified, including 25 that were overrepresented and 46 that were underrepresented after MuStem cell transplantation. Interestingly, this study demonstrates that somatic stem cell therapy impacts on the structural integrity of the muscle fascicle by acting on fibers and its connections with the extracellular matrix. We also show that cell infusion promotes protective mechanisms against oxidative stress and favors the initial phase of muscle repair. This study allows us to identify putative candidates for tissue markers that might be of great value in objectively exploring the clinical benefits resulting from our cell-based therapy for DMD. All MS data have been deposited in the ProteomeXchange with identifier PXD001768 (http://proteomecentral.proteomexchange.org/dataset/PXD001768).
Collapse
Affiliation(s)
- Aurélie Lardenois
- INRA, UMR703 PAnTher, Nantes, France.,LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique, Nantes, France
| | - Sabrina Jagot
- INRA, UMR703 PAnTher, Nantes, France.,LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique, Nantes, France.,Université de Nantes, Nantes, France
| | - Mélanie Lagarrigue
- Protim, Irset Inserm UMR 1085, Campus de Beaulieu, Rennes, France.,Université de Rennes I, Campus de Beaulieu, Rennes, France
| | - Blandine Guével
- Protim, Irset Inserm UMR 1085, Campus de Beaulieu, Rennes, France.,Université de Rennes I, Campus de Beaulieu, Rennes, France
| | - Mireille Ledevin
- INRA, UMR703 PAnTher, Nantes, France.,LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique, Nantes, France
| | - Thibaut Larcher
- INRA, UMR703 PAnTher, Nantes, France.,LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique, Nantes, France
| | - Laurence Dubreil
- INRA, UMR703 PAnTher, Nantes, France.,LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique, Nantes, France
| | - Charles Pineau
- Protim, Irset Inserm UMR 1085, Campus de Beaulieu, Rennes, France.,Université de Rennes I, Campus de Beaulieu, Rennes, France
| | - Karl Rouger
- INRA, UMR703 PAnTher, Nantes, France.,LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique, Nantes, France
| | - Laëtitia Guével
- INRA, UMR703 PAnTher, Nantes, France.,LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique, Nantes, France.,Université de Nantes, Nantes, France
| |
Collapse
|
19
|
El Haddad M, Notarnicola C, Evano B, El Khatib N, Blaquière M, Bonnieu A, Tajbakhsh S, Hugon G, Vernus B, Mercier J, Carnac G. Retinoic acid maintains human skeletal muscle progenitor cells in an immature state. Cell Mol Life Sci 2017; 74:1923-1936. [PMID: 28025671 PMCID: PMC11107588 DOI: 10.1007/s00018-016-2445-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 01/18/2023]
Abstract
Muscle satellite cells are resistant to cytotoxic agents, and they express several genes that confer resistance to stress, thus allowing efficient dystrophic muscle regeneration after transplantation. However, once they are activated, this capacity to resist to aggressive agents is diminished resulting in massive death of transplanted cells. Although cell immaturity represents a survival advantage, the signalling pathways involved in the control of the immature state remain to be explored. Here, we show that incubation of human myoblasts with retinoic acid impairs skeletal muscle differentiation through activation of the retinoic-acid receptor family of nuclear receptor. Conversely, pharmacologic or genetic inactivation of endogenous retinoic-acid receptors improved myoblast differentiation. Retinoic acid inhibits the expression of early and late muscle differentiation markers and enhances the expression of myogenic specification genes, such as PAX7 and PAX3. These results suggest that the retinoic-acid-signalling pathway might maintain myoblasts in an undifferentiated/immature stage. To determine the relevance of these observations, we characterised the retinoic-acid-signalling pathways in freshly isolated satellite cells in mice and in siMYOD immature human myoblasts. Our analysis reveals that the immature state of muscle progenitors is correlated with high expression of several genes of the retinoic-acid-signalling pathway both in mice and in human. Taken together, our data provide evidences for an important role of the retinoic-acid-signalling pathway in the regulation of the immature state of muscle progenitors.
Collapse
Affiliation(s)
- Marina El Haddad
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Cécile Notarnicola
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Brendan Evano
- Stem Cells and Development, CNRS URA 2578, Department of Developmental and Stem Cell Biology, Pasteur Institute, 25 rue du Dr Roux, 75015, Paris, France
| | - Nour El Khatib
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Marine Blaquière
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Anne Bonnieu
- INRA, UMR866, Dynamique Musculaire et Métabolisme, Université Montpellier, 34060, Montpellier, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, CNRS URA 2578, Department of Developmental and Stem Cell Biology, Pasteur Institute, 25 rue du Dr Roux, 75015, Paris, France
| | - Gérald Hugon
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Barbara Vernus
- INRA, UMR866, Dynamique Musculaire et Métabolisme, Université Montpellier, 34060, Montpellier, France
| | - Jacques Mercier
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France
- Département de Physiologie Clinique, CHRU de Montpellier, 34295, Montpellier Cedex 5, France
| | - Gilles Carnac
- Inserm U1046-UMR CNRS 9214 «Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP», CHU A. De Villeneuve, Université de Montpellier, Bâtiment Crastes de Paulet, 371 avenue du doyen Giraud, 34295, Montpellier Cedex 5, France.
| |
Collapse
|
20
|
Matsumine H, Numakura K, Tsunoda S, Wang H, Matsumine R, Climov M, Giatsidis G, Sukhatme VP, Orgill DP. Adipose-derived aldehyde dehydrogenase-expressing cells promote dermal regenerative potential with collagen-glycosaminoglycan scaffold. Wound Repair Regen 2017; 25:109-119. [DOI: 10.1111/wrr.12494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/26/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Hajime Matsumine
- The Division of Plastic Surgery, Brigham and Women's Hospital; Harvard Medical School
| | - Kazuyuki Numakura
- The Department of Pathology, Brigham and Women's Hospital; Harvard Medical School
| | - Satoshi Tsunoda
- Division of Interdisciplinary Medicine and Biotechnology; Beth Israel Deaconess Medical Center, Harvard Medical School; Boston Massachusetts
| | - Huan Wang
- The Division of Plastic Surgery, Brigham and Women's Hospital; Harvard Medical School
| | - Rui Matsumine
- Division of Interdisciplinary Medicine and Biotechnology; Beth Israel Deaconess Medical Center, Harvard Medical School; Boston Massachusetts
| | - Mihail Climov
- The Division of Plastic Surgery, Brigham and Women's Hospital; Harvard Medical School
| | - Giorgio Giatsidis
- The Division of Plastic Surgery, Brigham and Women's Hospital; Harvard Medical School
| | - Vikas P. Sukhatme
- Division of Interdisciplinary Medicine and Biotechnology; Beth Israel Deaconess Medical Center, Harvard Medical School; Boston Massachusetts
| | - Dennis P. Orgill
- The Division of Plastic Surgery, Brigham and Women's Hospital; Harvard Medical School
| |
Collapse
|
21
|
The Mutual Interactions between Mesenchymal Stem Cells and Myoblasts in an Autologous Co-Culture Model. PLoS One 2016; 11:e0161693. [PMID: 27551730 PMCID: PMC4994951 DOI: 10.1371/journal.pone.0161693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/10/2016] [Indexed: 01/08/2023] Open
Abstract
Both myoblasts and mesenchymal stem cells (MSC) take part in the muscle tissue regeneration and have been used as experimental cellular therapy in muscular disorders treatment. It is possible that co-transplantation approach could improve the efficacy of this treatment. However, the relations between those two cell types are not clearly defined. The aim of this study was to determine the reciprocal interactions between myoblasts and MSC in vitro in terms of the features important for the muscle regeneration process. Primary caprine muscle-derived cells (MDC) and bone marrow-derived MSC were analysed in autologous settings. We found that MSC contribute to myotubes formation by fusion with MDC when co-cultured directly, but do not acquire myogenic phenotype if exposed to MDC-derived soluble factors only. Experiments with exposure to hydrogen peroxide showed that MSC are significantly more resistant to oxidative stress than MDC, but a direct co-culture with MSC does not diminish the cytotoxic effect of H2O2 on MDC. Cell migration assay demonstrated that MSC possess significantly greater migration ability than MDC which is further enhanced by MDC-derived soluble factors, whereas the opposite effect was not found. MSC-derived soluble factors significantly enhanced the proliferation of MDC, whereas MDC inhibited the division rate of MSC. To conclude, presented results suggest that myogenic precursors and MSC support each other during muscle regeneration and therefore myoblasts-MSC co-transplantation could be an attractive approach in the treatment of muscular disorders.
Collapse
|
22
|
Human articular chondrocytes with higher aldehyde dehydrogenase activity have stronger expression of COL2A1 and SOX9. Osteoarthritis Cartilage 2016; 24:873-82. [PMID: 26687820 DOI: 10.1016/j.joca.2015.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/17/2015] [Accepted: 11/24/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine in human articular chondrocytes the activity of Aldehyde dehydrogenase (ALDH), which are reported as stem/progenitor cell marker in various adult tissues and evaluate gene expression of ALDH1A isoforms. DESIGN ALDH activity was evaluated by flow cytometry with Aldefluor™ assay in cells, isolated from human osteoarthritic (OA) cartilage. Its coexpression with surface markers was identified. Cells were sorted according to ALDH activity, and gene expression in sorted populations (ALDH(+) and ALDH(-)) was analyzed by RTq-PCR with Taqman(®) assay. RESULTS About 40% of freshly isolated chondrocytes demonstrated ALDH activity that remarkably declined during monolayer culture. Markers CD54 and CD55 were significantly stronger expressed, while CD47, CD140b, CD146 and CD166 were depleted in ALDH-expressing (ALDH(pos)) cells. Gene expression analysis revealed significantly higher expression of chondrocyte-specific genes COL2A1, SOX9 and SERPINA1 and lower expression of osteogenic markers RUNX2 and osteocalcin (BGLAP) in sorted ALDH(+) fraction. COL1A1, ACAN, ALPL and stem cell markers NANOG, OCT4, SOX2 and ABCG2 did not differ remarkably between the populations. Genes of isoenzymes ALDH1A2, ALDH1A3 and ALDH2 were strongly expressed, while ALDH1A1 was weakly expressed in chondrocytes. Only ALDH1A2 and ALDH1A3 were significantly enriched in ALDH(+) fraction. CONCLUSIONS We identified ALDH activity with significantly stronger expression of CD54 and CD55 in human articular chondrocytes. Gene expression of isotypes ALDH1A2, ALDH1A3 and ALDH2 was identified. Coexpression of ALDH activity with chondrogenic markers suggests its association with collagen II producing chondrocyte phenotype. Isotypes ALDH1A2 and ALDH1A3 can be associated with the ALDH activity in these cells.
Collapse
|
23
|
Ciccarelli C, Vulcano F, Milazzo L, Gravina GL, Marampon F, Macioce G, Giampaolo A, Tombolini V, Di Paolo V, Hassan HJ, Zani BM. Key role of MEK/ERK pathway in sustaining tumorigenicity and in vitro radioresistance of embryonal rhabdomyosarcoma stem-like cell population. Mol Cancer 2016; 15:16. [PMID: 26897742 PMCID: PMC4761200 DOI: 10.1186/s12943-016-0501-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/13/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The identification of signaling pathways that affect the cancer stem-like phenotype may provide insights into therapeutic targets for combating embryonal rhabdomyosarcoma. The aim of this study was to investigate the role of the MEK/ERK pathway in controlling the cancer stem-like phenotype using a model of rhabdospheres derived from the embryonal rhabdomyosarcoma cell line (RD). METHODS Rhabdospheres enriched in cancer stem like cells were obtained growing RD cells in non adherent condition in stem cell medium. Stem cell markers were evaluated by FACS analysis and immunoblotting. ERK1/2, myogenic markers, proteins of DNA repair and bone marrow X-linked kinase (BMX) expression were evaluated by immunoblotting analysis. Radiation was delivered using an x-6 MV photon linear accelerator. Xenografts were obtained in NOD/SCID mice by subcutaneously injection of rhabdosphere cells or cells pretreated with U0126 in stem cell medium. RESULTS MEK/ERK inhibitor U0126 dramatically prevented rhabdosphere formation and down-regulated stem cell markers CD133, CXCR4 and Nanog expression, but enhanced ALDH, MAPK phospho-active p38 and differentiative myogenic markers. By contrast, MAPK p38 inhibition accelerated rhabdosphere formation and enhanced phospho-active ERK1/2 and Nanog expression. RD cells, chronically treated with U0126 and then xeno-transplanted in NOD/SCID mice, delayed tumor development and reduced tumor mass when compared with tumor induced by rhabdosphere cells. U0126 intraperitoneal administration to mice bearing rhabdosphere-derived tumors inhibited tumor growth . The MEK/ERK pathway role in rhabdosphere radiosensitivity was investigated in vitro. Disassembly of rhabdospheres was induced by both radiation or U0126, and further enhanced by combined treatment. In U0126-treated rhabdospheres, the expression of the stem cell markers CD133 and CXCR4 decreased and dropped even more markedly following combined treatment. The expression of BMX, a negative regulator of apoptosis, also decreased following combined treatment, which suggests an increase in radiosensitivity of rhabdosphere cells. CONCLUSIONS Our results indicate that the MEK/ERK pathway plays a prominent role in maintaining the stem-like phenotype of RD cells, their survival and their innate radioresistance. Thus, therapeutic strategies that target cancer stem cells, which are resistant to traditional cancer therapies, may benefit from MEK/ERK inhibition combined with traditional radiotherapy, thereby providing a promising therapy for embryonal rhabdomyosarcoma.
Collapse
Affiliation(s)
- Carmela Ciccarelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
| | - Francesca Vulcano
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Luisa Milazzo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
| | - Giampiero Macioce
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Adele Giampaolo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Virginia Di Paolo
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy.
| | - Hamisa Jane Hassan
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Bianca Maria Zani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
| |
Collapse
|
24
|
Hong SH, Kim KR, Oh DK. Biochemical properties of retinoid-converting enzymes and biotechnological production of retinoids. Appl Microbiol Biotechnol 2015; 99:7813-26. [DOI: 10.1007/s00253-015-6830-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
|
25
|
Robriquet F, Lardenois A, Babarit C, Larcher T, Dubreil L, Leroux I, Zuber C, Ledevin M, Deschamps JY, Fromes Y, Cherel Y, Guevel L, Rouger K. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation. PLoS One 2015; 10:e0123336. [PMID: 25955839 PMCID: PMC4425432 DOI: 10.1371/journal.pone.0123336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation. RESULTS In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells. CONCLUSIONS Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex molecular/cellular effects associated with muscle repair and the clinical efficacy of MuStem cell-based therapy.
Collapse
Affiliation(s)
- Florence Robriquet
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
- Université de Nantes, Nantes, France
| | - Aurélie Lardenois
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Candice Babarit
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Thibaut Larcher
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Laurence Dubreil
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Isabelle Leroux
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Céline Zuber
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Mireille Ledevin
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Jack-Yves Deschamps
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Yves Fromes
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
- Laboratoire RMN AIM-CEA, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Yan Cherel
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Laetitia Guevel
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
- Université de Nantes, Nantes, France
- * E-mail:
| | - Karl Rouger
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| |
Collapse
|
26
|
Proto JD, Tang Y, Lu A, Chen WCW, Stahl E, Poddar M, Beckman SA, Robbins PD, Nidernhofer LJ, Imbrogno K, Hannigan T, Mars WM, Wang B, Huard J. NF-κB inhibition reveals a novel role for HGF during skeletal muscle repair. Cell Death Dis 2015; 6:e1730. [PMID: 25906153 PMCID: PMC4650539 DOI: 10.1038/cddis.2015.66] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/08/2015] [Accepted: 02/09/2015] [Indexed: 11/10/2022]
Abstract
The transcription factor nuclear factor κB (NF-κB)/p65 is the master regulator of inflammation in Duchenne muscular dystrophy (DMD). Disease severity is reduced by NF-κB inhibition in the mdx mouse, a murine DMD model; however, therapeutic targeting of NF-κB remains problematic for patients because of its fundamental role in immunity. In this investigation, we found that the therapeutic effect of NF-κB blockade requires hepatocyte growth factor (HGF) production by myogenic cells. We found that deleting one allele of the NF-κB subunit p65 (p65+/-) improved the survival and enhanced the anti-inflammatory capacity of muscle-derived stem cells (MDSCs) following intramuscular transplantation. Factors secreted from p65+/- MDSCs in cell cultures modulated macrophage cytokine expression in an HGF-receptor-dependent manner. Indeed, we found that following genetic or pharmacologic inhibition of basal NF-κB/p65 activity, HGF gene transcription was induced in MDSCs. We investigated the role of HGF in anti-NF-κB therapy in vivo using mdx;p65+/- mice, and found that accelerated regeneration coincided with HGF upregulation in the skeletal muscle. This anti-NF-κB-mediated dystrophic phenotype was reversed by blocking de novo HGF production by myogenic cells following disease onset. HGF silencing resulted in increased inflammation and extensive necrosis of the diaphragm muscle. Proteolytic processing of matrix-associated HGF is known to activate muscle stem cells at the earliest stages of repair, but our results indicate that the production of a second pool of HGF by myogenic cells, negatively regulated by NF-κB/p65, is crucial for inflammation resolution and the completion of repair in dystrophic skeletal muscle. Our findings warrant further investigation into the potential of HGF mimetics for the treatment of DMD.
Collapse
Affiliation(s)
- J D Proto
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Y Tang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - A Lu
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W C W Chen
- 1] Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E Stahl
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M Poddar
- 1] Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S A Beckman
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - P D Robbins
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - L J Nidernhofer
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - K Imbrogno
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T Hannigan
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W M Mars
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - B Wang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Huard
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Cheng CS, Davis BNJ, Madden L, Bursac N, Truskey GA. Physiology and metabolism of tissue-engineered skeletal muscle. Exp Biol Med (Maywood) 2014; 239:1203-14. [PMID: 24912506 DOI: 10.1177/1535370214538589] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle is a major target for tissue engineering, given its relative size in the body, fraction of cardiac output that passes through muscle beds, as well as its key role in energy metabolism and diabetes, and the need for therapies for muscle diseases such as muscular dystrophy and sarcopenia. To date, most studies with tissue-engineered skeletal muscle have utilized murine and rat cell sources. On the other hand, successful engineering of functional human muscle would enable different applications including improved methods for preclinical testing of drugs and therapies. Some of the requirements for engineering functional skeletal muscle include expression of adult forms of muscle proteins, comparable contractile forces to those produced by native muscle, and physiological force-length and force-frequency relations. This review discusses the various strategies and challenges associated with these requirements, specific applications with cultured human myoblasts, and future directions.
Collapse
Affiliation(s)
- Cindy S Cheng
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brittany N J Davis
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lauran Madden
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
28
|
Lu A, Poddar M, Tang Y, Proto JD, Sohn J, Mu X, Oyster N, Wang B, Huard J. Rapid depletion of muscle progenitor cells in dystrophic mdx/utrophin-/- mice. Hum Mol Genet 2014; 23:4786-800. [PMID: 24781208 DOI: 10.1093/hmg/ddu194] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) patients lack dystrophin from birth; however, muscle weakness becomes apparent only at 3-5 years of age, which happens to coincide with the depletion of the muscle progenitor cell (MPC) pools. Indeed, MPCs isolated from older DMD patients demonstrate impairments in myogenic potential. To determine whether the progression of muscular dystrophy is a consequence of the decline in functional MPCs, we investigated two animal models of DMD: (i) dystrophin-deficient mdx mice, the most commonly utilized model of DMD, which has a relatively mild dystrophic phenotype and (ii) dystrophin/utrophin double knock-out (dKO) mice, which display a similar histopathologic phenotype to DMD patients. In contrast to age-matched mdx mice, we observed that both the number and regeneration potential of dKO MPCs rapidly declines during disease progression. This occurred in MPCs at both early and late stages of myogenic commitment. In fact, early MPCs isolated from 6-week-old dKO mice have reductions in proliferation, resistance to oxidative stress and multilineage differentiation capacities compared with age-matched mdx MPCs. This effect may potentially be mediated by fibroblast growth factor overexpression and/or a reduction in telomerase activity. Our results demonstrate that the rapid disease progression in the dKO model is associated, at least in part, with MPC depletion. Therefore, alleviating MPC depletion could represent an approach to delay the onset of the histopathologies associated with DMD patients.
Collapse
Affiliation(s)
- Aiping Lu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Minakshi Poddar
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jonathan D Proto
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jihee Sohn
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Xiaodong Mu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Nicholas Oyster
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
29
|
Lavasani M, Thompson SD, Pollett JB, Usas A, Lu A, Stolz DB, Clark KA, Sun B, Péault B, Huard J. Human muscle-derived stem/progenitor cells promote functional murine peripheral nerve regeneration. J Clin Invest 2014; 124:1745-56. [PMID: 24642464 DOI: 10.1172/jci44071] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/16/2014] [Indexed: 12/16/2022] Open
Abstract
Peripheral nerve injuries and neuropathies lead to profound functional deficits. Here, we have demonstrated that muscle-derived stem/progenitor cells (MDSPCs) isolated from adult human skeletal muscle (hMDSPCs) can adopt neuronal and glial phenotypes in vitro and ameliorate a critical-sized sciatic nerve injury and its associated defects in a murine model. Transplanted hMDSPCs surrounded the axonal growth cone, while hMDSPCs infiltrating the regenerating nerve differentiated into myelinating Schwann cells. Engraftment of hMDSPCs into the area of the damaged nerve promoted axonal regeneration, which led to functional recovery as measured by sustained gait improvement. Furthermore, no adverse effects were observed in these animals up to 18 months after transplantation. Following hMDSPC therapy, gastrocnemius muscles from mice exhibited substantially less muscle atrophy, an increase in muscle mass after denervation, and reorganization of motor endplates at the postsynaptic sites compared with those from PBS-treated mice. Evaluation of nerve defects in animals transplanted with vehicle-only or myoblast-like cells did not reveal histological or functional recovery. These data demonstrate the efficacy of hMDSPC-based therapy for peripheral nerve injury and suggest that hMDSPC transplantation has potential to be translated for use in human neuropathies.
Collapse
|
30
|
Montarras D, L'honoré A, Buckingham M. Lying low but ready for action: the quiescent muscle satellite cell. FEBS J 2013; 280:4036-50. [DOI: 10.1111/febs.12372] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Didier Montarras
- Department of Developmental and Stem Cell Biology; CNRS URA 2578; Institut Pasteur; Paris; France
| | - Aurore L'honoré
- Department of Developmental and Stem Cell Biology; CNRS URA 2578; Institut Pasteur; Paris; France
| | - Margaret Buckingham
- Department of Developmental and Stem Cell Biology; CNRS URA 2578; Institut Pasteur; Paris; France
| |
Collapse
|
31
|
Hong P, Chen K, Huang B, Liu M, Cui M, Rozenberg I, Chaqour B, Pan X, Barton ER, Jiang XC, Siddiqui MAQ. HEXIM1 controls satellite cell expansion after injury to regulate skeletal muscle regeneration. J Clin Invest 2013; 122:3873-87. [PMID: 23023707 DOI: 10.1172/jci62818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 08/02/2012] [Indexed: 01/07/2023] Open
Abstract
The native capacity of adult skeletal muscles to regenerate is vital to the recovery from physical injuries and dystrophic diseases. Currently, the development of therapeutic interventions has been hindered by the complex regulatory network underlying the process of muscle regeneration. Using a mouse model of skeletal muscle regeneration after injury, we identified hexamethylene bisacetamide inducible 1 (HEXIM1, also referred to as CLP-1), the inhibitory component of the positive transcription elongation factor b (P-TEFb) complex, as a pivotal regulator of skeletal muscle regeneration. Hexim1-haplodeficient muscles exhibited greater mass and preserved function compared with those of WT muscles after injury, as a result of enhanced expansion of satellite cells. Transplanted Hexim1-haplodeficient satellite cells expanded and improved muscle regeneration more effectively than WT satellite cells. Conversely, HEXIM1 overexpression restrained satellite cell proliferation and impeded muscle regeneration. Mechanistically, dissociation of HEXIM1 from P-TEFb and subsequent activation of P-TEFb are required for satellite cell proliferation and the prevention of early myogenic differentiation. These findings suggest a crucial role for the HEXIM1/P-TEFb pathway in the regulation of satellite cell–mediated muscle regeneration and identify HEXIM1 as a potential therapeutic target for degenerative muscular diseases.
Collapse
Affiliation(s)
- Peng Hong
- Department of Cell Biology, State University of New York Downstate Medical Center,New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hosoyama T, Dyke JV, Suzuki M. Applications of skeletal muscle progenitor cells for neuromuscular diseases. AMERICAN JOURNAL OF STEM CELLS 2012; 1:253-263. [PMID: 23671812 PMCID: PMC3636729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/05/2012] [Indexed: 06/02/2023]
Abstract
Neuromuscular diseases affect skeletal muscle and/or nervous control resulting in direct disruption of skeletal muscle and muscle pathology, or nervous system disruption which indirectly disrupts muscle function. Stem cell-based therapy is well-recognized as a promising approach for several types of diseases including those affecting the neuromuscular system. To design a successful therapeutic strategy, it is important to choose the most appropriate stem cell type. Skeletal muscle progenitor cells (SMPCs), also called myogenic progenitors, can contribute to muscle regeneration, differentiate into skeletal muscles, and are valuable cells for therapeutic application. Different types of stem/progenitor cells, including satellite cells, side population cells, muscle derived stem cells, mesenchymal stem cells, myogenic pericytes, and mesoangioblasts, have been identified as possible cell resources of SMPCs. Furthermore, recent advances in stem cell biology allow us to use embryonic stem cells and induced pluripotent stem cells for SMPC derivation. When skeletal muscle is chosen as a target of cell transplantation, the possible criteria for choosing the "best" progenitor/stem cell include preparation strategies, efficiency of intramuscular integration, method of cellular delivery, and functional improvement of the muscle after cell transplantation. Here, we discuss recent findings on various types of SMPCs and their promise for future clinical translation in neuromuscular diseases.
Collapse
Affiliation(s)
- Tohru Hosoyama
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI, USA
| | - Jonathan Van Dyke
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI, USA
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI, USA
- The Stem Cell and Regenerative Medicine Center of Wisconsin-Madison, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
33
|
El Haddad M, Jean E, Turki A, Hugon G, Vernus B, Bonnieu A, Passerieux E, Hamade A, Mercier J, Laoudj-Chenivesse D, Carnac G. Glutathione peroxidase 3, a new retinoid target gene, is crucial for human skeletal muscle precursor cell survival. J Cell Sci 2012; 125:6147-56. [PMID: 23132926 DOI: 10.1242/jcs.115220] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Protection of satellite cells from cytotoxic damages is crucial to ensure efficient adult skeletal muscle regeneration and to improve therapeutic efficacy of cell transplantation in degenerative skeletal muscle diseases. It is therefore important to identify and characterize molecules and their target genes that control the viability of muscle stem cells. Recently, we demonstrated that high aldehyde dehydrogenase activity is associated with increased viability of human myoblasts. In addition to its detoxifying activity, aldehyde dehydrogenase can also catalyze the irreversible oxidation of vitamin A to retinoic acid; therefore, we examined whether retinoic acid is important for myoblast viability. We showed that when exposed to oxidative stress induced by hydrogen peroxide, adherent human myoblasts entered apoptosis and lost their capacity for adhesion. Pre-treatment with retinoic acid reduced the cytotoxic damage ex vivo and enhanced myoblast survival in transplantation assays. The effects of retinoic acid were maintained in dystrophic myoblasts derived from facioscapulohumeral patients. RT-qPCR analysis of antioxidant gene expression revealed glutathione peroxidase 3 (Gpx3), a gene encoding an antioxidant enzyme, as a potential retinoic acid target gene in human myoblasts. Knockdown of Gpx3 using short interfering RNA induced elevation in reactive oxygen species and cell death. The anti-cytotoxic effects of retinoic acid were impaired in GPx3-inactivated myoblasts, which indicates that GPx3 regulates the antioxidative effects of retinoic acid. Therefore, retinoid status and GPx3 levels may have important implications for the viability of human muscle stem cells.
Collapse
Affiliation(s)
- Marina El Haddad
- Inserm U1046, Université Montpellier 1, 34295 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|